1
|
Jelleschitz J, Heider S, Kehm R, Baumgarten P, Ott C, Schnell V, Grune T, Höhn A. Insulitis and aging: Immune cell dynamics in Langerhans islets. Redox Biol 2025; 82:103587. [PMID: 40101534 PMCID: PMC11957801 DOI: 10.1016/j.redox.2025.103587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/07/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
With increasing age, the risk for age-related type-2-diabetes also increases due to impaired glucose tolerance and insulin secretion. This disease process may be influenced by various factors, including immune cell triggered inflammation and fibrosis. Although immune cells are a necessary component of islets, little is known about immune cell accumulation, immune cell subtype shifts and subsequent influence on glucose metabolism in healthy aging. However, this is critical for understanding the mechanisms that influence β-cell health. Therefore, we studied young and old male C57BL/6J mice, focusing on immune cell composition, patterns of accumulation, and the presence of fibrosis within the pancreatic islets. Our findings demonstrate that insulitis occurs in healthy aged mice without immediate development of a diabetic phenotype. Aged islets exhibited an increase in leukocytes and a shift in immune cell composition. While insulitis typically involves excessive immune cell accumulation, we observed a moderate increase in macrophages and T-cells during aging, which may support β-cell proliferation via cytokine secretion. In fact, aged mice in our study showed an increase in β-cell mass as well as a partially higher insulin secretory capacity, which compensated for the loss of β-cell functionality in insulitic islets and led to improved glucose tolerance. Furthermore, fibrosis which is normally triggered by immune cells, increased with age but appears to reach a steady state, emphasizing the importance of counter-regulatory mechanisms and immune system regulation. Our results suggest, that immune cell subtypes change with age and that non-pathological accumulation of immune-cells may regulate glucose metabolism through secretion of cytokines.
Collapse
Affiliation(s)
- Julia Jelleschitz
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Sophie Heider
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Patricia Baumgarten
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Vanessa Schnell
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
2
|
Takahashi N, Campbell KR, Shimada T, Nakada TA, Russell JA, Walley KR. Low apolipoprotein A-II levels causally contribute to increased mortality in septic shock. J Intensive Care 2025; 13:10. [PMID: 39980010 PMCID: PMC11841007 DOI: 10.1186/s40560-025-00782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Lipoproteins and their component apolipoproteins play an important role in sepsis. However, little is known with regard to the association and causal contribution of these proteins to mortality in patients of different ancestries following septic shock. The objective of this study was to determine whether lipoprotein and apolipoprotein levels, and related genetic variants, are associated with clinical outcomes in septic shock. METHODS We investigated the association between lipoprotein and apolipoprotein levels at the point of admission to the intensive care unit and in-hospital mortality in 687 Japan patients diagnosed with septic shock. For each clinically significant candidate protein, we extracted haplotype tag single nucleotide polymorphisms (SNPs) of the corresponding gene and examined the association of the candidate gene variants with 28-day mortality and organ dysfunction. We tested for replication in a Caucasian septic shock cohort (Vasopressin and Septic Shock Trial, VASST, n = 474). To determine whether the candidate lipoprotein causally contributed to septic shock outcome, we used a Mendelian randomization analysis based on polygenic scores generated from a genome-wide association study (GWAS) in the Japan cohort. RESULTS In the Japan cohort, low apolipoprotein A-II levels were associated with increased septic shock mortality (adjusted odds ratio, 1.05; 95%CI, 1.02-1.09; P < 0.001). For a haplotype tag SNP of the corresponding ApoA2 gene, rs6413453 GG carriers had significantly higher 28-day mortality (adjusted hazard ratio [aHR], 1.79; 95% confidence interval [CI], 1.06-3.04; P = 0.029) and significantly fewer days free of cardiovascular, respiratory, renal and neurologic dysfunction than AG/AA carriers. This result was replicated in the Caucasian septic shock cohort (28-day mortality: aHR, 1.65; 95% CI, 1.02-2.68; P = 0.041). Mendelian randomization using 9 SNPs from an apolipoprotein A-II GWAS suggested that genetically decreased levels of apolipoprotein A-II were a causal factor for increased mortality in septic shock (odds ratio for mortality due to a 1 mg/dL decrease in apolipoprotein A-II is 1.05 [95% CI; 1.01-1.03, P = 0.0022]). CONCLUSIONS In septic shock, apolipoprotein A-II levels and ApoA2 genetic variations are important factors associated with outcome.
Collapse
Affiliation(s)
- Nozomi Takahashi
- Centre for Heart Lung Innovation, St. Paul's Hospital, The University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Kyle R Campbell
- Centre for Heart Lung Innovation, St. Paul's Hospital, The University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Tadanaga Shimada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - James A Russell
- Centre for Heart Lung Innovation, St. Paul's Hospital, The University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Keith R Walley
- Centre for Heart Lung Innovation, St. Paul's Hospital, The University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| |
Collapse
|
3
|
Gottmann P, Speckmann T, Stadion M, Chawla P, Saurenbach J, Ninov N, Lickert H, Schürmann A. Transcriptomic heterogeneity of non-beta islet cells is associated with type 2 diabetes development in mouse models. Diabetologia 2025; 68:166-185. [PMID: 39508880 DOI: 10.1007/s00125-024-06301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 11/15/2024]
Abstract
AIMS/HYPOTHESIS The aim of this work was to understand the role of non-beta cells in pancreatic islets at early stages of type 2 diabetes pathogenesis. METHODS Specific clustering was employed to single-cell transcriptome data from islet cells of obese mouse strains differing in their diabetes susceptibility (diabetes-resistant B6.V.Lepob/ob [OB] and diabetes-susceptible New Zealand Obese [NZO] mice) on a diabetogenic diet. RESULTS Refined clustering analysis revealed several heterogeneous subpopulations for alpha cells, delta cells and macrophages, of which 133 mapped to human diabetes genes identified by genome-wide association studies. Importantly, a similar non-beta cell heterogeneity was found in a dataset of human islets from donors at different stages of type 2 diabetes. The predominant alpha cell cluster in NZO mice displayed signs of cellular stress and lower mitochondrial capacity (97 differentially expressed genes [DEGs]), whereas delta cells from these mice exhibited higher expression levels of maturation marker genes (Hhex and Sst) but lower somatostatin secretion than OB mice (184 DEGs). Furthermore, a cluster of macrophages was almost twice as abundant in islets of OB mice, and displayed extensive cell-cell communication with beta cells of OB mice. Treatment of beta cells with IL-15, predicted to be released by macrophages, activated signal transducer and activator of transcription (STAT3), which may mediate anti-apoptotic effects. Similar to mice, humans without diabetes possess a greater number of macrophages than those with prediabetes (39 mmol/mol [5.7%] < HbA1c < 46 mmol/mol [6.4%]) and diabetes. CONCLUSIONS/INTERPRETATION Our study indicates that the transcriptional heterogeneity of non-beta cells has an impact on intra-islet crosstalk and participates in beta cell (dys)function. DATA AVAILABILITY scRNA-seq data from the previous study are available in gene expression omnibus under gene accession number GSE159211 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159211 ).
Collapse
Affiliation(s)
- Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Thilo Speckmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Prateek Chawla
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
- Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Judith Saurenbach
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Nikolay Ninov
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
- Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
- German Center for Diabetes Research (DZD), München Neuherberg, Germany.
- University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany.
| |
Collapse
|
4
|
Li Y, Kan X. Mendelian randomization analysis to analyze the genetic causality between different levels of obesity and different allergic diseases. BMC Pulm Med 2023; 23:352. [PMID: 37723557 PMCID: PMC10508031 DOI: 10.1186/s12890-023-02636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND The causal relationship between obesity and different allergic diseases remains controversial. METHODS The Two Sample MR package and Phenoscanner database were used to obtain and filter Genome-Wide Association Study (GWAS) data from the Open GWAS database. Mendelian randomization (MR) analysis was used to study the causal relationship between different levels of obesity and different allergic diseases. The data sets related to obesity and asthma were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened by the limma package. Cluster Profiler and GO plot packages were used for enrichment analysis to verify the results of MR analysis. RESULTS Two-sample MR analysis showed a causal relationship between obesity and childhood allergy (age < 16), allergic asthma and atopic dermatitis (P < 0.05). In addition, there was also a causal relationship between allergic asthma and obesity (P < 0.05), while there was no genetic causal relationship between obesity and allergic rhinitis, eczema, lactose intolerance and so on (P > 0.05). Subgroup analysis revealed a causal relationship between both class 1 and class 2 obesity and childhood allergy (age < 16) (P < 0.05). Obesity class 1 was associated with allergic asthma, while obesity class 3 was associated with atopic dermatitis (P < 0.05). Bioinformatics analysis shows that there were common DEGs between obesity and allergic asthma. CONCLUSION Obesity is a risk factor for childhood allergy (age < 16), allergic asthma and atopic dermatitis, while allergic asthma is also a risk factor for obesity. Class 1 and class 2 obesity are both causally associated with childhood allergy (age < 16). In addition, there is a causal relationship between milder obesity and allergic asthma, while heavier obesity is causally related to atopic dermatitis.
