1
|
Marrin ME, Foster MR, Santana CM, Choi Y, Jassal AS, Rancic SJ, Greenwald CR, Drucker MN, Feldman DT, Thrall ES. The translesion polymerase Pol Y1 is a constitutive component of the B. subtilis replication machinery. Nucleic Acids Res 2024; 52:9613-9629. [PMID: 39051562 PMCID: PMC11381352 DOI: 10.1093/nar/gkae637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Unrepaired DNA damage encountered by the cellular replication machinery can stall DNA replication, ultimately leading to cell death. In the DNA damage tolerance pathway translesion synthesis (TLS), replication stalling is alleviated by the recruitment of specialized polymerases to synthesize short stretches of DNA near a lesion. Although TLS promotes cell survival, most TLS polymerases are low-fidelity and must be tightly regulated to avoid harmful mutagenesis. The gram-negative bacterium Escherichia coli has served as the model organism for studies of the molecular mechanisms of bacterial TLS. However, it is poorly understood whether these same mechanisms apply to other bacteria. Here, we use in vivo single-molecule fluorescence microscopy to investigate the TLS polymerase Pol Y1 in the model gram-positive bacterium Bacillus subtilis. We find significant differences in the localization and dynamics of Pol Y1 in comparison to its E. coli homolog, Pol IV. Notably, Pol Y1 is constitutively enriched at or near sites of replication in the absence of DNA damage through interactions with the DnaN clamp; in contrast, Pol IV has been shown to be selectively enriched only upon replication stalling. These results suggest key differences in the roles and mechanisms of regulation of TLS polymerases across different bacterial species.
Collapse
Affiliation(s)
- McKayla E Marrin
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Michael R Foster
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Chloe M Santana
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Yoonhee Choi
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Avtar S Jassal
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Sarah J Rancic
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Carolyn R Greenwald
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Madeline N Drucker
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Denholm T Feldman
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Elizabeth S Thrall
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
2
|
van der Els S, Boekhorst J, Bron PA, Kleerebezem M. The lactococcal ICE-ome encodes a repertoire of exchangeable traits with potential industrial relevance. BMC Genomics 2024; 25:734. [PMID: 39080539 PMCID: PMC11288074 DOI: 10.1186/s12864-024-10646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024] Open
Abstract
Dairy industries apply selected lactococcal strains and mixed cultures to produce diverse fermented products with distinctive flavor and texture properties. Innovation of the starter culture functionality in cheese applications embraces natural biodiversity of the Lactococcus species to identify novel strains with alternative flavor or texture forming capacities and/or increased processing robustness and phage resistance. Mobile genetic elements (MGE), like integrative conjugative elements (ICEs) play an important role in shaping the biodiversity of bacteria. Besides the genes involved in the conjugation of ICEs from donor to recipient strains, these elements also harbor cargo genes that encode a wide range of functions. The definition of such cargo genes can only be achieved by accurate identification of the ICE boundaries (delimiting). Here, we delimited 25 ICEs in lactococcal genome sequences with low contig numbers using insertion-sites flanking single-copy core-genome genes as markers for each of the distinct ICE-integrases we identified previously within the conserved ICE-core genes. For ICEs in strains for which genome information with large numbers of contigs is available, we exemplify that CRISPR-Cas9 driven ICE-curing, followed by resequencing, allows accurate delimitation and cargo definition of ICEs. Finally, we compare and contrast the cargo gene repertoire of the 26 delimited lactococcal ICEs, identifying high plasticity among the cargo of lactococccal ICEs and a range of encoded functions that is of apparent industrial interest, including restriction modification, abortive infection, and stress adaptation genes.
Collapse
Affiliation(s)
- Simon van der Els
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
- NIZO B.V, Kernhemseweg 2, Ede, 6718 ZB, The Netherlands
- BE-Basic Foundation, Mijnbouwstraat 120, Delft, 2628 RX, The Netherlands
| | - Jos Boekhorst
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Peter A Bron
- NIZO B.V, Kernhemseweg 2, Ede, 6718 ZB, The Netherlands
- BE-Basic Foundation, Mijnbouwstraat 120, Delft, 2628 RX, The Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands.
- BE-Basic Foundation, Mijnbouwstraat 120, Delft, 2628 RX, The Netherlands.
| |
Collapse
|
3
|
Łazowski K, Woodgate R, Fijalkowska IJ. Escherichia coli DNA replication: the old model organism still holds many surprises. FEMS Microbiol Rev 2024; 48:fuae018. [PMID: 38982189 PMCID: PMC11253446 DOI: 10.1093/femsre/fuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Research on Escherichia coli DNA replication paved the groundwork for many breakthrough discoveries with important implications for our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors influencing replication fidelity might be important for studies on the emergence of antibiotic resistance. Importantly, the wide access to high-resolution single-molecule and live-cell imaging, whole genome sequencing, and cryo-electron microscopy techniques, which were greatly popularized in the last decade, allows us to revisit certain assumptions about the replisomes and offers very detailed insight into how they work. For many parts of the replisome, step-by-step mechanisms have been reconstituted, and some new players identified. This review summarizes the latest developments in the area, focusing on (a) the structure of the replisome and mechanisms of action of its components, (b) organization of replisome transactions and repair, (c) replisome dynamics, and (d) factors influencing the base and sugar fidelity of DNA synthesis.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, United States
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Bergum OET, Singleton AH, Røst LM, Bodein A, Scott-Boyer MP, Rye MB, Droit A, Bruheim P, Otterlei M. SOS genes are rapidly induced while translesion synthesis polymerase activity is temporally regulated. Front Microbiol 2024; 15:1373344. [PMID: 38596376 PMCID: PMC11002266 DOI: 10.3389/fmicb.2024.1373344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
The DNA damage inducible SOS response in bacteria serves to increase survival of the species at the cost of mutagenesis. The SOS response first initiates error-free repair followed by error-prone repair. Here, we have employed a multi-omics approach to elucidate the temporal coordination of the SOS response. Escherichia coli was grown in batch cultivation in bioreactors to ensure highly controlled conditions, and a low dose of the antibiotic ciprofloxacin was used to activate the SOS response while avoiding extensive cell death. Our results show that expression of genes involved in error-free and error-prone repair were both induced shortly after DNA damage, thus, challenging the established perception that the expression of error-prone repair genes is delayed. By combining transcriptomics and a sub-proteomics approach termed signalomics, we found that the temporal segregation of error-free and error-prone repair is primarily regulated after transcription, supporting the current literature. Furthermore, the heterology index (i.e., the binding affinity of LexA to the SOS box) was correlated to the maximum increase in gene expression and not to the time of induction of SOS genes. Finally, quantification of metabolites revealed increasing pyrimidine pools as a late feature of the SOS response. Our results elucidate how the SOS response is coordinated, showing a rapid transcriptional response and temporal regulation of mutagenesis on the protein and metabolite levels.
Collapse
Affiliation(s)
| | - Amanda Holstad Singleton
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Lisa Marie Røst
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Antoine Bodein
- Department of Molecular Medicine, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Department of Molecular Medicine, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Morten Beck Rye
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Arnaud Droit
- Department of Molecular Medicine, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Per Bruheim
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
5
|
Tran BM, Punter CM, Linnik D, Iyer A, Poolman B. Single-protein Diffusion in the Periplasm of Escherichia coli. J Mol Biol 2024; 436:168420. [PMID: 38143021 DOI: 10.1016/j.jmb.2023.168420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The width of the periplasmic space of Gram-negative bacteria is only about 25-30 nm along the long axis of the cell, which affects free diffusion of (macro)molecules. We have performed single-particle displacement measurements and diffusion simulation studies to determine the impact of confinement on the apparent mobility of proteins in the periplasm of Escherichia coli. The diffusion of a reporter protein and of OsmY, an osmotically regulated periplasmic protein, is characterized by a fast and slow component regardless of the osmotic conditions. The diffusion coefficient of the fast fraction increases upon osmotic upshift, in agreement with a decrease in macromolecular crowding of the periplasm, but the mobility of the slow (immobile) fraction is not affected by the osmotic stress. We observe that the confinement created by the inner and outer membranes results in a lower apparent diffusion coefficient, but this can only partially explain the slow component of diffusion in the particle displacement measurements, suggesting that a fraction of the proteins is hindered in its mobility by large periplasmic structures. Using particle-based simulations, we have determined the confinement effect on the apparent diffusion coefficient of the particles for geometries akin the periplasmic space of Gram-negative bacteria.
Collapse
Affiliation(s)
- Buu Minh Tran
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Christiaan Michiel Punter
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Dmitrii Linnik
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Aditya Iyer
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
6
|
Gessner S, Martin ZAM, Reiche MA, Santos JA, Dinkele R, Ramudzuli A, Dhar N, de Wet TJ, Anoosheh S, Lang DM, Aaron J, Chew TL, Herrmann J, Müller R, McKinney JD, Woodgate R, Mizrahi V, Venclovas Č, Lamers MH, Warner DF. Investigating the composition and recruitment of the mycobacterial ImuA'-ImuB-DnaE2 mutasome. eLife 2023; 12:e75628. [PMID: 37530405 PMCID: PMC10421592 DOI: 10.7554/elife.75628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 08/01/2023] [Indexed: 08/03/2023] Open
Abstract
A DNA damage-inducible mutagenic gene cassette has been implicated in the emergence of drug resistance in Mycobacterium tuberculosis during anti-tuberculosis (TB) chemotherapy. However, the molecular composition and operation of the encoded 'mycobacterial mutasome' - minimally comprising DnaE2 polymerase and ImuA' and ImuB accessory proteins - remain elusive. Following exposure of mycobacteria to DNA damaging agents, we observe that DnaE2 and ImuB co-localize with the DNA polymerase III β subunit (β clamp) in distinct intracellular foci. Notably, genetic inactivation of the mutasome in an imuBAAAAGG mutant containing a disrupted β clamp-binding motif abolishes ImuB-β clamp focus formation, a phenotype recapitulated pharmacologically by treating bacilli with griselimycin and in biochemical assays in which this β clamp-binding antibiotic collapses pre-formed ImuB-β clamp complexes. These observations establish the essentiality of the ImuB-β clamp interaction for mutagenic DNA repair in mycobacteria, identifying the mutasome as target for adjunctive therapeutics designed to protect anti-TB drugs against emerging resistance.
