1
|
Suryawinata N, Yokosawa R, Tan KHC, Lai AL, Sone R, Mori I, Noma K. Dietary E. coli promotes age-dependent chemotaxis decline in C. elegans. Sci Rep 2024; 14:5529. [PMID: 38448519 PMCID: PMC10918063 DOI: 10.1038/s41598-024-52272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/16/2024] [Indexed: 03/08/2024] Open
Abstract
An animal's ability to sense odors declines during aging, and its olfactory drive is tuned by internal states such as satiety. However, whether internal states modulate an age-dependent decline in odor sensation is unknown. To address this issue, we utilized the nematode Caenorhabditis elegans and compared their chemotaxis abilities toward attractive odorants when aged under different dietary conditions. Feeding with the standard laboratory diet, Escherichia coli attenuated the chemotaxis ability toward diacetyl, isoamyl alcohol, and benzaldehyde when aged. On the other hand, feeding with either the lactic acid bacteria Lactobacillus reuteri or food deprivation selectively maintained the chemotaxis ability toward diacetyl. Our results suggest that ingestion of E. coli causes age-dependent chemotaxis decline. The changes in the chemotaxis behavior are attributed to the different expressions of diacetyl receptor odr-10, and the chemotaxis behavior of aged animals under food deprivation is shown to be dependent on daf-16. Our study demonstrates the molecular mechanism of how diet shapes the trajectory of age-dependent decline in chemosensory behaviors.
Collapse
Affiliation(s)
- Nadia Suryawinata
- Group of Nutritional Neuroscience, Graduate School of Science, Neuroscience Institute, Nagoya University, Nagoya, 464-8602, Japan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
| | - Rikuou Yokosawa
- Group of Nutritional Neuroscience, Graduate School of Science, Neuroscience Institute, Nagoya University, Nagoya, 464-8602, Japan
- Group of Microbial Motility, Division of Natural Science, Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Ke Hui Cassandra Tan
- Group of Nutritional Neuroscience, Graduate School of Science, Neuroscience Institute, Nagoya University, Nagoya, 464-8602, Japan
| | - Alison Lok Lai
- Group of Nutritional Neuroscience, Graduate School of Science, Neuroscience Institute, Nagoya University, Nagoya, 464-8602, Japan
| | - Ryusei Sone
- Group of Nutritional Neuroscience, Graduate School of Science, Neuroscience Institute, Nagoya University, Nagoya, 464-8602, Japan
- Group of Microbial Motility, Division of Natural Science, Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Graduate School of Science, Neuroscience Institute, Nagoya University, Nagoya, 464-8602, Japan
| | - Kentaro Noma
- Group of Nutritional Neuroscience, Graduate School of Science, Neuroscience Institute, Nagoya University, Nagoya, 464-8602, Japan.
- Group of Microbial Motility, Division of Natural Science, Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
| |
Collapse
|
2
|
Wang X, Luo Y, He S, Lu Y, Gong Y, Gao L, Mao S, Liu X, Jiang N, Pu Q, Du D, Shu Y, Hai S, Li S, Chen HN, Zhao Y, Xie D, Qi S, Lei P, Hu H, Xu H, Zhou ZG, Dong B, Zhang H, Zhang Y, Dai L. Age-, sex- and proximal-distal-resolved multi-omics identifies regulators of intestinal aging in non-human primates. NATURE AGING 2024; 4:414-433. [PMID: 38321225 PMCID: PMC10950786 DOI: 10.1038/s43587-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
The incidence of intestinal diseases increases with age, yet the mechanisms governing gut aging and its link to diseases, such as colorectal cancer (CRC), remain elusive. In this study, while considering age, sex and proximal-distal variations, we used a multi-omics approach in non-human primates (Macaca fascicularis) to shed light on the heterogeneity of intestinal aging and identify potential regulators of gut aging. We explored the roles of several regulators, including those from tryptophan metabolism, in intestinal function and lifespan in Caenorhabditis elegans. Suggesting conservation of region specificity, tryptophan metabolism via the kynurenine and serotonin (5-HT) pathways varied between the proximal and distal colon, and, using a mouse colitis model, we observed that distal colitis was more sensitive to 5-HT treatment. Additionally, using proteomics analysis of human CRC samples, we identified links between gut aging and CRC, with high HPX levels predicting poor prognosis in older patients with CRC. Together, this work provides potential targets for preventing gut aging and associated diseases.
Collapse
Grants
- P40 OD010440 NIH HHS
- National Natural Science Foundation of China (National Science Foundation of China)
- National Key R&D Program of China,2022YFA1303200, 2018YFC2000305; The 135 Project of West China Hospital, ZYJC21005, ZYGD20010 and ZYYC23013.
- Natural Science Foundation of Sichuan Province,2023NSFSC1196
- Natural Science Foundation of Sichuan Province,2021YFS0134
- National Clinical Research Center for Geriatrics of West China Hospital, Z2021JC005
- The 135 Project of West China Hospital, ZYYC23025.
- National Key R&D Program of China, 2019YFA0110203;
- National Clinical Research Center for Geriatrics of West China Hospital, Z2021JC006;
Collapse
Affiliation(s)
- Xinyuan Wang
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yaru Luo
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Siyu He
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lu
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Gao
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shengqiang Mao
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Na Jiang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qianlun Pu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Shu
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Hai
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hai-Ning Chen
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Xie
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiqian Qi
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lei
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zong-Guang Zhou
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Huiyuan Zhang
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics, Center for Immunology and Hematology and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Valdés A, Sánchez-Martínez JD, Gallego R, Ibáñez E, Herrero M, Cifuentes A. In vivo neuroprotective capacity of a Dunaliella salina extract - comprehensive transcriptomics and metabolomics study. NPJ Sci Food 2024; 8:4. [PMID: 38200022 PMCID: PMC10782027 DOI: 10.1038/s41538-023-00246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, an exhaustive chemical characterization of a Dunaliella salina (DS) microalga extract obtained using supercritical fluids has been performed, and its neuroprotective capacity has been evaluated in vivo using an Alzheimer's disease (AD) transgenic model of Caenorhabditis elegans (strain CL4176). More than 350 compounds were annotated in the studied DS extract, with triacylglycerols, free fatty acids (FAs), carotenoids, apocarotenoids and glycerol being the most abundant. DS extract significantly protects C. elegans in a dose-dependent manner against Aβ-peptide paralysis toxicity, after 32 h, 53% of treated worms at 50 µg/mL were not paralyzed. This concentration was selected to further evaluate the transcriptomics and metabolomics changes after 26 h by using advanced analytical methodologies. The RNA-Seq data showed an alteration of 150 genes, mainly related to the stress and detoxification responses, and the retinol and lipid metabolism. The comprehensive metabolomics and lipidomics analyses allowed the identification of 793 intracellular metabolites, of which 69 were significantly altered compared to non-treated control animals. Among them, different unsaturated FAs, lysophosphatidylethanolamines, nucleosides, dipeptides and modified amino acids that have been previously reported as beneficial during AD progression, were assigned. These compounds could explain the neuroprotective capacity observed, thus, providing with new evidences of the protection mechanisms of this promising extract.
Collapse
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain.
| | - José David Sánchez-Martínez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Rocío Gallego
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| |
Collapse
|
4
|
Cascianelli S, Ceddia G, Marchesi A, Masseroli M. Identification of transcription factor high accumulation DNA zones. BMC Bioinformatics 2023; 24:395. [PMID: 37864168 PMCID: PMC10590011 DOI: 10.1186/s12859-023-05528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Transcription factors (TF) play a crucial role in the regulation of gene transcription; alterations of their activity and binding to DNA areas are strongly involved in cancer and other disease onset and development. For proper biomedical investigation, it is hence essential to correctly trace TF dense DNA areas, having multiple bindings of distinct factors, and select DNA high occupancy target (HOT) zones, showing the highest accumulation of such bindings. Indeed, systematic and replicable analysis of HOT zones in a large variety of cells and tissues would allow further understanding of their characteristics and could clarify their functional role. RESULTS Here, we propose, thoroughly explain and discuss a full computational procedure to study in-depth DNA dense areas of transcription factor accumulation and identify HOT zones. This methodology, developed as a computationally efficient parametric algorithm implemented in an R/Bioconductor package, uses a systematic approach with two alternative methods to examine transcription factor bindings and provide comparative and fully-reproducible assessments. It offers different resolutions by introducing three distinct types of accumulation, which can analyze DNA from single-base to region-oriented levels, and a moving window, which can estimate the influence of the neighborhood for each DNA base under exam. CONCLUSIONS We quantitatively assessed the full procedure by using our implemented software package, named TFHAZ, in two example applications of biological interest, proving its full reliability and relevance.
