1
|
Vantaggiato C, Guarato G, Brivio F, Panzeri E, Speltoni B, Gumeni S, Orso G, Santorelli FM, Bassi MT. Naringenin and SMER28 target lysosomal reformation and rescue SPG11 and SPG15 hereditary spastic paraplegia phenotypes. Pharmacol Res 2025; 218:107836. [PMID: 40550407 DOI: 10.1016/j.phrs.2025.107836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 05/30/2025] [Accepted: 06/20/2025] [Indexed: 06/28/2025]
Abstract
SPG11 and SPG15 are two hereditary spastic paraplegia forms characterized by autophagosome accumulation, reduced free lysosomes and defects in autophagic lysosomal reformation (ALR). We demonstrated that attempts to rescue ALR and/or lysosome biogenesis are critical strategies for SPG15 phenotype and that SMER28 improved lysosomal reformation rescuing locomotor deficit in a SPG15 Drosophila model. Here we assessed the therapeutic potential of two FDA-approved compounds, tideglusib and naringenin, that target lysosomal function and regeneration, both registered for clinical use. Their effects were compared with those of SMER28 and of miglustat, the latter tested in a phase II clinical trial in SPG11 patients, in both SPG15 and SPG11 patient's derived cells and in the corresponding Drosophila models. We demonstrated that naringenin and SMER28 restored lysosomal and autophagic parameters in SPG15 and SPG11 cells and fly models, rescued ALR and improved locomotor deficit in vivo. Both compounds induced lysosomal tubulation, downstream of mTOR, promoting lysosomal reformation. Our work indicates that lysosomal reformation is a good strategy for herditary spastic parapegia forms with impaired lysosomal function and identifies naringenin as new modulator of this process, offering further hand to planning phase II clinical trials in SPG11-SPG15 patients.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Scientific Institute IRCCS E. Medea, Laboratory of Medical Genetics, Via D. L. Monza 20, Bosisio Parini, Lecco 23842, Italy.
| | - Giulia Guarato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy
| | - Francesca Brivio
- Scientific Institute IRCCS E. Medea, Laboratory of Medical Genetics, Via D. L. Monza 20, Bosisio Parini, Lecco 23842, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy
| | - Elena Panzeri
- Scientific Institute IRCCS E. Medea, Laboratory of Medical Genetics, Via D. L. Monza 20, Bosisio Parini, Lecco 23842, Italy
| | - Beatrice Speltoni
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy.
| | | | - Maria Teresa Bassi
- Scientific Institute IRCCS E. Medea, Laboratory of Medical Genetics, Via D. L. Monza 20, Bosisio Parini, Lecco 23842, Italy
| |
Collapse
|
2
|
Tao H, Wang C, Zou C, Zhu H, Zhang W. Unraveling the potential of neuroinflammation and autophagy in schizophrenia. Eur J Pharmacol 2025; 997:177469. [PMID: 40054715 DOI: 10.1016/j.ejphar.2025.177469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/03/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Schizophrenia (SCZ) is a complex and chronic psychiatric disorder that affects a significant proportion of the global population. Although the precise etiology of SCZ remains uncertain, recent studies have underscored the involvement of neuroinflammation and autophagy in its pathogenesis. Neuroinflammation, characterized by hyperactivated microglia and markedly elevated pro-inflammatory cytokines, has been observed in postmortem brain tissues of SCZ patients and is closely associated with disease severity. Autophagy, a cellular process responsible for eliminating damaged components and maintaining cellular homeostasis, is believed to play a pivotal role in neuronal health and the onset of SCZ. This review explores the roles and underlying mechanisms of neuroinflammation and autophagy in SCZ, with a particular focus on their intricate interplay. Additionally, we provide an overview of potential therapeutic strategies aimed at modulating neuroinflammation and autophagy, including nutritional interventions, anti-inflammatory drugs, antipsychotics, and plant-derived natural compounds. The review also addresses the dual effects of antipsychotics on autophagy. Our objective is to translate these insights into clinical practice, expanding the therapeutic options available to improve the overall health and well-being of individuals with SCZ.
Collapse
Affiliation(s)
- Hongxia Tao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Congyin Wang
- Department of Emergency Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Chuan Zou
- Department of General Practice, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Hongru Zhu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wei Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Mai X, Wang Y, Wang X, Liu M, Teng F, Liu Z, Su MY, Stjepanovic G. Structural basis for membrane remodeling by the AP5-SPG11-SPG15 complex. Nat Struct Mol Biol 2025:10.1038/s41594-025-01500-0. [PMID: 40175557 DOI: 10.1038/s41594-025-01500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/27/2025] [Indexed: 04/04/2025]
Abstract
The human spastizin (spastic paraplegia 15, SPG15) and spatacsin (spastic paraplegia 11, SPG11) complex is involved in the formation of lysosomes, and mutations in these two proteins are linked with hereditary autosomal-recessive spastic paraplegia. SPG11-SPG15 can cooperate with the fifth adaptor protein complex (AP5) involved in membrane sorting of late endosomes. We employed cryogenic-electron microscopy and in silico predictions to investigate the structural assemblies of the SPG11-SPG15 and AP5-SPG11-SPG15 complexes. The W-shaped SPG11-SPG15 intertwined in a head-to-head fashion, and the N-terminal region of SPG11 is required for AP5 complex interaction and assembly. The AP5 complex is in a super-open conformation. Our findings reveal that the AP5-SPG11-SPG15 complex can bind PI3P molecules, sense membrane curvature and drive membrane remodeling in vitro. These studies provide insights into the structure and function of the spastic paraplegia AP5-SPG11-SPG15 complex, which is essential for the initiation of autolysosome tubulation.
Collapse
Affiliation(s)
- Xinyi Mai
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yang Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Xi Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Ming Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Fei Teng
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Ming-Yuan Su
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| | - Goran Stjepanovic
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Toupenet Marchesi L, Stockholm D, Esteves T, Leblanc M, Auger N, Branchu J, El Hachimi KH, Stevanin G. Transcriptomic analysis reinforces the implication of spatacsin in neuroinflammation and neurodevelopment. Sci Rep 2025; 15:2370. [PMID: 39827309 PMCID: PMC11743199 DOI: 10.1038/s41598-025-86337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Hereditary spastic paraplegia (HSP) encompasses a group of rare genetic diseases primarily affecting motor neurons. Among these, spastic paraplegia type 11 (SPG11) represents a complex form of HSP caused by deleterious variants in the SPG11 gene, which encodes the spatacsin protein. Previous studies have described several potential roles for spatacsin, including its involvement in lysosome and autophagy mechanisms, neuronal and neurites development or mitochondria function. Despite these findings, the precise function of the spatacsin protein remains elusive. To elucidate its function, we conducted an extensive RNA sequencing (RNAseq) experiment and transcriptomic analysis in three distinct neural structures (cerebellum, cortex and hippocampus) and at three different ages (6 weeks, 4 months and 8 months) in both wild type and Spg11-/- mice. Our functional analysis of differentially expressed genes (DEGs) and Gene Set Enrichment Analysis (GSEA) revealed dysregulation in pathways related to inflammation, RNA metabolism and neuronal and neurite development, factors frequently implicated in neurodegenerative disorders. Notably, we also observed early deregulation in cellular pathways related to cell proliferation. Our results represent a significant step towards a better understanding of the functions of spatacsin in the cell and the underlying cellular mechanisms disrupted by its absence.
Collapse
Affiliation(s)
- Liriopé Toupenet Marchesi
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
- PSL Research University, EPHE, Paris, France
| | - Daniel Stockholm
- PSL Research University, EPHE, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Typhaine Esteves
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
- PSL Research University, EPHE, Paris, France
| | - Marion Leblanc
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
- PSL Research University, EPHE, Paris, France
| | - Nicolas Auger
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
- PSL Research University, EPHE, Paris, France
| | - Julien Branchu
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
| | - Khalid Hamid El Hachimi
- Paris Brain Institute (ICM), Sorbonne University, INSERM, CNRS, APHP, Paris, France
- PSL Research University, EPHE, Paris, France
| | - Giovanni Stevanin
- PSL Research University, EPHE, Paris, France.
- Institut des Neurosciences cognitives et intégratives d'Aquitaine (INCIA), Bordeaux University, CNRS, Bordeaux, France.
| |
Collapse
|
5
|
Azeem A, Ahmed AN, Khan N, Voutsina N, Ullah I, Ubeyratna N, Yasin M, Baple EL, Crosby AH, Rawlins LE, Saleha S. Investigating the genetic basis of hereditary spastic paraplegia and cerebellar Ataxia in Pakistani families. BMC Neurol 2024; 24:354. [PMID: 39304850 DOI: 10.1186/s12883-024-03855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Hereditary Spastic Paraplegias (HSPs) and Hereditary Cerebellar Ataxias (HCAs) are progressive neurodegenerative disorders encompassing a spectrum of neurogenetic conditions with significant overlaps of clinical features. Spastic ataxias are a group of conditions that have features of both cerebellar ataxia and spasticity, and these conditions are frequently clinically challenging to distinguish. Accurate genetic diagnosis is crucial but challenging, particularly in resource-limited settings. This study aims to investigate the genetic basis of HSPs and HCAs in Pakistani families. METHODS Families from Khyber Pakhtunkhwa with at least two members showing HSP or HCA phenotypes, and who had not previously been analyzed genetically, were included. Families were referred for genetic analysis by local neurologists based on the proband's clinical features and signs of a potential genetic neurodegenerative disorder. Whole Exome Sequencing (WES) and Sanger sequencing were then used to identify and validate genetic variants, and to analyze variant segregation within families to determine inheritance patterns. The mean age of onset and standard deviation were calculated to assess variability among affected individuals, and the success rate was compared with literature reports using differences in proportions and Cohen's h. RESULTS Pathogenic variants associated with these conditions were identified in five of eight families, segregating according to autosomal recessive inheritance. These variants included previously reported SACS c.2182 C > T, p.(Arg728*), FA2H c.159_176del, p.(Arg53_Ile58del) and SPG11 c.2146 C > T, p.(Gln716*) variants, and two previously unreported variants in SACS c.2229del, p.(Phe743Leufs*8) and ZFYVE26 c.1926_1941del, p.(Tyr643Metfs*2). Additionally, FA2H and SPG11 variants were found to have recurrent occurrences, suggesting a potential founder effect within the Pakistani population. Onset age among affected individuals ranged from 1 to 14 years (M = 6.23, SD = 3.96). The diagnostic success rate was 62.5%, with moderate effect sizes compared to previous studies. CONCLUSIONS The findings of this study expand the genotypic and phenotypic spectrum of HSPs and HCAs in Pakistan and emphasize the importance of utilizing exome/genome sequencing for accurate diagnosis or support accurate differential diagnosis. This approach can improve genetic counseling and clinical management, addressing the challenges of diagnosing neurodegenerative disorders in resource-limited settings.