Collapse
Affiliation(s)
- Sophia Gessner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Zela Alexandria-Mae Martin
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
- Laboratory of Microbiology and Microsystems, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Michael A Reiche
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
- Advanced Imaging Center, Howard Hughes Medical InstituteAshburnUnited States
| | - Joana A Santos
- Department of Cell and Chemical Biology, Leiden University Medical CenterLeidenNetherlands
| | - Ryan Dinkele
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Atondaho Ramudzuli
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Neeraj Dhar
- Laboratory of Microbiology and Microsystems, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
- Department of Integrative Biomedical Sciences, University of Cape TownCape TownSouth Africa
| | - Saber Anoosheh
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Dirk M Lang
- Confocal and Light Microscope Imaging Facility, Department of Human Biology, University of Cape TownCape TownSouth Africa
| | - Jesse Aaron
- Advanced Imaging Center, Howard Hughes Medical InstituteAshburnUnited States
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical InstituteAshburnUnited States
| | - Jennifer Herrmann
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover-BraunschweigBraunschweigGermany
| | - Rolf Müller
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover-BraunschweigBraunschweigGermany
| | - John D McKinney
- Laboratory of Microbiology and Microsystems, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape TownCape TownSouth Africa
| | | | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical CenterLeidenNetherlands
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, University of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape TownCape TownSouth Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape TownCape TownSouth Africa
| |
Collapse
|
7
|
Cox MM, Goodman MF, Keck JL, van Oijen A, Lovett ST, Robinson A. Generation and Repair of Postreplication Gaps in Escherichia coli. Microbiol Mol Biol Rev 2023; 87:e0007822. [PMID: 37212693 PMCID: PMC10304936 DOI: 10.1128/mmbr.00078-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
When replication forks encounter template lesions, one result is lesion skipping, where the stalled DNA polymerase transiently stalls, disengages, and then reinitiates downstream to leave the lesion behind in a postreplication gap. Despite considerable attention in the 6 decades since postreplication gaps were discovered, the mechanisms by which postreplication gaps are generated and repaired remain highly enigmatic. This review focuses on postreplication gap generation and repair in the bacterium Escherichia coli. New information to address the frequency and mechanism of gap generation and new mechanisms for their resolution are described. There are a few instances where the formation of postreplication gaps appears to be programmed into particular genomic locations, where they are triggered by novel genomic elements.
Collapse
Affiliation(s)
- Michael M. Cox
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Myron F. Goodman
- Department of Biological Sciences, University of Southern California, University Park, Los Angeles, California, USA
- Department of Chemistry, University of Southern California, University Park, Los Angeles, California, USA
| | - James L. Keck
- Department of Biological Chemistry, University of Wisconsin—Madison School of Medicine, Madison, Wisconsin, USA
| | - Antoine van Oijen
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Susan T. Lovett
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Andrew Robinson
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
8
|
Henry C, Kaur G, Cherry ME, Henrikus SS, Bonde N, Sharma N, Beyer H, Wood EA, Chitteni-Pattu S, van Oijen A, Robinson A, Cox M. RecF protein targeting to post-replication (daughter strand) gaps II: RecF interaction with replisomes. Nucleic Acids Res 2023; 51:5714-5742. [PMID: 37125644 PMCID: PMC10287930 DOI: 10.1093/nar/gkad310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023] Open
Abstract
The bacterial RecF, RecO, and RecR proteins are an epistasis group involved in loading RecA protein into post-replication gaps. However, the targeting mechanism that brings these proteins to appropriate gaps is unclear. Here, we propose that targeting may involve a direct interaction between RecF and DnaN. In vivo, RecF is commonly found at the replication fork. Over-expression of RecF, but not RecO or a RecF ATPase mutant, is extremely toxic to cells. We provide evidence that the molecular basis of the toxicity lies in replisome destabilization. RecF over-expression leads to loss of genomic replisomes, increased recombination associated with post-replication gaps, increased plasmid loss, and SOS induction. Using three different methods, we document direct interactions of RecF with the DnaN β-clamp and DnaG primase that may underlie the replisome effects. In a single-molecule rolling-circle replication system in vitro, physiological levels of RecF protein trigger post-replication gap formation. We suggest that the RecF interactions, particularly with DnaN, reflect a functional link between post-replication gap creation and gap processing by RecA. RecF's varied interactions may begin to explain how the RecFOR system is targeted to rare lesion-containing post-replication gaps, avoiding the potentially deleterious RecA loading onto thousands of other gaps created during replication.
Collapse
Affiliation(s)
- Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Gurleen Kaur
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Megan E Cherry
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Nina J Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Nischal Sharma
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Hope A Beyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| |
Collapse
|
9
|
Cherry ME, Dubiel K, Henry C, Wood EA, Revitt-Mills SA, Keck JL, Cox MM, van Oijen AM, Ghodke H, Robinson A. Spatiotemporal Dynamics of Single-stranded DNA Intermediates in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539320. [PMID: 37214928 PMCID: PMC10197600 DOI: 10.1101/2023.05.08.539320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Single-stranded DNA gaps form within the E. coli chromosome during replication, repair and recombination. However, information about the extent of ssDNA creation in the genome is limited. To complement a recent whole-genome sequencing study revealing ssDNA gap genomic distribution, size, and frequency, we used fluorescence microscopy to monitor the spatiotemporal dynamics of single-stranded DNA within live E. coli cells. The ssDNA was marked by a functional fluorescent protein fusion of the SSB protein that replaces the wild type SSB. During log-phase growth the SSB fusion produces a mixture of punctate foci and diffuse fluorescence spread throughout the cytosol. Many foci are clustered. Fluorescent markers of DNA polymerase III frequently co-localize with SSB foci, often localizing to the outer edge of the large SSB features. Novel SSB-enriched features form and resolve regularly during normal growth. UV irradiation induces a rapid increase in SSB foci intensity and produces large features composed of multiple partially overlapping foci. The results provide a critical baseline for further exploration of ssDNA generation during DNA metabolism. Alterations in the patterns seen in a mutant lacking RecB function tentatively suggest associations of particular SSB features with the repair of double strand breaks and post-replication gaps.
Collapse
|
10
|
Cheng YY, Zhou Z, Papadopoulos JM, Zuke JD, Falbel TG, Anantharaman K, Burton BM, Venturelli OS. Efficient plasmid transfer via natural competence in a microbial co-culture. Mol Syst Biol 2023; 19:e11406. [PMID: 36714980 PMCID: PMC9996237 DOI: 10.15252/msb.202211406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
The molecular and ecological factors shaping horizontal gene transfer (HGT) via natural transformation in microbial communities are largely unknown, which is critical for understanding the emergence of antibiotic-resistant pathogens. We investigate key factors shaping HGT in a microbial co-culture by quantifying extracellular DNA release, species growth, and HGT efficiency over time. In the co-culture, plasmid release and HGT efficiency are significantly enhanced than in the respective monocultures. The donor is a key determinant of HGT efficiency as plasmids induce the SOS response, enter a multimerized state, and are released in high concentrations, enabling efficient HGT. However, HGT is reduced in response to high donor lysis rates. HGT is independent of the donor viability state as both live and dead cells transfer the plasmid with high efficiency. In sum, plasmid HGT via natural transformation depends on the interplay of plasmid properties, donor stress responses and lysis rates, and interspecies interactions.
Collapse
Affiliation(s)
- Yu-Yu Cheng
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - James M Papadopoulos
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Jason D Zuke
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Tanya G Falbel
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | - Briana M Burton
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin, Madison, WI, USA.,Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
11
|
Tran BM, Linnik DS, Punter CM, Śmigiel WM, Mantovanelli L, Iyer A, O’Byrne C, Abee T, Johansson J, Poolman B. Super-resolving microscopy reveals the localizations and movement dynamics of stressosome proteins in Listeria monocytogenes. Commun Biol 2023; 6:51. [PMID: 36641529 PMCID: PMC9840623 DOI: 10.1038/s42003-023-04423-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
The human pathogen Listeria monocytogenes can cope with severe environmental challenges, for which the high molecular weight stressosome complex acts as the sensing hub in a complicated signal transduction pathway. Here, we show the dynamics and functional roles of the stressosome protein RsbR1 and its paralogue, the blue-light receptor RsbL, using photo-activated localization microscopy combined with single-particle tracking and single-molecule displacement mapping and supported by physiological studies. In live cells, RsbR1 is present in multiple states: in protomers with RsbS, large clusters of stressosome complexes, and in connection with the plasma membrane via Prli42. RsbL diffuses freely in the cytoplasm but forms clusters upon exposure to light. The clustering of RsbL is independent of the presence of Prli42. Our work provides a comprehensive view of the spatial organization and intracellular dynamics of the stressosome proteins in L. monocytogenes, which paves the way towards uncovering the stress-sensing mechanism of this signal transduction pathway.
Collapse
Affiliation(s)
- Buu Minh Tran
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Dmitrii Sergeevich Linnik
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Christiaan Michiel Punter
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Wojciech Mikołaj Śmigiel
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Luca Mantovanelli
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Aditya Iyer
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Conor O’Byrne
- Microbiology, School of Biological & Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Tjakko Abee
- grid.4818.50000 0001 0791 5666Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jörgen Johansson
- grid.12650.300000 0001 1034 3451Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Bert Poolman
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Revitt‐Mills SA, Wright EK, Vereker M, O'Flaherty C, McPherson F, Dawson C, van Oijen AM, Robinson A. Defects in DNA double-strand break repair resensitize antibiotic-resistant Escherichia coli to multiple bactericidal antibiotics. Microbiologyopen 2022; 11:e1316. [PMID: 36314749 PMCID: PMC9500592 DOI: 10.1002/mbo3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/11/2022] Open
Abstract
Antibiotic resistance is becoming increasingly prevalent amongst bacterial pathogens and there is an urgent need to develop new types of antibiotics with novel modes of action. One promising strategy is to develop resistance-breaker compounds, which inhibit resistance mechanisms and thus resensitize bacteria to existing antibiotics. In the current study, we identify bacterial DNA double-strand break repair as a promising target for the development of resistance-breaking co-therapies. We examined genetic variants of Escherichia coli that combined antibiotic-resistance determinants with DNA repair defects. We observed that defects in the double-strand break repair pathway led to significant resensitization toward five bactericidal antibiotics representing different functional classes. Effects ranged from partial to full resensitization. For ciprofloxacin and nitrofurantoin, sensitization manifested as a reduction in the minimum inhibitory concentration. For kanamycin and trimethoprim, sensitivity manifested through increased rates of killing at high antibiotic concentrations. For ampicillin, repair defects dramatically reduced antibiotic tolerance. Ciprofloxacin, nitrofurantoin, and trimethoprim induce the promutagenic SOS response. Disruption of double-strand break repair strongly dampened the induction of SOS by these antibiotics. Our findings suggest that if break-repair inhibitors can be developed they could resensitize antibiotic-resistant bacteria to multiple classes of existing antibiotics and may suppress the development of de novo antibiotic-resistance mutations.
