1
|
Ren H, Zhong H, Zhang J, Lu Y, Hu G, Duan W, Ma N, Yao H. CTCF Point Mutation at R567 Disrupts Mouse Heart Development via 3D Genome Rearrangement and Transcription Dysregulation. Cell Prolif 2025; 58:e13783. [PMID: 39682078 PMCID: PMC11969252 DOI: 10.1111/cpr.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/17/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
CTCF plays a vital role in shaping chromatin structure and regulating gene expression. Clinical studies have associated CTCF mutations with congenital developmental abnormalities, including congenital cardiomyopathy. In this study, we investigated the impact of the homozygous CTCF-R567W (Ctcf R567W/R567W ) mutation on cardiac tissue morphogenesis during mouse embryonic development. Our results reveal significant impairments in heart development, characterised by ventricular muscle trabecular hyperplasia and reduced ventricular cavity sizes. We also observe a marked downregulation of genes involved in sarcomere assembly, calcium ion transport, and mitochondrial function in heart tissues from homozygous mice. Furthermore, the Ctcf R567W/R567W mutation disrupts CTCF's interaction with chromatin, resulting in alterations to topologically associating domain (TAD) structure within specific genomic regions and diminishing crucial promoter-enhancer interactions necessary for cardiac development. Additionally, we find that the heterozygous CTCF-R567W (Ctcf +/R567W ) mutation significantly compromises cardiac contractility in 8-week-old mice. This study elucidates the mechanism by which the CTCF-R567W mutation hampers cardiac development, underscoring the essential role of CTCF-R567 in embryonic heart development and maturation.
Collapse
Affiliation(s)
- Huawei Ren
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- State Key Laboratory of Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- School of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Hongxin Zhong
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Jie Zhang
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Yuli Lu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Gongcheng Hu
- Department of Basic ResearchGuangzhou National LaboratoryGuangzhouChina
| | - Weixun Duan
- Department of Cardiovascular SurgeryXijing HospitalXi'anChina
| | - Ning Ma
- School of Basic Medical SciencesGuangzhou Medical UniversityGuangzhouChina
- Department of Basic ResearchGuangzhou National LaboratoryGuangzhouChina
| | - Hongjie Yao
- State Key Laboratory of Respiratory DiseaseThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Basic ResearchGuangzhou National LaboratoryGuangzhouChina
| |
Collapse
|
2
|
Lucero K, Han S, Huang PY, Qiu X, Mazzoni EO, Reinberg D. CTCF-RNA interactions orchestrate cell-specific chromatin loop organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.643339. [PMID: 40166279 PMCID: PMC11956997 DOI: 10.1101/2025.03.19.643339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
CCCTC-binding factor (CTCF) is essential for chromatin organization. CTCF interacts with endogenous RNAs, and deletion of its ZF1 RNA-binding region (ΔZF1) disrupts chromatin loops in mouse embryonic stem cells (ESCs). However, the functional significance of CTCF-ZF1 RNA interactions during cell differentiation is unknown. Using an ESC-to-neural progenitor cell (NPC) differentiation model, we show that CTCF-ZF1 is crucial for maintaining cell-type-specific chromatin loops. Expression of CTCF-ΔZF1 leads to disrupted loops and dysregulation of genes within these loops, particularly those involved in neuronal development and function. We identified NPC-specific, CTCF-ZF1 interacting RNAs. Truncation of two such coding RNAs, Podxl and Grb10, disrupted chromatin loops in cis, similar to the disruption seen in CTCF-ΔZF1 expressing NPCs. These findings underscore the inherent importance of CTCF-ZF1 RNA interactions in preserving cell-specific genome structure and cellular identity.
Collapse
Affiliation(s)
- Kimberly Lucero
- Department of Cell Biology and Regenerative Medicine, New York University Langone Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
| | - Sungwook Han
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- Howard Hughes Medical Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pin-Yao Huang
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
| | - Xiang Qiu
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
| | - Esteban O. Mazzoni
- Department of Cell Biology and Regenerative Medicine, New York University Langone Medical Center, New York, NY, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- Howard Hughes Medical Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Lead Contact
| |
Collapse
|
3
|
Yu R, Roseman S, Siegenfeld AP, Gardner Z, Nguyen SC, Tran KA, Joyce EF, Jain R, Liau BB, Krantz ID, Alexander KA, Berger SL. CTCF/RAD21 organize the ground state of chromatin-nuclear speckle association. Nat Struct Mol Biol 2025:10.1038/s41594-024-01465-6. [PMID: 39984730 DOI: 10.1038/s41594-024-01465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/03/2024] [Indexed: 02/23/2025]
Abstract
Recent findings indicate that nuclear speckles, a distinct type of nuclear body, interact with certain chromatin regions in a ground state. Here, we report that the chromatin structural factors CTCF and cohesin are required for full ground-state association between DNA and nuclear speckles. We identified a putative speckle-targeting motif (STM) within cohesin subunit RAD21 and demonstrated that the STM is required for chromatin-nuclear speckle association, disruption of which also impaired induction of speckle-associated genes. Depletion of the cohesin-releasing factor WAPL, which stabilizes cohesin on chromatin, resulted in reinforcement of DNA-speckle contacts and enhanced inducibility of speckle-associated genes. Additionally, we observed disruption of chromatin-nuclear speckle association in patient-derived cells with Cornelia de Lange syndrome, a congenital neurodevelopmental disorder involving defective cohesin pathways. In summary, our findings reveal a mechanism for establishing the ground state of chromatin-speckle association and promoting gene inducibility, with relevance to human disease.