Collapse
Affiliation(s)
- Arfa Azeem
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Asif Naveed Ahmed
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Nikol Voutsina
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Irfan Ullah
- Department of Neurology, Khyber Teaching Hospital, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Nishanka Ubeyratna
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Emma L Baple
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Andrew H Crosby
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Lettie E Rawlins
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK.
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK.
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
6
|
Fortier M, Cauhapé M, Buono S, Becker J, Menuet A, Branchu J, Ricca I, Mero S, Dorgham K, El Hachimi KH, Dobrenis K, Colsch B, Samaroo D, Devaux M, Durr A, Stevanin G, Santorelli FM, Colombo S, Cowling B, Darios F. Decreasing ganglioside synthesis delays motor and cognitive symptom onset in Spg11 knockout mice. Neurobiol Dis 2024; 199:106564. [PMID: 38876323 DOI: 10.1016/j.nbd.2024.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
Biallelic variants in the SPG11 gene account for the most common form of autosomal recessive hereditary spastic paraplegia characterized by motor and cognitive impairment, with currently no therapeutic option. We previously observed in a Spg11 knockout mouse that neurodegeneration is associated with accumulation of gangliosides in lysosomes. To test whether a substrate reduction therapy could be a therapeutic option, we downregulated the key enzyme involved in ganglioside biosynthesis using an AAV-PHP.eB viral vector expressing a miRNA targeting St3gal5. Downregulation of St3gal5 in Spg11 knockout mice prevented the accumulation of gangliosides, delayed the onset of motor and cognitive symptoms, and prevented the upregulation of serum levels of neurofilament light chain, a biomarker widely used in neurodegenerative diseases. Importantly, similar results were observed when Spg11 knockout mice were administrated venglustat, a pharmacological inhibitor of glucosylceramide synthase expected to decrease ganglioside synthesis. Downregulation of St3gal5 or venglustat administration in Spg11 knockout mice strongly decreased the formation of axonal spheroids, previously associated with impaired trafficking. Venglustat had similar effect on cultured human SPG11 neurons. In conclusion, this work identifies the first disease-modifying therapeutic strategy in SPG11, and provides data supporting its relevance for therapeutic testing in SPG11 patients.
Collapse
Affiliation(s)
- Manon Fortier
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Margaux Cauhapé
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Suzie Buono
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Julien Becker
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Alexia Menuet
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Julien Branchu
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Ivana Ricca
- Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Serena Mero
- Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Karim Dorgham
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), Paris, France
| | - Khalid-Hamid El Hachimi
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; EPHE, PSL Research University, Paris, France
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benoit Colsch
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Dominic Samaroo
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Morgan Devaux
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; EPHE, PSL Research University, Paris, France; University of Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, Bordeaux, France
| | | | - Sophie Colombo
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Belinda Cowling
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Frédéric Darios
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|
7
|
Sharma P, Serra-Vinardell J, Introne WJ, Malicdan MCV. Role of lysosomal trafficking regulator in autophagic lysosome reformation in neurons: a disease perspective. Neural Regen Res 2024; 19:957-958. [PMID: 37862187 PMCID: PMC10749611 DOI: 10.4103/1673-5374.385298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 10/22/2023] Open
Affiliation(s)
- Prashant Sharma
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Jenny Serra-Vinardell
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy J. Introne
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - May Christine V. Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Wang X, Fan X, Zhang J, Wang F, Chen J, Wen Y, Wang L, Li T, Li H, Gu H, Zhang Y, Yuan S. hnRNPA2B1 represses the disassembly of arsenite-induced stress granules and is essential for male fertility. Cell Rep 2024; 43:113769. [PMID: 38363675 DOI: 10.1016/j.celrep.2024.113769] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Although the composition and assembly of stress granules (SGs) are well understood, the molecular mechanisms underlying SG disassembly remain unclear. Here, we identify that heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) is associated with SGs and that its absence specifically enhances the disassembly of arsenite-induced SGs depending on the ubiquitination-proteasome system but not the autophagy pathway. hnRNPA2B1 interacts with many core SG proteins, including G3BP1, G3BP2, USP10, and Caprin-1; USP10 can deubiquitinate G3BP1; and hnRNPA2B1 depletion attenuates the G3BP1-USP10/Caprin-1 interaction but elevates the G3BP1 ubiquitination level under arsenite treatment. Moreover, the disease-causing mutation FUSR521C also disassembles faster from SGs in HNRNPA2B1 mutant cells. Furthermore, knockout of hnRNPA2B1 in mice leads to Sertoli cell-only syndrome (SCOS), causing complete male infertility. Consistent with this, arsenite-induced SGs disassemble faster in Hnrnpa2b1 knockout (KO) mouse Sertoli cells as well. These findings reveal the essential roles of hnRNPA2B1 in regulating SG disassembly and male mouse fertility.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xu Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingshou Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huaibiao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Heng Gu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510600, China
| | - Youzhi Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of the Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China.
| |
Collapse
|
9
|
Damiani D, Baggiani M, Della Vecchia S, Naef V, Santorelli FM. Pluripotent Stem Cells as a Preclinical Cellular Model for Studying Hereditary Spastic Paraplegias. Int J Mol Sci 2024; 25:2615. [PMID: 38473862 DOI: 10.3390/ijms25052615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) comprise a family of degenerative diseases mostly hitting descending axons of corticospinal neurons. Depending on the gene and mutation involved, the disease could present as a pure form with limb spasticity, or a complex form associated with cerebellar and/or cortical signs such as ataxia, dysarthria, epilepsy, and intellectual disability. The progressive nature of HSPs invariably leads patients to require walking canes or wheelchairs over time. Despite several attempts to ameliorate the life quality of patients that have been tested, current therapeutical approaches are just symptomatic, as no cure is available. Progress in research in the last two decades has identified a vast number of genes involved in HSP etiology, using cellular and animal models generated on purpose. Although unanimously considered invaluable tools for basic research, those systems are rarely predictive for the establishment of a therapeutic approach. The advent of induced pluripotent stem (iPS) cells allowed instead the direct study of morphological and molecular properties of the patient's affected neurons generated upon in vitro differentiation. In this review, we revisited all the present literature recently published regarding the use of iPS cells to differentiate HSP patient-specific neurons. Most studies have defined patient-derived neurons as a reliable model to faithfully mimic HSP in vitro, discovering original findings through immunological and -omics approaches, and providing a platform to screen novel or repurposed drugs. Thereby, one of the biggest hopes of current HSP research regards the use of patient-derived iPS cells to expand basic knowledge on the disease, while simultaneously establishing new therapeutic treatments for both generalized and personalized approaches in daily medical practice.
Collapse
Affiliation(s)
- Devid Damiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Matteo Baggiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Stefania Della Vecchia
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Valentina Naef
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| |
Collapse
|
10
|
Krumm L, Pozner T, Zagha N, Coras R, Arnold P, Tsaktanis T, Scherpelz K, Davis MY, Kaindl J, Stolzer I, Süß P, Khundadze M, Hübner CA, Riemenschneider MJ, Baets J, Günther C, Jayadev S, Rothhammer V, Krach F, Winkler J, Winner B, Regensburger M. Neuroinflammatory disease signatures in SPG11-related hereditary spastic paraplegia patients. Acta Neuropathol 2024; 147:28. [PMID: 38305941 PMCID: PMC10837238 DOI: 10.1007/s00401-023-02675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
Biallelic loss of SPG11 function constitutes the most frequent cause of complicated autosomal recessive hereditary spastic paraplegia (HSP) with thin corpus callosum, resulting in progressive multisystem neurodegeneration. While the impact of neuroinflammation is an emerging and potentially treatable aspect in neurodegenerative diseases and leukodystrophies, the role of immune cells in SPG11-HSP patients is unknown. Here, we performed a comprehensive immunological characterization of SPG11-HSP, including examination of three human postmortem brain donations, immunophenotyping of patients' peripheral blood cells and patient-specific induced pluripotent stem cell-derived microglia-like cells (iMGL). We delineate a previously unknown role of innate immunity in SPG11-HSP. Neuropathological analysis of SPG11-HSP patient brain tissue revealed profound microgliosis in areas of neurodegeneration, downregulation of homeostatic microglial markers and cell-intrinsic accumulation of lipids and lipofuscin in IBA1+ cells. In a larger cohort of SPG11-HSP patients, the ratio of peripheral classical and intermediate monocytes was increased, along with increased serum levels of IL-6 that correlated with disease severity. Stimulation of patient-specific iMGLs with IFNγ led to increased phagocytic activity compared to control iMGL as well as increased upregulation and release of proinflammatory cytokines and chemokines, such as CXCL10. On a molecular basis, we identified increased STAT1 phosphorylation as mechanism connecting IFNγ-mediated immune hyperactivation and SPG11 loss of function. STAT1 expression was increased both in human postmortem brain tissue and in an Spg11-/- mouse model. Application of an STAT1 inhibitor decreased CXCL10 production in SPG11 iMGL and rescued their toxic effect on SPG11 neurons. Our data establish neuroinflammation as a novel disease mechanism in SPG11-HSP patients and constitute the first description of myeloid cell/ microglia activation in human SPG11-HSP. IFNγ/ STAT1-mediated neurotoxic effects of hyperreactive microglia upon SPG11 loss of function indicate that immunomodulation strategies may slow down disease progression.
Collapse
Affiliation(s)
- Laura Krumm
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Naime Zagha
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Kathryn Scherpelz
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Marie Y Davis
- Department of Neurology, University of Washington Medical Center, Seattle, WA, USA
- VA Puget Sound Healthcare System, Seattle, WA, USA
| | - Johanna Kaindl
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Süß
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital Friedrich-Schiller-University Jena, Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Kussmaulallee 4, 91054, Erlangen, Germany
| | - Suman Jayadev
- Department of Neurology, University of Washington Medical Center, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Kussmaulallee 4, 91054, Erlangen, Germany.