Collapse
Affiliation(s)
- Sarah A. Revitt‐Mills
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Elizabeth K. Wright
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Madaline Vereker
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Callum O'Flaherty
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Fairley McPherson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Catherine Dawson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Antoine M. van Oijen
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Andrew Robinson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| |
Collapse
|
13
|
Wilkinson EM, Spenkelink LM, van Oijen AM. Observing protein dynamics during DNA-lesion bypass by the replisome. Front Mol Biosci 2022; 9:968424. [PMID: 36213113 PMCID: PMC9534484 DOI: 10.3389/fmolb.2022.968424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Faithful DNA replication is essential for all life. A multi-protein complex called the replisome contains all the enzymatic activities required to facilitate DNA replication, including unwinding parental DNA and synthesizing two identical daughter molecules. Faithful DNA replication can be challenged by both intrinsic and extrinsic factors, which can result in roadblocks to replication, causing incomplete replication, genomic instability, and an increased mutational load. This increased mutational load can ultimately lead to a number of diseases, a notable example being cancer. A key example of a roadblock to replication is chemical modifications in the DNA caused by exposure to ultraviolet light. Protein dynamics are thought to play a crucial role to the molecular pathways that occur in the presence of such DNA lesions, including potential damage bypass. Therefore, many assays have been developed to study these dynamics. In this review, we discuss three methods that can be used to study protein dynamics during replisome–lesion encounters in replication reactions reconstituted from purified proteins. Specifically, we focus on ensemble biochemical assays, single-molecule fluorescence, and cryo-electron microscopy. We discuss two key model DNA replication systems, derived from Escherichia coli and Saccharomyces cerevisiae. The main methods of choice to study replication over the last decades have involved biochemical assays that rely on ensemble averaging. While these assays do not provide a direct readout of protein dynamics, they can often be inferred. More recently, single-molecule techniques including single-molecule fluorescence microscopy have been used to visualize replisomes encountering lesions in real time. In these experiments, individual proteins can be fluorescently labeled in order to observe the dynamics of specific proteins during DNA replication. Finally, cryo-electron microscopy can provide detailed structures of individual replisome components, which allows functional data to be interpreted in a structural context. While classic cryo-electron microscopy approaches provide static information, recent developments such as time-resolved cryo-electron microscopy help to bridge the gap between static structures and dynamic single-molecule techniques by visualizing sequential steps in biochemical pathways. In combination, these techniques will be capable of visualizing DNA replication and lesion encounter dynamics in real time, whilst observing the structural changes that facilitate these dynamics.
Collapse
Affiliation(s)
- Elise M. Wilkinson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Lisanne M. Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- *Correspondence: Lisanne M. Spenkelink, ; Antoine M. van Oijen,
| | - Antoine M. van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- *Correspondence: Lisanne M. Spenkelink, ; Antoine M. van Oijen,
| |
Collapse
|
14
|
Ojha D, Jaszczur MM, Sikand A, McDonald JP, Robinson A, van Oijen AM, Mak CH, Pinaud F, Cox MM, Woodgate R, Goodman MF. Host cell RecA activates a mobile element-encoded mutagenic DNA polymerase. Nucleic Acids Res 2022; 50:6854-6869. [PMID: 35736210 PMCID: PMC9262582 DOI: 10.1093/nar/gkac515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022] Open
Abstract
Homologs of the mutagenic Escherichia coli DNA polymerase V (pol V) are encoded by numerous pathogens and mobile elements. We have used Rum pol (RumA'2B), from the integrative conjugative element (ICE), R391, as a model mobile element-encoded polymerase (MEPol). The highly mutagenic Rum pol is transferred horizontally into a variety of recipient cells, including many pathogens. Moving between species, it is unclear if Rum pol can function on its own or requires activation by host factors. Here, we show that Rum pol biochemical activity requires the formation of a physical mutasomal complex, Rum Mut, containing RumA'2B-RecA-ATP, with RecA being donated by each recipient bacteria. For R391, Rum Mut specific activities in vitro and mutagenesis rates in vivo depend on the phylogenetic distance of host-cell RecA from E. coli RecA. Rum pol is a highly conserved and effective mobile catalyst of rapid evolution, with the potential to generate a broad mutational landscape that could serve to ensure bacterial adaptation in antibiotic-rich environments leading to the establishment of antibiotic resistance.
Collapse
Affiliation(s)
- Debika Ojha
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Malgorzata M Jaszczur
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Adhirath Sikand
- Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Chi H Mak
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA.,Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Fabien Pinaud
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA.,Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 Wisconsin, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Department of Chemistry, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| |
Collapse
|
15
|
Alves IR, Vêncio RZ, Galhardo RS. Whole genome analysis of UV-induced mutagenesis in Caulobacter crescentus. Mutat Res 2022; 825:111787. [PMID: 35691139 DOI: 10.1016/j.mrfmmm.2022.111787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
UV-induced mutagenesis is, to greater extent, a phenomenon dependent on translesion synthesis (TLS) and regulated by the SOS response in bacteria. Caulobacter crescentus, like many bacterial species, employs the ImuABC (ImuAB DnaE2) pathway in TLS. To have a better understanding of the characteristics of UV-induced mutagenesis in this organism, we performed a whole genome analysis of mutations present in survivors after an acute UVC exposure (300 J/m2). We found an average of 3.2 mutations/genome in irradiated samples, distributed in a mutational spectrum consisting exclusively of base substitutions, including tandem mutations. Although limited in conclusions by the small number of mutations identified, our study points to the feasibility of using whole-genome sequencing to study mutagenesis occurring in experiments involving a single acute exposure to genotoxic agents.
Collapse
Affiliation(s)
- Ingrid R Alves
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
| | - Ricardo Z Vêncio
- Department of Computing and Mathematics FFCLRP, Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| | - Rodrigo S Galhardo
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
16
|
Bonde NJ, Romero ZJ, Chitteni-Pattu S, Cox MM. RadD is a RecA-dependent accessory protein that accelerates DNA strand exchange. Nucleic Acids Res 2022; 50:2201-2210. [PMID: 35150260 PMCID: PMC8887467 DOI: 10.1093/nar/gkac041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
In rapidly growing cells, with recombinational DNA repair required often and a new replication fork passing every 20 min, the pace of RecA-mediated DNA strand exchange is potentially much too slow for bacterial DNA metabolism. The enigmatic RadD protein, a putative SF2 family helicase, exhibits no independent helicase activity on branched DNAs. Instead, RadD greatly accelerates RecA-mediated DNA strand exchange, functioning only when RecA protein is present. The RadD reaction requires the RadD ATPase activity, does not require an interaction with SSB, and may disassemble RecA filaments as it functions. We present RadD as a new class of enzyme, an accessory protein that accelerates DNA strand exchange, possibly with a helicase-like action, in a reaction that is entirely RecA-dependent. RadD is thus a DNA strand exchange (recombination) synergist whose primary function is to coordinate closely with and accelerate the DNA strand exchange reactions promoted by the RecA recombinase. Multiple observations indicate a uniquely close coordination of RadD with RecA function.
Collapse
Affiliation(s)
- Nina J Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
17
|
The rarA gene as part of an expanded RecFOR recombination pathway: Negative epistasis and synthetic lethality with ruvB, recG, and recQ. PLoS Genet 2021; 17:e1009972. [PMID: 34936656 PMCID: PMC8735627 DOI: 10.1371/journal.pgen.1009972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/06/2022] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
The RarA protein, homologous to human WRNIP1 and yeast MgsA, is a AAA+ ATPase and one of the most highly conserved DNA repair proteins. With an apparent role in the repair of stalled or collapsed replication forks, the molecular function of this protein family remains obscure. Here, we demonstrate that RarA acts in late stages of recombinational DNA repair of post-replication gaps. A deletion of most of the rarA gene, when paired with a deletion of ruvB or ruvC, produces a growth defect, a strong synergistic increase in sensitivity to DNA damaging agents, cell elongation, and an increase in SOS induction. Except for SOS induction, these effects are all suppressed by inactivating recF, recO, or recJ, indicating that RarA, along with RuvB, acts downstream of RecA. SOS induction increases dramatically in a rarA ruvB recF/O triple mutant, suggesting the generation of large amounts of unrepaired ssDNA. The rarA ruvB defects are not suppressed (and in fact slightly increased) by recB inactivation, suggesting RarA acts primarily downstream of RecA in post-replication gaps rather than in double strand break repair. Inactivating rarA, ruvB and recG together is synthetically lethal, an outcome again suppressed by inactivation of recF, recO, or recJ. A rarA ruvB recQ triple deletion mutant is also inviable. Together, the results suggest the existence of multiple pathways, perhaps overlapping, for the resolution or reversal of recombination intermediates created by RecA protein in post-replication gaps within the broader RecF pathway. One of these paths involves RarA.
Collapse
|
18
|
Structural Dynamics of the Functional Nonameric Type III Translocase Export Gate. J Mol Biol 2021; 433:167188. [PMID: 34454944 DOI: 10.1016/j.jmb.2021.167188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
Type III protein secretion is widespread in Gram-negative pathogens. It comprises the injectisome with a surface-exposed needle and an inner membrane translocase. The translocase contains the SctRSTU export channel enveloped by the export gate subunit SctV that binds chaperone/exported clients and forms a putative ante-chamber. We probed the assembly, function, structure and dynamics of SctV from enteropathogenic E. coli (EPEC). In both EPEC and E. coli lab strains, SctV forms peripheral oligomeric clusters that are detergent-extracted as homo-nonamers. Membrane-embedded SctV9 is necessary and sufficient to act as a receptor for different chaperone/exported protein pairs with distinct C-domain binding sites that are essential for secretion. Negative staining electron microscopy revealed that peptidisc-reconstituted His-SctV9 forms a tripartite particle of ∼22 nm with a N-terminal domain connected by a short linker to a C-domain ring structure with a ∼5 nm-wide inner opening. The isolated C-domain ring was resolved with cryo-EM at 3.1 Å and structurally compared to other SctV homologues. Its four sub-domains undergo a three-stage "pinching" motion. Hydrogen-deuterium exchange mass spectrometry revealed this to involve dynamic and rigid hinges and a hyper-flexible sub-domain that flips out of the ring periphery and binds chaperones on and between adjacent protomers. These motions are coincident with local conformational changes at the pore surface and ring entry mouth that may also be modulated by the ATPase inner stalk. We propose that the intrinsic dynamics of the SctV protomer are modulated by chaperones and the ATPase and could affect allosterically the other subunits of the nonameric ring during secretion.