Collapse
Affiliation(s)
- Yujian Li
- Department of Pediatrics, General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, 300052, Tianjin, China
| | - Xuan Kan
- Department of Pediatrics, General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, 300052, Tianjin, China.
| |
Collapse
|
5
|
Ouni M, Eichelmann F, Jähnert M, Krause C, Saussenthaler S, Ott C, Gottmann P, Speckmann T, Huypens P, Wolter S, Mann O, De Angelis MH, Beckers J, Kirchner H, Schulze MB, Schürmann A. Differences in DNA methylation of HAMP in blood cells predicts the development of type 2 diabetes. Mol Metab 2023; 75:101774. [PMID: 37429525 PMCID: PMC10422014 DOI: 10.1016/j.molmet.2023.101774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVES Better disease management can be achieved with earlier detection through robust, sensitive, and easily accessible biomarkers. The aim of the current study was to identify novel epigenetic biomarkers determining the risk of type 2 diabetes (T2D). METHODS Livers of 10-week-old female New Zealand Obese (NZO) mice, slightly differing in their degree of hyperglycemia and liver fat content and thereby in their diabetes susceptibility were used for expression and methylation profiling. We screened for differences in hepatic expression and DNA methylation in diabetes-prone and -resistant mice, and verified a candidate (HAMP) in human livers and blood cells. Hamp expression was manipulated in primary hepatocytes and insulin-stimulated pAKT was detected. Luciferase reporter assays were conducted in a murine liver cell line to test the impact of DNA methylation on promoter activity. RESULTS In livers of NZO mice, the overlap of methylome and transcriptome analyses revealed a potential transcriptional dysregulation of 12 hepatokines. The strongest effect with a 52% decreased expression in livers of diabetes-prone mice was detected for the Hamp gene, mediated by elevated DNA methylation of two CpG sites located in the promoter. Hamp encodes the iron-regulatory hormone hepcidin, which had a lower abundance in the livers of mice prone to developing diabetes. Suppression of Hamp reduces the levels of pAKT in insulin-treated hepatocytes. In liver biopsies of obese insulin-resistant women, HAMP expression was significantly downregulated along with increased DNA methylation of a homologous CpG site. In blood cells of incident T2D cases from the prospective EPIC-Potsdam cohort, higher DNA methylation of two CpG sites was related to increased risk of incident diabetes. CONCLUSIONS We identified epigenetic changes in the HAMP gene which may be used as an early marker preceding T2D.
Collapse
Affiliation(s)
- Meriem Ouni
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Fabian Eichelmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; German Institute of Human Nutrition, Department of Molecular Epidemiology, Potsdam-Rehbruecke, Germany
| | - Markus Jähnert
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christin Krause
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute for Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany
| | - Sophie Saussenthaler
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christiane Ott
- German Institute of Human Nutrition, Department of Molecular Toxicology, Potsdam-Rehbruecke, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Pascal Gottmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Thilo Speckmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Peter Huypens
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Hrabé De Angelis
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; School of Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; School of Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising, Germany
| | - Henriette Kirchner
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute for Human Genetics, Section Epigenetics & Metabolism, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Germany
| | - Matthias B Schulze
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; German Institute of Human Nutrition, Department of Molecular Epidemiology, Potsdam-Rehbruecke, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Annette Schürmann
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
6
|
Mohandas S, Gayatri V, Kumaran K, Gopinath V, Paulmurugan R, Ramkumar KM. New Frontiers in Three-Dimensional Culture Platforms to Improve Diabetes Research. Pharmaceutics 2023; 15:pharmaceutics15030725. [PMID: 36986591 PMCID: PMC10056755 DOI: 10.3390/pharmaceutics15030725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is associated with defects in islet β-cell functioning and consequent hyperglycemia resulting in multi-organ damage. Physiologically relevant models that mimic human diabetic progression are urgently needed to identify new drug targets. Three-dimensional (3D) cell-culture systems are gaining a considerable interest in diabetic disease modelling and are being utilized as platforms for diabetic drug discovery and pancreatic tissue engineering. Three-dimensional models offer a marked advantage in obtaining physiologically relevant information and improve drug selectivity over conventional 2D (two-dimensional) cultures and rodent models. Indeed, recent evidence persuasively supports the adoption of appropriate 3D cell technology in β-cell cultivation. This review article provides a considerably updated view of the benefits of employing 3D models in the experimental workflow compared to conventional animal and 2D models. We compile the latest innovations in this field and discuss the various strategies used to generate 3D culture models in diabetic research. We also critically review the advantages and the limitations of each 3D technology, with particular attention to the maintenance of β-cell morphology, functionality, and intercellular crosstalk. Furthermore, we emphasize the scope of improvement needed in the 3D culture systems employed in diabetes research and the promises they hold as excellent research platforms in managing diabetes.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vijaya Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kriya Kumaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vipin Gopinath
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Molecular Oncology Division, Malabar Cancer Centre, Moozhikkara P.O, Thalassery 670103, Kerala, India
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| |
Collapse
|
7
|
Gottmann P, Speckmann T, Stadion M, Zuljan E, Aga H, Sterr M, Büttner M, Santos PM, Jähnert M, Bornstein SR, Theis FJ, Lickert H, Schürmann A. Heterogeneous Development of β-Cell Populations in Diabetes-Resistant and -Susceptible Mice. Diabetes 2022; 71:1962-1978. [PMID: 35771990 PMCID: PMC9862397 DOI: 10.2337/db21-1030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/13/2022] [Indexed: 02/05/2023]
Abstract
Progressive dysfunction and failure of insulin-releasing β-cells are a hallmark of type 2 diabetes (T2D). To study mechanisms of β-cell loss in T2D, we performed islet single-cell RNA sequencing of two obese mouse strains differing in their diabetes susceptibility. With mice on a control diet, we identified six β-cell clusters with similar abundance in both strains. However, after feeding of a diabetogenic diet for 2 days, β-cell cluster composition markedly differed between strains. Islets of diabetes-resistant mice developed into a protective β-cell cluster (Beta4), whereas those of diabetes-prone mice progressed toward stress-related clusters with a strikingly different expression pattern. Interestingly, the protective cluster showed indications of reduced β-cell identity, such as downregulation of GLUT2, GLP1R, and MafA, and in vitro knockdown of GLUT2 in β-cells-mimicking its phenotype-decreased stress response and apoptosis. This might explain enhanced β-cell survival of diabetes-resistant islets. In contrast, β-cells of diabetes-prone mice responded with expression changes indicating metabolic pressure and endoplasmic reticulum stress, presumably leading to later β-cell loss. In conclusion, failure of diabetes-prone mice to adapt gene expression toward a more dedifferentiated state in response to rising blood glucose levels leads to β-cell failure and diabetes development.
Collapse
Affiliation(s)
- Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Thilo Speckmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Erika Zuljan
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heja Aga
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Michael Sterr
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Maren Büttner
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Patrícia Martínez Santos
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stefan R. Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Diabetes, School of Life Course Science and Medicine, King’s College London, London, U.K
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
- Corresponding author: Annette Schürmann,
| |
Collapse
|
8
|
Apolipoprotein A-II, a Player in Multiple Processes and Diseases. Biomedicines 2022; 10:biomedicines10071578. [PMID: 35884883 PMCID: PMC9313276 DOI: 10.3390/biomedicines10071578] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Apolipoprotein A-II (apoA-II) is the second most abundant apolipoprotein in high-density lipoprotein (HDL) particles, playing an important role in lipid metabolism. Human and murine apoA-II proteins have dissimilar properties, partially because human apoA-II is dimeric whereas the murine homolog is a monomer, suggesting that the role of apoA-II may be quite different in humans and mice. As a component of HDL, apoA-II influences lipid metabolism, being directly or indirectly involved in vascular diseases. Clinical and epidemiological studies resulted in conflicting findings regarding the proatherogenic or atheroprotective role of apoA-II. Human apoA-II deficiency has little influence on lipoprotein levels with no obvious clinical consequences, while murine apoA-II deficiency causes HDL deficit in mice. In humans, an increased plasma apoA-II concentration causes hypertriglyceridemia and lowers HDL levels. This dyslipidemia leads to glucose intolerance, and the ensuing high blood glucose enhances apoA-II transcription, generating a vicious circle that may cause type 2 diabetes (T2D). ApoA-II is also used as a biomarker in various diseases, such as pancreatic cancer. Herein, we provide a review of the most recent findings regarding the roles of apoA-II and its functions in various physiological processes and disease states, such as cardiovascular disease, cancer, amyloidosis, hepatitis, insulin resistance, obesity, and T2D.
Collapse
|
9
|
Abderrahmani A, Jacovetti C, Regazzi R. Lessons from neonatal β-cell epigenomic for diabetes prevention and treatment. Trends Endocrinol Metab 2022; 33:378-389. [PMID: 35382967 DOI: 10.1016/j.tem.2022.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/30/2022]
Abstract
Pancreatic β-cell expansion and functional maturation during the birth-to-weaning period plays an essential role in the adaptation of plasma insulin levels to metabolic needs. These events are driven by epigenetic programs triggered by growth factors, hormones, and nutrients. These mechanisms operating in the neonatal period can be at least in part reactivated in adult life to increase the functional β-cell mass and face conditions of increased insulin demand such as obesity or pregnancy. In this review, we will highlight the importance of studying these signaling pathways and epigenetic programs to understand the causes of different forms of diabetes and to permit the design of novel therapeutic strategies to prevent and treat this metabolic disorder affecting hundreds of millions of people worldwide.