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
11
|
Lewerissa EI, Nadif Kasri N, Linda K. Epigenetic regulation of autophagy-related genes: Implications for neurodevelopmental disorders. Autophagy 2024; 20:15-28. [PMID: 37674294 PMCID: PMC10761153 DOI: 10.1080/15548627.2023.2250217] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily highly conserved catabolic process that is important for the clearance of cytosolic contents to maintain cellular homeostasis and survival. Recent findings point toward a critical role for autophagy in brain function, not only by preserving neuronal health, but especially by controlling different aspects of neuronal development and functioning. In line with this, mutations in autophagy-related genes are linked to various key characteristics and symptoms of neurodevelopmental disorders (NDDs), including autism, micro-/macrocephaly, and epilepsy. However, the group of NDDs caused by mutations in autophagy-related genes is relatively small. A significant proportion of NDDs are associated with mutations in genes encoding epigenetic regulatory proteins that modulate gene expression, so-called chromatinopathies. Intriguingly, several of the NDD-linked chromatinopathy genes have been shown to regulate autophagy-related genes, albeit in non-neuronal contexts. From these studies it becomes evident that tight transcriptional regulation of autophagy-related genes is crucial to control autophagic activity. This opens the exciting possibility that aberrant autophagic regulation might underly nervous system impairments in NDDs with disturbed epigenetic regulation. We here summarize NDD-related chromatinopathy genes that are known to regulate transcriptional regulation of autophagy-related genes. Thereby, we want to highlight autophagy as a candidate key hub mechanism in NDD-related chromatinopathies.Abbreviations: ADNP: activity dependent neuroprotector homeobox; ASD: autism spectrum disorder; ATG: AutTophaGy related; CpG: cytosine-guanine dinucleotide; DNMT: DNA methyltransferase; EHMT: euchromatic histone lysine methyltransferase; EP300: E1A binding protein p300; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; H3K4me3: histone 3 lysine 4 trimethylation; H3K9me1/2/3: histone 3 lysine 9 mono-, di-, or trimethylation; H3K27me2/3: histone 3 lysine 27 di-, or trimethylation; hiPSCs: human induced pluripotent stem cells; HSP: hereditary spastic paraplegia; ID: intellectual disability; KANSL1: KAT8 regulatory NSL complex subunit 1; KAT8: lysine acetyltransferase 8; KDM1A/LSD1: lysine demethylase 1A; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NDD: neurodevelopmental disorder; PHF8: PHD finger protein 8; PHF8-XLID: PHF8-X linked intellectual disability syndrome; PTM: post-translational modification; SESN2: sestrin 2; YY1: YY1 transcription factor; YY1AP1: YY1 associated protein 1.
Collapse
Affiliation(s)
- Elly I. Lewerissa
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Gelderland, The Netherlands
| | - Katrin Linda
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Gelderland, The Netherlands
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Flemish Brabant, Belgium
- Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Flemish Brabant, Belgium
| |
Collapse
|
12
|
Todd TW, Shao W, Zhang YJ, Petrucelli L. The endolysosomal pathway and ALS/FTD. Trends Neurosci 2023; 46:1025-1041. [PMID: 37827960 PMCID: PMC10841821 DOI: 10.1016/j.tins.2023.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are considered to be part of a disease spectrum that is associated with causative mutations and risk variants in a wide range of genes. Mounting evidence indicates that several of these genes are linked to the endolysosomal system, highlighting the importance of this pathway in ALS/FTD. Although many studies have focused on how disruption of this pathway impacts on autophagy, recent findings reveal that this may not be the whole picture: specifically, disrupting autophagy may not be sufficient to induce disease, whereas disrupting the endolysosomal system could represent a crucial pathogenic driver. In this review we discuss the connections between ALS/FTD and the endolysosomal system, including a breakdown of how disease-associated genes are implicated in this pathway. We also explore the potential downstream consequences of disrupting endolysosomal activity in the brain, outside of an effect on autophagy.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Wei Shao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
13
|
Chai E, Chen Z, Mou Y, Thakur G, Zhan W, Li XJ. Liver-X-receptor agonists rescue axonal degeneration in SPG11-deficient neurons via regulating cholesterol trafficking. Neurobiol Dis 2023; 187:106293. [PMID: 37709208 PMCID: PMC10655618 DOI: 10.1016/j.nbd.2023.106293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/22/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Spastic paraplegia type 11 (SPG11) is a common autosomal recessive form of hereditary spastic paraplegia (HSP) characterized by the degeneration of cortical motor neuron axons, leading to muscle spasticity and weakness. Impaired lipid trafficking is an emerging pathology in neurodegenerative diseases including SPG11, though its role in axonal degeneration of human SPG11 neurons remains unknown. Here, we established a pluripotent stem cell-based SPG11 model by knocking down the SPG11 gene in human embryonic stem cells (hESCs). These stem cells were then differentiated into cortical projection neurons (PNs), the cell types affected in HSP patients, to examine axonal defects and cholesterol distributions. Our data revealed that SPG11 deficiency led to reduced axonal outgrowth, impaired axonal transport, and accumulated swellings, recapitulating disease-specific phenotypes. In SPG11-knockdown neurons, cholesterol was accumulated in lysosome and reduced in plasma membrane, revealing impairments in cholesterol trafficking. Strikingly, the liver-X-receptor (LXR) agonists restored cholesterol homeostasis, leading to the rescue of subsequent axonal defects in SPG11-deficient cortical PNs. To further determine the implication of impaired cholesterol homeostasis in SPG11, we examined the cholesterol distribution in cortical PNs generated from SPG11 disease-mutation knock-in hESCs, and observed a similar cholesterol trafficking impairment. Moreover, LXR agonists rescued the aberrant cholesterol distribution and mitigated the degeneration of SPG11 disease-mutated neurons. Taken together, our data demonstrate impaired cholesterol trafficking underlying axonal degeneration of SPG11 human neurons, and highlight the therapeutic potential of LXR agonists for SPG11 through restoring cholesterol homeostasis.
Collapse
Affiliation(s)
- Eric Chai
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA.; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA.; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gitika Thakur
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Weihai Zhan
- Office of Research, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA.; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA..
| |
Collapse
|
14
|
Pierga A, Matusiak R, Cauhapé M, Branchu J, Danglot L, Boutry M, Darios F. Spatacsin regulates directionality of lysosome trafficking by promoting the degradation of its partner AP5Z1. PLoS Biol 2023; 21:e3002337. [PMID: 37871017 PMCID: PMC10621996 DOI: 10.1371/journal.pbio.3002337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 11/02/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023] Open
Abstract
The endoplasmic reticulum (ER) forms contacts with the lysosomal compartment, regulating lysosome positioning and motility. The movements of lysosomes are controlled by the attachment of molecular motors to their surface. However, the molecular mechanisms by which ER controls lysosome dynamics are still elusive. Here, using mouse brain extracts and mouse embryonic fibroblasts, we demonstrate that spatacsin is an ER-resident protein regulating the formation of tubular lysosomes, which are highly dynamic. Screening for spatacsin partners required for tubular lysosome formation showed spatacsin to act by regulating protein degradation. We demonstrate that spatacsin promotes the degradation of its partner AP5Z1, which regulates the relative amount of spastizin and AP5Z1 at lysosomes. Spastizin and AP5Z1 contribute to regulate tubular lysosome formation, as well as their trafficking by interacting with anterograde and retrograde motor proteins, kinesin KIF13A and dynein/dynactin subunit p150Glued, respectively. Ultimately, investigations in polarized mouse cortical neurons in culture demonstrated that spatacsin-regulated degradation of AP5Z1 controls the directionality of lysosomes trafficking. Collectively, our results identify spatacsin as a protein regulating the directionality of lysosome trafficking.
Collapse
Affiliation(s)
- Alexandre Pierga
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Raphaël Matusiak
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Margaux Cauhapé
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Julien Branchu
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Lydia Danglot
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Scientific director of NeurImag facility, Université Paris Cité, Paris, France
| | - Maxime Boutry
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Frédéric Darios
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| |
Collapse
|
15
|
Lan ZQ, Ge ZY, Lv SK, Zhao B, Li CX. The regulatory role of lipophagy in central nervous system diseases. Cell Death Discov 2023; 9:229. [PMID: 37414782 DOI: 10.1038/s41420-023-01504-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Lipid droplets (LDs) are the organelles for storing neutral lipids, which are broken down when energy is insufficient. It has been suggested that excessive accumulation of LDs can affect cellular function, which is important to coordinate homeostasis of lipids in vivo. Lysosomes play an important role in the degradation of lipids, and the process of selective autophagy of LDs through lysosomes is known as lipophagy. Dysregulation of lipid metabolism has recently been associated with a variety of central nervous system (CNS) diseases, but the specific regulatory mechanisms of lipophagy in these diseases remain to be elucidated. This review summarizes various forms of lipophagy and discusses the role that lipophagy plays in the development of CNS diseases in order to reveal the related mechanisms and potential therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Zhuo-Qing Lan
- Department of General practice medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, P.R. China
| | - Zi-Yi Ge
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Shu-Kai Lv
- Department of General practice medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, P.R. China
| | - Bing Zhao
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.
| | - Cai-Xia Li
- Department of General practice medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, P.R. China.
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
16
|
Diab R, Pilotto F, Saxena S. Autophagy and neurodegeneration: Unraveling the role of C9ORF72 in the regulation of autophagy and its relationship to ALS-FTD pathology. Front Cell Neurosci 2023; 17:1086895. [PMID: 37006471 PMCID: PMC10060823 DOI: 10.3389/fncel.2023.1086895] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The proper functioning of the cell clearance machinery is critical for neuronal health within the central nervous system (CNS). In normal physiological conditions, the cell clearance machinery is actively involved in the elimination of misfolded and toxic proteins throughout the lifetime of an organism. The highly conserved and regulated pathway of autophagy is one of the important processes involved in preventing and neutralizing pathogenic buildup of toxic proteins that could eventually lead to the development of neurodegenerative diseases (NDs) such as Alzheimer’s disease or Amyotrophic lateral sclerosis (ALS). The most common genetic cause of ALS and frontotemporal dementia (FTD) is a hexanucleotide expansion consisting of GGGGCC (G4C2) repeats in the chromosome 9 open reading frame 72 gene (C9ORF72). These abnormally expanded repeats have been implicated in leading to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs). In this review, we discuss the normal physiological role of C9ORF72 in the autophagy-lysosome pathway (ALP), and present recent research deciphering how dysfunction of the ALP synergizes with C9ORF72 haploinsufficiency, which together with the gain of toxic mechanisms involving hexanucleotide repeat expansions and DPRs, drive the disease process. This review delves further into the interactions of C9ORF72 with RAB proteins involved in endosomal/lysosomal trafficking, and their role in regulating various steps in autophagy and lysosomal pathways. Lastly, the review aims to provide a framework for further investigations of neuronal autophagy in C9ORF72-linked ALS-FTD as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rim Diab
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Federica Pilotto
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- *Correspondence: Smita Saxena,
| |
Collapse
|
17
|
Pathogenic Aspects and Therapeutic Avenues of Autophagy in Parkinson's Disease. Cells 2023; 12:cells12040621. [PMID: 36831288 PMCID: PMC9954720 DOI: 10.3390/cells12040621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
The progressive aging of the population and the fact that Parkinson's disease currently does not have any curative treatment turn out to be essential issues in the following years, where research has to play a critical role in developing therapy. Understanding this neurodegenerative disorder keeps advancing, proving the discovery of new pathogenesis-related genes through genome-wide association analysis. Furthermore, the understanding of its close link with the disruption of autophagy mechanisms in the last few years permits the elaboration of new animal models mimicking, through multiple pathways, different aspects of autophagic dysregulation, with the presence of pathological hallmarks, in brain regions affected by Parkinson's disease. The synergic advances in these fields permit the elaboration of multiple therapeutic strategies for restoring autophagy activity. This review discusses the features of Parkinson's disease, the autophagy mechanisms and their involvement in pathogenesis, and the current methods to correct this cellular pathway, from the development of animal models to the potentially curative treatments in the preclinical and clinical phase studies, which are the hope for patients who do not currently have any curative treatment.