Collapse
|
19
|
Single-molecule studies of helicases and translocases in prokaryotic genome-maintenance pathways. DNA Repair (Amst) 2021; 108:103229. [PMID: 34601381 DOI: 10.1016/j.dnarep.2021.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022]
Abstract
Helicases involved in genomic maintenance are a class of nucleic-acid dependent ATPases that convert the energy of ATP hydrolysis into physical work to execute irreversible steps in DNA replication, repair, and recombination. Prokaryotic helicases provide simple models to understand broadly conserved molecular mechanisms involved in manipulating nucleic acids during genome maintenance. Our understanding of the catalytic properties, mechanisms of regulation, and roles of prokaryotic helicases in DNA metabolism has been assembled through a combination of genetic, biochemical, and structural methods, further refined by single-molecule approaches. Together, these investigations have constructed a framework for understanding the mechanisms that maintain genomic integrity in cells. This review discusses recent single-molecule insights into molecular mechanisms of prokaryotic helicases and translocases.
Collapse
|
20
|
McDonald JP, Quiros DR, Vaisman A, Mendez AR, Reyelt J, Schmidt M, Gonzalez M, Woodgate R. CroS R391 , an ortholog of the λ Cro repressor, plays a major role in suppressing polV R391 -dependent mutagenesis. Mol Microbiol 2021; 116:877-889. [PMID: 34184328 PMCID: PMC8460599 DOI: 10.1111/mmi.14777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/26/2022]
Abstract
When subcloned into low-copy-number expression vectors, rumAB, encoding polVR391 (RumA'2 B), is best characterized as a potent mutator giving rise to high levels of spontaneous mutagenesis in vivo. This is in dramatic contrast to the poorly mutable phenotype when polVR391 is expressed from the native 88.5 kb R391, suggesting that R391 expresses cis-acting factors that suppress the expression and/or the activity of polVR391 . Indeed, we recently discovered that SetRR391 , an ortholog of λ cI repressor, is a transcriptional repressor of rumAB. Here, we report that CroSR391 , an ortholog of λ Cro, also serves as a potent transcriptional repressor of rumAB. Levels of RumA are dependent upon an interplay between SetRR391 and CroSR391 , with the greatest reduction of RumA protein levels observed in the absence of SetRR391 and the presence of CroSR391 . Under these conditions, CroSR391 completely abolishes the high levels of mutagenesis promoted by polVR391 expressed from low-copy-number plasmids. Furthermore, deletion of croSR391 on the native R391 results in a dramatic increase in mutagenesis, indicating that CroSR391 plays a major role in suppressing polVR391 mutagenesis in vivo. Inactivating mutations in CroSR391 therefore have the distinct possibility of increasing cellular mutagenesis that could lead to the evolution of antibiotic resistance of pathogenic bacteria harboring R391.
Collapse
Affiliation(s)
- John P. McDonald
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Dominic R. Quiros
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Alexandra Vaisman
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | | | - Jan Reyelt
- Gen‐H Genetic Engineering Heidelberg GmbHHeidelbergGermany
- Present address:
AGC Biologics GmbHHeidelbergGermany
| | - Marlen Schmidt
- Gen‐H Genetic Engineering Heidelberg GmbHHeidelbergGermany
| | | | - Roger Woodgate
- Laboratory of Genomic IntegrityNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
21
|
Wong RP, Petriukov K, Ulrich HD. Daughter-strand gaps in DNA replication - substrates of lesion processing and initiators of distress signalling. DNA Repair (Amst) 2021; 105:103163. [PMID: 34186497 DOI: 10.1016/j.dnarep.2021.103163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
Dealing with DNA lesions during genome replication is particularly challenging because damaged replication templates interfere with the progression of the replicative DNA polymerases and thereby endanger the stability of the replisome. A variety of mechanisms for the recovery of replication forks exist, but both bacteria and eukaryotic cells also have the option of continuing replication downstream of the lesion, leaving behind a daughter-strand gap in the newly synthesized DNA. In this review, we address the significance of these single-stranded DNA structures as sites of DNA damage sensing and processing at a distance from ongoing genome replication. We describe the factors controlling the emergence of daughter-strand gaps from stalled replication intermediates, the benefits and risks of their expansion and repair via translesion synthesis or recombination-mediated template switching, and the mechanisms by which they activate local as well as global replication stress signals. Our growing understanding of daughter-strand gaps not only identifies them as targets of fundamental genome maintenance mechanisms, but also suggests that proper control over their activities has important practical implications for treatment strategies and resistance mechanisms in cancer therapy.
Collapse
Affiliation(s)
- Ronald P Wong
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, D - 55128 Mainz, Germany
| | - Kirill Petriukov
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, D - 55128 Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, D - 55128 Mainz, Germany.
| |
Collapse
|
22
|
Single-molecule localisation microscopy: accounting for chance co-localisation between foci in bacterial cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:941-950. [PMID: 34148104 PMCID: PMC8448688 DOI: 10.1007/s00249-021-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/07/2021] [Accepted: 06/09/2021] [Indexed: 11/05/2022]
Abstract
Using single-molecule fluorescence microscopes, individual biomolecules can be observed within live bacterial cells. Using differently coloured probes, physical associations between two different molecular species can be assessed through co-localisation measurements. However, bacterial cells are finite and small (~ 1 μm) relative to the resolution limit of optical microscopes (~ 0.25 μm). Furthermore, the images produced by optical microscopes are typically two-dimensional projections of three-dimensional objects. These limitations mean that a certain proportion of object pairs (molecules) will inevitably be assigned as being co-localised, even when they are distant at molecular distance scales (nm). What is this proportion? Here, we attack this problem, theoretically and computationally, by creating a model of the co-localisation expected purely due to chance. We thus consider a bacterial cell wherein objects are distributed at random and evaluate the co-localisation in a fashion that emulates an experimental analysis. We consider simplified geometries where we can most transparently investigate the effect of a finite size of the cell and the effect of probing a three-dimensional cell in only two dimensions. Coupling theory to simulations, we also study the co-localisation expected due to chance using parameters relevant to bacterial cells. Overall, we show that the co-localisation expected purely due to chance can be quite substantial and describe the parameters that it depends upon.
Collapse
|
23
|
Jain K, Wood EA, Romero ZJ, Cox MM. RecA-independent recombination: Dependence on the Escherichia coli RarA protein. Mol Microbiol 2021; 115:1122-1137. [PMID: 33247976 PMCID: PMC8160026 DOI: 10.1111/mmi.14655] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/29/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022]
Abstract
Most, but not all, homologous genetic recombination in bacteria is mediated by the RecA recombinase. The mechanistic origin of RecA-independent recombination has remained enigmatic. Here, we demonstrate that the RarA protein makes a major enzymatic contribution to RecA-independent recombination. In particular, RarA makes substantial contributions to intermolecular recombination and to recombination events involving relatively short (<200 bp) homologous sequences, where RecA-mediated recombination is inefficient. The effects are seen here in plasmid-based recombination assays and in vivo cloning processes. Vestigial levels of recombination remain even when both RecA and RarA are absent. Additional pathways for RecA-independent recombination, possibly mediated by helicases, are suppressed by exonucleases ExoI and RecJ. Translesion DNA polymerases may also contribute. Our results provide additional substance to a previous report of a functional overlap between RecA and RarA.
Collapse
Affiliation(s)
- Kanika Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
24
|
Sikand A, Jaszczur M, Bloom LB, Woodgate R, Cox MM, Goodman MF. The SOS Error-Prone DNA Polymerase V Mutasome and β-Sliding Clamp Acting in Concert on Undamaged DNA and during Translesion Synthesis. Cells 2021; 10:cells10051083. [PMID: 34062858 PMCID: PMC8147279 DOI: 10.3390/cells10051083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
In the mid 1970s, Miroslav Radman and Evelyn Witkin proposed that Escherichia coli must encode a specialized error-prone DNA polymerase (pol) to account for the 100-fold increase in mutations accompanying induction of the SOS regulon. By the late 1980s, genetic studies showed that SOS mutagenesis required the presence of two “UV mutagenesis” genes, umuC and umuD, along with recA. Guided by the genetics, decades of biochemical studies have defined the predicted error-prone DNA polymerase as an activated complex of these three gene products, assembled as a mutasome, pol V Mut = UmuD’2C-RecA-ATP. Here, we explore the role of the β-sliding processivity clamp on the efficiency of pol V Mut-catalyzed DNA synthesis on undamaged DNA and during translesion DNA synthesis (TLS). Primer elongation efficiencies and TLS were strongly enhanced in the presence of β. The results suggest that β may have two stabilizing roles: its canonical role in tethering the pol at a primer-3’-terminus, and a possible second role in inhibiting pol V Mut’s ATPase to reduce the rate of mutasome-DNA dissociation. The identification of umuC, umuD, and recA homologs in numerous strains of pathogenic bacteria and plasmids will ensure the long and productive continuation of the genetic and biochemical journey initiated by Radman and Witkin.
Collapse
Affiliation(s)
- Adhirath Sikand
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Malgorzata Jaszczur
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Linda B. Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA;
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA;
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Myron F. Goodman
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA;
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
- Correspondence:
| |
Collapse
|
25
|
Joseph AM, Daw S, Sadhir I, Badrinarayanan A. Coordination between nucleotide excision repair and specialized polymerase DnaE2 action enables DNA damage survival in non-replicating bacteria. eLife 2021; 10:e67552. [PMID: 33856342 PMCID: PMC8102061 DOI: 10.7554/elife.67552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Translesion synthesis (TLS) is a highly conserved mutagenic DNA lesion tolerance pathway, which employs specialized, low-fidelity DNA polymerases to synthesize across lesions. Current models suggest that activity of these polymerases is predominantly associated with ongoing replication, functioning either at or behind the replication fork. Here we provide evidence for DNA damage-dependent function of a specialized polymerase, DnaE2, in replication-independent conditions. We develop an assay to follow lesion repair in non-replicating Caulobacter and observe that components of the replication machinery localize on DNA in response to damage. These localizations persist in the absence of DnaE2 or if catalytic activity of this polymerase is mutated. Single-stranded DNA gaps for SSB binding and low-fidelity polymerase-mediated synthesis are generated by nucleotide excision repair (NER), as replisome components fail to localize in the absence of NER. This mechanism of gap-filling facilitates cell cycle restoration when cells are released into replication-permissive conditions. Thus, such cross-talk (between activity of NER and specialized polymerases in subsequent gap-filling) helps preserve genome integrity and enhances survival in a replication-independent manner.