Collapse
Affiliation(s)
- Silvia Cascianelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy
| | - Gaia Ceddia
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Alberto Marchesi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy
| | - Marco Masseroli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy
| |
Collapse
|
5
|
Williams RTP, King DC, Mastroianni IR, Hill JL, Apenes NW, Ramirez G, Miner EC, Moore A, Coleman K, Nishimura EO. Transcriptome profiling of the Caenorhabditis elegans intestine reveals that ELT-2 negatively and positively regulates intestinal gene expression within the context of a gene regulatory network. Genetics 2023; 224:iyad088. [PMID: 37183501 PMCID: PMC10411582 DOI: 10.1093/genetics/iyad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023] Open
Abstract
ELT-2 is the major transcription factor (TF) required for Caenorhabditis elegans intestinal development. ELT-2 expression initiates in embryos to promote development and then persists after hatching through the larval and adult stages. Though the sites of ELT-2 binding are characterized and the transcriptional changes that result from ELT-2 depletion are known, an intestine-specific transcriptome profile spanning developmental time has been missing. We generated this dataset by performing Fluorescence Activated Cell Sorting on intestine cells at distinct developmental stages. We analyzed this dataset in conjunction with previously conducted ELT-2 studies to evaluate the role of ELT-2 in directing the intestinal gene regulatory network through development. We found that only 33% of intestine-enriched genes in the embryo were direct targets of ELT-2 but that number increased to 75% by the L3 stage. This suggests additional TFs promote intestinal transcription especially in the embryo. Furthermore, only half of ELT-2's direct target genes were dependent on ELT-2 for their proper expression levels, and an equal proportion of those responded to elt-2 depletion with over-expression as with under-expression. That is, ELT-2 can either activate or repress direct target genes. Additionally, we observed that ELT-2 repressed its own promoter, implicating new models for its autoregulation. Together, our results illustrate that ELT-2 impacts roughly 20-50% of intestine-specific genes, that ELT-2 both positively and negatively controls its direct targets, and that the current model of the intestinal regulatory network is incomplete as the factors responsible for directing the expression of many intestinal genes remain unknown.
Collapse
Affiliation(s)
- Robert T P Williams
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - David C King
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Izabella R Mastroianni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica L Hill
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Nicolai W Apenes
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriela Ramirez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - E Catherine Miner
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrew Moore
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Karissa Coleman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Kim E, Annibal A, Lee Y, Park HEH, Ham S, Jeong DE, Kim Y, Park S, Kwon S, Jung Y, Park J, Kim SS, Antebi A, Lee SJV. Mitochondrial aconitase suppresses immunity by modulating oxaloacetate and the mitochondrial unfolded protein response. Nat Commun 2023; 14:3716. [PMID: 37349299 PMCID: PMC10287738 DOI: 10.1038/s41467-023-39393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Accumulating evidence indicates that mitochondria play crucial roles in immunity. However, the role of the mitochondrial Krebs cycle in immunity remains largely unknown, in particular at the organism level. Here we show that mitochondrial aconitase, ACO-2, a Krebs cycle enzyme that catalyzes the conversion of citrate to isocitrate, inhibits immunity against pathogenic bacteria in C. elegans. We find that the genetic inhibition of aco-2 decreases the level of oxaloacetate. This increases the mitochondrial unfolded protein response, subsequently upregulating the transcription factor ATFS-1, which contributes to enhanced immunity against pathogenic bacteria. We show that the genetic inhibition of mammalian ACO2 increases immunity against pathogenic bacteria by modulating the mitochondrial unfolded protein response and oxaloacetate levels in cultured cells. Because mitochondrial aconitase is highly conserved across phyla, a therapeutic strategy targeting ACO2 may eventually help properly control immunity in humans.
Collapse
Affiliation(s)
- Eunah Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Andrea Annibal
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne, 50931, Germany
| | - Yujin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Hae-Eun H Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, South Korea
| | - Younghun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Sangsoon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - JiSoo Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Sieun S Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne, 50931, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
7
|
Higurashi S, Tsukada S, Aleogho BM, Park JH, Al-Hebri Y, Tanaka M, Nakano S, Mori I, Noma K. Bacterial diet affects the age-dependent decline of associative learning in Caenorhabditis elegans. eLife 2023; 12:81418. [PMID: 37252859 DOI: 10.7554/elife.81418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
The causality and mechanism of dietary effects on brain aging are still unclear due to the long time scales of aging. The nematode Caenorhabditis elegans has contributed to aging research because of its short lifespan and easy genetic manipulation. When fed the standard laboratory diet, Escherichia coli, C. elegans experiences an age-dependent decline in temperature-food associative learning, called thermotaxis. To address if diet affects this decline, we screened 35 lactic acid bacteria as alternative diet and found that animals maintained high thermotaxis ability when fed a clade of Lactobacilli enriched with heterofermentative bacteria. Among them, Lactobacillus reuteri maintained the thermotaxis of aged animals without affecting their lifespan and motility. The effect of Lb. reuteri depends on the DAF-16 transcription factor functioning in neurons. Furthermore, RNA sequencing analysis revealed that differentially expressed genes between aged animals fed different bacteria were enriched with DAF-16 targets. Our results demonstrate that diet can impact brain aging in a daf-16-dependent manner without changing the lifespan.
Collapse
Affiliation(s)
- Satoshi Higurashi
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Sachio Tsukada
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Binta Maria Aleogho
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate school of Science, Nagoya University, Nagoya, Japan
| | - Joo Hyun Park
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yana Al-Hebri
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Masaru Tanaka
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shunji Nakano
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kentaro Noma
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate school of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Borbolis F, Ranti D, Papadopoulou MD, Dimopoulou S, Malatras A, Michalopoulos I, Syntichaki P. Selective Destabilization of Transcripts by mRNA Decapping Regulates Oocyte Maturation and Innate Immunity Gene Expression during Ageing in C. elegans. BIOLOGY 2023; 12:biology12020171. [PMID: 36829450 PMCID: PMC9952881 DOI: 10.3390/biology12020171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Removal of the 5' cap structure of RNAs (termed decapping) is a pivotal event in the life of cytoplasmic mRNAs mainly catalyzed by a conserved holoenzyme, composed of the catalytic subunit DCP2 and its essential cofactor DCP1. While decapping was initially considered merely a step in the general 5'-3' mRNA decay, recent data suggest a great degree of selectivity that plays an active role in the post-transcriptional control of gene expression, and regulates multiple biological functions. Studies in Caenorhabditis elegans have shown that old age is accompanied by the accumulation of decapping factors in cytoplasmic RNA granules, and loss of decapping activity shortens the lifespan. However, the link between decapping and ageing remains elusive. Here, we present a comparative microarray study that was aimed to uncover the differences in the transcriptome of mid-aged dcap-1/DCP1 mutant and wild-type nematodes. Our data indicate that DCAP-1 mediates the silencing of spermatogenic genes during late oogenesis, and suppresses the aberrant uprise of immunity gene expression during ageing. The latter is achieved by destabilizing the mRNA that encodes the transcription factor PQM-1 and impairing its nuclear translocation. Failure to exert decapping-mediated control on PQM-1 has a negative impact on the lifespan, but mitigates the toxic effects of polyglutamine expression that are involved in human disease.