Collapse
Affiliation(s)
- Amar Abderrahmani
- Universitéde Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Cécile Jacovetti
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland; Department of Biomedical Science, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
10
|
Jonas W, Kluth O, Helms A, Voß S, Jähnert M, Gottmann P, Speckmann T, Knebel B, Chadt A, Al-Hasani H, Schürmann A, Vogel H. Identification of Novel Genes Involved in Hyperglycemia in Mice. Int J Mol Sci 2022; 23:3205. [PMID: 35328627 PMCID: PMC8949927 DOI: 10.3390/ijms23063205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Current attempts to prevent and manage type 2 diabetes have been moderately effective, and a better understanding of the molecular roots of this complex disease is important to develop more successful and precise treatment options. Recently, we initiated the collective diabetes cross, where four mouse inbred strains differing in their diabetes susceptibility were crossed with the obese and diabetes-prone NZO strain and identified the quantitative trait loci (QTL) Nidd13/NZO, a genomic region on chromosome 13 that correlates with hyperglycemia in NZO allele carriers compared to B6 controls. Subsequent analysis of the critical region, harboring 644 genes, included expression studies in pancreatic islets of congenic Nidd13/NZO mice, integration of single-cell data from parental NZO and B6 islets as well as haplotype analysis. Finally, of the five genes (Acot12, S100z, Ankrd55, Rnf180, and Iqgap2) within the polymorphic haplotype block that are differently expressed in islets of B6 compared to NZO mice, we identified the calcium-binding protein S100z gene to affect islet cell proliferation as well as apoptosis when overexpressed in MIN6 cells. In summary, we define S100z as the most striking gene to be causal for the diabetes QTL Nidd13/NZO by affecting β-cell proliferation and apoptosis. Thus, S100z is an entirely novel diabetes gene regulating islet cell function.
Collapse
Affiliation(s)
- Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Oliver Kluth
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Anett Helms
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Sarah Voß
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Thilo Speckmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
| | - Birgit Knebel
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
- German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Alexandra Chadt
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
- German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
- German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
- Institute of Nutritional Sciences, University of Potsdam, 14558 Nuthetal, Germany
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; (W.J.); (O.K.); (A.H.); (S.V.); (M.J.); (P.G.); (T.S.); (A.S.)
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764 München, Germany; (B.K.); (A.C.); (H.A.-H.)
- Research Group Genetics of Obesity, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, 14469 Potsdam, Germany
| |
Collapse
|
11
|
Delpero M, Arends D, Sprechert M, Krause F, Kluth O, Schürmann A, Brockmann GA, Hesse D. Identification of four novel QTL linked to the metabolic syndrome in the Berlin Fat Mouse. Int J Obes (Lond) 2021; 46:307-315. [PMID: 34689180 PMCID: PMC8794782 DOI: 10.1038/s41366-021-00991-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022]
Abstract
Background The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and the metabolic syndrome. This study aimed to identify genetic variants associated with impaired glucose metabolism using the obese lines BFMI861-S1 and BFMI861-S2, which are genetically closely related, but differ in several traits. BFMI861-S1 is insulin resistant and stores ectopic fat in the liver, whereas BFMI861-S2 is insulin sensitive. Methods In generation 10, 397 males of an advanced intercross line (AIL) BFMI861-S1 × BFMI861-S2 were challenged with a high-fat, high-carbohydrate diet and phenotyped over 25 weeks. QTL-analysis was performed after selective genotyping of 200 mice using the GigaMUGA Genotyping Array. Additional 197 males were genotyped for 7 top SNPs in QTL regions. For the prioritization of positional candidate genes whole genome sequencing and gene expression data of the parental lines were used. Results Overlapping QTL for gonadal adipose tissue weight and blood glucose concentration were detected on chromosome (Chr) 3 (95.8–100.1 Mb), and for gonadal adipose tissue weight, liver weight, and blood glucose concentration on Chr 17 (9.5–26.1 Mb). Causal modeling suggested for Chr 3-QTL direct effects on adipose tissue weight, but indirect effects on blood glucose concentration. Direct effects on adipose tissue weight, liver weight, and blood glucose concentration were suggested for Chr 17-QTL. Prioritized positional candidate genes for the identified QTL were Notch2 and Fmo5 (Chr 3) and Plg and Acat2 (Chr 17). Two additional QTL were detected for gonadal adipose tissue weight on Chr 15 (67.9–74.6 Mb) and for body weight on Chr 16 (3.9–21.4 Mb). Conclusions QTL mapping together with a detailed prioritization approach allowed us to identify candidate genes associated with traits of the metabolic syndrome. In addition, we provided evidence for direct and indirect genetic effects on blood glucose concentration in the insulin-resistant mouse line BFMI861-S1.
Collapse
Affiliation(s)
- Manuel Delpero
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Danny Arends
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian Sprechert
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Krause
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Oliver Kluth
- Department für Experimentelle Diabetologie, Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- Department für Experimentelle Diabetologie, Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Deike Hesse
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
12
|
Enriched Alternative Splicing in Islets of Diabetes-Susceptible Mice. Int J Mol Sci 2021; 22:ijms22168597. [PMID: 34445304 PMCID: PMC8395343 DOI: 10.3390/ijms22168597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022] Open
Abstract
Dysfunctional islets of Langerhans are a hallmark of type 2 diabetes (T2D). We hypothesize that differences in islet gene expression alternative splicing which can contribute to altered protein function also participate in islet dysfunction. RNA sequencing (RNAseq) data from islets of obese diabetes-resistant and diabetes-susceptible mice were analyzed for alternative splicing and its putative genetic and epigenetic modulators. We focused on the expression levels of chromatin modifiers and SNPs in regulatory sequences. We identified alternative splicing events in islets of diabetes-susceptible mice amongst others in genes linked to insulin secretion, endocytosis or ubiquitin-mediated proteolysis pathways. The expression pattern of 54 histones and chromatin modifiers, which may modulate splicing, were markedly downregulated in islets of diabetic animals. Furthermore, diabetes-susceptible mice carry SNPs in RNA-binding protein motifs and in splice sites potentially responsible for alternative splicing events. They also exhibit a larger exon skipping rate, e.g., in the diabetes gene Abcc8, which might affect protein function. Expression of the neuronal splicing factor Srrm4 which mediates inclusion of microexons in mRNA transcripts was markedly lower in islets of diabetes-prone compared to diabetes-resistant mice, correlating with a preferential skipping of SRRM4 target exons. The repression of Srrm4 expression is presumably mediated via a higher expression of miR-326-3p and miR-3547-3p in islets of diabetic mice. Thus, our study suggests that an altered splicing pattern in islets of diabetes-susceptible mice may contribute to an elevated T2D risk.
Collapse
|
13
|
Ouni M, Gottmann P, Westholm E, Schwerbel K, Jähnert M, Stadion M, Rittig K, Vogel H, Schürmann A. MiR-205 is up-regulated in islets of diabetes-susceptible mice and targets the diabetes gene Tcf7l2. Acta Physiol (Oxf) 2021; 232:e13693. [PMID: 34028994 DOI: 10.1111/apha.13693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
AIM MicroRNAs play an important role in the maintenance of cellular functions by fine-tuning gene expression levels. The aim of the current study was to identify genetically caused changes in microRNA expression which associate with islet dysfunction in diabetic mice. METHODS To identify novel microRNAs involved in islet dysfunction, transcriptome and miRNome analyses were performed in islets of obese, diabetes-susceptible NZO and diabetes-resistant B6-ob/ob mice and results combined with quantitative trait loci (QTL) and functional in vitro analysis. RESULTS In islets of NZO and B6-ob/ob mice, 94 differentially expressed microRNAs were detected, of which 11 are located in diabetes QTL. Focusing on conserved microRNAs exhibiting the strongest expression difference and which have not been linked to islet function, miR-205-5p was selected for further analysis. According to transcriptome data and target prediction analyses, miR-205-5p affects genes involved in Wnt and calcium signalling as well as insulin secretion. Over-expression of miR-205-5p in the insulinoma cell line INS-1 increased insulin expression, left-shifted the glucose-dependence of insulin secretion and supressed the expression of the diabetes gene TCF7L2. The interaction between miR-205-5p and TCF7L2 was confirmed by luciferase reporter assay. CONCLUSION MiR-205-5p was identified as relevant microRNA involved in islet dysfunction by interacting with TCF7L2.