Collapse
|
18
|
Serra-Vinardell J, Sandler MB, De Pace R, Manzella-Lapeira J, Cougnoux A, Keyvanfar K, Introne WJ, Brzostowski JA, Ward ME, Gahl WA, Sharma P, Malicdan MCV. LYST deficiency impairs autophagic lysosome reformation in neurons and alters lysosome number and size. Cell Mol Life Sci 2023; 80:53. [PMID: 36707427 PMCID: PMC11072721 DOI: 10.1007/s00018-023-04695-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/11/2022] [Accepted: 01/08/2023] [Indexed: 01/29/2023]
Abstract
Chediak-Higashi syndrome (CHS) is a rare, autosomal recessive disorder caused by biallelic mutations in the lysosomal trafficking regulator (LYST) gene. Even though enlarged lysosomes and/or lysosome-related organelles (LROs) are the typical cellular hallmarks of CHS, they have not been investigated in human neuronal models. Moreover, how and why the loss of LYST function causes a lysosome phenotype in cells has not been elucidated. We report that the LYST-deficient human neuronal model exhibits lysosome depletion accompanied by hyperelongated tubules extruding from enlarged autolysosomes. These results have also been recapitulated in neurons differentiated from CHS patients' induced pluripotent stem cells (iPSCs), validating our model system. We propose that LYST ensures the correct fission/scission of the autolysosome tubules during autophagic lysosome reformation (ALR), a crucial process to restore the number of free lysosomes after autophagy. We further demonstrate that LYST is recruited to the lysosome membrane, likely to facilitate the fission of autolysosome tubules. Together, our results highlight the key role of LYST in maintaining lysosomal homeostasis following autophagy and suggest that ALR dysregulation is likely associated with the neurodegenerative CHS phenotype.
Collapse
Affiliation(s)
- Jenny Serra-Vinardell
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Maxwell B Sandler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Javier Manzella-Lapeira
- Twinbrook Imaging Facility, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Antony Cougnoux
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Keyvan Keyvanfar
- National Heart, Lung, and Blood Institute, Flow Cytometry Facility, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wendy J Introne
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joseph A Brzostowski
- Twinbrook Imaging Facility, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Common Fund, Office of the Director, NIH, Bethesda, MD, 20892, USA
| | - Prashant Sharma
- Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Common Fund, Office of the Director, NIH, Bethesda, MD, 20892, USA.
| | - May Christine V Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Common Fund, Office of the Director, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
19
|
Nanayakkara R, Gurung R, Rodgers SJ, Eramo MJ, Ramm G, Mitchell CA, McGrath MJ. Autophagic lysosome reformation in health and disease. Autophagy 2022:1-18. [DOI: 10.1080/15548627.2022.2128019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Randini Nanayakkara
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Rajendra Gurung
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Samuel J. Rodgers
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew J. Eramo
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Christina A. Mitchell
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Meagan J. McGrath
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
20
|
Shao W, Todd TW, Wu Y, Jones CY, Tong J, Jansen-West K, Daughrity LM, Park J, Koike Y, Kurti A, Yue M, Castanedes-Casey M, del Rosso G, Dunmore JA, Alepuz DZ, Oskarsson B, Dickson DW, Cook CN, Prudencio M, Gendron TF, Fryer JD, Zhang YJ, Petrucelli L. Two FTD-ALS genes converge on the endosomal pathway to induce TDP-43 pathology and degeneration. Science 2022; 378:94-99. [PMID: 36201573 PMCID: PMC9942492 DOI: 10.1126/science.abq7860] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Frontotemporal dementia and amyotrophic lateral sclerosis (FTD-ALS) are associated with both a repeat expansion in the C9orf72 gene and mutations in the TANK-binding kinase 1 (TBK1) gene. We found that TBK1 is phosphorylated in response to C9orf72 poly(Gly-Ala) [poly(GA)] aggregation and sequestered into inclusions, which leads to a loss of TBK1 activity and contributes to neurodegeneration. When we reduced TBK1 activity using a TBK1-R228H (Arg228→His) mutation in mice, poly(GA)-induced phenotypes were exacerbated. These phenotypes included an increase in TAR DNA binding protein 43 (TDP-43) pathology and the accumulation of defective endosomes in poly(GA)-positive neurons. Inhibiting the endosomal pathway induced TDP-43 aggregation, which highlights the importance of this pathway and TBK1 activity in pathogenesis. This interplay between C9orf72, TBK1, and TDP-43 connects three different facets of FTD-ALS into one coherent pathway.
Collapse
Affiliation(s)
- Wei Shao
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Tiffany W. Todd
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Yanwei Wu
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Caroline Y. Jones
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Jimei Tong
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | | | - Jinyoung Park
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Yuka Koike
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | | | - Giulia del Rosso
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL, 32224, USA
| | - Judith A. Dunmore
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | | | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL, 32224, USA
| | - Casey N. Cook
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL, 32224, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL, 32224, USA
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL, 32224, USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Department of Neuroscience, Mayo Clinic; Scottsdale, AZ, 85259, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL, 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL, 32224, USA
| |
Collapse
|
21
|
Cytosolic sequestration of spatacsin by Protein Kinase A and 14-3-3 proteins. Neurobiol Dis 2022; 174:105858. [PMID: 36096339 DOI: 10.1016/j.nbd.2022.105858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Mutations in SPG11, encoding spatacsin, constitute the major cause of autosomal recessive Hereditary Spastic Paraplegia (HSP) with thinning of the corpus callosum. Previous studies showed that spatacsin orchestrates cellular traffic events through the formation of a coat-like complex and its loss of function results in lysosomal and axonal transport impairments. However, the upstream mechanisms that regulate spatacsin trafficking are unknown. Here, using proteomics and CRISPR/Cas9-mediated tagging of endogenous spatacsin, we identified a subset of 14-3-3 proteins as physiological interactors of spatacsin. The interaction is modulated by Protein Kinase A (PKA)-dependent phosphorylation of spatacsin at Ser1955, which initiates spatacsin trafficking from the plasma membrane to the intracellular space. Our study provides novel insight in understanding spatacsin physio-pathological roles with mechanistic dissection of its associated pathways.
Collapse
|
22
|
Vantaggiato C, Orso G, Guarato G, Brivio F, Napoli B, Panzeri E, Masotti S, Santorelli FM, Lamprou M, Gumeni S, Clementi E, Bassi MT. Rescue of lysosomal function as therapeutic strategy for SPG15 hereditary spastic paraplegia. Brain 2022; 146:1103-1120. [PMID: 36029068 PMCID: PMC9976989 DOI: 10.1093/brain/awac308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 08/11/2022] [Indexed: 11/14/2022] Open
Abstract
SPG15 is a hereditary spastic paraplegia subtype caused by mutations in Spastizin, a protein encoded by the ZFYVE26 gene. Spastizin is involved in autophagosome maturation and autophagic lysosome reformation and SPG15-related mutations lead to autophagic lysosome reformation defects with lysosome enlargement, free lysosome depletion and autophagosome accumulation. Symptomatic and rehabilitative treatments are the only therapy currently available for patients. Here, we targeted autophagy and lysosomes in SPG15 patient-derived cells by using a library of autophagy-modulating compounds. We identified a rose of compounds affecting intracellular calcium levels, the calcium-calpain pathway or lysosomal functions, which reduced autophagosome accumulation. The six most effective compounds were tested in vivo in a new SPG15 loss of function Drosophila model that mimicked the reported SPG15 phenotype, with autophagosome accumulation, enlarged lysosomes, reduced free lysosomes, autophagic lysosome reformation defects and locomotor deficit. These compounds, namely verapamil, Bay K8644, 2',5'-dideoxyadenosine, trehalose, Small-Molecule Enhancer of Rapamycin 28 and trifluoperazine, improved lysosome biogenesis and function in vivo, demonstrating that lysosomes are a key pharmacological target to rescue SPG15 phenotype. Among the others, the Small-Molecule Enhancer of Rapamycin 28 was the most effective, rescuing both autophagic lysosome reformation defects and locomotor deficit, and could be considered as a potential therapeutic compound for this hereditary spastic paraplegia subtype.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Correspondence to: Chiara Vantaggiato, PhD Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Via D. L. Monza 20 23842 Bosisio Parini, Lecco, Italy E-mail:
| | - Genny Orso
- Correspondence may also be addressed to: Genny Orso, PhD Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy E-mail:
| | - Giulia Guarato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy
| | - Francesca Brivio
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | - Barbara Napoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy
| | - Elena Panzeri
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | - Simona Masotti
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | | | - Maria Lamprou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, ‘Luigi Sacco’ University Hospital, Università di Milano, Milan, Italy
| | - Maria Teresa Bassi
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| |
Collapse
|
23
|
Marrone L, Marchi PM, Webster CP, Marroccella R, Coldicott I, Reynolds S, Alves-Cruzeiro J, Yang ZL, Higginbottom A, Khundadze M, Shaw PJ, Hübner CA, Livesey MR, Azzouz M. SPG15 protein deficits are at the crossroads between lysosomal abnormalities, altered lipid metabolism and synaptic dysfunction. Hum Mol Genet 2022; 31:2693-2710. [PMID: 35313342 PMCID: PMC9402239 DOI: 10.1093/hmg/ddac063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/26/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022] Open
Abstract
Hereditary spastic paraplegia type 15 (HSP15) is a neurodegenerative condition caused by the inability to produce SPG15 protein, which leads to lysosomal swelling. However, the link between lysosomal aberrations and neuronal death is poorly explored. To uncover the functional consequences of lysosomal aberrations in disease pathogenesis, we analyze human dermal fibroblasts from HSP15 patients as well as primary cortical neurons derived from an SPG15 knockout (KO) mouse model. We find that SPG15 protein loss induces defective anterograde transport, impaired neurite outgrowth, axonal swelling and reduced autophagic flux in association with the onset of lysosomal abnormalities. Additionally, we observe lipid accumulation within the lysosomal compartment, suggesting that distortions in cellular lipid homeostasis are intertwined with lysosomal alterations. We further demonstrate that SPG15 KO neurons exhibit synaptic dysfunction, accompanied by augmented vulnerability to glutamate-induced excitotoxicity. Overall, our study establishes an intimate link between lysosomal aberrations, lipid metabolism and electrophysiological impairments, suggesting that lysosomal defects are at the core of multiple neurodegenerative disease processes in HSP15.