Collapse
Affiliation(s)
- Fivos Borbolis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Dimitra Ranti
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | - Sofia Dimopoulou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Apostolos Malatras
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Michalopoulos
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence: (I.M.); (P.S.); Tel.: +30-21-0659-7127 (I.M.); +30-21-0659-7474 (P.S.)
| | - Popi Syntichaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence: (I.M.); (P.S.); Tel.: +30-21-0659-7127 (I.M.); +30-21-0659-7474 (P.S.)
| |
Collapse
|
9
|
Fischer F, Grigolon G, Benner C, Ristow M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol Rev 2022; 102:1449-1494. [PMID: 35343830 DOI: 10.1152/physrev.00017.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging is the single largest risk factor for many debilitating conditions, including heart diseases, stroke, cancer, diabetes, and neurodegenerative disorders. While far from understood in its full complexity, it is scientifically well-established that aging is influenced by genetic and environmental factors, and can be modulated by various interventions. One of aging's early hallmarks are aberrations in transcriptional networks, controlling for example metabolic homeostasis or the response to stress. Evidence in different model organisms abounds that a number of evolutionarily conserved transcription factors, which control such networks, can affect lifespan and healthspan across species. These transcription factors thus potentially represent conserved regulators of longevity and are emerging as important targets in the challenging quest to develop treatments to mitigate age-related diseases, and possibly even to slow aging itself. This review provides an overview of evolutionarily conserved transcription factors that impact longevity or age-related diseases in at least one multicellular model organism (nematodes, flies, or mice), and/or are tentatively linked to human aging. Discussed is the general evidence for transcriptional regulation of aging and disease, followed by a more detailed look at selected transcription factor families, the common metabolic pathways involved, and the targeting of transcription factors as a strategy for geroprotective interventions.
Collapse
Affiliation(s)
- Fabian Fischer
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Giovanna Grigolon
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Christoph Benner
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
10
|
Guédon R, Maremonti E, Armant O, Galas S, Brede DA, Lecomte-Pradines C. A systems biology analysis of reproductive toxicity effects induced by multigenerational exposure to ionizing radiation in C. elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112793. [PMID: 34544019 DOI: 10.1016/j.ecoenv.2021.112793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Understanding the effects of chronic exposure to pollutants over generations is of primary importance for the protection of humans and the environment; however, to date, knowledge on the molecular mechanisms underlying multigenerational adverse effects is scarce. We employed a systems biology approach to analyze effects of chronic exposure to gamma radiation at molecular, tissue and individual levels in the nematode Caenorhabditis elegans. Our data show a decrease of 23% in the number of offspring on the first generation F0 and more than 40% in subsequent generations F1, F2 and F3. To unveil the impact on the germline, an in-depth analysis of reproductive processes involved in gametes formation was performed for all four generations. We measured a decrease in the number of mitotic germ cells accompanied by increased cell-cycle arrest in the distal part of the gonad. Further impact on the germline was manifested by decreased sperm quantity and quality. In order to obtain insight in the molecular mechanisms leading to decreased fecundity, gene expression was investigated via whole genome RNA sequencing. The transcriptomic analysis revealed modulation of transcription factors, as well as genes involved in stress response, unfolded protein response, lipid metabolism and reproduction. Furthermore, a drastic increase in the number of differentially expressed genes involved in defense response was measured in the last two generations, suggesting a cumulative stress effect of ionizing radiation exposure. Transcription factor binding site enrichment analysis and the use of transgenic strain identified daf-16/FOXO as a master regulator of genes differentially expressed in response to radiation. The presented data provide new knowledge with respect to the molecular mechanisms involved in reproductive toxic effects and accumulated stress resulting from multigenerational exposure to ionizing radiation.
Collapse
Affiliation(s)
- Rémi Guédon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SRTE, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Erica Maremonti
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SRTE, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Simon Galas
- Institut des biomolecules Max Mousseron (IBMM), University of Montpellier, Centre National de Recherche Scientifique (CNRS), ENSCM, Montpellier, France
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SRTE, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France.
| |
Collapse
|
11
|
Meyer DH, Schumacher B. BiT age: A transcriptome-based aging clock near the theoretical limit of accuracy. Aging Cell 2021; 20:e13320. [PMID: 33656257 PMCID: PMC7963339 DOI: 10.1111/acel.13320] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Aging clocks dissociate biological from chronological age. The estimation of biological age is important for identifying gerontogenes and assessing environmental, nutritional, or therapeutic impacts on the aging process. Recently, methylation markers were shown to allow estimation of biological age based on age‐dependent somatic epigenetic alterations. However, DNA methylation is absent in some species such as Caenorhabditis elegans and it remains unclear whether and how the epigenetic clocks affect gene expression. Aging clocks based on transcriptomes have suffered from considerable variation in the data and relatively low accuracy. Here, we devised an approach that uses temporal scaling and binarization of C. elegans transcriptomes to define a gene set that predicts biological age with an accuracy that is close to the theoretical limit. Our model accurately predicts the longevity effects of diverse strains, treatments, and conditions. The involved genes support a role of specific transcription factors as well as innate immunity and neuronal signaling in the regulation of the aging process. We show that this binarized transcriptomic aging (BiT age) clock can also be applied to human age prediction with high accuracy. The BiT age clock could therefore find wide application in genetic, nutritional, environmental, and therapeutic interventions in the aging process.
Collapse
Affiliation(s)
- David H. Meyer
- Institute for Genome Stability in Ageing and Disease Medical Faculty University of Cologne Cologne Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing‐Associated Diseases (CECAD) Center for Molecular Medicine Cologne (CMMC) University of Cologne Cologne Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease Medical Faculty University of Cologne Cologne Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing‐Associated Diseases (CECAD) Center for Molecular Medicine Cologne (CMMC) University of Cologne Cologne Germany
| |
Collapse
|
12
|
Ewe CK, Alok G, Rothman JH. Stressful development: integrating endoderm development, stress, and longevity. Dev Biol 2020; 471:34-48. [PMID: 33307045 DOI: 10.1016/j.ydbio.2020.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
In addition to performing digestion and nutrient absorption, the intestine serves as one of the first barriers to the external environment, crucial for protecting the host from environmental toxins, pathogenic invaders, and other stress inducers. The gene regulatory network (GRN) governing embryonic development of the endoderm and subsequent differentiation and maintenance of the intestine has been well-documented in C. elegans. A key regulatory input that initiates activation of the embryonic GRN for endoderm and mesoderm in this animal is the maternally provided SKN-1 transcription factor, an ortholog of the vertebrate Nrf1 and 2, which, like C. elegans SKN-1, perform conserved regulatory roles in mediating a variety of stress responses across metazoan phylogeny. Other key regulatory factors in early gut development also participate in stress response as well as in innate immunity and aging and longevity. In this review, we discuss the intersection between genetic nodes that mediate endoderm/intestine differentiation and regulation of stress and homeostasis. We also consider how direct signaling from the intestine to the germline, in some cases involving SKN-1, facilitates heritable epigenetic changes, allowing transmission of adaptive stress responses across multiple generations. These connections between regulation of endoderm/intestine development and stress response mechanisms suggest that varying selective pressure exerted on the stress response pathways may influence the architecture of the endoderm GRN, thereby leading to genetic and epigenetic variation in early embryonic GRN regulatory events.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Geneva Alok
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
13
|
Su L, Zhao T, Li H, Li H, Su X, Ba X, Zhang Y, Huang B, Lu J, Li X. ELT-2 promotes O-GlcNAc transferase OGT-1 expression to modulate Caenorhabditis elegans lifespan. J Cell Biochem 2020; 121:4898-4907. [PMID: 32628333 DOI: 10.1002/jcb.29817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 11/12/2022]
Abstract
O-GlcNAc transferase (OGT) is the enzyme catalyzing protein O-GlcNAcylation by addition of a single O-linked-β-N-acetylglucosamine molecule (O-GlcNAc) to nuclear and cytoplasmic targets, and it uses uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) as a donor. As UDP-GlcNAc is the final product of the nutrient-sensing hexosamine signaling pathway, overexpression or knockout of ogt in mammals or invertebrate models influences cellular nutrient-response signals and increases susceptibility to chronic diseases of aging. Evidence shows that OGT expression levels decrease in tissues of older mice and rats. However, how OGT expression is modulated in the aging process remains poorly understood. In Caenorhabditis elegans, the exclusive mammalian OGT ortholog OGT-1 is crucial for lifespan control. Here, we observe that worm OGT-1 expression gradually reduces during aging. By combining prediction via the "MATCH" algorithm and luciferase reporter assays, GATA factor ELT-2, the homolog of human GATA4, is identified as a transcriptional factor driving OGT-1 expression. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assays show ELT-2 directly binds to and activates the ogt-1 promoter. Knockdown of elt-2 decreases the global O-GlcNAc modification level and reduces the lifespan of wild-type worms. The reduction in lifespan caused by elt-2 RNA interference is abrogated by the loss of ogt-1. These results imply that GATA factors are able to activate OGT expression, which could be beneficial for longevity and the development of therapeutic treatment for aging-related diseases.