Collapse
Affiliation(s)
- Meriem Ouni
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
| | - Efraim Westholm
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- Unit of Islet Cell Exocytosis Department of Clinical Sciences Malmö Lund University Diabetes CentreLund University Malmö Sweden
| | - Kristin Schwerbel
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
| | - Markus Jähnert
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
| | - Mandy Stadion
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
| | - Kilian Rittig
- Clinic for Angiology and Diabetology Frankfurt (Oder) Germany
- Institute of Nutritional Science University of Potsdam Brandenburg Germany
| | - Heike Vogel
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
- Research Group Genetics of Obesity German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- Research Group Molecular and Clinical Life Science of Metabolic Diseases Faculty of Health Sciences Brandenburg University of Potsdam Brandenburg Germany
| | - Annette Schürmann
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
- Institute of Nutritional Science University of Potsdam Brandenburg Germany
| |
Collapse
|
14
|
Rehman SU, Schallschmidt T, Rasche A, Knebel B, Stermann T, Altenhofen D, Herwig R, Schürmann A, Chadt A, Al-Hasani H. Alternative exon splicing and differential expression in pancreatic islets reveals candidate genes and pathways implicated in early diabetes development. Mamm Genome 2021; 32:153-172. [PMID: 33880624 PMCID: PMC8128753 DOI: 10.1007/s00335-021-09869-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/03/2021] [Indexed: 12/29/2022]
Abstract
Type 2 diabetes (T2D) has a strong genetic component. Most of the gene variants driving the pathogenesis of T2D seem to target pancreatic β-cell function. To identify novel gene variants acting at early stage of the disease, we analyzed whole transcriptome data to identify differential expression (DE) and alternative exon splicing (AS) transcripts in pancreatic islets collected from two metabolically diverse mouse strains at 6 weeks of age after three weeks of high-fat-diet intervention. Our analysis revealed 1218 DE and 436 AS genes in islets from NZO/Hl vs C3HeB/FeJ. Whereas some of the revealed genes present well-established markers for β-cell failure, such as Cd36 or Aldh1a3, we identified numerous DE/AS genes that have not been described in context with β-cell function before. The gene Lgals2, previously associated with human T2D development, was DE as well as AS and localizes in a quantitative trait locus (QTL) for blood glucose on Chr.15 that we reported recently in our N2(NZOxC3H) population. In addition, pathway enrichment analysis of DE and AS genes showed an overlap of only half of the revealed pathways, indicating that DE and AS in large parts influence different pathways in T2D development. PPARG and adipogenesis pathways, two well-established metabolic pathways, were overrepresented for both DE and AS genes, probably as an adaptive mechanism to cope for increased cellular stress. Our results provide guidance for the identification of novel T2D candidate genes and demonstrate the presence of numerous AS transcripts possibly involved in islet function and maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Sayeed Ur Rehman
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Tanja Schallschmidt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Axel Rasche
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Torben Stermann
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Delsi Altenhofen
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Institute of Human Nutrition, Potsdam, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
15
|
Reduced Liver Autophagy in High-Fat Diet Induced Liver Steatosis in New Zealand Obese Mice. Antioxidants (Basel) 2021; 10:antiox10040501. [PMID: 33804819 PMCID: PMC8063826 DOI: 10.3390/antiox10040501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), as a consequence of overnutrition caused by high-calorie diets, results in obesity and disturbed lipid homeostasis leading to hepatic lipid droplet formation. Lipid droplets can impair hepatocellular function; therefore, it is of utmost importance to degrade these cellular structures. This requires the normal function of the autophagic-lysosomal system and the ubiquitin-proteasomal system. We demonstrated in NZO mice, a polygenic model of obesity, which were compared to C57BL/6J (B6) mice, that a high-fat diet leads to obesity and accumulation of lipid droplets in the liver. This was accompanied by a loss of autophagy efficiency whereas the activity of lysosomal proteases and the 20S proteasome remained unaffected. The disturbance of cellular protein homeostasis was further demonstrated by the accumulation of 3-nitrotyrosine and 4-hydroxynonenal modified proteins, which are normally prone to degradation. Therefore, we conclude that fat accumulation in the liver due to a high-fat diet is associated with a failure of autophagy and leads to the disturbance of proteostasis. This might further contribute to lipid droplet stabilization and accumulation.
Collapse
|
16
|
Bühler L, Maida A, Vogl ES, Georgiadi A, Takacs A, Kluth O, Schürmann A, Feuchtinger A, von Toerne C, Tsokanos FF, Klepac K, Wolff G, Sakurai M, Ekim Üstünel B, Nawroth P, Herzig S. Lipocalin 13 enhances insulin secretion but is dispensable for systemic metabolic control. Life Sci Alliance 2021; 4:4/4/e202000898. [PMID: 33536239 PMCID: PMC7898469 DOI: 10.26508/lsa.202000898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Thorough preclinical evaluation reveals a negligible role of lipocalin 13 in systemic glucose and lipid metabolism. Members of the lipocalin protein family serve as biomarkers for kidney disease and acute phase inflammatory reactions, and are under preclinical development for the diagnosis and therapy of allergies. However, none of the lipocalin family members has made the step into clinical development, mostly due to their complex biological activity and the lack of in-depth mechanistic knowledge. Here, we show that the hepatokine lipocalin 13 (LCN13) triggers glucose-dependent insulin secretion and cell proliferation of primary mouse islets. However, inhibition of endogenous LCN13 expression in lean mice did not alter glucose and lipid homeostasis. Enhanced hepatic secretion of LCN13 in either diet-induced or genetic obesity led to no discernible impact on systemic glucose and lipid metabolism, neither in preventive nor therapeutic setting. Of note, loss or forced LCN13 hepatic secretion did not trigger any compensatory regulation of related lipocalin family members. Together, these data are in stark contrast to the suggested gluco-regulatory and therapeutic role of LCN13 in obesity, and imply complex regulatory steps in LCN13 biology at the organismic level mitigating its principal insulinotropic effects.
Collapse
Affiliation(s)
- Lea Bühler
- Institute for Diabetes and Cancer (IDC), Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Adriano Maida
- Institute for Diabetes and Cancer (IDC), Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Elena Sophie Vogl
- Institute for Diabetes and Cancer (IDC), Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anastasia Georgiadi
- Institute for Diabetes and Cancer (IDC), Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andrea Takacs
- Institute for Diabetes and Cancer (IDC), Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Oliver Kluth
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Foivos-Filippos Tsokanos
- Institute for Diabetes and Cancer (IDC), Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Katarina Klepac
- Institute for Diabetes and Cancer (IDC), Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gretchen Wolff
- Institute for Diabetes and Cancer (IDC), Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Minako Sakurai
- Institute for Diabetes and Cancer (IDC), Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Bilgen Ekim Üstünel
- Institute for Diabetes and Cancer (IDC), Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter Nawroth
- Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Centre Munich, German Research Center for Environmental Health, Neuherberg, Germany .,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,Chair Molecular Metabolic Control, Medical Faculty, Technical University Munich, Munich, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
17
|
Wilhelmi I, Grunwald S, Gimber N, Popp O, Dittmar G, Arumughan A, Wanker EE, Laeger T, Schmoranzer J, Daumke O, Schürmann A. The ARFRP1-dependent Golgi scaffolding protein GOPC is required for insulin secretion from pancreatic β-cells. Mol Metab 2020; 45:101151. [PMID: 33359402 PMCID: PMC7811047 DOI: 10.1016/j.molmet.2020.101151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Hormone secretion from metabolically active tissues, such as pancreatic islets, is governed by specific and highly regulated signaling pathways. Defects in insulin secretion are among the major causes of diabetes. The molecular mechanisms underlying regulated insulin secretion are, however, not yet completely understood. In this work, we studied the role of the GTPase ARFRP1 on insulin secretion from pancreatic β-cells. Methods A β-cell-specific Arfrp1 knockout mouse was phenotypically characterized. Pulldown experiments and mass spectrometry analysis were employed to screen for new ARFRP1-interacting proteins. Co-immunoprecipitation assays as well as super-resolution microscopy were applied for validation. Results The GTPase ARFRP1 interacts with the Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC). Both proteins are co-localized at the trans-Golgi network and regulate the first and second phase of insulin secretion by controlling the plasma membrane localization of the SNARE protein SNAP25. Downregulation of both GOPC and ARFRP1 in Min6 cells interferes with the plasma membrane localization of SNAP25 and enhances its degradation, thereby impairing glucose-stimulated insulin release from β-cells. In turn, overexpression of SNAP25 as well as GOPC restores insulin secretion in islets from β-cell-specific Arfrp1 knockout mice. Conclusion Our results identify a hitherto unrecognized pathway required for insulin secretion at the level of trans-Golgi sorting. β-cell specific deletion of the trans-Golgi residing small GTPase ARFRP1 leads to elevated blood glucose levels in mice. GOPC is a newly identified ARFRP1 dependent scaffolding protein. ARFRP1 and GOPC are required for glucose-stimulated insulin secretion from pancreatic β-cells.
Collapse
Affiliation(s)
- Ilka Wilhelmi
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD) Munich Neuherberg, Germany
| | - Stephan Grunwald
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Niclas Gimber
- Advanced Medical Bioimaging Core Facility - AMBIO, Charité-Universitätsmedizin Berlin, Germany
| | - Oliver Popp
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany
| | - Gunnar Dittmar
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany
| | - Anup Arumughan
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) Berlin, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) Berlin, Germany
| | - Thomas Laeger
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD) Munich Neuherberg, Germany
| | - Jan Schmoranzer
- Advanced Medical Bioimaging Core Facility - AMBIO, Charité-Universitätsmedizin Berlin, Germany
| | - Oliver Daumke
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Annette Schürmann
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD) Munich Neuherberg, Germany; University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Germany.