Collapse
Affiliation(s)
- Asha Mary Joseph
- National Centre for Biological Sciences - Tata Institute of Fundamental ResearchBangaloreIndia
| | - Saheli Daw
- National Centre for Biological Sciences - Tata Institute of Fundamental ResearchBangaloreIndia
| | - Ismath Sadhir
- National Centre for Biological Sciences - Tata Institute of Fundamental ResearchBangaloreIndia
- Max Planck Institute for Terrestrial Microbiology, LOEWE Centre for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Anjana Badrinarayanan
- National Centre for Biological Sciences - Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
26
|
Henry C, Loiseau L, Vergnes A, Vertommen D, Mérida-Floriano A, Chitteni-Pattu S, Wood EA, Casadesús J, Cox MM, Barras F, Ezraty B. Redox controls RecA protein activity via reversible oxidation of its methionine residues. eLife 2021; 10:63747. [PMID: 33605213 PMCID: PMC7943192 DOI: 10.7554/elife.63747] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/18/2021] [Indexed: 12/26/2022] Open
Abstract
Reactive oxygen species (ROS) cause damage to DNA and proteins. Here, we report that the RecA recombinase is itself oxidized by ROS. Genetic and biochemical analyses revealed that oxidation of RecA altered its DNA repair and DNA recombination activities. Mass spectrometry analysis showed that exposure to ROS converted four out of nine Met residues of RecA to methionine sulfoxide. Mimicking oxidation of Met35 by changing it for Gln caused complete loss of function, whereas mimicking oxidation of Met164 resulted in constitutive SOS activation and loss of recombination activity. Yet, all ROS-induced alterations of RecA activity were suppressed by methionine sulfoxide reductases MsrA and MsrB. These findings indicate that under oxidative stress MsrA/B is needed for RecA homeostasis control. The implication is that, besides damaging DNA structure directly, ROS prevent repair of DNA damage by hampering RecA activity.
Collapse
Affiliation(s)
- Camille Henry
- Aix-Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France.,Department of Biochemistry, University of Wisconsin-Madison, Wisconsin-Madison, United States
| | - Laurent Loiseau
- Aix-Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Alexandra Vergnes
- Aix-Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Sindhu Chitteni-Pattu
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin-Madison, United States
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin-Madison, United States
| | - Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin-Madison, United States
| | - Frédéric Barras
- Aix-Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France.,Institut Pasteur, Département de Microbiologie, SAMe Unit, Paris, France.,UMR CNRS-Institut Pasteur 2001 Integrated and Molecular Microbiology (IMM), Paris, France
| | - Benjamin Ezraty
- Aix-Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
27
|
Bacterial phenotypic heterogeneity in DNA repair and mutagenesis. Biochem Soc Trans 2021; 48:451-462. [PMID: 32196548 PMCID: PMC7200632 DOI: 10.1042/bst20190364] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Genetically identical cells frequently exhibit striking heterogeneity in various phenotypic traits such as their morphology, growth rate, or gene expression. Such non-genetic diversity can help clonal bacterial populations overcome transient environmental challenges without compromising genome stability, while genetic change is required for long-term heritable adaptation. At the heart of the balance between genome stability and plasticity are the DNA repair pathways that shield DNA from lesions and reverse errors arising from the imperfect DNA replication machinery. In principle, phenotypic heterogeneity in the expression and activity of DNA repair pathways can modulate mutation rates in single cells and thus be a source of heritable genetic diversity, effectively reversing the genotype-to-phenotype dogma. Long-standing evidence for mutation rate heterogeneity comes from genetics experiments on cell populations, which are now complemented by direct measurements on individual living cells. These measurements are increasingly performed using fluorescence microscopy with a temporal and spatial resolution that enables localising, tracking, and counting proteins with single-molecule sensitivity. In this review, we discuss which molecular processes lead to phenotypic heterogeneity in DNA repair and consider the potential consequences on genome stability and dynamics in bacteria. We further inspect these concepts in the context of DNA damage and mutation induced by antibiotics.
Collapse
|
28
|
Single-molecule fluorescence microscopy reveals modulation of DNA polymerase IV-binding lifetimes by UmuD (K97A) and UmuD'. Curr Genet 2021; 67:295-303. [PMID: 33386487 DOI: 10.1007/s00294-020-01134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
DNA polymerase IV (pol IV) is expressed at increased levels in Escherichia coli cells that suffer DNA damage. In a recent live-cell single-molecule fluorescence microscopy study, we demonstrated that the formation of pol IV foci is strongly recB-dependent in cells treated with the DNA break-inducing antibiotic ciprofloxacin. The results of that study support a model in which pol IV acts to extend D-loop structures during recombinational repair of DNA double-strand breaks. In the present study, we extend upon this work, investigating the UmuD and UmuD' proteins as potential modulators of pol IV activity in ciprofloxacin-treated cells. We found that the non-cleavable mutant UmuD(K97A) promotes long-lived association of pol IV with the nucleoid, whereas its cleaved form, UmuD', which accumulates in DNA-damaged cells, reduces binding. The results provide additional support for a model in which UmuD and UmuD' directly modulate pol IV-binding to the nucleoid.
Collapse
|
29
|
Revitt-Mills SA, Robinson A. Antibiotic-Induced Mutagenesis: Under the Microscope. Front Microbiol 2020; 11:585175. [PMID: 33193230 PMCID: PMC7642495 DOI: 10.3389/fmicb.2020.585175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
The development of antibiotic resistance poses an increasing threat to global health. Understanding how resistance develops in bacteria is critical for the advancement of new strategies to combat antibiotic resistance. In the 1980s, it was discovered that certain antibiotics induce elevated rates of mutation in bacteria. From this, an “increased evolvability” hypothesis was proposed: antibiotic-induced mutagenesis increases the genetic diversity of bacterial populations, thereby increasing the rate at which bacteria develop antibiotic resistance. However, antibiotic-induced mutagenesis is one of multiple competing factors that act on bacterial populations exposed to antibiotics. Its relative importance in shaping evolutionary outcomes, including the development of antibiotic resistance, is likely to depend strongly on the conditions. Presently, there is no quantitative model that describes the relative contribution of antibiotic-induced mutagenesis to bacterial evolution. A far more complete understanding could be reached if we had access to technology that enabled us to study antibiotic-induced mutagenesis at the molecular-, cellular-, and population-levels simultaneously. Direct observations would, in principle, allow us to directly link molecular-level events with outcomes in individual cells and cell populations. In this review, we highlight microscopy studies which have allowed various aspects of antibiotic-induced mutagenesis to be directly visualized in individual cells for the first time. These studies have revealed new links between error-prone DNA polymerases and recombinational DNA repair, evidence of spatial regulation occurring during the SOS response, and enabled real-time readouts of mismatch and mutation rates. Further, we summarize the recent discovery of stochastic population fluctuations in cultures exposed to sub-inhibitory concentrations of bactericidal antibiotics and discuss the implications of this finding for the study of antibiotic-induced mutagenesis. The studies featured here demonstrate the potential of microscopy to provide direct observation of phenomena relevant to evolution under antibiotic-induced mutagenesis.
Collapse
Affiliation(s)
- Sarah A Revitt-Mills
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
30
|
Romero ZJ, Chen SH, Armstrong T, Wood EA, van Oijen A, Robinson A, Cox MM. Resolving Toxic DNA repair intermediates in every E. coli replication cycle: critical roles for RecG, Uup and RadD. Nucleic Acids Res 2020; 48:8445-8460. [PMID: 32644157 PMCID: PMC7470958 DOI: 10.1093/nar/gkaa579] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/31/2023] Open
Abstract
DNA lesions or other barriers frequently compromise replisome progress. The SF2 helicase RecG is a key enzyme in the processing of postreplication gaps or regressed forks in Escherichia coli. A deletion of the recG gene renders cells highly sensitive to a range of DNA damaging agents. Here, we demonstrate that RecG function is at least partially complemented by another SF2 helicase, RadD. A ΔrecGΔradD double mutant exhibits an almost complete growth defect, even in the absence of stress. Suppressors appear quickly, primarily mutations that compromise priA helicase function or recA promoter mutations that reduce recA expression. Deletions of uup (encoding the UvrA-like ABC system Uup), recO, or recF also suppress the ΔrecGΔradD growth phenotype. RadD and RecG appear to avoid toxic situations in DNA metabolism, either resolving or preventing the appearance of DNA repair intermediates produced by RecA or RecA-independent template switching at stalled forks or postreplication gaps. Barriers to replisome progress that require intervention by RadD or RecG occur in virtually every replication cycle. The results highlight the importance of the RadD protein for general chromosome maintenance and repair. They also implicate Uup as a new modulator of RecG function.
Collapse
Affiliation(s)
- Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Stefanie H Chen
- Biotechnology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Thomas Armstrong
- Molecular Horizons Institute and School of Chemistry, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Antoine van Oijen
- Molecular Horizons Institute and School of Chemistry, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
31
|
Henrikus SS, Henry C, McGrath AE, Jergic S, McDonald J, Hellmich Y, Bruckbauer ST, Ritger ML, Cherry M, Wood EA, Pham PT, Goodman MF, Woodgate R, Cox MM, van Oijen AM, Ghodke H, Robinson A. Single-molecule live-cell imaging reveals RecB-dependent function of DNA polymerase IV in double strand break repair. Nucleic Acids Res 2020; 48:8490-8508. [PMID: 32687193 PMCID: PMC7470938 DOI: 10.1093/nar/gkaa597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 01/09/2023] Open
Abstract
Several functions have been proposed for the Escherichia coli DNA polymerase IV (pol IV). Although much research has focused on a potential role for pol IV in assisting pol III replisomes in the bypass of lesions, pol IV is rarely found at the replication fork in vivo. Pol IV is expressed at increased levels in E. coli cells exposed to exogenous DNA damaging agents, including many commonly used antibiotics. Here we present live-cell single-molecule microscopy measurements indicating that double-strand breaks induced by antibiotics strongly stimulate pol IV activity. Exposure to the antibiotics ciprofloxacin and trimethoprim leads to the formation of double strand breaks in E. coli cells. RecA and pol IV foci increase after treatment and exhibit strong colocalization. The induction of the SOS response, the appearance of RecA foci, the appearance of pol IV foci and RecA-pol IV colocalization are all dependent on RecB function. The positioning of pol IV foci likely reflects a physical interaction with the RecA* nucleoprotein filaments that has been detected previously in vitro. Our observations provide an in vivo substantiation of a direct role for pol IV in double strand break repair in cells treated with double strand break-inducing antibiotics.