Collapse
Affiliation(s)
- Liangping Su
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tingting Zhao
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Hongyuan Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Hongmei Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Xin Su
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Yu Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaoxue Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
14
|
Eurmsirilerd E, Maduro MF. Evolution of Developmental GATA Factors in Nematodes. J Dev Biol 2020; 8:jdb8040027. [PMID: 33207804 PMCID: PMC7712238 DOI: 10.3390/jdb8040027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
GATA transcription factors are found in animals, plants, and fungi. In animals, they have important developmental roles in controlling specification of cell identities and executing tissue-specific differentiation. The Phylum Nematoda is a diverse group of vermiform animals that inhabit ecological niches all over the world. Both free-living and parasitic species are known, including those that cause human infectious disease. To date, GATA factors in nematodes have been studied almost exclusively in the model system C. elegans and its close relatives. In this study, we use newly available sequences to identify GATA factors across the nematode phylum. We find that most species have fewer than six GATA factors, but some species have 10 or more. Comparisons of gene and protein structure suggest that there were at most two GATA factors at the base of the phylum, which expanded by duplication and modification to result in a core set of four factors. The high degree of structural similarity with the corresponding orthologues in C. elegans suggests that the nematode GATA factors share similar functions in development.
Collapse
Affiliation(s)
- Ethan Eurmsirilerd
- Undergraduate Program in Biology, Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA;
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Morris F. Maduro
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
- Correspondence:
| |
Collapse
|
15
|
Combining Auxin-Induced Degradation and RNAi Screening Identifies Novel Genes Involved in Lipid Bilayer Stress Sensing in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2020; 10:3921-3928. [PMID: 32958476 PMCID: PMC7642917 DOI: 10.1534/g3.120.401635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Alteration of the lipid composition of biological membranes interferes with their function and can cause tissue damage by triggering apoptosis. Upon lipid bilayer stress, the endoplasmic reticulum mounts a stress response similar to the unfolded protein response. However, only a few genes are known to regulate lipid bilayer stress. We performed a suppressor screen that combined the auxin-inducible degradation (AID) system with conventional RNAi in C. elegans to identify members of the lipid bilayer stress response. AID-mediated degradation of the mediator MDT-15, a protein required for the upregulation of fatty acid desaturases, induced the activation of lipid bilayer stress-sensitive reporters. We screened through most C. elegans kinases and transcription factors by feeding RNAi. We discovered nine genes that suppressed the lipid bilayer stress response in C. elegans. These suppressor genes included drl-1/MAP3K3, gsk-3/GSK3, let-607/CREB3, ire-1/IRE1, and skn-1/NRF1,2,3. Our candidate suppressor genes suggest a network of transcription factors and the integration of multiple tissues for a centralized lipotoxicity response in the intestine. Thus, we demonstrated proof-of-concept for combining AID and RNAi as a new screening strategy and identified eight conserved genes that had not previously been implicated in the lipid bilayer stress response.
Collapse
|
16
|
Bjedov I, Rallis C. The Target of Rapamycin Signalling Pathway in Ageing and Lifespan Regulation. Genes (Basel) 2020; 11:E1043. [PMID: 32899412 PMCID: PMC7565554 DOI: 10.3390/genes11091043] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022] Open
Abstract
Ageing is a complex trait controlled by genes and the environment. The highly conserved mechanistic target of rapamycin signalling pathway (mTOR) is a major regulator of lifespan in all eukaryotes and is thought to be mediating some of the effects of dietary restriction. mTOR is a rheostat of energy sensing diverse inputs such as amino acids, oxygen, hormones, and stress and regulates lifespan by tuning cellular functions such as gene expression, ribosome biogenesis, proteostasis, and mitochondrial metabolism. Deregulation of the mTOR signalling pathway is implicated in multiple age-related diseases such as cancer, neurodegeneration, and auto-immunity. In this review, we briefly summarise some of the workings of mTOR in lifespan and ageing through the processes of transcription, translation, autophagy, and metabolism. A good understanding of the pathway's outputs and connectivity is paramount towards our ability for genetic and pharmacological interventions for healthy ageing and amelioration of age-related disease.
Collapse
Affiliation(s)
- Ivana Bjedov
- UCL Cancer Institute, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Charalampos Rallis
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
17
|
Lancaster BR, McGhee JD. How affinity of the ELT-2 GATA factor binding to cis-acting regulatory sites controls Caenorhabditis elegans intestinal gene transcription. Development 2020; 147:dev190330. [PMID: 32586978 PMCID: PMC7390640 DOI: 10.1242/dev.190330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
Abstract
We define a quantitative relationship between the affinity with which the intestine-specific GATA factor ELT-2 binds to cis-acting regulatory motifs and the resulting transcription of asp-1, a target gene representative of genes involved in Caenorhabditis elegans intestine differentiation. By establishing an experimental system that allows unknown parameters (e.g. the influence of chromatin) to effectively cancel out, we show that levels of asp-1 transcripts increase monotonically with increasing binding affinity of ELT-2 to variant promoter TGATAA sites. The shape of the response curve reveals that the product of the unbound ELT-2 concentration in vivo [i.e. (ELT-2free) or ELT-2 'activity'] and the largest ELT-XXTGATAAXX association constant (Kmax) lies between five and ten. We suggest that this (unitless) product [Kmax×(ELT-2free) or the equivalent product for any other transcription factor] provides an important quantitative descriptor of transcription-factor/regulatory-motif interaction in development, evolution and genetic disease. A more complicated model than simple binding affinity is necessary to explain the fact that ELT-2 appears to discriminate in vivo against equal-affinity binding sites that contain AGATAA instead of TGATAA.
Collapse
Affiliation(s)
- Brett R Lancaster
- Department of Biochemistry and Molecular Biology, University of Calgary, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta T2N 4N1, Canada
| | - James D McGhee
- Department of Biochemistry and Molecular Biology, University of Calgary, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
18
|
Composition of Caenorhabditis elegans extracellular vesicles suggests roles in metabolism, immunity, and aging. GeroScience 2020; 42:1133-1145. [PMID: 32578074 DOI: 10.1007/s11357-020-00204-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
The nematode Caenorhabditis elegans has been instrumental in the identification of evolutionarily conserved mechanisms of aging. C. elegans also has recently been found to have evolutionarily conserved extracellular vesicle (EV) signaling pathways. We have been developing tools that allow for the detailed study of EV biology in C. elegans. Here we apply our recently published method for high specificity purification of EVs from C. elegans to carry out target-independent proteomic and RNA analysis of nematode EVs. We identify diverse coding and non-coding RNA and protein cargo types commonly found in human EVs. The EV cargo spectrum is distinct from whole worms, suggesting that protein and RNA cargos are actively recruited to EVs. Gene ontology analysis revealed C. elegans EVs are enriched for extracellular-associated and signaling proteins, and network analysis indicates enrichment for metabolic, immune, and basement membrane associated proteins. Tissue enrichment and gene expression analysis suggests the secreted EV proteins are likely to be derived from intestine, muscle, and excretory tissue. An unbiased comparison of the EV proteins with a large database of C. elegans genome-wide microarray data showed significant overlap with gene sets that are associated with aging and immunity. Taken together our data suggest C. elegans could be a promising in vivo model for studying the genetics and physiology of EVs in a variety of contexts including aging, metabolism, and immune response.
Collapse
|
19
|
Martínez Corrales G, Alic N. Evolutionary Conservation of Transcription Factors Affecting Longevity. Trends Genet 2020; 36:373-382. [PMID: 32294417 DOI: 10.1016/j.tig.2020.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/29/2022]
Abstract
The increasing number of older people is resulting in an increased prevalence of age-related diseases. Research has shown that the ageing process itself is a potential point of intervention. Indeed, gene expression can be optimised for health in older ages through manipulation of transcription factor (TF) activity. This review is focused on the ever-growing number of TFs whose effects on ageing are evolutionarily conserved. These regulate a plethora of functions, including stress resistance, metabolism, and growth. They are engaged in complex interactions within and between different cell types, impacting the physiology of the entire organism. Since ageing is not programmed, the conservation of their effects on lifespan is most likely a reflection of the conservation of their functions in youth.