Collapse
Affiliation(s)
- Lara Marrone
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
- Department of Neuroscience, Janssen Pharmaceutica, Beerse, Belgium
| | - Paolo M Marchi
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Raffaele Marroccella
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Steven Reynolds
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | - João Alves-Cruzeiro
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Zih-Liang Yang
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Matthew R Livesey
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
24
|
Rodgers SJ, Jones EI, Arumugam S, Hamila SA, Danne J, Gurung R, Eramo MJ, Nanayakkara R, Ramm G, McGrath MJ, Mitchell CA. Endosome maturation links PI3Kα signaling to lysosome repopulation during basal autophagy. EMBO J 2022; 41:e110398. [PMID: 35968799 PMCID: PMC9531306 DOI: 10.15252/embj.2021110398] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Autophagy depends on the repopulation of lysosomes to degrade intracellular components and recycle nutrients. How cells co‐ordinate lysosome repopulation during basal autophagy, which occurs constitutively under nutrient‐rich conditions, is unknown. Here, we identify an endosome‐dependent phosphoinositide pathway that links PI3Kα signaling to lysosome repopulation during basal autophagy. We show that PI3Kα‐derived PI(3)P generated by INPP4B on late endosomes was required for basal but not starvation‐induced autophagic degradation. PI(3)P signals were maintained as late endosomes matured into endolysosomes, and served as the substrate for the 5‐kinase, PIKfyve, to generate PI(3,5)P2. The SNX‐BAR protein, SNX2, was recruited to endolysosomes by PI(3,5)P2 and promoted lysosome reformation. Inhibition of INPP4B/PIKfyve‐dependent lysosome reformation reduced autophagic clearance of protein aggregates during proteotoxic stress leading to increased cytotoxicity. Therefore under nutrient‐rich conditions, PI3Kα, INPP4B, and PIKfyve sequentially contribute to basal autophagic degradation and protection from proteotoxic stress via PI(3,5)P2‐dependent lysosome reformation from endolysosomes. These findings reveal that endosome maturation couples PI3Kα signaling to lysosome reformation during basal autophagy.
Collapse
Affiliation(s)
- Samuel J Rodgers
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Emily I Jones
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Senthil Arumugam
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,European Molecular Biological Laboratory Australia, Monash University, Clayton, VIC, Australia
| | - Sabryn A Hamila
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jill Danne
- Monash Ramaciotti Centre for Cryo Electron Microscopy, A Node of Microscopy Australia, Monash University, Clayton, VIC, Australia
| | - Rajendra Gurung
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Matthew J Eramo
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Randini Nanayakkara
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Monash Ramaciotti Centre for Cryo Electron Microscopy, A Node of Microscopy Australia, Monash University, Clayton, VIC, Australia
| | - Georg Ramm
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Monash Ramaciotti Centre for Cryo Electron Microscopy, A Node of Microscopy Australia, Monash University, Clayton, VIC, Australia
| | - Meagan J McGrath
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christina A Mitchell
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
25
|
Bohnert KA, Johnson AE. Branching Off: New Insight Into Lysosomes as Tubular Organelles. Front Cell Dev Biol 2022; 10:863922. [PMID: 35646899 PMCID: PMC9130654 DOI: 10.3389/fcell.2022.863922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Lysosomes are acidic, membrane-bound organelles that play essential roles in cellular quality control, metabolism, and signaling. The lysosomes of a cell are commonly depicted as vesicular organelles. Yet, lysosomes in fact show a high degree of ultrastructural heterogeneity. In some biological contexts, lysosome membranes naturally transform into tubular, non-vesicular morphologies. Though the purpose and regulation of tubular lysosomes has been historically understudied, emerging evidence suggests that tubular lysosomes may carry out unique activities, both degradative and non-degradative, that are critical to cell behavior, function, and viability. Here, we discuss recent advances in understanding the biological significance of tubular lysosomes in cellular physiology, and we highlight a growing number of examples that indicate the centrality of this special class of lysosomes to health and disease.
Collapse
Affiliation(s)
- K. Adam Bohnert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Alyssa E. Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
26
|
Hörner M, Groh J, Klein D, Ilg W, Schöls L, Santos SD, Bergmann A, Klebe S, Cauhape M, Branchu J, El Hachimi KH, Stevanin G, Darios F, Martini R. CNS-associated T-lymphocytes in a mouse model of Hereditary Spastic Paraplegia type 11 (SPG11) are therapeutic targets for established immunomodulators. Exp Neurol 2022; 355:114119. [DOI: 10.1016/j.expneurol.2022.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
|
27
|
Todd TW, Petrucelli L. Modelling amyotrophic lateral sclerosis in rodents. Nat Rev Neurosci 2022; 23:231-251. [PMID: 35260846 DOI: 10.1038/s41583-022-00564-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
The efficient study of human disease requires the proper tools, one of the most crucial of which is an accurate animal model that faithfully recapitulates the human condition. The study of amyotrophic lateral sclerosis (ALS) is no exception. Although the majority of ALS cases are considered sporadic, most animal models of this disease rely on genetic mutations identified in familial cases. Over the past decade, the number of genes associated with ALS has risen dramatically and, with each new genetic variant, there is a drive to develop associated animal models. Rodent models are of particular importance as they allow for the study of ALS in the context of a living mammal with a comparable CNS. Such models not only help to verify the pathogenicity of novel mutations but also provide critical insight into disease mechanisms and are crucial for the testing of new therapeutics. In this Review, we aim to summarize the full spectrum of ALS rodent models developed to date.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| |
Collapse
|
28
|
Wen X, Yang Y, Klionsky DJ. Moments in autophagy and disease: Past and present. Mol Aspects Med 2021; 82:100966. [PMID: 33931245 PMCID: PMC8548407 DOI: 10.1016/j.mam.2021.100966] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023]
Abstract
Over the past several decades, research on autophagy, a highly conserved lysosomal degradation pathway, has been advanced by studies in different model organisms, especially in the field of its molecular mechanism and regulation. The malfunction of autophagy is linked to various diseases, among which cancer and neurodegenerative diseases are the major focus. In this review, we cover some other important diseases, including cardiovascular diseases, infectious and inflammatory diseases, and metabolic disorders, as well as rare diseases, with a hope of providing a more complete understanding of the spectrum of autophagy's role in human health.
Collapse
Affiliation(s)
- Xin Wen
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ying Yang
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Walkley SU. Rethinking lysosomes and lysosomal disease. Neurosci Lett 2021; 762:136155. [PMID: 34358625 DOI: 10.1016/j.neulet.2021.136155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Lysosomal storage diseases were recognized and defined over a century ago as a class of disorders affecting mostly children and causing systemic disease often accompanied by major neurological consequences. Since their discovery, research focused on understanding their causes has been an important driver of our ever-expanding knowledge of cell biology and the central role that lysosomes play in cell function. Today we recognize over 50 so-called storage diseases, with most understood at the level of gene, protein and pathway involvement, but few fully clarified in terms of how the defective lysosomal function causes brain disease; even fewer have therapies that can effectively rescue brain function. Importantly, we also recognize that storage diseases are not simply a class of lysosomal disorders all by themselves, as increasingly a critical role for the greater lysosomal system with its endosomal, autophagosomal and salvage streams has also emerged in a host of neurodevelopmental and neurodegenerative diseases. Despite persistent challenges across all aspects of these complex disorders, and as reflected in this and other articles focused on lysosomal storage diseases in this special issue of Neuroscience Letters, the progress and promise to both understand and effectively treat these conditions has never been greater.
Collapse
Affiliation(s)
- Steven U Walkley
- Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
30
|
McGrath MJ, Eramo MJ, Gurung R, Sriratana A, Gehrig SM, Lynch GS, Lourdes SR, Koentgen F, Feeney SJ, Lazarou M, McLean CA, Mitchell CA. Defective lysosome reformation during autophagy causes skeletal muscle disease. J Clin Invest 2021; 131:135124. [PMID: 33119550 PMCID: PMC7773396 DOI: 10.1172/jci135124] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The regulation of autophagy-dependent lysosome homeostasis in vivo is unclear. We showed that the inositol polyphosphate 5-phosphatase INPP5K regulates autophagic lysosome reformation (ALR), a lysosome recycling pathway, in muscle. INPP5K hydrolyzes phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] to phosphatidylinositol 4-phosphate [PI(4)P], and INPP5K mutations cause muscular dystrophy by unknown mechanisms. We report that loss of INPP5K in muscle caused severe disease, autophagy inhibition, and lysosome depletion. Reduced PI(4,5)P2 turnover on autolysosomes in Inpp5k–/– muscle suppressed autophagy and lysosome repopulation via ALR inhibition. Defective ALR in Inpp5k–/– myoblasts was characterized by enlarged autolysosomes and the persistence of hyperextended reformation tubules, structures that participate in membrane recycling to form lysosomes. Reduced disengagement of the PI(4,5)P2 effector clathrin was observed on reformation tubules, which we propose interfered with ALR completion. Inhibition of PI(4,5)P2 synthesis or expression of WT INPP5K but not INPP5K disease mutants in INPP5K-depleted myoblasts restored lysosomal homeostasis. Therefore, bidirectional interconversion of PI(4)P/PI(4,5)P2 on autolysosomes was integral to lysosome replenishment and autophagy function in muscle. Activation of TFEB-dependent de novo lysosome biogenesis did not compensate for loss of ALR in Inpp5k–/– muscle, revealing a dependence on this lysosome recycling pathway. Therefore, in muscle, ALR is indispensable for lysosome homeostasis during autophagy and when defective is associated with muscular dystrophy.
Collapse
Affiliation(s)
- Meagan J McGrath
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Matthew J Eramo
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Rajendra Gurung
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Absorn Sriratana
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Stefan M Gehrig
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sonia Raveena Lourdes
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Frank Koentgen
- Ozgene Pty Ltd, Bentley, Perth, Western Australia, Australia
| | - Sandra J Feeney
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Michael Lazarou
- Neuroscience Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Melbourne, Victoria, Australia
| | - Christina A Mitchell
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Darios F, Coarelli G, Durr A. Genetics in hereditary spastic paraplegias: Essential but not enough. Curr Opin Neurobiol 2021; 72:8-14. [PMID: 34403957 DOI: 10.1016/j.conb.2021.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 12/01/2022]
Abstract
Hereditary spastic paraplegias consist of a group of rare neurodegenerative diseases characterized by lower limb spasticity. These inherited Mendelian disorders show high genetic variability associated with wide clinical diversity. Pathophysiological investigations have suggested that mutations in genes affecting the same cellular pathway generally lead to similar clinical symptoms, highlighting the importance of genetic mutation in these diseases. However, phenotype-genotype correlations have failed to explain the observed large inter-individual variability linked to mutations in a single gene, suggesting that genetics alone is not sufficient to explain symptom diversity. The identification of biomarkers, such as neurofilament light chain, could fill the gap and predict disease evolution.