Collapse
Affiliation(s)
- Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Amy E McGrath
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Slobodan Jergic
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yvonne Hellmich
- Institute of Biochemistry, Goethe Universität, Frankfurt 3MR4+W2, Germany
| | | | - Matthew L Ritger
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Megan E Cherry
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Phuong T Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Harshad Ghodke
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
32
|
Joseph AM, Badrinarayanan A. Visualizing mutagenic repair: novel insights into bacterial translesion synthesis. FEMS Microbiol Rev 2020; 44:572-582. [PMID: 32556198 PMCID: PMC7476773 DOI: 10.1093/femsre/fuaa023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
DNA repair is essential for cell survival. In all domains of life, error-prone and error-free repair pathways ensure maintenance of genome integrity under stress. Mutagenic, low-fidelity repair mechanisms help avoid potential lethality associated with unrepaired damage, thus making them important for genome maintenance and, in some cases, the preferred mode of repair. However, cells carefully regulate pathway choice to restrict activity of these pathways to only certain conditions. One such repair mechanism is translesion synthesis (TLS), where a low-fidelity DNA polymerase is employed to synthesize across a lesion. In bacteria, TLS is a potent source of stress-induced mutagenesis, with potential implications in cellular adaptation as well as antibiotic resistance. Extensive genetic and biochemical studies, predominantly in Escherichia coli, have established a central role for TLS in bypassing bulky DNA lesions associated with ongoing replication, either at or behind the replication fork. More recently, imaging-based approaches have been applied to understand the molecular mechanisms of TLS and how its function is regulated. Together, these studies have highlighted replication-independent roles for TLS as well. In this review, we discuss the current status of research on bacterial TLS, with emphasis on recent insights gained mostly through microscopy at the single-cell and single-molecule level.
Collapse
Affiliation(s)
- Asha Mary Joseph
- National Centre for Biological Sciences (Tata Institute of Fundamental Research), Bangalore, Karnataka 560065, India
| | - Anjana Badrinarayanan
- National Centre for Biological Sciences (Tata Institute of Fundamental Research), Bangalore, Karnataka 560065, India
| |
Collapse
|
33
|
A Comprehensive View of Translesion Synthesis in Escherichia coli. Microbiol Mol Biol Rev 2020; 84:84/3/e00002-20. [PMID: 32554755 DOI: 10.1128/mmbr.00002-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The lesion bypass pathway, translesion synthesis (TLS), exists in essentially all organisms and is considered a pathway for postreplicative gap repair and, at the same time, for lesion tolerance. As with the saying "a trip is not over until you get back home," studying TLS only at the site of the lesion is not enough to understand the whole process of TLS. Recently, a genetic study uncovered that polymerase V (Pol V), a poorly expressed Escherichia coli TLS polymerase, is not only involved in the TLS step per se but also participates in the gap-filling reaction over several hundred nucleotides. The same study revealed that in contrast, Pol IV, another highly expressed TLS polymerase, essentially stays away from the gap-filling reaction. These observations imply fundamentally different ways these polymerases are recruited to DNA in cells. While access of Pol IV appears to be governed by mass action, efficient recruitment of Pol V involves a chaperone-like action of the RecA filament. We present a model of Pol V activation: the 3' tip of the RecA filament initially stabilizes Pol V to allow stable complex formation with a sliding β-clamp, followed by the capture of the terminal RecA monomer by Pol V, thus forming a functional Pol V complex. This activation process likely determines higher accessibility of Pol V than of Pol IV to normal DNA. Finally, we discuss the biological significance of TLS polymerases during gap-filling reactions: error-prone gap-filling synthesis may contribute as a driving force for genetic diversity, adaptive mutation, and evolution.
Collapse
|
34
|
Zhang H. Mechanisms of mutagenesis induced by DNA lesions: multiple factors affect mutations in translesion DNA synthesis. Crit Rev Biochem Mol Biol 2020; 55:219-251. [PMID: 32448001 DOI: 10.1080/10409238.2020.1768205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Environmental mutagens lead to mutagenesis. However, the mechanisms are very complicated and not fully understood. Environmental mutagens produce various DNA lesions, including base-damaged or sugar-modified DNA lesions, as well as epigenetically modified DNA. DNA polymerases produce mutation spectra in translesion DNA synthesis (TLS) through misincorporation of incorrect nucleotides, frameshift deletions, blockage of DNA replication, imbalance of leading- and lagging-strand DNA synthesis, and genome instability. Motif or subunit in DNA polymerases further affects the mutations in TLS. Moreover, protein interactions and accessory proteins in DNA replisome also alter mutations in TLS, demonstrated by several representative DNA replisomes. Finally, in cells, multiple DNA polymerases or cellular proteins collaborate in TLS and reduce in vivo mutagenesis. Summaries and perspectives were listed. This review shows mechanisms of mutagenesis induced by DNA lesions and the effects of multiple factors on mutations in TLS in vitro and in vivo.
Collapse
Affiliation(s)
- Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Nwamba OC. Membranes as the third genetic code. Mol Biol Rep 2020; 47:4093-4097. [PMID: 32279211 DOI: 10.1007/s11033-020-05437-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
Biological membranes and their compositions influence cellular function, age and disease states of organisms. They achieve this by effecting the outcome of bound enzymes/proteins and carbohydrate moieties. While the membrane-bound carbohydrates give rise to antigenicity, membranes impact the eventual outcome of protein structures that would function even outside their enclosure. This is achieved by membrane modulation of translational and post-translational protein folding. Thus, the eventual 3D structures and functions of proteins might not be solely dependent on their primary amino acid sequences and surrounding environments. The 3D protein structures would also depend on enclosing membrane properties such as fluidity, other intrinsic and extrinsic proteins and carbohydrate functionalities. Also, membranes moderate DNA activities with consequences on gene activation-inactivation mechanisms. Consequently, membranes are almost indispensable to the functioning of other cell compositions and serve to modulate these other components. Besides, membrane lipid compositions are also moderated by nutrition and diets and the converse is true. Thus, it could be argued that membranes are the third genetic codes. Suggestively, membranes are at the center of the interplay between nature and nurture in health and disease states.
Collapse
|
36
|
Romero ZJ, Armstrong TJ, Henrikus SS, Chen SH, Glass DJ, Ferrazzoli AE, Wood EA, Chitteni-Pattu S, van Oijen AM, Lovett ST, Robinson A, Cox MM. Frequent template switching in postreplication gaps: suppression of deleterious consequences by the Escherichia coli Uup and RadD proteins. Nucleic Acids Res 2020; 48:212-230. [PMID: 31665437 PMCID: PMC7145654 DOI: 10.1093/nar/gkz960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/03/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
When replication forks encounter template DNA lesions, the lesion is simply skipped in some cases. The resulting lesion-containing gap must be converted to duplex DNA to permit repair. Some gap filling occurs via template switching, a process that generates recombination-like branched DNA intermediates. The Escherichia coli Uup and RadD proteins function in different pathways to process the branched intermediates. Uup is a UvrA-like ABC family ATPase. RadD is a RecQ-like SF2 family ATPase. Loss of both functions uncovers frequent and RecA-independent deletion events in a plasmid-based assay. Elevated levels of crossing over and repeat expansions accompany these deletion events, indicating that many, if not most, of these events are associated with template switching in postreplication gaps as opposed to simple replication slippage. The deletion data underpin simulations indicating that multiple postreplication gaps may be generated per replication cycle. Both Uup and RadD bind to branched DNAs in vitro. RadD protein suppresses crossovers and Uup prevents nucleoid mis-segregation. Loss of Uup and RadD function increases sensitivity to ciprofloxacin. We present Uup and RadD as genomic guardians. These proteins govern two pathways for resolution of branched DNA intermediates such that potentially deleterious genome rearrangements arising from frequent template switching are averted.
Collapse
Affiliation(s)
- Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Thomas J Armstrong
- Molecular Horizons Institute and School of Chemistry, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Stefanie H Chen
- Biotechnology Program, North Carolina State University, Raleigh, NC 27695, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - David J Glass
- Department of Biology and Rosenstiel Center, Brandeis University, Waltham, MA 02453, USA
| | - Alexander E Ferrazzoli
- Department of Biology and Rosenstiel Center, Brandeis University, Waltham, MA 02453, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Susan T Lovett
- Department of Biology and Rosenstiel Center, Brandeis University, Waltham, MA 02453, USA
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
37
|
Whinn KS, van Oijen AM, Ghodke H. Spy-ing on Cas9: Single-molecule tools reveal the enzymology of Cas9. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Spenkelink LM, Lewis JS, Jergic S, Xu ZQ, Robinson A, Dixon NE, van Oijen AM. Recycling of single-stranded DNA-binding protein by the bacterial replisome. Nucleic Acids Res 2019; 47:4111-4123. [PMID: 30767010 PMCID: PMC6486552 DOI: 10.1093/nar/gkz090] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) support DNA replication by protecting single-stranded DNA from nucleolytic attack, preventing intra-strand pairing events and playing many other regulatory roles within the replisome. Recent developments in single-molecule approaches have led to a revised picture of the replisome that is much more complex in how it retains or recycles protein components. Here, we visualize how an in vitro reconstituted Escherichia coli replisome recruits SSB by relying on two different molecular mechanisms. Not only does it recruit new SSB molecules from solution to coat newly formed single-stranded DNA on the lagging strand, but it also internally recycles SSB from one Okazaki fragment to the next. We show that this internal transfer mechanism is balanced against recruitment from solution in a manner that is concentration dependent. By visualizing SSB dynamics in live cells, we show that both internal transfer and external exchange mechanisms are physiologically relevant.
Collapse
Affiliation(s)
- Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, 9747 AG, the Netherlands
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Andrew Robinson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
39
|
Zhao T, Liu Y, Wang Z, He R, Xiang Zhang J, Xu F, Lei M, Deci MB, Nguyen J, Bianco PR. Super-resolution imaging reveals changes in Escherichia coli SSB localization in response to DNA damage. Genes Cells 2019; 24:814-826. [PMID: 31638317 DOI: 10.1111/gtc.12729] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023]
Abstract
The E. coli single-stranded DNA-binding protein (SSB) is essential to viability. It plays key roles in DNA metabolism where it binds to nascent single strands of DNA and to target proteins known as the SSB interactome. There are >2,000 tetramers of SSB per cell with 100-150 associated with the genome at any one time, either at DNA replication forks or at sites of repair. The remaining 1,900 tetramers could constantly diffuse throughout the cytosol or be associated with the inner membrane as observed for other DNA metabolic enzymes. To visualize SSB localization and to ascertain potential spatiotemporal changes in response to DNA damage, SSB-GFP chimeras were visualized using a novel, super-resolution microscope optimized for the study of prokaryotic cells. In the absence of DNA damage, SSB localizes to a small number of foci and the excess protein is associated with the inner membrane where it binds to the major phospholipids. Within five minutes following DNA damage, the vast majority of SSB disengages from the membrane and is found almost exclusively in the cell interior. Here, it is observed in a large number of foci, in discreet structures or, in diffuse form spread over the genome, thereby enabling repair events.