Collapse
|
20
|
Jeong DE, Lee Y, Ham S, Lee D, Kwon S, Park HEH, Hwang SY, Yoo JY, Roh TY, Lee SJV. Inhibition of the oligosaccharyl transferase in Caenorhabditis elegans that compromises ER proteostasis suppresses p38-dependent protection against pathogenic bacteria. PLoS Genet 2020; 16:e1008617. [PMID: 32130226 PMCID: PMC7055741 DOI: 10.1371/journal.pgen.1008617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
The oligosaccharyl transferase (OST) protein complex mediates the N-linked glycosylation of substrate proteins in the endoplasmic reticulum (ER), which regulates stability, activity, and localization of its substrates. Although many OST substrate proteins have been identified, the physiological role of the OST complex remains incompletely understood. Here we show that the OST complex in C. elegans is crucial for ER protein homeostasis and defense against infection with pathogenic bacteria Pseudomonas aeruginosa (PA14), via immune-regulatory PMK-1/p38 MAP kinase. We found that genetic inhibition of the OST complex impaired protein processing in the ER, which in turn up-regulated ER unfolded protein response (UPRER). We identified vitellogenin VIT-6 as an OST-dependent glycosylated protein, critical for maintaining survival on PA14. We also showed that the OST complex was required for up-regulation of PMK-1 signaling upon infection with PA14. Our study demonstrates that an evolutionarily conserved OST complex, crucial for ER homeostasis, regulates host defense mechanisms against pathogenic bacteria. N-linked glycosylation is essential for the function of various proteins, but its effects on physiology at an organism level remain poorly understood. Using the roundworm Caenorhabditis elegans, we show that the oligosaccharyl transferase (OST) complex, which mediates the N-glycosylation of substrate proteins in the ER, reduces susceptibility to pathogenic bacteria, Pseudomonas aeruginosa. We find that OST enhances defense against P. aeruginosa via maintenance of ER unfolded protein response (UPRER) and up-regulation of cytosolic p38 MAP kinase signaling. Our findings propose an intriguing model for the organellar crosstalk between the ER and the cytosol in host defense mechanisms. Because the OST complex components are highly conserved among eukaryotes, our study on the regulation of cellular signaling and C. elegans physiology by the OST complex will provide an insight into the function of its mammalian counterpart.
Collapse
Affiliation(s)
- Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Yujin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Hae-Eun H. Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Sun-Young Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
- * E-mail:
| |
Collapse
|
21
|
Yang W, Petersen C, Pees B, Zimmermann J, Waschina S, Dirksen P, Rosenstiel P, Tholey A, Leippe M, Dierking K, Kaleta C, Schulenburg H. The Inducible Response of the Nematode Caenorhabditis elegans to Members of Its Natural Microbiota Across Development and Adult Life. Front Microbiol 2019; 10:1793. [PMID: 31440221 PMCID: PMC6693516 DOI: 10.3389/fmicb.2019.01793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
The biology of all organisms is influenced by the associated community of microorganisms. In spite of its importance, it is usually not well understood how exactly this microbiota affects host functions and what are the underlying molecular processes. To rectify this knowledge gap, we took advantage of the nematode Caenorhabditis elegans as a tractable, experimental model system and assessed the inducible transcriptome response after colonization with members of its native microbiota. For this study, we focused on two isolates of the genus Ochrobactrum. These bacteria are known to be abundant in the nematode’s microbiota and are capable of colonizing and persisting in the nematode gut, even under stressful conditions. The transcriptome response was assessed across development and three time points of adult life, using general and C. elegans-specific enrichment analyses to identify affected functions. Our assessment revealed an influence of the microbiota members on the nematode’s dietary response, development, fertility, immunity, and energy metabolism. This response is mainly regulated by a GATA transcription factor, most likely ELT-2, as indicated by the enrichment of (i) the GATA motif in the promoter regions of inducible genes and (ii) of ELT-2 targets among the differentially expressed genes. We compared our transcriptome results with a corresponding previously characterized proteome data set, highlighting a significant overlap in the differentially expressed genes, the affected functions, and ELT-2 target genes. Our analysis further identified a core set of 86 genes that consistently responded to the microbiota members across development and adult life, including several C-type lectin-like genes and genes known to be involved in energy metabolism or fertility. We additionally assessed the consequences of induced gene expression with the help of metabolic network model analysis, using a previously established metabolic network for C. elegans. This analysis complemented the enrichment analyses by revealing an influence of the Ochrobactrum isolates on C. elegans energy metabolism and furthermore metabolism of specific amino acids, fatty acids, and also folate biosynthesis. Our findings highlight the multifaceted impact of naturally colonizing microbiota isolates on C. elegans life history and thereby provide a framework for further analysis of microbiota-mediated host functions.
Collapse
Affiliation(s)
- Wentao Yang
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Carola Petersen
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Research Group Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Barbara Pees
- Research Group Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Johannes Zimmermann
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Silvio Waschina
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Philipp Dirksen
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Research Group Proteomics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Matthias Leippe
- Research Group Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Katja Dierking
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
22
|
Su L, Li H, Huang C, Zhao T, Zhang Y, Ba X, Li Z, Zhang Y, Huang B, Lu J, Zhao Y, Li X. Muscle-Specific Histone H3K36 Dimethyltransferase SET-18 Shortens Lifespan of Caenorhabditis elegans by Repressing daf-16a Expression. Cell Rep 2019. [PMID: 29514099 DOI: 10.1016/j.celrep.2018.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mounting evidence shows that histone methylation, a typical epigenetic mark, is crucial for gene expression regulation during aging. Decreased trimethylation of Lys 36 on histone H3 (H3K36me3) in worms and yeast is reported to shorten lifespan. The function of H3K36me2 in aging remains unclear. In this study, we identified Caenorhabditis elegans SET-18 as a histone H3K36 dimethyltransferase. SET-18 deletion extended lifespan and increased oxidative stress resistance, dependent on daf-16 activity in the insulin/IGF pathway. In set-18 mutants, transcription of daf-16 isoform a (daf-16a) was specifically upregulated. Accordingly, a decrease in H3K36me2 on daf-16a promoter was observed. Muscle-specific expression of SET-18 increased in aged worms (day 7 and day 11), attributable to elevation of global H3K36me2 and inhibition of daf-16a expression. Consequently, longevity was shortened. These findings suggested that chromatic repression mediated by tissue-specific H3K36 dimethyltransferase might be detrimental to lifespan and may have implications in human age-related diseases.
Collapse
Affiliation(s)
- Liangping Su
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Hongyuan Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Cheng Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Tingting Zhao
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yongjun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xueqing Ba
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Zhongwei Li
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yu Zhang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Baiqu Huang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Jun Lu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Yanmei Zhao
- Key Laboratory of RNA Biology, Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaoxue Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
23
|
Li S, Zhao H, Zhang P, Liang C, Zhang Y, Hsu A, Dong M. DAF-16 stabilizes the aging transcriptome and is activated in mid-aged Caenorhabditis elegans to cope with internal stress. Aging Cell 2019; 18:e12896. [PMID: 30773782 PMCID: PMC6516157 DOI: 10.1111/acel.12896] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/03/2018] [Indexed: 12/31/2022] Open
Abstract
The roles and regulatory mechanisms of transcriptome changes during aging are unclear. It has been proposed that the transcriptome suffers decay during aging owing to age‐associated down‐regulation of transcription factors. In this study, we characterized the role of a transcription factor DAF‐16, which is a highly conserved lifespan regulator, in the normal aging process of Caenorhabditis elegans. We found that DAF‐16 translocates into the nucleus in aged wild‐type worms and activates the expression of hundreds of genes in response to age‐associated cellular stress. Most of the age‐dependent DAF‐16 targets are different from the canonical DAF‐16 targets downstream of insulin signaling. This and other evidence suggest that activation of DAF‐16 during aging is distinct from activation of DAF‐16 due to reduced signaling from DAF‐2. Further analysis showed that it is due in part to a loss of proteostasis during aging. We also found that without daf‐16, dramatic gene expression changes occur as early as on adult day 2, indicating that DAF‐16 acts to stabilize the transcriptome during normal aging. Our results thus reveal that normal aging is not simply a process in which the gene expression program descends into chaos due to loss of regulatory activities; rather, there is active transcriptional regulation during aging.