Collapse
Affiliation(s)
- Frédéric Darios
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS UMR7225, Paris, 75013, France.
| | - Giulia Coarelli
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS UMR7225, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS UMR7225, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France.
| |
Collapse
|
32
|
Güner F, Pozner T, Krach F, Prots I, Loskarn S, Schlötzer-Schrehardt U, Winkler J, Winner B, Regensburger M. Axon-Specific Mitochondrial Pathology in SPG11 Alpha Motor Neurons. Front Neurosci 2021; 15:680572. [PMID: 34326717 PMCID: PMC8314181 DOI: 10.3389/fnins.2021.680572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogenic variants in SPG11 are the most frequent cause of autosomal recessive complicated hereditary spastic paraplegia (HSP). In addition to spastic paraplegia caused by corticospinal degeneration, most patients are significantly affected by progressive weakness and muscle wasting due to alpha motor neuron (MN) degeneration. Mitochondria play a crucial role in neuronal health, and mitochondrial deficits were reported in other types of HSPs. To investigate whether mitochondrial pathology is present in SPG11, we differentiated MNs from induced pluripotent stem cells derived from SPG11 patients and controls. MN derived from human embryonic stem cells and an isogenic SPG11 knockout line were also included in the study. Morphological analysis of mitochondria in the MN soma versus neurites revealed specific alterations of mitochondrial morphology within SPG11 neurites, but not within the soma. In addition, impaired mitochondrial membrane potential was indicative of mitochondrial dysfunction. Moreover, we reveal neuritic aggregates further supporting neurite pathology in SPG11. Correspondingly, using a microfluidic-based MN culture system, we demonstrate that axonal mitochondrial transport was significantly impaired in SPG11. Overall, our data demonstrate that alterations in morphology, function, and transport of mitochondria are an important feature of axonal dysfunction in SPG11 MNs.
Collapse
Affiliation(s)
- Fabian Güner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Loskarn
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Center for Rare Diseases Erlangen, University Hospital Erlangen, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Center for Rare Diseases Erlangen, University Hospital Erlangen, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Center for Rare Diseases Erlangen, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
33
|
Toupenet Marchesi L, Leblanc M, Stevanin G. Current Knowledge of Endolysosomal and Autophagy Defects in Hereditary Spastic Paraplegia. Cells 2021; 10:cells10071678. [PMID: 34359848 PMCID: PMC8307360 DOI: 10.3390/cells10071678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) refers to a group of neurological disorders involving the degeneration of motor neurons. Due to their clinical and genetic heterogeneity, finding common effective therapeutics is difficult. Therefore, a better understanding of the common pathological mechanisms is necessary. The role of several HSP genes/proteins is linked to the endolysosomal and autophagic pathways, suggesting a functional convergence. Furthermore, impairment of these pathways is particularly interesting since it has been linked to other neurodegenerative diseases, which would suggest that the nervous system is particularly sensitive to the disruption of the endolysosomal and autophagic systems. In this review, we will summarize the involvement of HSP proteins in the endolysosomal and autophagic pathways in order to clarify their functioning and decipher some of the pathological mechanisms leading to HSP.
Collapse
Affiliation(s)
- Liriopé Toupenet Marchesi
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
| | - Marion Leblanc
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, CNRS, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, 75013 Paris, France; (L.T.M.); (M.L.)
- Neurogenetics Team, EPHE, Paris Sciences Lettres Research University, 75000 Paris, France
- Correspondence:
| |
Collapse
|
34
|
Zapata-Muñoz J, Villarejo-Zori B, Largo-Barrientos P, Boya P. Towards a better understanding of the neuro-developmental role of autophagy in sickness and in health. Cell Stress 2021; 5:99-118. [PMID: 34308255 PMCID: PMC8283300 DOI: 10.15698/cst2021.07.253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a critical cellular process by which biomolecules and cellular organelles are degraded in an orderly manner inside lysosomes. This process is particularly important in neurons: these post-mitotic cells cannot divide or be easily replaced and are therefore especially sensitive to the accumulation of toxic proteins and damaged organelles. Dysregulation of neuronal autophagy is well documented in a range of neurodegenerative diseases. However, growing evidence indicates that autophagy also critically contributes to neurodevelopmental cellular processes, including neurogenesis, maintenance of neural stem cell homeostasis, differentiation, metabolic reprogramming, and synaptic remodelling. These findings implicate autophagy in neurodevelopmental disorders. In this review we discuss the current understanding of the role of autophagy in neurodevelopment and neurodevelopmental disorders, as well as currently available tools and techniques that can be used to further investigate this association.
Collapse
Affiliation(s)
- Juan Zapata-Muñoz
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | | | | | - Patricia Boya
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
35
|
Gumeni S, Vantaggiato C, Montopoli M, Orso G. Hereditary Spastic Paraplegia and Future Therapeutic Directions: Beneficial Effects of Small Compounds Acting on Cellular Stress. Front Neurosci 2021; 15:660714. [PMID: 34025345 PMCID: PMC8134669 DOI: 10.3389/fnins.2021.660714] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a group of inherited neurodegenerative conditions that share a characteristic feature of degeneration of the longest axons within the corticospinal tract, which leads to progressive spasticity and weakness of the lower limbs. Mutations of over 70 genes produce defects in various biological pathways: axonal transport, lipid metabolism, endoplasmic reticulum (ER) shaping, mitochondrial function, and endosomal trafficking. HSPs suffer from an adequate therapeutic plan. Currently the treatments foreseen for patients affected by this pathology are physiotherapy, to maintain the outgoing tone, and muscle relaxant therapies for spasticity. Very few clinical studies have been conducted, and it's urgent to implement preclinical animal studies devoted to pharmacological test and screening, to expand the rose of compounds potentially attractive for clinical trials. Small animal models, such as Drosophila melanogaster and zebrafish, have been generated, analyzed, and used as preclinical model for screening of compounds and their effects. In this work, we briefly described the role of HSP-linked proteins in the organization of ER endomembrane system and in the regulation of ER homeostasis and stress as a common pathological mechanism for these HSP forms. We then focused our attention on the pharmacodynamic and pharmacokinetic features of some recently identified molecules with antioxidant property, such as salubrinal, guanabenz, N-acetyl cysteine, methylene blue, rapamycin, and naringenin, and on their potential use in future clinical studies. Expanding the models and the pharmacological screening for HSP disease is necessary to give an opportunity to patients and clinicians to test new molecules.
Collapse
Affiliation(s)
- Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Chiara Vantaggiato
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
36
|
Tang M, Liu T, Jiang P, Dang R. The interaction between autophagy and neuroinflammation in major depressive disorder: From pathophysiology to therapeutic implications. Pharmacol Res 2021; 168:105586. [PMID: 33812005 DOI: 10.1016/j.phrs.2021.105586] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
The past decade has revealed neuroinflammation as an important mechanism of major depressive disorder (MDD). Nod-like receptors family pyrin domain containing 3 (NLRP3) inflammasome is the key regulator interleukin-1β (IL-1β) maturation, whose activation has been reported in MDD patients and various animal models. Function as a dominant driver of neuroinflammation, NLRP3 bridges the gap between immune activation with stress exposure, and further leads to subsequent occurrence of neuropsychiatric disorders such as MDD. Of note, autophagy is a tightly regulated cellular degradation pathway that removes damaged organelles and intracellular pathogens, and maintains cellular homeostasis from varying insults. Serving as a critical cellular monitoring system, normal functioned autophagy signaling prevents excessive NLRP3 inflammasome activation and subsequent release of IL-1 family cytokines. This review will describe the current understanding of how autophagy regulates NLRP3 inflammasome activity and discuss the implications of this regulation on the pathogenesis of MDD. The extensive crosstalk between autophagy pathway and NLRP3 inflammasome is further discussed, as it is critical for developing new therapeutic strategies for MDD aimed at modulating the neuroinflammatory responses.
Collapse
Affiliation(s)
- Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, China.
| |
Collapse
|
37
|
Khundadze M, Ribaudo F, Hussain A, Stahlberg H, Brocke-Ahmadinejad N, Franzka P, Varga RE, Zarkovic M, Pungsrinont T, Kokal M, Ganley IG, Beetz C, Sylvester M, Hübner CA. Mouse models for hereditary spastic paraplegia uncover a role of PI4K2A in autophagic lysosome reformation. Autophagy 2021; 17:3690-3706. [PMID: 33618608 PMCID: PMC8632344 DOI: 10.1080/15548627.2021.1891848] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) denotes genetically heterogeneous disorders characterized by leg spasticity due to degeneration of corticospinal axons. SPG11 and SPG15 have a similar clinical course and together are the most prevalent autosomal recessive HSP entity. The respective proteins play a role for macroautophagy/autophagy and autophagic lysosome reformation (ALR). Here, we report that spg11 and zfyve26 KO mice developed motor impairments within the same course of time. This correlated with enhanced accumulation of autofluorescent material in neurons and progressive neuron loss. In agreement with defective ALR, tubulation events were diminished in starved KO mouse embryonic fibroblasts (MEFs) and lysosomes decreased in neurons of KO brain sections. Confirming that both proteins act in the same molecular pathway, the pathologies were not aggravated upon simultaneous disruption of both. We further show that PI4K2A (phosphatidylinositol 4-kinase type 2 alpha), which phosphorylates phosphatidylinositol to phosphatidylinositol-4-phosphate (PtdIns4P), accumulated in autofluorescent deposits isolated from KO but not WT brains. Elevated PI4K2A abundance was already found at autolysosomes of neurons of presymptomatic KO mice. Immunolabelings further suggested higher levels of PtdIns4P at LAMP1-positive structures in starved KO MEFs. An increased association with LAMP1-positive structures was also observed for clathrin and DNM2/dynamin 2, which are important effectors of ALR recruited by phospholipids. Because PI4K2A overexpression impaired ALR, while its knockdown increased tubulation, we conclude that PI4K2A modulates phosphoinositide levels at autolysosomes and thus the recruitment of downstream effectors of ALR. Therefore, PI4K2A may play an important role in the pathogenesis of SPG11 and SPG15. Abbreviations: ALR: autophagic lysosome reformation; AP-5: adaptor protein complex 5; BFP: blue fluorescent protein; dKO: double knockout; EBSS: Earle’s balanced salt solution; FBA: foot base angle; GFP: green fluorescent protein; HSP: hereditary spastic paraplegia; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; SQSTM1/p62: sequestosome 1; PI4K2A: phosphatidylinositol 4-kinase type 2 alpha; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; RFP: red fluorescent protein; SPG: spastic paraplegia gene; TGN: trans-Golgi network; WT: wild type
Collapse
Affiliation(s)
- Mukhran Khundadze
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Federico Ribaudo
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Adeela Hussain
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Henry Stahlberg
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Nahal Brocke-Ahmadinejad
- Core Facility Mass Spectrometry, Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Patricia Franzka
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Rita-Eva Varga
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Milena Zarkovic
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Thanakorn Pungsrinont
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Miriam Kokal
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, Scotland
| | - Christian Beetz
- Institute of Clinical Chemistry, University Hospital Jena, Friedrich-Schiller-University Jena, Germany; Current Affiliation: Centogene GmbH, Rostock, Germany
| | - Marc Sylvester
- Core Facility Mass Spectrometry, Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
38
|
Edmison D, Wang L, Gowrishankar S. Lysosome Function and Dysfunction in Hereditary Spastic Paraplegias. Brain Sci 2021; 11:152. [PMID: 33498913 PMCID: PMC7911997 DOI: 10.3390/brainsci11020152] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Hereditary Spastic Paraplegias (HSPs) are a genetically diverse group of inherited neurological diseases with over 80 associated gene loci. Over the last decade, research into mechanisms underlying HSPs has led to an emerging interest in lysosome dysfunction. In this review, we highlight the different classes of HSPs that have been linked to lysosome defects: (1) a subset of complex HSPs where mutations in lysosomal genes are causally linked to the diseases, (2) other complex HSPs where mutation in genes encoding membrane trafficking adaptors lead to lysosomal defects, and (3) a subset of HSPs where mutations affect genes encoding proteins whose function is primarily linked to a different cellular component or organelle such as microtubule severing and Endoplasmic Reticulum-shaping, while also altering to lysosomes. Interestingly, aberrant axonal lysosomes, associated with the latter two subsets of HSPs, are a key feature observed in other neurodegenerative diseases such as Alzheimer's disease. We discuss how altered lysosome function and trafficking may be a critical contributor to HSP pathology and highlight the need for examining these features in the cortico-spinal motor neurons of HSP mutant models.