Collapse
Affiliation(s)
- Tianyu Zhao
- Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, State Key Laboratory of Transient Optics and Photonics, Xi'an, China
| | - Yan Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zilin Wang
- Center for Single Molecule Biophysics and, Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Rongyan He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jia Xiang Zhang
- Center for Single Molecule Biophysics and, Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ming Lei
- Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, State Key Laboratory of Transient Optics and Photonics, Xi'an, China
| | - Michael B Deci
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, Buffalo, NY, USA
| | - Juliane Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, Buffalo, NY, USA
| | - Piero R Bianco
- Center for Single Molecule Biophysics and, Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
40
|
Henrikus SS, Henry C, Ghodke H, Wood EA, Mbele N, Saxena R, Basu U, van Oijen AM, Cox MM, Robinson A. RecFOR epistasis group: RecF and RecO have distinct localizations and functions in Escherichia coli. Nucleic Acids Res 2019; 47:2946-2965. [PMID: 30657965 PMCID: PMC6451095 DOI: 10.1093/nar/gkz003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/03/2018] [Accepted: 01/10/2019] [Indexed: 01/31/2023] Open
Abstract
In bacteria, genetic recombination is a major mechanism for DNA repair. The RecF, RecO and RecR proteins are proposed to initiate recombination by loading the RecA recombinase onto DNA. However, the biophysical mechanisms underlying this process remain poorly understood. Here, we used genetics and single-molecule fluorescence microscopy to investigate whether RecF and RecO function together, or separately, in live Escherichia coli cells. We identified conditions in which RecF and RecO functions are genetically separable. Single-molecule imaging revealed key differences in the spatiotemporal behaviours of RecF and RecO. RecF foci frequently colocalize with replisome markers. In response to DNA damage, colocalization increases and RecF dimerizes. The majority of RecF foci are dependent on RecR. Conversely, RecO foci occur infrequently, rarely colocalize with replisomes or RecF and are largely independent of RecR. In response to DNA damage, RecO foci appeared to spatially redistribute, occupying a region close to the cell membrane. These observations indicate that RecF and RecO have distinct functions in the DNA damage response. The observed localization of RecF to the replisome supports the notion that RecF helps to maintain active DNA replication in cells carrying DNA damage.
Collapse
Affiliation(s)
- Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Harshad Ghodke
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Neema Mbele
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Roopashi Saxena
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Upasana Basu
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| |
Collapse
|
41
|
Whinn KS, Kaur G, Lewis JS, Schauer GD, Mueller SH, Jergic S, Maynard H, Gan ZY, Naganbabu M, Bruchez MP, O'Donnell ME, Dixon NE, van Oijen AM, Ghodke H. Nuclease dead Cas9 is a programmable roadblock for DNA replication. Sci Rep 2019; 9:13292. [PMID: 31527759 PMCID: PMC6746809 DOI: 10.1038/s41598-019-49837-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/31/2019] [Indexed: 01/19/2023] Open
Abstract
Limited experimental tools are available to study the consequences of collisions between DNA-bound molecular machines. Here, we repurpose a catalytically inactivated Cas9 (dCas9) construct as a generic, novel, targetable protein-DNA roadblock for studying mechanisms underlying enzymatic activities on DNA substrates in vitro. We illustrate the broad utility of this tool by demonstrating replication fork arrest by the specifically bound dCas9-guideRNA complex to arrest viral, bacterial and eukaryotic replication forks in vitro.
Collapse
Affiliation(s)
- Kelsey S Whinn
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Gurleen Kaur
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Jacob S Lewis
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Grant D Schauer
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, 10065, USA
| | - Stefan H Mueller
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Slobodan Jergic
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Hamish Maynard
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Zhong Yan Gan
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Matharishwan Naganbabu
- Department of Chemistry and Molecular Biosensors and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Marcel P Bruchez
- Department of Chemistry and Molecular Biosensors and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, 10065, USA
| | - Nicholas E Dixon
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia
| | - Antoine M van Oijen
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| | - Harshad Ghodke
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
42
|
Walsh E, Henrikus SS, Vaisman A, Makiela-Dzbenska K, Armstrong TJ, Łazowski K, McDonald JP, Goodman MF, van Oijen AM, Jonczyk P, Fijalkowska IJ, Robinson A, Woodgate R. Role of RNase H enzymes in maintaining genome stability in Escherichia coli expressing a steric-gate mutant of pol V ICE391. DNA Repair (Amst) 2019; 84:102685. [PMID: 31543434 DOI: 10.1016/j.dnarep.2019.102685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/18/2022]
Abstract
pol VICE391 (RumA'2B) is a low-fidelity polymerase that promotes considerably higher levels of spontaneous "SOS-induced" mutagenesis than the related E. coli pol V (UmuD'2C). The molecular basis for the enhanced mutagenesis was previously unknown. Using single molecule fluorescence microscopy to visualize pol V enzymes, we discovered that the elevated levels of mutagenesis are likely due, in part, to prolonged binding of RumB to genomic DNA leading to increased levels of DNA synthesis compared to UmuC. We have generated a steric gate pol VICE391 variant (pol VICE391_Y13A) that readily misincorporates ribonucleotides into the E. coli genome and have used the enzyme to investigate the molecular mechanisms of Ribonucleotide Excision Repair (RER) under conditions of increased ribonucleotide-induced stress. To do so, we compared the extent of spontaneous mutagenesis promoted by pol V and pol VICE391 to that of their respective steric gate variants. Levels of mutagenesis promoted by the steric gate variants that are lower than that of the wild-type enzyme are indicative of active RER that removes misincorporated ribonucleotides, but also misincorporated deoxyribonucleotides from the genome. Using such an approach, we confirmed that RNase HII plays a pivotal role in RER. In the absence of RNase HII, Nucleotide Excision Repair (NER) proteins help remove misincorporated ribonucleotides. However, significant RER occurs in the absence of RNase HII and NER. Most of the RNase HII and NER-independent RER occurs on the lagging strand during genome duplication. We suggest that this is most likely due to efficient RNase HI-dependent RER which recognizes the polyribonucleotide tracts generated by pol VICE391_Y13A. These activities are critical for the maintenance of genomic integrity when RNase HII is overwhelmed, or inactivated, as ΔrnhB or ΔrnhB ΔuvrA strains expressing pol VICE391_Y13A exhibit genome and plasmid instability in the absence of RNase HI.
Collapse
Affiliation(s)
- Erin Walsh
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | | | - Thomas J Armstrong
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Krystian Łazowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910 USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Piotr Jonczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Australia; Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
43
|
Visualizing the inner life of microbes: practices of multi-color single-molecule localization microscopy in microbiology. Biochem Soc Trans 2019; 47:1041-1065. [PMID: 31296734 DOI: 10.1042/bst20180399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/28/2022]
Abstract
In this review, we discuss multi-color single-molecule imaging and tracking strategies for studying microbial cell biology. We first summarize and compare the methods in a detailed literature review of published studies conducted in bacteria and fungi. We then introduce a guideline on which factors and parameters should be evaluated when designing a new experiment, from fluorophore and labeling choices to imaging routines and data analysis. Finally, we give some insight into some of the recent and promising applications and developments of these techniques and discuss the outlook for this field.
Collapse
|
44
|
Yang W, Seidman MM, Rupp WD, Gao Y. Replisome structure suggests mechanism for continuous fork progression and post-replication repair. DNA Repair (Amst) 2019; 81:102658. [PMID: 31303546 DOI: 10.1016/j.dnarep.2019.102658] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
What happens to DNA replication when it encounters a damaged or nicked DNA template has been under investigation for five decades. Initially it was thought that DNA polymerase, and thus the replication-fork progression, would stall at road blocks. After the discovery of replication-fork helicase and replication re-initiation factors by the 1990s, it became clear that the replisome can "skip" impasses and finish replication with single-stranded gaps and double-strand breaks in the product DNA. But the mechanism for continuous fork progression after encountering roadblocks is entangled with translesion synthesis, replication fork reversal and recombination repair. The recently determined structure of the bacteriophage T7 replisome offers the first glimpse of how helicase, primase, leading-and lagging-strand DNA polymerases are organized around a DNA replication fork. The tightly coupled leading-strand polymerase and lagging-strand helicase provides a scaffold to consolidate data accumulated over the past five decades and offers a fresh perspective on how the replisome may skip lesions and complete discontinuous DNA synthesis. Comparison of the independently evolved bacterial and eukaryotic replisomes suggests that repair of discontinuous DNA synthesis occurs post replication in both.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute of Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - W Dean Rupp
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520-8040, USA
| | - Yang Gao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| |
Collapse
|
45
|
Smit JH, Li Y, Warszawik EM, Herrmann A, Cordes T. ColiCoords: A Python package for the analysis of bacterial fluorescence microscopy data. PLoS One 2019; 14:e0217524. [PMID: 31216308 PMCID: PMC6583990 DOI: 10.1371/journal.pone.0217524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/08/2019] [Indexed: 11/18/2022] Open
Abstract
Single-molecule fluorescence microscopy studies of bacteria provide unique insights into the mechanisms of cellular processes and protein machineries in ways that are unrivalled by any other technique. With the cost of microscopes dropping and the availability of fully automated microscopes, the volume of microscopy data produced has increased tremendously. These developments have moved the bottleneck of throughput from image acquisition and sample preparation to data analysis. Furthermore, requirements for analysis procedures have become more stringent given the demand of various journals to make data and analysis procedures available. To address these issues we have developed a new data analysis package for analysis of fluorescence microscopy data from rod-like cells. Our software ColiCoords structures microscopy data at the single-cell level and implements a coordinate system describing each cell. This allows for the transformation of Cartesian coordinates from transmission light and fluorescence images and single-molecule localization microscopy (SMLM) data to cellular coordinates. Using this transformation, many cells can be combined to increase the statistical power of fluorescence microscopy datasets of any kind. ColiCoords is open source, implemented in the programming language Python, and is extensively documented. This allows for modifications for specific needs or to inspect and publish data analysis procedures. By providing a format that allows for easy sharing of code and associated data, we intend to promote open and reproducible research. The source code and documentation can be found via the project's GitHub page.