Collapse
Affiliation(s)
- Shang‐Tong Li
- School of Life Sciences Tsinghua University Beijing China
- Peking University‐Tsinghua University‐National Institute of Biological Sciences (PTN) Joint Graduate Program Beijing China
- National Institute of Biological Sciences Beijing China
| | - Han‐Qing Zhao
- National Institute of Biological Sciences Beijing China
| | - Pan Zhang
- National Institute of Biological Sciences Beijing China
| | - Chung‐Yi Liang
- Research Center for Healthy Aging China Medical University Taichung Taiwan
| | | | - Ao‐Lin Hsu
- Research Center for Healthy Aging China Medical University Taichung Taiwan
- Institute of Biochemistry and Molecular Biology National Yang‐Ming University Taipei Taiwan
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine University of Michigan Ann Arbor Michigan
| | - Meng‐Qiu Dong
- National Institute of Biological Sciences Beijing China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University Beijing China
| |
Collapse
|
24
|
Tarkhov AE, Alla R, Ayyadevara S, Pyatnitskiy M, Menshikov LI, Shmookler Reis RJ, Fedichev PO. A universal transcriptomic signature of age reveals the temporal scaling of Caenorhabditis elegans aging trajectories. Sci Rep 2019; 9:7368. [PMID: 31089188 PMCID: PMC6517414 DOI: 10.1038/s41598-019-43075-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
We collected 60 age-dependent transcriptomes for C. elegans strains including four exceptionally long-lived mutants (mean adult lifespan extended 2.2- to 9.4-fold) and three examples of lifespan-increasing RNAi treatments. Principal Component Analysis (PCA) reveals aging as a transcriptomic drift along a single direction, consistent across the vastly diverse biological conditions and coinciding with the first principal component, a hallmark of the criticality of the underlying gene regulatory network. We therefore expected that the organism's aging state could be characterized by a single number closely related to vitality deficit or biological age. The "aging trajectory", i.e. the dependence of the biological age on chronological age, is then a universal stochastic function modulated by the network stiffness; a macroscopic parameter reflecting the network topology and associated with the rate of aging. To corroborate this view, we used publicly available datasets to define a transcriptomic biomarker of age and observed that the rescaling of age by lifespan simultaneously brings together aging trajectories of transcription and survival curves. In accordance with the theoretical prediction, the limiting mortality value at the plateau agrees closely with the mortality rate doubling exponent estimated at the cross-over age near the average lifespan. Finally, we used the transcriptomic signature of age to identify possible life-extending drug compounds and successfully tested a handful of the top-ranking molecules in C. elegans survival assays and achieved up to a +30% extension of mean lifespan.
Collapse
Affiliation(s)
- Andrei E Tarkhov
- Gero LLC, Nizhny Susalny per. 5/4, Moscow, 105064, Russia.
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia.
| | - Ramani Alla
- Central Arkansas Veterans Healthcare System, Research Service, Little Rock, Arkansas, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare System, Research Service, Little Rock, Arkansas, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mikhail Pyatnitskiy
- Gero LLC, Nizhny Susalny per. 5/4, Moscow, 105064, Russia
- Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Leonid I Menshikov
- Gero LLC, Nizhny Susalny per. 5/4, Moscow, 105064, Russia
- National Research Center "Kurchatov Institute", 1, Akademika Kurchatova pl., Moscow, 123182, Russia
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare System, Research Service, Little Rock, Arkansas, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Bioinformatics Program, University of Arkansas for Medical Sciences, and University of Arkansas at Little Rock, Little Rock, Arkansas, USA
| | - Peter O Fedichev
- Gero LLC, Nizhny Susalny per. 5/4, Moscow, 105064, Russia.
- Moscow Institute of Physics and Technology, 141700, Institutskii per. 9, Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
25
|
Zimmermann A, Kainz K, Hofer SJ, Bauer MA, Schroeder S, Dengjel J, Pietrocola F, Kepp O, Ruckenstuhl C, Eisenberg T, Sigrist SJ, Madeo F, Kroemer G, Carmona-Gutierrez D. Targeting GATA transcription factors - a novel strategy for anti-aging interventions? MICROBIAL CELL 2019; 6:212-216. [PMID: 31114793 PMCID: PMC6506692 DOI: 10.15698/mic2019.05.676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
GATA transcription factors (TFs) are a conserved family of zinc-finger TFs that fulfill diverse functions across eukaryotes. Accumulating evidence suggests that GATA TFs also play a role in lifespan regulation. In a recent study, we have identified a natural compound, 4,4' dimethoxychalcone (DMC) that extends lifespan depending on reduced activity of distinct GATA TFs. Prolonged lifespan by DMC treatment depends on autophagy, a protective cellular self-cleaning mechanism. In yeast, DMC reduces the activity of the GATA TF Gln3 and, at the same time, deletion of GLN3 increases autophagy levels during cellular aging per se. Here, we examine current data on the involvement of GATA TFs in the regulation of both autophagy and lifespan in different organisms and explore, if GATA TFs are suitable targets for anti-aging interventions.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| | - Maria A Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Sabrina Schroeder
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Jörn Dengjel
- Department of Biology, Université de Fribourg, Switzerland
| | | | - Oliver Kepp
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Université de Paris, Paris, France.,Sorbonne Université Paris, France
| | | | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria.,BioHealth Graz, Graz, Austria.,Central Lab Gracia, NAWI Graz, University of Graz, Graz, Austria
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria.,BioHealth Graz, Graz, Austria
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Université de Paris, Paris, France.,Sorbonne Université Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France.,Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
26
|
Dzakah EE, Waqas A, Wei S, Yu B, Wang X, Fu T, Liu L, Shan G. Loss of miR-83 extends lifespan and affects target gene expression in an age-dependent manner in Caenorhabditis elegans. J Genet Genomics 2018; 45:651-662. [PMID: 30595472 DOI: 10.1016/j.jgg.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/11/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that are involved in the post-transcriptional regulation of protein-coding genes. miRNAs modulate lifespan and the aging process in a variety of organisms. In this study, we identified a role of miR-83 in regulating lifespan of Caenorhabditis elegans. mir-83 mutants exhibited extended lifespan, and the overexpression of miR-83 was sufficient to decrease the prolonged lifespan of the mutants. We observed upregulation of the expression levels of a set of miR-83 target genes in young mir-83 mutant adults; while different sets of genes were upregulated in older mir-83 mutant adults. In vivo assays showed that miR-83 regulated expression of target genes including din-1, spp-9 and col-178, and we demonstrated that daf-16 and din-1 were required for the extension of lifespan in the mir-83 mutants. The regulation of din-1 by miR-83 during aging resulted in the differential expression of din-1 targets such as gst-4 and gst-10. In daf-2 mutants, the expression level of miR-83 was significantly reduced compared to wild-type animals. We identified a role for miR-83 in modulating lifespan in C. elegans and provided molecular insights into its functional mechanism.
Collapse
Affiliation(s)
- Emmanuel Enoch Dzakah
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast 03321, Ghana
| | - Ahmed Waqas
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shuai Wei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Bin Yu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiaolin Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Tao Fu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Lei Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Ge Shan
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; CAS Centre for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
27
|
Jänes J, Dong Y, Schoof M, Serizay J, Appert A, Cerrato C, Woodbury C, Chen R, Gemma C, Huang N, Kissiov D, Stempor P, Steward A, Zeiser E, Sauer S, Ahringer J. Chromatin accessibility dynamics across C. elegans development and ageing. eLife 2018; 7:37344. [PMID: 30362940 PMCID: PMC6231769 DOI: 10.7554/elife.37344] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022] Open
Abstract
An essential step for understanding the transcriptional circuits that control development and physiology is the global identification and characterization of regulatory elements. Here, we present the first map of regulatory elements across the development and ageing of an animal, identifying 42,245 elements accessible in at least one Caenorhabditis elegans stage. Based on nuclear transcription profiles, we define 15,714 protein-coding promoters and 19,231 putative enhancers, and find that both types of element can drive orientation-independent transcription. Additionally, more than 1000 promoters produce transcripts antisense to protein coding genes, suggesting involvement in a widespread regulatory mechanism. We find that the accessibility of most elements changes during development and/or ageing and that patterns of accessibility change are linked to specific developmental or physiological processes. The map and characterization of regulatory elements across C. elegans life provides a platform for understanding how transcription controls development and ageing.