Collapse
Affiliation(s)
| | | | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (D.E.); (L.W.)
| |
Collapse
|
39
|
Hirst J, Hesketh GG, Gingras AC, Robinson MS. Rag GTPases and phosphatidylinositol 3-phosphate mediate recruitment of the AP-5/SPG11/SPG15 complex. J Cell Biol 2021; 220:211690. [PMID: 33464297 PMCID: PMC7814351 DOI: 10.1083/jcb.202002075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/21/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Adaptor protein complex 5 (AP-5) and its partners, SPG11 and SPG15, are recruited onto late endosomes and lysosomes. Here we show that recruitment of AP-5/SPG11/SPG15 is enhanced in starved cells and occurs by coincidence detection, requiring both phosphatidylinositol 3-phosphate (PI3P) and Rag GTPases. PI3P binding is via the SPG15 FYVE domain, which, on its own, localizes to early endosomes. GDP-locked RagC promotes recruitment of AP-5/SPG11/SPG15, while GTP-locked RagA prevents its recruitment. Our results uncover an interplay between AP-5/SPG11/SPG15 and the mTORC1 pathway and help to explain the phenotype of AP-5/SPG11/SPG15 deficiency in patients, including the defect in autophagic lysosome reformation.
Collapse
Affiliation(s)
- Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK,Jennifer Hirst:
| | - Geoffrey G. Hesketh
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Margaret S. Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK,Correspondence to Margaret S. Robinson:
| |
Collapse
|
40
|
Pozner T, Regensburger M, Engelhorn T, Winkler J, Winner B. Janus-faced spatacsin (SPG11): involvement in neurodevelopment and multisystem neurodegeneration. Brain 2020; 143:2369-2379. [PMID: 32355960 PMCID: PMC7447516 DOI: 10.1093/brain/awaa099] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/12/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of rare motor neuron disorders characterized by progressive weakness and spasticity of the lower limbs. HSP type 11 (SPG11-HSP) is linked to pathogenic variants in the SPG11 gene and it represents the most frequent form of complex autosomal recessive HSP. The majority of SPG11-HSP patients exhibit additional neurological symptoms such as cognitive decline, thin corpus callosum, and peripheral neuropathy. Yet, the mechanisms of SPG11-linked spectrum diseases are largely unknown. Recent findings indicate that spatacsin, the 280 kDa protein encoded by SPG11, may impact the autophagy-lysosomal machinery. In this update, we summarize the current knowledge of SPG11-HSP. In addition to clinical symptoms and differential diagnosis, our work aims to link the different clinical manifestations with the respective structural abnormalities and cellular in vitro phenotypes. Moreover, we describe the impact of localization and function of spatacsin in different neuronal systems. Ultimately, we propose a model in which spatacsin bridges between neurodevelopmental and neurodegenerative phenotypes of SPG11-linked disorders.
Collapse
Affiliation(s)
- Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany.,Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Center of Rare Diseases Erlangen (ZSEER), FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
41
|
Lee H, Koh JY. Roles for H + /K + -ATPase and zinc transporter 3 in cAMP-mediated lysosomal acidification in bafilomycin A1-treated astrocytes. Glia 2020; 69:1110-1125. [PMID: 33314298 DOI: 10.1002/glia.23952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022]
Abstract
Vacuolar ATPase (v-ATPase) is the main proton pump that acidifies vesicles such as lysosomes. Disruption in the lysosomal localization of v-ATPase leads to lysosomal dysfunction, thus contributing to the pathogenesis of lysosomal storage disorders and neurodegenerative diseases such as Alzheimer's disease. Recent studies showed that increases in cyclic AMP (cAMP) levels acidify lysosomes and consequently enhance autophagy flux. Although the upregulation of v-ATPase function may be the key mechanism underlying the cAMP-mediated lysosomal acidification, it is unknown whether a mechanism independent of v-ATPase may be contributing to this phenomenon. In the present study, we modeled v-ATPase dysfunction in brain cells by blocking lysosomal acidification in cortical astrocytes through treatment with bafilomycin A1, a selective v-ATPase inhibitor. We observed that cAMP reversed the pH changes via the activation of protein kinase A; interestingly, cAMP also increased autophagy flux even in the presence of bafilomycin A1, suggesting the presence of an alternative route of proton entry. Notably, pharmacological inhibitors and siRNAs of H+ /K+ -ATPase markedly shifted the lysosomal pH toward more alkaline values in bafilomycin A1/cAMP-treated astrocytes, suggesting that H+ /K+ -ATPase may be the alternative route of proton entry for lysosomal acidification. Furthermore, the cAMP-mediated reversal of lysosomal pH was nullified in the absence of ZnT3 that interacts with H+ /K+ -ATPase. Our results suggest that the H+ /K+ -ATPase/ZnT3 complex is recruited to lysosomes in a cAMP-dependent manner and functions as an alternative proton pump for lysosomes when the v-ATPase function is downregulated, thus providing insight into the potential development of a new class of lysosome-targeted therapeutics in neurodegenerative diseases.
Collapse
Affiliation(s)
- Huikyong Lee
- Neural Injury Laboratory, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae-Young Koh
- Neural Injury Laboratory, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
42
|
Deviant reporter expression and P2X4 passenger gene overexpression in the soluble EGFP BAC transgenic P2X7 reporter mouse model. Sci Rep 2020; 10:19876. [PMID: 33199725 PMCID: PMC7669894 DOI: 10.1038/s41598-020-76428-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
The ATP-gated P2X7 receptor is highly expressed in microglia and has been involved in diverse brain diseases. P2X7 effects were also described in neurons and astrocytes but its localisation and function in these cell types has been challenging to demonstrate in situ. BAC transgenic mouse lines have greatly advanced neuroscience research and two BAC-transgenic P2X7 reporter mouse models exist in which either a soluble EGFP (sEGFP) or an EGFP-tagged P2X7 receptor (P2X7-EGFP) is expressed under the control of a BAC-derived P2rx7 promoter. Here we evaluate both mouse models and find striking differences in both P2X expression levels and EGFP reporter expression patterns. Most remarkably, the sEGFP model overexpresses a P2X4 passenger gene and sEGFP shows clear neuronal localisation but appears to be absent in microglia. Preliminary functional analysis in a status epilepticus model suggests functional consequences of the observed P2X receptor overexpression. In summary, an aberrant EGFP reporter pattern and possible effects of P2X4 and/or P2X7 protein overexpression need to be considered when working with this model. We further discuss reasons for the observed differences and possible caveats in BAC transgenic approaches.
Collapse
|
43
|
The role of AP-4 in cargo export from the trans-Golgi network and hereditary spastic paraplegia. Biochem Soc Trans 2020; 48:1877-1888. [PMID: 33084855 DOI: 10.1042/bst20190664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 01/02/2023]
Abstract
Heterotetrameric adaptor protein (AP) complexes play key roles in protein sorting and transport vesicle formation in the endomembrane system of eukaryotic cells. One of these complexes, AP-4, was identified over 20 years ago but, up until recently, its function remained unclear. AP-4 associates with the trans-Golgi network (TGN) through interaction with small GTPases of the ARF family and recognizes transmembrane proteins (i.e. cargos) having specific sorting signals in their cytosolic domains. Recent studies identified accessory proteins (tepsin, RUSC2 and the FHF complex) that co-operate with AP-4, and cargos (amyloid precursor protein, ATG9A and SERINC3/5) that are exported from the TGN in an AP-4-dependent manner. Defective export of ATG9A from the TGN in AP-4-deficient cells was shown to reduce ATG9A delivery to pre-autophagosomal structures, impairing autophagosome formation and/or maturation. In addition, mutations in AP-4-subunit genes were found to cause neurological dysfunction in mice and a form of complicated hereditary spastic paraplegia referred to as 'AP-4-deficiency syndrome' in humans. These findings demonstrated that mammalian AP-4 is required for the development and function of the central nervous system, possibly through its role in the sorting of ATG9A for the maintenance of autophagic homeostasis. In this article, we review the properties and functions of AP-4, and discuss how they might explain the clinical features of AP-4 deficiency.
Collapse
|
44
|
Fowler PC, Byrne DJ, Blackstone C, O’Sullivan NC. Loss of the Mitochondrial Fission GTPase Drp1 Contributes to Neurodegeneration in a Drosophila Model of Hereditary Spastic Paraplegia. Brain Sci 2020; 10:brainsci10090646. [PMID: 32957716 PMCID: PMC7564485 DOI: 10.3390/brainsci10090646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial morphology, distribution and function are maintained by the opposing forces of mitochondrial fission and fusion, the perturbation of which gives rise to several neurodegenerative disorders. The large guanosine triphosphate (GTP)ase dynamin-related protein 1 (Drp1) is a critical regulator of mitochondrial fission by mediating membrane scission, often at points of mitochondrial constriction at endoplasmic reticulum (ER)-mitochondrial contacts. Hereditary spastic paraplegia (HSP) subtype SPG61 is a rare neurodegenerative disorder caused by mutations in the ER-shaping protein Arl6IP1. We have previously reported defects in both the ER and mitochondrial networks in a Drosophila model of SPG61. In this study, we report that knockdown of Arl6IP1 lowers Drp1 protein levels, resulting in reduced ER–mitochondrial contacts and impaired mitochondrial load at the distal ends of long motor neurons. Increasing mitochondrial fission, by overexpression of wild-type Drp1 but not a dominant negative Drp1, increases ER–mitochondrial contacts, restores mitochondrial load within axons and partially rescues locomotor deficits. Arl6IP1 knockdown Drosophila also demonstrate impaired autophagic flux and an accumulation of ubiquitinated proteins, which occur independent of Drp1-mediated mitochondrial fission defects. Together, these findings provide evidence that impaired mitochondrial fission contributes to neurodegeneration in this in vivo model of HSP.