Collapse
Affiliation(s)
- Jochem H. Smit
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Yichen Li
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Eliza M. Warszawik
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andreas Herrmann
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- DWI – Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
46
|
Replisome activity slowdown after exposure to ultraviolet light in Escherichia coli. Proc Natl Acad Sci U S A 2019; 116:11747-11753. [PMID: 31127046 DOI: 10.1073/pnas.1819297116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The replisome is a multiprotein machine that is responsible for replicating DNA. During active DNA synthesis, the replisome tightly associates with DNA. In contrast, after DNA damage, the replisome may disassemble, exposing DNA to breaks and threatening cell survival. Using live cell imaging, we studied the effect of UV light on the replisome of Escherichia coli Surprisingly, our results showed an increase in Pol III holoenzyme (Pol III HE) foci post-UV that do not colocalize with the DnaB helicase. Formation of these foci is independent of active replication forks and dependent on the presence of the χ subunit of the clamp loader, suggesting recruitment of Pol III HE at sites of DNA repair. Our results also showed a decrease of DnaB helicase foci per cell after UV, consistent with the disassembly of a fraction of the replisomes. By labeling newly synthesized DNA, we demonstrated that a drop in the rate of synthesis is not explained by replisome disassembly alone. Instead, we show that most replisomes continue synthesizing DNA at a slower rate after UV. We propose that the slowdown in replisome activity is a strategy to prevent clashes with engaged DNA repair proteins and preserve the integrity of the replication fork.
Collapse
|
47
|
Maslowska KH, Makiela‐Dzbenska K, Fijalkowska IJ. The SOS system: A complex and tightly regulated response to DNA damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:368-384. [PMID: 30447030 PMCID: PMC6590174 DOI: 10.1002/em.22267] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 05/10/2023]
Abstract
Genomes of all living organisms are constantly threatened by endogenous and exogenous agents that challenge the chemical integrity of DNA. Most bacteria have evolved a coordinated response to DNA damage. In Escherichia coli, this inducible system is termed the SOS response. The SOS global regulatory network consists of multiple factors promoting the integrity of DNA as well as error-prone factors allowing for survival and continuous replication upon extensive DNA damage at the cost of elevated mutagenesis. Due to its mutagenic potential, the SOS response is subject to elaborate regulatory control involving not only transcriptional derepression, but also post-translational activation, and inhibition. This review summarizes current knowledge about the molecular mechanism of the SOS response induction and progression and its consequences for genome stability. Environ. Mol. Mutagen. 60:368-384, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Katarzyna H. Maslowska
- Cancer Research Center of Marseille, CNRS, UMR7258Inserm, U1068; Institut Paoli‐Calmettes, Aix‐Marseille UniversityMarseilleFrance
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| | | | - Iwona J. Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| |
Collapse
|
48
|
Ghodke H, Paudel BP, Lewis JS, Jergic S, Gopal K, Romero ZJ, Wood EA, Woodgate R, Cox MM, van Oijen AM. Spatial and temporal organization of RecA in the Escherichia coli DNA-damage response. eLife 2019; 8:42761. [PMID: 30717823 PMCID: PMC6363387 DOI: 10.7554/elife.42761] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
The RecA protein orchestrates the cellular response to DNA damage via its multiple roles in the bacterial SOS response. Lack of tools that provide unambiguous access to the various RecA states within the cell have prevented understanding of the spatial and temporal changes in RecA structure/function that underlie control of the damage response. Here, we develop a monomeric C-terminal fragment of the λ repressor as a novel fluorescent probe that specifically interacts with RecA filaments on single-stranded DNA (RecA*). Single-molecule imaging techniques in live cells demonstrate that RecA is largely sequestered in storage structures during normal metabolism. Upon DNA damage, the storage structures dissolve and the cytosolic pool of RecA rapidly nucleates to form early SOS-signaling complexes, maturing into DNA-bound RecA bundles at later time points. Both before and after SOS induction, RecA* largely appears at locations distal from replisomes. Upon completion of repair, RecA storage structures reform.
Collapse
Affiliation(s)
- Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Bishnu P Paudel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Kamya Gopal
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | | |
Collapse
|
49
|
Jaszczur MM, Vo DD, Stanciauskas R, Bertram JG, Sikand A, Cox MM, Woodgate R, Mak CH, Pinaud F, Goodman MF. Conformational regulation of Escherichia coli DNA polymerase V by RecA and ATP. PLoS Genet 2019; 15:e1007956. [PMID: 30716079 PMCID: PMC6375631 DOI: 10.1371/journal.pgen.1007956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 02/14/2019] [Accepted: 01/11/2019] [Indexed: 12/27/2022] Open
Abstract
Mutagenic translesion DNA polymerase V (UmuD'2C) is induced as part of the DNA damage-induced SOS response in Escherichia coli, and is subjected to multiple levels of regulation. The UmuC subunit is sequestered on the cell membrane (spatial regulation) and enters the cytosol after forming a UmuD'2C complex, ~ 45 min post-SOS induction (temporal regulation). However, DNA binding and synthesis cannot occur until pol V interacts with a RecA nucleoprotein filament (RecA*) and ATP to form a mutasome complex, pol V Mut = UmuD'2C-RecA-ATP. The location of RecA relative to UmuC determines whether pol V Mut is catalytically on or off (conformational regulation). Here, we present three interrelated experiments to address the biochemical basis of conformational regulation. We first investigate dynamic deactivation during DNA synthesis and static deactivation in the absence of DNA synthesis. Single-molecule (sm) TIRF-FRET microscopy is then used to explore multiple aspects of pol V Mut dynamics. Binding of ATP/ATPγS triggers a conformational switch that reorients RecA relative to UmuC to activate pol V Mut. This process is required for polymerase-DNA binding and synthesis. Both dynamic and static deactivation processes are governed by temperature and time, in which on → off switching is "rapid" at 37°C (~ 1 to 1.5 h), "slow" at 30°C (~ 3 to 4 h) and does not require ATP hydrolysis. Pol V Mut retains RecA in activated and deactivated states, but binding to primer-template (p/t) DNA occurs only when activated. Studies are performed with two forms of the polymerase, pol V Mut-RecA wt, and the constitutively induced and hypermutagenic pol V Mut-RecA E38K/ΔC17. We discuss conformational regulation of pol V Mut, determined from biochemical analysis in vitro, in relation to the properties of pol V Mut in RecA wild-type and SOS constitutive genetic backgrounds in vivo.
Collapse
Affiliation(s)
- Malgorzata M. Jaszczur
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Dan D. Vo
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Ramunas Stanciauskas
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Jeffrey G. Bertram
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Adhirath Sikand
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chi H. Mak
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
- Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Fabien Pinaud
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
| | - Myron F. Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Zutterling C, Mursalimov A, Talhaoui I, Koshenov Z, Akishev Z, Bissenbaev AK, Mazon G, Geacintov NE, Gasparutto D, Groisman R, Zharkov DO, Matkarimov BT, Saparbaev M. Aberrant repair initiated by the adenine-DNA glycosylase does not play a role in UV-induced mutagenesis in Escherichia coli. PeerJ 2018; 6:e6029. [PMID: 30568855 PMCID: PMC6286661 DOI: 10.7717/peerj.6029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/30/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND DNA repair is essential to counteract damage to DNA induced by endo- and exogenous factors, to maintain genome stability. However, challenges to the faithful discrimination between damaged and non-damaged DNA strands do exist, such as mismatched pairs between two regular bases resulting from spontaneous deamination of 5-methylcytosine or DNA polymerase errors during replication. To counteract these mutagenic threats to genome stability, cells evolved the mismatch-specific DNA glycosylases that can recognize and remove regular DNA bases in the mismatched DNA duplexes. The Escherichia coli adenine-DNA glycosylase (MutY/MicA) protects cells against oxidative stress-induced mutagenesis by removing adenine which is mispaired with 7,8-dihydro-8-oxoguanine (8oxoG) in the base excision repair pathway. However, MutY does not discriminate between template and newly synthesized DNA strands. Therefore the ability to remove A from 8oxoG•A mispair, which is generated via misincorporation of an 8-oxo-2'-deoxyguanosine-5'-triphosphate precursor during DNA replication and in which A is the template base, can induce A•T→C•G transversions. Furthermore, it has been demonstrated that human MUTYH, homologous to the bacterial MutY, might be involved in the aberrant processing of ultraviolet (UV) induced DNA damage. METHODS Here, we investigated the role of MutY in UV-induced mutagenesis in E. coli. MutY was probed on DNA duplexes containing cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproduct (6-4PP). UV irradiation of E. coli induces Save Our Souls (SOS) response characterized by increased production of DNA repair enzymes and mutagenesis. To study the role of MutY in vivo, the mutation frequencies to rifampicin-resistant (RifR) after UV irradiation of wild type and mutant E. coli strains were measured. RESULTS We demonstrated that MutY does not excise Adenine when it is paired with CPD and 6-4PP adducts in duplex DNA. At the same time, MutY excises Adenine in A•G and A•8oxoG mispairs. Interestingly, E. coli mutY strains, which have elevated spontaneous mutation rate, exhibited low mutational induction after UV exposure as compared to MutY-proficient strains. However, sequence analysis of RifR mutants revealed that the frequencies of C→T transitions dramatically increased after UV irradiation in both MutY-proficient and -deficient E. coli strains. DISCUSSION These findings indicate that the bacterial MutY is not involved in the aberrant DNA repair of UV-induced DNA damage.
Collapse
Affiliation(s)
- Caroline Zutterling
- Groupe «Réparation de l’ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, Villejuif, France
| | - Aibek Mursalimov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ibtissam Talhaoui
- CNRS UMR 8200—Laboratoire «Stabilité Génétique et Oncogenèse», Université Paris Sud (Paris XI), Gustave Roussy Cancer Campus, Villejuif, France
| | - Zhanat Koshenov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Zhiger Akishev
- Department of Molecular Biology and Genetics, al-Farabi Kazakh National University, Faculty of Biology, Almaty, Kazakhstan
| | - Amangeldy K. Bissenbaev
- Department of Molecular Biology and Genetics, al-Farabi Kazakh National University, Faculty of Biology, Almaty, Kazakhstan
| | - Gerard Mazon
- CNRS UMR 8200—Laboratoire «Stabilité Génétique et Oncogenèse», Université Paris Sud (Paris XI), Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Didier Gasparutto
- CEA, CNRS, INAC, SyMMES, Université Grenoble Alpes, Grenoble, France
| | - Regina Groisman
- Groupe «Réparation de l’ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, Villejuif, France
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Murat Saparbaev
- Groupe «Réparation de l’ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|