Collapse
Affiliation(s)
- Jürgen Jänes
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Yan Dong
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michael Schoof
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jacques Serizay
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Alex Appert
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Chiara Cerrato
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Carson Woodbury
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ron Chen
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Carolina Gemma
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ni Huang
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Djem Kissiov
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Przemyslaw Stempor
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Annette Steward
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Eva Zeiser
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sascha Sauer
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Otto-Warburg Laboratories, Berlin, Germany
| | - Julie Ahringer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Non-proteolytic activity of 19S proteasome subunit RPT-6 regulates GATA transcription during response to infection. PLoS Genet 2018; 14:e1007693. [PMID: 30265660 PMCID: PMC6179307 DOI: 10.1371/journal.pgen.1007693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/10/2018] [Accepted: 09/13/2018] [Indexed: 11/19/2022] Open
Abstract
GATA transcription factors play a crucial role in the regulation of immune functions across metazoans. In Caenorhabditis elegans, the GATA transcription factor ELT-2 is involved in the control of not only infections but also recovery after an infection. We identified RPT-6, part of the 19S proteasome subunit, as an ELT-2 binding partner that is required for the proper expression of genes required for both immunity against bacterial infections and recovery after infection. We found that the intact ATPase domain of RPT-6 is required for the interaction and that inhibition of rpt-6 affected the expression of ELT-2-controlled genes, preventing the appropriate immune response against Pseudomonas aeruginosa and recovery from infection by the pathogen. Further studies indicated that SKN-1, which is an Nrf transcription factor involved in the response to oxidative stress and infection, is activated by inhibition of rpt-6. Our results indicate that RPT-6 interacts with ELT-2 in vivo to control the expression of immune genes in a manner that is likely independent of the proteolytic activity of the proteasome. The conserved GATA transcription factor ELT-2 plays an important role in the control of genes required for both defense and recovery from infection. We show that RPT-6, a component of the 19S subunit, physically interacts with ELT-2 in vivo, controlling the expression of ELT-2-dependent genes and the response of the nematode Caenorhabditis elegans to bacterial infection. The proteolytic activity of the proteasome has surfaced as a key regulator of gene expression, but our results provide evidence indicating that a non-canonical activity of the 26S proteasome subunit plays an important role in the control of gene expression during the response to bacterial infection.
Collapse
|
29
|
Eckley DM, Coletta CE, Orlov NV, Wilson MA, Iser W, Bastian P, Lehrmann E, Zhang Y, Becker KG, Goldberg IG. Transcriptome States Reflect Imaging of Aging States. J Gerontol A Biol Sci Med Sci 2018; 73:893-901. [PMID: 29216338 DOI: 10.1093/gerona/glx236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
In this study, we describe a morphological biomarker that detects multiple discrete subpopulations (or "age-states") at several chronological ages in a population of nematodes (Caenorhabditis elegans). We determined the frequencies of three healthy adult states and the timing of the transitions between them across the lifespan. We used short-lived and long-lived strains to confirm the general applicability of the state classifier and to monitor state progression. This exploration revealed healthy and unhealthy states, the former being favored in long-lived strains and the latter showing delayed onset. Short-lived strains rapidly transitioned through the putative healthy state. We previously found that age-matched animals in different age-states have distinct transcriptome profiles. We isolated animals at the beginning and end of each identified state and performed microarray analysis (principal component analysis, relative sample to sample distance measurements, and gene set enrichment analysis). In some comparisons, chronologically identical individuals were farther apart than morphologically identical individuals isolated on different days. The age-state biomarker allowed assessment of aging in a novel manner, complementary to chronological age progression. We found hsp70 and some small heat shock protein genes are expressed later in adulthood, consistent with the proteostasis collapse model.
Collapse
Affiliation(s)
- D Mark Eckley
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Christopher E Coletta
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Nikita V Orlov
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Mark A Wilson
- Laboratory of Neuroscience, Biomedical Research Center, Baltimore, Maryland
| | - Wendy Iser
- Laboratory of Neuroscience, Biomedical Research Center, Baltimore, Maryland
| | - Paul Bastian
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Yonqing Zhang
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Kevin G Becker
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland
| | - Ilya G Goldberg
- Laboratory of Genetics and Genomics, Biomedical Research Center, Baltimore, Maryland.,Mindshare Medical, Inc., Baltimore, Maryland
| |
Collapse
|
30
|
Araoi S, Daitoku H, Yokoyama A, Kako K, Hirota K, Fukamizu A. The GATA transcription factor ELT-2 modulates both the expression and methyltransferase activity of PRMT-1 in Caenorhabditis elegans. J Biochem 2018; 163:433-440. [PMID: 29361115 DOI: 10.1093/jb/mvy012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/01/2017] [Indexed: 11/13/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) catalyzes asymmetric arginine dimethylation of cellular proteins and thus modulates various biological processes, including gene regulation, RNA metabolism, cell signaling and DNA repair. Since prmt-1 null mutant completely abolishes asymmetric dimethylarginine in C. elegans, PRMT-1 is thought to play a crucial role in determining levels of asymmetric arginine dimethylation. However, the mechanism underlying the regulation of PRMT-1 activity remains largely unknown. Here, we explored for transcription factors that induce the expression of PRMT-1 by an RNAi screen using transgenic C. elegans harbouring prmt-1 promoter upstream of gfp. Of 529 clones, we identify a GATA transcription factor elt-2 as a positive regulator of Pprmt-1:: gfp expression and show that elt-2 RNAi decreases endogenous PRMT-1 expression at mRNA and protein levels. Nevertheless, surprisingly arginine methylation levels are increased when elt-2 is silenced, implying that erythroid-like transcription factor (ELT)-2 may also have ability to inhibit methyltransferase activity of PRMT-1. Supporting this idea, GST pull-down and co-immunoprecipitation assays demonstrate the interaction between ELT-2 and PRMT-1. Furthermore, we find that ELT-2 interferes with PRMT-1-induced arginine methylation in a dose-dependent manner. Collectively, our results illustrate the two modes of PRMT-1 regulation, which could determine the levels of asymmetric arginine dimethylation in C. elegans.
Collapse
Affiliation(s)
- Sho Araoi
- Graduate School of Life and Environmental Sciences
| | | | | | | | - Keiko Hirota
- Faculty of Life and Environmental Sciences.,Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | | |
Collapse
|
31
|
Dineen A, Osborne Nishimura E, Goszczynski B, Rothman JH, McGhee JD. Quantitating transcription factor redundancy: The relative roles of the ELT-2 and ELT-7 GATA factors in the C. elegans endoderm. Dev Biol 2018; 435:150-161. [PMID: 29360433 DOI: 10.1016/j.ydbio.2017.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/25/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
The two GATA transcription factors ELT-2 and ELT-7 function in the differentiation of the C. elegans intestine. ELT-2 loss causes lethality. ELT-7 loss causes no obvious phenotype but enhances the elt-2(-) intestinal phenotype. Thus, ELT-2 and ELT-7 appear partially redundant, with ELT-2 being more influential. To investigate the different regulatory roles of ELT-2 and ELT-7, we compared the transcriptional profiles of pure populations of wild-type, elt-2(-), elt-7(-), and elt-7(-); elt-2(-) double mutant L1-stage larvae. Consistent with the mutant phenotypes, loss of ELT-2 had a>25 fold greater influence on the number of significantly altered transcripts compared to the loss of ELT-7; nonetheless, the levels of numerous transcripts changed upon loss of ELT-7 in the elt-2(-) background. The quantitative responses of individual genes revealed a more complicated behaviour than simple redundancy/partial redundancy. In particular, genes expressed only in the intestine showed three distinguishable classes of response in the different mutant backgrounds. One class of genes responded as if ELT-2 is the major transcriptional activator and ELT-7 provides variable compensatory input. For a second class, transcript levels increased upon loss of ELT-2 but decreased upon further loss of ELT-7, suggesting that ELT-7 actually overcompensates for the loss of ELT-2. For a third class, transcript levels also increased upon loss of ELT-2 but remained elevated upon further loss of ELT-7, suggesting overcompensation by some other intestinal transcription factor(s). In spite of its minor loss-of-function phenotype and its limited sequence similarity to ELT-2, ELT-7 expressed under control of the elt-2 promoter is able to rescue elt-2(-) lethality. Indeed, appropriately expressed ELT-7, like appropriately expressed ELT-2, is able to replace all other core GATA factors in the C. elegans endodermal pathway. Overall, this study focuses attention on the quantitative intricacies behind apparent redundancy or partial redundancy of two related transcription factors.