| |
Collapse
|
18
|
Siddappa M, Wani SA, Long MD, Leach DA, Mathé EA, Bevan CL, Campbell MJ. Identification of transcription factor co-regulators that drive prostate cancer progression. Sci Rep 2020; 10:20332. [PMID: 33230156 PMCID: PMC7683598 DOI: 10.1038/s41598-020-77055-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
In prostate cancer (PCa), and many other hormone-dependent cancers, there is clear evidence for distorted transcriptional control as disease driver mechanisms. Defining which transcription factor (TF) and coregulators are altered and combine to become oncogenic drivers remains a challenge, in part because of the multitude of TFs and coregulators and the diverse genomic space on which they function. The current study was undertaken to identify which TFs and coregulators are commonly altered in PCa. We generated unique lists of TFs (n = 2662), coactivators (COA; n = 766); corepressors (COR; n = 599); mixed function coregulators (MIXED; n = 511), and to address the challenge of defining how these genes are altered we tested how expression, copy number alterations and mutation status varied across seven prostate cancer (PCa) cohorts (three of localized and four advanced disease). Testing of significant changes was undertaken by bootstrapping approaches and the most significant changes were identified. For one commonly and significantly altered gene were stably knocked-down expression and undertook cell biology experiments and RNA-Seq to identify differentially altered gene networks and their association with PCa progression risks. COAS, CORS, MIXED and TFs all displayed significant down-regulated expression (q.value < 0.1) and correlated with protein expression (r 0.4-0.55). In localized PCa, stringent expression filtering identified commonly altered TFs and coregulator genes, including well-established (e.g. ERG) and underexplored (e.g. PPARGC1A, encodes PGC1α). Reduced PPARGC1A expression significantly associated with worse disease-free survival in two cohorts of localized PCa. Stable PGC1α knockdown in LNCaP cells increased growth rates and invasiveness and RNA-Seq revealed a profound basal impact on gene expression (~ 2300 genes; FDR < 0.05, logFC > 1.5), but only modestly impacted PPARγ responses. GSEA analyses of the PGC1α transcriptome revealed that it significantly altered the AR-dependent transcriptome, and was enriched for epigenetic modifiers. PGC1α-dependent genes were overlapped with PGC1α-ChIP-Seq genes and significantly associated in TCGA with higher grade tumors and worse disease-free survival. These methods and data demonstrate an approach to identify cancer-driver coregulators in cancer, and that PGC1α expression is clinically significant yet underexplored coregulator in aggressive early stage PCa.
Collapse
Affiliation(s)
- Manjunath Siddappa
- College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, 536 Parks Hall, 500 West 12th Ave, Columbus, OH, 43210, USA
| | - Sajad A Wani
- College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, 536 Parks Hall, 500 West 12th Ave, Columbus, OH, 43210, USA
| | - Mark D Long
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
| | - Damien A Leach
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Ewy A Mathé
- Biomedical Informatics Department, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr, Rockville, MD, 20892, USA
| | - Charlotte L Bevan
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Moray J Campbell
- College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, 536 Parks Hall, 500 West 12th Ave, Columbus, OH, 43210, USA. .,The James, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Biomedical Informatics Shared Resource, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
19
|
Ouni M, Saussenthaler S, Eichelmann F, Jähnert M, Stadion M, Wittenbecher C, Rönn T, Zellner L, Gottmann P, Ling C, Schulze MB, Schürmann A. Epigenetic Changes in Islets of Langerhans Preceding the Onset of Diabetes. Diabetes 2020; 69:2503-2517. [PMID: 32816961 PMCID: PMC7576562 DOI: 10.2337/db20-0204] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022]
Abstract
The identification of individuals with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention. Here, we used a translational approach and prediction criteria to identify changes in DNA methylation visible before the development of T2D. Islets of Langerhans were isolated from genetically identical 10-week-old female New Zealand Obese mice, which differ in their degree of hyperglycemia and in liver fat content. The application of a semiexplorative approach identified 497 differentially expressed and methylated genes (P = 6.42e-09, hypergeometric test) enriched in pathways linked to insulin secretion and extracellular matrix-receptor interaction. The comparison of mouse data with DNA methylation levels of incident T2D cases from the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort, revealed 105 genes with altered DNA methylation at 605 cytosine-phosphate-guanine (CpG) sites, which were associated with future T2D. AKAP13, TENM2, CTDSPL, PTPRN2, and PTPRS showed the strongest predictive potential (area under the receiver operating characteristic curve values 0.62-0.73). Among the new candidates identified in blood cells, 655 CpG sites, located in 99 genes, were differentially methylated in islets of humans with T2D. Using correction for multiple testing detected 236 genes with an altered DNA methylation in blood cells and 201 genes in diabetic islets. Thus, the introduced translational approach identified novel putative biomarkers for early pancreatic islet aberrations preceding T2D.
Collapse
Affiliation(s)
- Meriem Ouni
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sophie Saussenthaler
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Fabian Eichelmann
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Clemens Wittenbecher
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Tina Rönn
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Lisa Zellner
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Charlotte Ling
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Matthias B Schulze
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| |
Collapse
|
20
|
Kehm R, Jähnert M, Deubel S, Flore T, König J, Jung T, Stadion M, Jonas W, Schürmann A, Grune T, Höhn A. Redox homeostasis and cell cycle activation mediate beta-cell mass expansion in aged, diabetes-prone mice under metabolic stress conditions: Role of thioredoxin-interacting protein (TXNIP). Redox Biol 2020; 37:101748. [PMID: 33128997 PMCID: PMC7589534 DOI: 10.1016/j.redox.2020.101748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Overnutrition contributes to insulin resistance, obesity and metabolic stress, initiating a loss of functional beta-cells and diabetes development. Whether these damaging effects are amplified in advanced age is barely investigated. Therefore, New Zealand Obese (NZO) mice, a well-established model for the investigation of human obesity-associated type 2 diabetes, were fed a metabolically challenging diet with a high-fat, carbohydrate restricted period followed by a carbohydrate intervention in young as well as advanced age. Interestingly, while young NZO mice developed massive hyperglycemia in response to carbohydrate feeding, leading to beta-cell dysfunction and cell death, aged counterparts compensated the increased insulin demand by persistent beta-cell function and beta-cell mass expansion. Beta-cell loss in young NZO islets was linked to increased expression of thioredoxin-interacting protein (TXNIP), presumably initiating an apoptosis-signaling cascade via caspase-3 activation. In contrast, islets of aged NZOs exhibited a sustained redox balance without changes in TXNIP expression, associated with higher proliferative potential by cell cycle activation. These findings support the relevance of a maintained proliferative potential and redox homeostasis for preserving islet functionality under metabolic stress, with the peculiarity that this adaptive response emerged with advanced age in diabetes-prone NZO mice. Differential expression of redox and cell cycle genes in young and aged islets. Increased TXNIP expression is associated with the induction of beta-cell apoptosis. Islets of aged mice maintained redox homeostasis and proliferative potential. Aging under diet-induced metabolic stress does not amplify beta-cell failure.
Collapse
Affiliation(s)
- Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| | - Stefanie Deubel
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Tanina Flore
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Jeannette König
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14458, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
21
|
Gässler A, Quiclet C, Kluth O, Gottmann P, Schwerbel K, Helms A, Stadion M, Wilhelmi I, Jonas W, Ouni M, Mayer F, Spranger J, Schürmann A, Vogel H. Overexpression of Gjb4 impairs cell proliferation and insulin secretion in primary islet cells. Mol Metab 2020; 41:101042. [PMID: 32565358 PMCID: PMC7365933 DOI: 10.1016/j.molmet.2020.101042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Altered gene expression contributes to the development of type 2 diabetes (T2D); thus, the analysis of differentially expressed genes between diabetes-susceptible and diabetes-resistant mouse models is an important tool for the determination of candidate genes that participate in the pathology. Based on RNA-seq and array data comparing pancreatic gene expression of diabetes-prone New Zealand Obese (NZO) mice and diabetes-resistant B6.V-ob/ob (B6-ob/ob) mice, the gap junction protein beta 4 (Gjb4) was identified as a putative novel T2D candidate gene. METHODS Gjb4 was overexpressed in primary islet cells derived from C57BL/6 (B6) mice and INS-1 cells via adenoviral-mediated infection. The proliferation rate of cells was assessed by BrdU incorporation, and insulin secretion was measured under low (2.8 mM) and high (20 mM) glucose concentration. INS-1 cell apoptosis rate was determined by Western blotting assessing cleaved caspase 3 levels. RESULTS Overexpression of Gjb4 in primary islet cells significantly inhibited the proliferation by 47%, reduced insulin secretion of primary islets (46%) and INS-1 cells (51%), and enhanced the rate of apoptosis by 63% in INS-1 cells. Moreover, an altered expression of the miR-341-3p contributes to the Gjb4 expression difference between diabetes-prone and diabetes-resistant mice. CONCLUSIONS The gap junction protein Gjb4 is highly expressed in islets of diabetes-prone NZO mice and may play a role in the development of T2D by altering islet cell function, inducing apoptosis and inhibiting proliferation.