Collapse
Affiliation(s)
- Philippa C. Fowler
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland; (P.C.F.); (D.J.B.)
| | - Dwayne J. Byrne
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland; (P.C.F.); (D.J.B.)
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Niamh C. O’Sullivan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Dublin 4, Ireland; (P.C.F.); (D.J.B.)
- Correspondence: ; Tel.: +353-1-7166762
| |
Collapse
|
45
|
Maruta K, Ando M, Otomo T, Takashima H. [A case of spastic paraplegia 48 with a novel mutation in the AP5Z1 gene]. Rinsho Shinkeigaku 2020; 60:543-548. [PMID: 32641631 DOI: 10.5692/clinicalneurol.60.cn-001419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We describe an additional patient with spastic paraplegia 48 (SPG48). A 52-year-old woman with gradually increasing gait disturbance was admitted to our hospital. When she was 47 years old, acquaintances noted a shuffling gait. Gait worsening was evident at 48 years. Spastic gait was apparent at 50, and she required a walking stick at 54. Her elder brother had similar gait disturbance. No consanguinity was known. Neurologic examination at 52 disclosed spasticity and moderate weakness in the lower limbs. Spasticity and brisk reflexes in all limbs. Laboratory studies including HTLV-1 titer detected no abnormalities. MRI demonstrated mild corpus callosum narrowing and prominent anterior periventricular hyperintensities in fluid attenuation inversion recovery images. In limb muscles, electromyography (EMG) showed a chronic neurogenic pattern including reduced interference. Gene analysis identified compound homozygosity in exon 7 of adaptor-related protein complex 5 subunit zeta 1 (AP5Z1), including a novel frameshift mutation, c.1662_1672del;p.Glu554Hfs*15 in the patient, and a heterozygous missense mutation in asymptomatic family members, including her mother, two siblings, and a daughter. The frameshift mutation is considered a pathogenic variant according to American College of Medical Genetics and Genomics standards and guidelines. Based on clinical features, imaging findings and genetic abnormalities, we diagnosed this patient with SPG48. Mutations in AP5Z1, which encodes the ζ subunit of AP-5, underlie SPG48. The AP-5 adaptor protein complex, which is mutated in SPG48, binds to both spastizin and spatacsin. While hereditary spastic paraplegias generally are clinically and genetically heterogenous, SPG48, SPG11, and SPG15 are clinically similar.
Collapse
Affiliation(s)
- Kyoko Maruta
- Department of Neurology, National Hospital Organization Minamikyushu National Hospital
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medicine and Dental Sciences
| | - Takanobu Otomo
- Department of Molecular and Genetic Medicine, Kawasaki Medical School
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medicine and Dental Sciences
| |
Collapse
|
46
|
Zheng HJ, Zhang X, Guo J, Zhang W, Ai S, Zhang F, Wang Y, Liu WJ. Lysosomal dysfunction-induced autophagic stress in diabetic kidney disease. J Cell Mol Med 2020; 24:8276-8290. [PMID: 32583573 PMCID: PMC7412686 DOI: 10.1111/jcmm.15301] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
The catabolic process that delivers cytoplasmic constituents to the lysosome for degradation, known as autophagy, is thought to act as a cytoprotective mechanism in response to stress or as a pathogenic process contributing towards cell death. Animal and human studies have shown that autophagy is substantially dysregulated in renal cells in diabetes, suggesting that activating autophagy could be a therapeutic intervention. However, under prolonged hyperglycaemia with impaired lysosome function, increased autophagy induction that exceeds the degradative capacity in cells could contribute toward autophagic stress or even the stagnation of autophagy, leading to renal cytotoxicity. Since lysosomal function is likely key to linking the dual cytoprotective and cytotoxic actions of autophagy, it is important to develop novel pharmacological agents that improve lysosomal function and restore autophagic flux. In this review, we first provide an overview of the autophagic-lysosomal pathway, particularly focusing on stages of lysosomal degradation during autophagy. Then, we discuss the role of adaptive autophagy and autophagic stress based on lysosomal function. More importantly, we focus on the role of autophagic stress induced by lysosomal dysfunction according to the pathogenic factors (including high glucose, advanced glycation end products (AGEs), urinary protein, excessive reactive oxygen species (ROS) and lipid overload) in diabetic kidney disease (DKD), respectively. Finally, therapeutic possibilities aimed at lysosomal restoration in DKD are introduced.
Collapse
Affiliation(s)
- Hui Juan Zheng
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xueqin Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Guo
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Sinan Ai
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Fan Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
47
|
Park H, Kang JH, Lee S. Autophagy in Neurodegenerative Diseases: A Hunter for Aggregates. Int J Mol Sci 2020; 21:ijms21093369. [PMID: 32397599 PMCID: PMC7247013 DOI: 10.3390/ijms21093369] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Cells have developed elaborate quality-control mechanisms for proteins and organelles to maintain cellular homeostasis. Such quality-control mechanisms are maintained by conformational folding via molecular chaperones and by degradation through the ubiquitin-proteasome or autophagy-lysosome system. Accumulating evidence suggests that impaired autophagy contributes to the accumulation of intracellular inclusion bodies consisting of misfolded proteins, which is a hallmark of most neurodegenerative diseases. In addition, genetic mutations in core autophagy-related genes have been reported to be linked to neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. Conversely, the pathogenic proteins, such as amyloid β and α-synuclein, are detrimental to the autophagy pathway. Here, we review the recent advances in understanding the relationship between autophagic defects and the pathogenesis of neurodegenerative diseases and suggest autophagy induction as a promising strategy for the treatment of these conditions.
Collapse
Affiliation(s)
- Hyungsun Park
- Department of Anatomy, College of Medicine, Inha University, Incheon 22212, Korea;
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea;
| | - Ju-Hee Kang
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea;
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea
| | - Seongju Lee
- Department of Anatomy, College of Medicine, Inha University, Incheon 22212, Korea;
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea;
- Correspondence: ; Tel.: +82-32-860-9891
| |
Collapse
|
48
|
Stamatakou E, Wróbel L, Hill SM, Puri C, Son SM, Fujimaki M, Zhu Y, Siddiqi F, Fernandez-Estevez M, Manni MM, Park SJ, Villeneuve J, Rubinsztein DC. Mendelian neurodegenerative disease genes involved in autophagy. Cell Discov 2020; 6:24. [PMID: 32377374 PMCID: PMC7198619 DOI: 10.1038/s41421-020-0158-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
The lysosomal degradation pathway of macroautophagy (herein referred to as autophagy) plays a crucial role in cellular physiology by regulating the removal of unwanted cargoes such as protein aggregates and damaged organelles. Over the last five decades, significant progress has been made in understanding the molecular mechanisms that regulate autophagy and its roles in human physiology and diseases. These advances, together with discoveries in human genetics linking autophagy-related gene mutations to specific diseases, provide a better understanding of the mechanisms by which autophagy-dependent pathways can be potentially targeted for treating human diseases. Here, we review mutations that have been identified in genes involved in autophagy and their associations with neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleanna Stamatakou
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Lidia Wróbel
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Sandra Malmgren Hill
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Sung Min Son
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Motoki Fujimaki
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Ye Zhu
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Farah Siddiqi
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Marian Fernandez-Estevez
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Marco M. Manni
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - So Jung Park
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Julien Villeneuve
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - David Chaim Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
49
|
Fraiberg M, Elazar Z. Genetic defects of autophagy linked to disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:293-323. [PMID: 32620246 DOI: 10.1016/bs.pmbts.2020.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is a highly conserved lysosomal degradation pathway responsible for rapid elimination of unwanted cytoplasmic materials in response to stressful conditions. This cytoprotective function is essential for maintenance of cellular homeostasis and is mediated by conserved autophagy-related genes (ATG) and autophagic receptors. Impairment of autophagy frequently results in a wide variety of human pathologies. Recent studies have revealed direct links between diverse diseases and genetic defects of core autophagy genes, autophagy-associated genes, and genes encoding autophagic receptors. Here we provide a general description of autophagy-related genes and their mutations or polymorphisms that play a causative role in specific human disorders or may be risk factors for them.
Collapse
Affiliation(s)
- Milana Fraiberg
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| | - Zvulun Elazar
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
50
|
Pérez-Brangulí F, Buchsbaum IY, Pozner T, Regensburger M, Fan W, Schray A, Börstler T, Mishra H, Gräf D, Kohl Z, Winkler J, Berninger B, Cappello S, Winner B. Human SPG11 cerebral organoids reveal cortical neurogenesis impairment. Hum Mol Genet 2020; 28:961-971. [PMID: 30476097 PMCID: PMC6400051 DOI: 10.1093/hmg/ddy397] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/23/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
Spastic paraplegia gene 11(SPG11)-linked hereditary spastic paraplegia is a complex monogenic neurodegenerative disease that in addition to spastic paraplegia is characterized by childhood onset cognitive impairment, thin corpus callosum and enlarged ventricles. We have previously shown impaired proliferation of SPG11 neural progenitor cells (NPCs). For the delineation of potential defect in SPG11 brain development we employ 2D culture systems and 3D human brain organoids derived from SPG11 patients’ iPSC and controls. We reveal that an increased rate of asymmetric divisions of NPCs leads to proliferation defect, causing premature neurogenesis. Correspondingly, SPG11 organoids appeared smaller than controls and had larger ventricles as well as thinner germinal wall. Premature neurogenesis and organoid size were rescued by GSK3 inhibititors including the Food and Drug Administration-approved tideglusib. These findings shed light on the neurodevelopmental mechanisms underlying disease pathology.
Collapse
Affiliation(s)
- Francesc Pérez-Brangulí
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Isabel Y Buchsbaum
- Max-Planck Institute of Psychiatry, Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians University (LMU), Planegg/Martinsried, Germany
| | - Tatyana Pozner
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wenqiang Fan
- Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry and Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Annika Schray
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tom Börstler
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Himanshu Mishra
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Daniela Gräf
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Zacharias Kohl
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Zentrum für Seltene Erkrankungen Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Zentrum für Seltene Erkrankungen Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benedikt Berninger
- Adult Neurogenesis and Cellular Reprogramming, Institute of Physiological Chemistry and Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.,Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | | | - Beate Winner
- Department of Stem Cell Biology (former IZKF junior research group III), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Zentrum für Seltene Erkrankungen Erlangen (ZSEER), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|