Collapse
Affiliation(s)
- Aidan Dineen
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Barbara Goszczynski
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joel H Rothman
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States
| | - James D McGhee
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
32
|
Sagi D. The addition of a developmental factor, unc-62, to already long-lived worms increases lifespan and healthspan. Biol Open 2017; 6:1796-1801. [PMID: 29055022 PMCID: PMC5769649 DOI: 10.1242/bio.027433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aging is a complex trait that is affected by multiple genetic pathways. A relatively unexplored approach is to manipulate multiple independent aging pathways simultaneously in order to observe their cumulative effect on lifespan. Here, we report the phenotypic characterization of a strain with changes in five aging pathways: (1) mitochondrial reactive oxygen species (ROS) production, (2) innate immunity, (3) stress response, (4) metabolic control and (5) developmental regulation in old age. The quintuply modified strain has a lifespan that is 160% longer than the transgenic control strain. Additionally, the quintuply modified strain maintains several physiological markers of aging for a longer time than the transgenic control. Our results support a modular approach as a general scheme to study how multiple pathways interact to achieve extreme longevity. Summary: This work uses a modular approach to combine five genes together to build worms that are long lived and much healthier than control animals, without a significant reduction in fertility. This article has an associated First Person interview with the first author of the paper as part of the supplementary information.
Collapse
Affiliation(s)
- Dror Sagi
- Departments of Genetics and Developmental Biology, Stanford University Medical Center, Stanford, CA 94305-5329, USA
| |
Collapse
|
33
|
Zhao L, Wang J. Uncovering the mechanisms of Caenorhabditis elegans ageing from global quantification of the underlying landscape. J R Soc Interface 2017; 13:rsif.2016.0421. [PMID: 27903783 DOI: 10.1098/rsif.2016.0421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
Recent studies on Caenorhabditis elegans reveal that gene manipulations can extend its lifespan several fold. However, how the genes work together to determine longevity is still an open question. Here we construct a gene regulatory network for worm ageing and quantify its underlying potential and flux landscape. We found ageing and rejuvenation states can emerge as basins of attraction at certain gene expression levels. The system state can switch from one attractor to another driven by the intrinsic or external perturbations through genetics or the environment. Furthermore, we simulated gene silencing experiments and found that the silencing of longevity-promoting or lifespan-limiting genes leads to ageing or rejuvenation domination, respectively. This indicates that the difference in depths between ageing and the rejuvenation attractor is highly correlated with worm longevity. We further uncovered some key genes and regulations which have a strong influence on landscape basin stability. A dynamic landscape model is proposed to describe the whole process of ageing: the ageing attractor dominates when senescence progresses. We also uncovered the oscillation dynamics, and a similar behaviour was observed in the long-lived creature Turritopsis dohrnii Our landscape theory provides a global and physical approach to explore the underlying mechanisms of ageing.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China .,Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY 11790, USA
| |
Collapse
|
34
|
Choi H, Broitman-Maduro G, Maduro MF. Partially compromised specification causes stochastic effects on gut development in C. elegans. Dev Biol 2017; 427:49-60. [PMID: 28502614 DOI: 10.1016/j.ydbio.2017.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 12/29/2022]
Abstract
The C. elegans gut descends from the E progenitor cell through a series of stereotyped cell divisions and morphogenetic events. Effects of perturbations of upstream cell specification on downstream organogenesis have not been extensively investigated. Here we have assembled an allelic series of strains that variably compromise specification of E by perturbing the activation of the gut-specifying end-1 and end-3 genes. Using a marker that allows identification of all E descendants regardless of fate, superimposed with markers that identify cells that have adopted a gut fate, we have examined the fate of E lineage descendants among hundreds of embryos. We find that when specification is partially compromised, the E lineage undergoes hyperplasia accompanied by stochastic and variable specification of gut fate among the E descendants. As anticipated by prior work, the activation of the gut differentiation factor elt-2 becomes delayed in these strains, although ultimate protein levels of a translational ELT-2::GFP reporter resemble those of the wild type. By comparing these effects among the various specification mutants, we find that the stronger the defect in specification (i.e. the fewer number of embryos specifying gut), the stronger the defects in the E lineage and delay in activation of elt-2. Despite the changes in the E lineage in these strains, we find that supernumerary E descendants that adopt a gut fate are accommodated into a relatively normal-looking intestine. Hence, upstream perturbation of specification dramatically affects the E lineage, but as long as sufficient descendants adopt a gut fate, organogenesis overcomes these effects to form a relatively normal intestine.
Collapse
Affiliation(s)
- Hailey Choi
- Department of Biology, University of California, Riverside, CA 92521, United States; Graduate program in Cell, Molecular and Developmental Biology, University of California, Riverside, CA 92521, United States
| | - Gina Broitman-Maduro
- Department of Biology, University of California, Riverside, CA 92521, United States
| | - Morris F Maduro
- Department of Biology, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
35
|
The Oxidative Stress Response in Caenorhabditis elegans Requires the GATA Transcription Factor ELT-3 and SKN-1/Nrf2. Genetics 2017; 206:1909-1922. [PMID: 28600327 DOI: 10.1534/genetics.116.198788] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/02/2017] [Indexed: 12/19/2022] Open
Abstract
Cellular damage caused by reactive oxygen species is believed to be a major contributor to age-associated diseases. Previously, we characterized the Caenorhabditis elegans Brap2 ortholog (BRAP-2) and found that it is required to prevent larval arrest in response to elevated levels of oxidative stress. Here, we report that C. elegans brap-2 mutants display increased expression of SKN-1-dependent, phase II detoxification enzymes that is dependent on PMK-1 (a p38 MAPK C. elegans ortholog). An RNA-interference screen was conducted using a transcription factor library to identify genes required for increased expression of the SKN-1 target gst-4 in brap-2 mutants. We identified ELT-3, a member of the GATA transcription factor family, as a positive regulator of gst-4p::gfp expression. We found that ELT-3 interacts with SKN-1 to activate gst-4 transcription in vitro and that elt-3 is required for enhanced gst-4 expression in the brap-2(ok1492) mutant in vivo Furthermore, nematodes overexpressing SKN-1 required ELT-3 for life-span extension. Taken together, these results suggest a model where BRAP-2 acts as negative regulator of SKN-1 through inhibition of p38 MAPK activity, and that the GATA transcription factor ELT-3 is required along with SKN-1 for the phase II detoxification response in C. elegans.
Collapse
|
36
|
Qi B, Kniazeva M, Han M. A vitamin-B2-sensing mechanism that regulates gut protease activity to impact animal's food behavior and growth. eLife 2017; 6:e26243. [PMID: 28569665 PMCID: PMC5478268 DOI: 10.7554/elife.26243] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/30/2017] [Indexed: 01/22/2023] Open
Abstract
To survive challenging environments, animals acquired the ability to evaluate food quality in the intestine and respond to nutrient deficiencies with changes in food-response behavior, metabolism and development. However, the regulatory mechanisms underlying intestinal sensing of specific nutrients, especially micronutrients such as vitamins, and the connections to downstream physiological responses in animals remain underexplored. We have established a system to analyze the intestinal response to vitamin B2 (VB2) deficiency in Caenorhabditis elegans, and demonstrated that VB2 level critically impacts food uptake and foraging behavior by regulating specific protease gene expression and intestinal protease activity. We show that this impact is mediated by TORC1 signaling through reading the FAD-dependent ATP level. Thus, our study in live animals uncovers a VB2-sensing/response pathway that regulates food-uptake, a mechanism by which a common signaling pathway translates a specific nutrient signal into physiological activities, and the importance of gut microbiota in supplying micronutrients to animals.
Collapse
Affiliation(s)
- Bin Qi
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Marina Kniazeva
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Min Han
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| |
Collapse
|