Collapse
Affiliation(s)
- Anneke Gässler
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Charline Quiclet
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Oliver Kluth
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Kristin Schwerbel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Anett Helms
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Ilka Wilhelmi
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Meriem Ouni
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Frank Mayer
- University Outpatient Clinic, Centre of Sports Medicine, University of Potsdam, Am Neuen Palais 10, D-14469, Potsdam, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; Institute of Nutritional Sciences, University of Potsdam, D-14558, Nuthetal, Germany
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; Molecular and Clinical Life Science of Metabolic Diseases, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany.
| |
Collapse
|
22
|
Aga H, Hallahan N, Gottmann P, Jaehnert M, Osburg S, Schulze G, Kamitz A, Arends D, Brockmann G, Schallschmidt T, Lebek S, Chadt A, Al-Hasani H, Joost HG, Schürmann A, Vogel H. Identification of Novel Potential Type 2 Diabetes Genes Mediating β-Cell Loss and Hyperglycemia Using Positional Cloning. Front Genet 2020; 11:567191. [PMID: 33133152 PMCID: PMC7561370 DOI: 10.3389/fgene.2020.567191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022] Open
Abstract
Type 2 diabetes (T2D) is a complex metabolic disease regulated by an interaction of genetic predisposition and environmental factors. To understand the genetic contribution in the development of diabetes, mice varying in their disease susceptibility were crossed with the obese and diabetes-prone New Zealand obese (NZO) mouse. Subsequent whole-genome sequence scans revealed one major quantitative trait loci (QTL), Nidd/DBA on chromosome 4, linked to elevated blood glucose and reduced plasma insulin and low levels of pancreatic insulin. Phenotypical characterization of congenic mice carrying 13.6 Mbp of the critical fragment of DBA mice displayed severe hyperglycemia and impaired glucose clearance at week 10, decreased glucose response in week 13, and loss of β-cells and pancreatic insulin in week 16. To identify the responsible gene variant(s), further congenic mice were generated and phenotyped, which resulted in a fragment of 3.3 Mbp that was sufficient to induce hyperglycemia. By combining transcriptome analysis and haplotype mapping, the number of putative responsible variant(s) was narrowed from initial 284 to 18 genes, including gene models and non-coding RNAs. Consideration of haplotype blocks reduced the number of candidate genes to four (Kti12, Osbpl9, Ttc39a, and Calr4) as potential T2D candidates as they display a differential expression in pancreatic islets and/or sequence variation. In conclusion, the integration of comparative analysis of multiple inbred populations such as haplotype mapping, transcriptomics, and sequence data substantially improved the mapping resolution of the diabetes QTL Nidd/DBA. Future studies are necessary to understand the exact role of the different candidates in β-cell function and their contribution in maintaining glycemic control.
Collapse
Affiliation(s)
- Heja Aga
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Nicole Hallahan
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Markus Jaehnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sophie Osburg
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Gunnar Schulze
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Anne Kamitz
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Danny Arends
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Gudrun Brockmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Tanja Schallschmidt
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Lebek
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Chadt
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,German Diabetes Center (DDZ), Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Molecular and Clinical Life Science of Metabolic Diseases, University of Potsdam, Potsdam, Germany
| |
Collapse
|
23
|
Sui B, Chen D, Liu W, Wu Q, Tian B, Li Y, Hou J, Liu S, Xie J, Jiang H, Luo Z, Lv L, Huang F, Li R, Zhang C, Tian Y, Cui M, Zhou M, Chen H, Fu ZF, Zhang Y, Zhao L. A novel antiviral lncRNA, EDAL, shields a T309 O-GlcNAcylation site to promote EZH2 lysosomal degradation. Genome Biol 2020; 21:228. [PMID: 32873321 PMCID: PMC7465408 DOI: 10.1186/s13059-020-02150-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The central nervous system (CNS) is vulnerable to viral infection, yet few host factors in the CNS are known to defend against invasion by neurotropic viruses. Long noncoding RNAs (lncRNAs) have been revealed to play critical roles in a wide variety of biological processes and are highly abundant in the mammalian brain, but their roles in defending against invasion of pathogens into the CNS remain unclear. RESULTS We report here that multiple neurotropic viruses, including rabies virus, vesicular stomatitis virus, Semliki Forest virus, and herpes simplex virus 1, elicit the neuronal expression of a host-encoded lncRNA EDAL. EDAL inhibits the replication of these neurotropic viruses in neuronal cells and rabies virus infection in mouse brains. EDAL binds to the conserved histone methyltransferase enhancer of zest homolog 2 (EZH2) and specifically causes EZH2 degradation via lysosomes, reducing the cellular H3K27me3 level. The antiviral function of EDAL resides in a 56-nt antiviral substructure through which its 18-nt helix-loop intimately contacts multiple EZH2 sites surrounding T309, a known O-GlcNAcylation site. EDAL positively regulates the transcription of Pcp4l1 encoding a 10-kDa peptide, which inhibits the replication of multiple neurotropic viruses. CONCLUSIONS Our findings show that a neuronal lncRNA can exert an effective antiviral function via blocking a specific O-GlcNAcylation that determines EZH2 lysosomal degradation, rather than the traditional interferon-dependent pathway.
Collapse
Affiliation(s)
- Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dong Chen
- Center for Genome analysis, ABLife Inc., Wuhan, 430075, China
- Center for Genome analysis and Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, 430075, China
| | - Wei Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Hou
- Center for Genome analysis, ABLife Inc., Wuhan, 430075, China
- Center for Genome analysis and Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, 430075, China
| | - Shiyong Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juan Xie
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, China
| | - Zhaochen Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Lv
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruiming Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengguang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuling Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Yi Zhang
- Center for Genome analysis, ABLife Inc., Wuhan, 430075, China.
- Center for Genome analysis and Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, 430075, China.
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
24
|
Grupe K, Asuaje Pfeifer M, Dannehl F, Liebmann M, Rustenbeck I, Schürmann A, Scherneck S. Metabolic changes during pregnancy in glucose-intolerant NZO mice: A polygenic model with prediabetic metabolism. Physiol Rep 2020; 8:e14417. [PMID: 32374082 PMCID: PMC7201426 DOI: 10.14814/phy2.14417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/25/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a complex metabolic disease involving genetic and environmental factors. Recent studies have underlined its heterogeneity, so it is reasonable to divide patients into subpopulations depending on whether an insulin secretion or sensitivity defect is predominant. Since testing for GDM is usually performed in the second trimester, misinterpretation of prediabetes as gestational diabetes may occur. As with type 2 diabetes (T2DM), rodent models are needed for both GDM and prediabetes, but few do exist. Here, we compared the metabolic changes in pregnant normal NMRI mice with those in New Zealand obese (NZO) mice. Male animals of this strain are an established model of T2DM, whereas female mice of this strain are protected from hyperglycemia and β-cell death. We demonstrate that female NZO mice exhibited impaired glucose tolerance, preconceptional hyperinsulinemia, and hyperglucagonemia without any signs of manifest diabetes. The NZO model showed, compared with the NMRI control strain, a reduced proliferative response of the Langerhans islets during pregnancy (3.7 ± 0.4 vs. 7.2 ± 0.8% Ki-67-positive nuclei, p = .004). However, oral glucose tolerance tests revealed improved stimulation of insulin secretion in both strains. But this adaption was not sufficient to prevent impaired glucose tolerance in NZO mice compared with the NMRI control (p = .0002). Interestingly, glucose-stimulated insulin secretion was blunted in isolated primary NZO islets in perifusion experiments. In summary, the NZO mouse reflects important characteristics of human GDM and prediabetes in pregnancy and serves as a model for subpopulations with early alterations in glucose metabolism and primary insulin secretion defect.
Collapse
Affiliation(s)
- Katharina Grupe
- Institute of Pharmacology, Toxicology and Clinical PharmacyTechnische Universität BraunschweigBraunschweigGermany
| | - Melissa Asuaje Pfeifer
- Institute of Pharmacology, Toxicology and Clinical PharmacyTechnische Universität BraunschweigBraunschweigGermany
| | - Franziska Dannehl
- Institute of Pharmacology, Toxicology and Clinical PharmacyTechnische Universität BraunschweigBraunschweigGermany
| | - Moritz Liebmann
- Institute of Pharmacology, Toxicology and Clinical PharmacyTechnische Universität BraunschweigBraunschweigGermany
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical PharmacyTechnische Universität BraunschweigBraunschweigGermany
| | - Annette Schürmann
- Department of Experimental DiabetologyGerman Institute of Human Nutrition Potsdam‐RehbrückeNuthetalGermany
- German Institute for Diabetes Research (DZD)NeuherbergGermany
| | - Stephan Scherneck
- Institute of Pharmacology, Toxicology and Clinical PharmacyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
25
|
Shakya A, Chaudary SK, Garabadu D, Bhat HR, Kakoti BB, Ghosh SK. A Comprehensive Review on Preclinical Diabetic Models. Curr Diabetes Rev 2020; 16:104-116. [PMID: 31074371 DOI: 10.2174/1573399815666190510112035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/20/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Preclinical experimental models historically play a critical role in the exploration and characterization of disease pathophysiology. Further, these in-vivo and in-vitro preclinical experiments help in target identification, evaluation of novel therapeutic agents and validation of treatments. INTRODUCTION Diabetes mellitus (DM) is a multifaceted metabolic disorder of multidimensional aetiologies with the cardinal feature of chronic hyperglycemia. To avoid or minimize late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic manifestations, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. METHODS The study included electronic databases such as Pubmed, Web of Science and Scopus. The datasets were searched for entries of studies up to June, 2018. RESULTS A large number of in-vivo and in-vitro models have been presented for evaluating the mechanism of anti-hyperglycaemic effect of drugs in hormone-, chemically-, pathogen-induced animal models of diabetes mellitus. The advantages and limitations of each model have also been addressed in this review. CONCLUSION This review encompasses the wide pathophysiological and molecular mechanisms associated with diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. This review may further contribute to discover a novel drug to treat diabetes more efficaciously with minimum or no side effects. Furthermore, it also highlights ongoing research and considers the future perspectives in the field of diabetes.
Collapse
Affiliation(s)
- Anshul Shakya
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | - Sushil Kumar Chaudary
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
| | - Debapriya Garabadu
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, Uttar Pradesh, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | - Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh - 786 004, Assam, India
| |
Collapse
|
26
|
Quiclet C, Dittberner N, Gässler A, Stadion M, Gerst F, Helms A, Baumeier C, Schulz TJ, Schürmann A. Pancreatic adipocytes mediate hypersecretion of insulin in diabetes-susceptible mice. Metabolism 2019; 97:9-17. [PMID: 31108105 DOI: 10.1016/j.metabol.2019.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Ectopic fat accumulation in the pancreas in response to obesity and its implication on the onset of type 2 diabetes remain poorly understood. Intermittent fasting (IF) is known to improve glucose homeostasis and insulinresistance. However, the effects of IF on fat in the pancreas and β-cell function remain largely unknown. Our aim was to evaluate the impact of IF on pancreatic fat accumulation and its effects on islet function. METHODS New Zealand Obese (NZO) mice were fed a high-fat diet ad libitum (NZO-AL) or fasted every other day (intermittent fasting, NZO-IF) and pancreatic fat accumulation, glucose homoeostasis, insulin sensitivity, and islet function were determined and compared to ad libitum-fed B6.V-Lepob/ob (ob/ob) mice. To investigate the crosstalk of pancreatic adipocytes and islets, co-culture experiments were performed. RESULTS NZO-IF mice displayed better glucose homeostasis and lower fat accumulation in both the pancreas (-32%) and the liver (-35%) than NZO-AL mice. Ob/ob animals were insulin-resistant and had low fat in the pancreas but high fat in the liver. NZO-AL mice showed increased fat accumulation in both organs and exhibited an impaired islet function. Co-culture experiments demonstrated that pancreatic adipocytes induced a hypersecretion of insulin and released higher levels of free fatty acids than adipocytes of inguinal white adipose tissue. CONCLUSIONS These results suggest that pancreatic fat participates in diabetes development, but can be prevented byIF.
Collapse
Affiliation(s)
- Charline Quiclet
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany
| | - Nicole Dittberner
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany.
| | - Anneke Gässler
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany.
| | - Felicia Gerst
- German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany.
| | - Anett Helms
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany.
| | - Christian Baumeier
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany
| | - Tim J Schulz
- German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany.
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg 85764, Germany; Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany.
| |
Collapse
|
27
|
Kluth O, Stadion M, Gottmann P, Aga H, Jähnert M, Scherneck S, Vogel H, Krus U, Seelig A, Ling C, Gerdes J, Schürmann A. Decreased Expression of Cilia Genes in Pancreatic Islets as a Risk Factor for Type 2 Diabetes in Mice and Humans. Cell Rep 2019; 26:3027-3036.e3. [DOI: 10.1016/j.celrep.2019.02.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/21/2018] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
|
28
|
Laeger T, Castaño-Martinez T, Werno MW, Japtok L, Baumeier C, Jonas W, Kleuser B, Schürmann A. Dietary carbohydrates impair the protective effect of protein restriction against diabetes in NZO mice used as a model of type 2 diabetes. Diabetologia 2018; 61:1459-1469. [PMID: 29550873 PMCID: PMC6449005 DOI: 10.1007/s00125-018-4595-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/21/2018] [Indexed: 12/26/2022]
Abstract
AIMS/HYPOTHESIS Low-protein diets are well known to improve glucose tolerance and increase energy expenditure. Increases in circulating fibroblast growth factor 21 (FGF21) have been implicated as a potential underlying mechanism. METHODS We aimed to test whether low-protein diets in the context of a high-carbohydrate or high-fat regimen would also protect against type 2 diabetes in New Zealand Obese (NZO) mice used as a model of polygenetic obesity and type 2 diabetes. Mice were placed on high-fat diets that provided protein at control (16 kJ%; CON) or low (4 kJ%; low-protein/high-carbohydrate [LP/HC] or low-protein/high-fat [LP/HF]) levels. RESULTS Protein restriction prevented the onset of hyperglycaemia and beta cell loss despite increased food intake and fat mass. The effect was seen only under conditions of a lower carbohydrate/fat ratio (LP/HF). When the carbohydrate/fat ratio was high (LP/HC), mice developed type 2 diabetes despite the robustly elevated hepatic FGF21 secretion and increased energy expenditure. CONCLUSION/INTERPRETATION Prevention of type 2 diabetes through protein restriction, without lowering food intake and body fat mass, is compromised by high dietary carbohydrates. Increased FGF21 levels and elevated energy expenditure do not protect against hyperglycaemia and type 2 diabetes per se.
Collapse
Affiliation(s)
- Thomas Laeger
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Teresa Castaño-Martinez
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Martin W Werno
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Lukasz Japtok
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Christian Baumeier
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
29
|
Gottmann P, Ouni M, Saussenthaler S, Roos J, Stirm L, Jähnert M, Kamitz A, Hallahan N, Jonas W, Fritsche A, Häring HU, Staiger H, Blüher M, Fischer-Posovszky P, Vogel H, Schürmann A. A computational biology approach of a genome-wide screen connected miRNAs to obesity and type 2 diabetes. Mol Metab 2018; 11:145-159. [PMID: 29605715 PMCID: PMC6001404 DOI: 10.1016/j.molmet.2018.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Obesity and type 2 diabetes (T2D) arise from the interplay between genetic, epigenetic, and environmental factors. The aim of this study was to combine bioinformatics and functional studies to identify miRNAs that contribute to obesity and T2D. METHODS A computational framework (miR-QTL-Scan) was applied by combining QTL, miRNA prediction, and transcriptomics in order to enhance the power for the discovery of miRNAs as regulative elements. Expression of several miRNAs was analyzed in human adipose tissue and blood cells and miR-31 was manipulated in a human fat cell line. RESULTS In 17 partially overlapping QTL for obesity and T2D 170 miRNAs were identified. Four miRNAs (miR-15b, miR-30b, miR-31, miR-744) were recognized in gWAT (gonadal white adipose tissue) and six (miR-491, miR-455, miR-423-5p, miR-132-3p, miR-365-3p, miR-30b) in BAT (brown adipose tissue). To provide direct functional evidence for the achievement of the miR-QTL-Scan, miR-31 located in the obesity QTL Nob6 was experimentally analyzed. Its expression was higher in gWAT of obese and diabetic mice and humans than of lean controls. Accordingly, 10 potential target genes involved in insulin signaling and adipogenesis were suppressed. Manipulation of miR-31 in human SGBS adipocytes affected the expression of GLUT4, PPARγ, IRS1, and ACACA. In human peripheral blood mononuclear cells (PBMC) miR-15b levels were correlated to baseline blood glucose concentrations and might be an indicator for diabetes. CONCLUSION Thus, miR-QTL-Scan allowed the identification of novel miRNAs relevant for obesity and T2D.
Collapse
Affiliation(s)
- Pascal Gottmann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Meriem Ouni
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Sophie Saussenthaler
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Julian Roos
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075, Ulm, Germany.
| | - Laura Stirm
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
| | - Markus Jähnert
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Anne Kamitz
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Nicole Hallahan
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Wenke Jonas
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Andreas Fritsche
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard Karls University Tübingen, 72076, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, Nephrology, Angiology, and Clinical Chemistry, University Hospital Tübingen, 72076, Tübingen, Germany.
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard Karls University Tübingen, 72076, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, Nephrology, Angiology, and Clinical Chemistry, University Hospital Tübingen, 72076, Tübingen, Germany.
| | - Harald Staiger
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard Karls University Tübingen, 72076, Tübingen, Germany; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, 04103, Leipzig, Germany.
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075, Ulm, Germany.
| | - Heike Vogel
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Annette Schürmann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| |
Collapse
|
30
|
Stadion M, Schwerbel K, Graja A, Baumeier C, Rödiger M, Jonas W, Wolfrum C, Staiger H, Fritsche A, Häring HU, Klöting N, Blüher M, Fischer-Posovszky P, Schulz TJ, Joost HG, Vogel H, Schürmann A. Increased Ifi202b/IFI16 expression stimulates adipogenesis in mice and humans. Diabetologia 2018; 61:1167-1179. [PMID: 29478099 PMCID: PMC6448999 DOI: 10.1007/s00125-018-4571-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/19/2018] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Obesity results from a constant and complex interplay between environmental stimuli and predisposing genes. Recently, we identified the IFN-activated gene Ifi202b as the most likely gene responsible for the obesity quantitative trait locus Nob3 (New Zealand Obese [NZO] obesity 3). The aim of this study was to evaluate the effects of Ifi202b on body weight and adipose tissue biology, and to clarify the functional role of its human orthologue IFI16. METHODS The impact of Ifi202b and its human orthologue IFI16 on adipogenesis was investigated by modulating their respective expression in murine 3T3-L1 and human Simpson-Golabi-Behmel syndrome (SGBS) pre-adipocytes. Furthermore, transgenic mice overexpressing IFI202b were generated and characterised with respect to metabolic traits. In humans, expression levels of IFI16 in adipose tissue were correlated with several variables of adipocyte function. RESULTS In mice, IFI202b overexpression caused obesity (Δ body weight at the age of 30 weeks: 10.2 ± 1.9 g vs wild-type mice) marked by hypertrophic fat mass expansion, increased expression of Zfp423 (encoding the transcription factor zinc finger protein [ZFP] 423) and white-selective genes (Tcf21, Tle3), and decreased expression of thermogenic genes (e.g. Cidea, Ucp1). Compared with their wild-type littermates, Ifi202b transgenic mice displayed lower body temperature, hepatosteatosis and systemic insulin resistance. Suppression of IFI202b/IFI16 in pre-adipocytes impaired adipocyte differentiation and triacylglycerol storage. Humans with high levels of IFI16 exhibited larger adipocytes, an enhanced inflammatory state and impaired insulin-stimulated glucose uptake in white adipose tissue. CONCLUSIONS/INTERPRETATION Our findings reveal novel functions of Ifi202b and IFI16, demonstrating their role as obesity genes. These genes promote white adipogenesis and fat storage, thereby facilitating the development of obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Kristin Schwerbel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Antonia Graja
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Christian Baumeier
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Maria Rödiger
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Harald Staiger
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Nora Klöting
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Tim J Schulz
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany.
| |
Collapse
|
31
|
Laeger T, Baumeier C, Wilhelmi I, Würfel J, Kamitz A, Schürmann A. FGF21 improves glucose homeostasis in an obese diabetes-prone mouse model independent of body fat changes. Diabetologia 2017; 60:2274-2284. [PMID: 28770320 PMCID: PMC6448882 DOI: 10.1007/s00125-017-4389-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/26/2017] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Fibroblast growth factor 21 (FGF21) is considered to be a promising therapeutic candidate for the treatment of type 2 diabetes. However, as FGF21 levels are elevated in obese and diabetic conditions we aimed to test if exogenous FGF21 is sufficient to prevent diabetes and beta cell loss in New Zealand obese (NZO) mice, a model for polygenetic obesity and type 2 diabetes. METHODS Male NZO mice were treated with a specific dietary regimen that leads to the onset of diabetes within 1 week. Mice were treated subcutaneously with PBS or FGF21 to assess changes in glucose homeostasis, energy expenditure, food intake and other metabolic endpoints. RESULTS FGF21 treatment prevented islet destruction and the onset of hyperglycaemia, and improved glucose clearance. FGF21 increased energy expenditure by inducing browning in subcutaneous white adipose tissue. However, as a result of a compensatory increased food intake, body fat did not decrease in response to FGF21 treatment, but exhibited elevated Glut4 expression. CONCLUSIONS/INTERPRETATION FGF21 prevents the onset of diet-induced diabetes, without changing body fat mass. Beneficial effects are mediated via white adipose tissue browning and elevated thermogenesis. Furthermore, these data indicate that obesity does not induce FGF21 resistance in NZO mice.
Collapse
Affiliation(s)
- Thomas Laeger
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christian Baumeier
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ilka Wilhelmi
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Josefine Würfel
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Anne Kamitz
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
32
|
Attie AD, Churchill GA, Nadeau JH. How mice are indispensable for understanding obesity and diabetes genetics. Curr Opin Endocrinol Diabetes Obes 2017; 24:83-91. [PMID: 28107248 PMCID: PMC5837807 DOI: 10.1097/med.0000000000000321] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The task of cataloging human genetic variation and its relation to disease is rapidly approaching completion. The new challenge is to discover the function of disease-associated genes and to understand the pathways that lead to human disease. We propose that achieving this new level of understanding will increasingly rely on the use of model organisms. We discuss the advantages of the mouse as a model organism to our understanding of human disease. RECENT FINDINGS The collection of available mouse strains represents as much genetic and phenotypic variation as is found in the human population. However, unlike humans, mice can be subjected to experimental breeding protocols and the availability of tissues allows for a far greater and deeper level of phenotyping. New methods for gene editing make it relatively easy to create mouse models of known human mutations. The distinction between genetic and epigenetic inheritance can be studied in great detail. Various experimental protocols enable the exploration of the role of the microbiome in physiology and disease. SUMMARY We propose that there will be an interdependence between human and model organism research. Technological advances and new genetic screening platforms in the mouse have greatly improved the path to gene discovery and mechanistic studies of gene function.
Collapse
Affiliation(s)
- Alan D Attie
- aDepartment of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin bThe Jackson Laboratory, Bar Harbor, Maine cPacific Northwest Research Institute, Seattle, Washington, USA
| | | | | |
Collapse
|
33
|
Vogel H, Jähnert M, Stadion M, Matzke D, Scherneck S, Schürmann A. A vast genomic deletion in the C56BL/6 genome affects different genes within the Ifi200 cluster on chromosome 1 and mediates obesity and insulin resistance. BMC Genomics 2017; 18:172. [PMID: 28201990 PMCID: PMC5312539 DOI: 10.1186/s12864-017-3552-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/03/2017] [Indexed: 04/09/2023] Open
Abstract
Background Obesity, the excessive accumulation of body fat, is a highly heritable and genetically heterogeneous disorder. The complex, polygenic basis for the disease consisting of a network of different gene variants is still not completely known. Results In the current study we generated a BAC library of the obese-prone NZO strain to clarify the genomic alteration within the gene cluster Ifi200 on chr.1 including Ifi202b, an obesity gene that is in contrast to NZO not expressed in the lean B6 mouse. With the PacBio sequencing data of NZO BAC clones we identified a deletion spanning approximately 261.8 kb in the B6 reference genome. The deletion affects different members of the Ifi200 gene family which also includes the original first exon and 5′-regulatory parts of the Ifi202b gene and suggests to be the relevant cause of its expression deficiency in B6. In addition, the generation and characterization of congenic mice carrying the critical fragment on the B6 background demonstrate its crucial role for obesity and insulin resistance. Conclusions Our data reveal the reconstruction of a complex genomic region on mouse chr.1 resulting from deletions and duplications of Ifi200 genes and suggest to be relevant for the development of obesity. The results further demonstrate the complexity of the disease and highlight the importance for studying rare genetic variants as they can be causal for large effects.
Collapse
Affiliation(s)
- Heike Vogel
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert Allee 114-116, D-14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, München-Neuherberg, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert Allee 114-116, D-14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, München-Neuherberg, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert Allee 114-116, D-14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, München-Neuherberg, Germany
| | - Daniela Matzke
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert Allee 114-116, D-14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, München-Neuherberg, Germany
| | - Stephan Scherneck
- Institute of Pharmacology and Toxicology, University of Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert Allee 114-116, D-14558, Nuthetal, Germany. .,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, München-Neuherberg, Germany.
| |
Collapse
|
34
|
Porreca I, Ulloa-Severino L, Almeida P, Cuomo D, Nardone A, Falco G, Mallardo M, Ambrosino C. Molecular targets of developmental exposure to bisphenol A in diabesity: a focus on endoderm-derived organs. Obes Rev 2017; 18:99-108. [PMID: 27776381 DOI: 10.1111/obr.12471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
Several studies associate foetal human exposure to bisphenol A (BPA) to metabolic/endocrine diseases, mainly diabesity. They describe the role of BPA in the disruption of pancreatic beta cell, adipocyte and hepatocyte functions. Indeed, the complexity of the diabesity phenotype is due to the involvement of different endoderm-derived organs, all targets of BPA. Here, we analyse this point delineating a picture of different mechanisms of BPA toxicity in endoderm-derived organs leading to diabesity. Moving from epidemiological data, we summarize the in vivo experimental data of the BPA effects on endoderm-derived organs (thyroid, pancreas, liver, gut, prostate and lung) after prenatal exposure. Mainly, we gather molecular data evidencing harmful effects at low-dose exposure, pointing to the risk to human health. Although the fragmentation of molecular data does not allow a clear conclusion to be drawn, the present work indicates that the developmental exposure to BPA represents a risk for endoderm-derived organs development as it deregulates the gene expression from the earliest developmental stages. A more systematic analysis of BPA impact on the transcriptomes of endoderm-derived organs is still missing. Here, we suggest in vitro toxicogenomics approaches as a tool for the identification of common mechanisms of BPA toxicity leading to the diabesity in organs having the same developmental origin.
Collapse
Affiliation(s)
| | - L Ulloa-Severino
- IRGS, Biogem, Ariano Irpino, Italy.,PhD School in Nanotechnology, University of Trieste, Trieste, Italy
| | - P Almeida
- STAB VIDA-Investigação e Serviços em Ciências Biológicas, Madan Parque, Caparica, Portugal
| | - D Cuomo
- IRGS, Biogem, Ariano Irpino, Italy
| | - A Nardone
- Department of Public Health, University of Naples 'Federico II', Naples, Italy
| | - G Falco
- IRGS, Biogem, Ariano Irpino, Italy.,Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - M Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - C Ambrosino
- IRGS, Biogem, Ariano Irpino, Italy.,Department of Science and Technology, University of Sannio, Benevento, Italy
| |
Collapse
|
35
|
Kalwat MA, Huang Z, Wichaidit C, McGlynn K, Earnest S, Savoia C, Dioum EM, Schneider JW, Hutchison MR, Cobb MH. Isoxazole Alters Metabolites and Gene Expression, Decreasing Proliferation and Promoting a Neuroendocrine Phenotype in β-Cells. ACS Chem Biol 2016; 11:1128-36. [PMID: 26828310 DOI: 10.1021/acschembio.5b00993] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Novel strategies are needed to modulate β-cell differentiation and function as potential β-cell replacement or restorative therapies for diabetes. We previously demonstrated that small molecules based on the isoxazole scaffold drive neuroendocrine phenotypes. The nature of the effects of isoxazole compounds on β-cells was incompletely defined. We find that isoxazole induces genes that support neuroendocrine and β-cell phenotypes and suppresses genes important for proliferation. Isoxazole alters β-cell metabolites and protects glucose-responsive signaling pathways under lipotoxic conditions. Finally, we show that isoxazole improves glycemia in a mouse model of β-cell regeneration. Isoxazole is a prime candidate to alter cell fate in different contexts.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudia Savoia
- Nestle Institute of Health Sciences, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|