Collapse
Affiliation(s)
- Ruofan Yu
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Cell and Developmental Biology; Genetics; Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shelby Roseman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Allison P Siegenfeld
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Zachary Gardner
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Cell and Developmental Biology; Genetics; Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Son C Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Khoa A Tran
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Cell and Developmental Biology; Genetics; Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric F Joyce
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rajan Jain
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Cell and Developmental Biology; Genetics; Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Penn Cardiovascular Institute and Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ian D Krantz
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katherine A Alexander
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Departments of Cell and Developmental Biology; Genetics; Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Cold Spring Harbor Laboratories, Cold Spring Harbor, New York, NY, USA.
| | - Shelley L Berger
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Departments of Cell and Developmental Biology; Genetics; Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Heimerl M, Erschow S, Müller-Olling M, Manstein DJ, Decher N, Kauferstein S, Jenewein T, Pich A, Ricke-Hoch M, Hilfiker-Kleiner D. Cardiac dysfunction related to cardiac mRNA and protein traffic impairment due to reduced unconventional motor protein myosin-5b expression. Eur Heart J 2025:ehaf047. [PMID: 39969162 DOI: 10.1093/eurheartj/ehaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/09/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND AND AIMS The present study analysed the expression patterns of class-5 myosin motor proteins (MYO5a, b, and c) in the heart with a specific focus on the role of MYO5b. METHODS RNA-sequencing, quantitative real-time polymerase chain reaction, immunohistochemistry, Western blot, immunoprecipitation, and proteomics were performed in mice and human tissues. Functional analyses were performed in mice with a cardiac-specific knockout (KO) of MYO5b (αMHC-Cretg/-; MYO5bflox/flox), wild-type (WT) (MYO5bflox/flox), and αMHC-Cretg/- mice and in isolated adult cardiomyocytes. Next-generation sequencing screened for MYO5B gene variants in a cohort of sudden cardiac death in the young/sudden infant death syndrome patients. RESULTS The expression of MYO5b, but not MYO5a or c, increased during postnatal cardiomyocyte maturation. Myosin-5b was reduced in end-stage failing human hearts and infarcted murine hearts. Heterozygous rare and likely pathogenic missense MYO5B gene variants (n = 6) were identified in three patients of a cohort of young patients (n = 95) who died of sudden cardiac death in the young/sudden infant death syndrome. MYO5b-KO mice revealed impaired electric conductance and metabolism, developed sarcomeric disarrangement, heart failure and death with altered mRNA levels for genes involved in sarcomere organization, fatty acid and glucose metabolism, ion channel sub-units, and Ca2+-homeostasis prior to heart failure. In cardiomyocytes, myosin-5b is associated with mitochondrial and ribosomal proteins. Myosin-5b-associated ribonucleoprotein particles (RNPs) contained mRNAs of sarcomeric, metabolic, cytoskeletal, and ion channel proteins. CONCLUSIONS MYO5b is the major MYO5 gene expressed in postnatal cardiomyocytes where it transports vesicles, proteins, and multi-protein complexes. Among these are mRNA/RNP complexes affecting electric conductance, sarcomere homeostasis, cell metabolism, and cytoskeletal organization. Impairment in MYO5b expression and function promotes cardiac dysfunction, heart failure, and death.
Collapse
Affiliation(s)
- Maren Heimerl
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Sergej Erschow
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Mirco Müller-Olling
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research, Carl-Neuberg Str. 1, Hannover 30625, Germany
- Division for Structural Biochemistry, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Niels Decher
- Department of Vegetative Physiology and Center for Mind, Brain and Behavior (CMBB), Medical Faculty, Philipps University Marburg, Deutschausstrasse 1-2, Marburg 35037, Germany
| | - Silke Kauferstein
- Institute of Legal Medicine, Goethe University Frankfurt, University Hospital, Kennedyallee 104, Frankfurt am Main 60598, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK, German Centre for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt am Main 60598, Germany
| | - Tina Jenewein
- Institute of Legal Medicine, Goethe University Frankfurt, University Hospital, Kennedyallee 104, Frankfurt am Main 60598, Germany
| | - Andreas Pich
- Core Facility Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
- Department of Cardiovascular Complications of Oncologic Therapies, Medical Faculty of the Phillipps University Marburg, Baldingerstraße, Marburg 35032, Germany
| |
Collapse
|
5
|
Qin GT, Zhao Q, Fujita A, Damiani I, Easwaran M, Basu S, Gu W, Li DY, Worssam M, Palmisano B, Monteiro JP, Ramste M, Kundu R, Nguyen T, Park C, Weldy CS, Cheng P, Kim JB. Aryl-hydrocarbon receptor in smooth muscle cells protect against dioxin induced adverse remodeling of atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614572. [PMID: 39569142 PMCID: PMC11577244 DOI: 10.1101/2024.09.24.614572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Introduction Environmental exposure to dioxin has been linked to increased myocardial infarction. Smooth muscle cells (SMC) in the coronary vasculature play a critical role in atherosclerotic plaque remodeling due to their phenotypic plasticity, however, the detailed mechanism linking dioxin exposure to adverse SMC modulation is not well understood. Methods Single-cell RNA and ATAC sequencing and histological analyses were performed on the aorta from mouse models of atherosclerosis exposed to 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) or control. Primary human coronary artery SMC (HCASMC) treated in culture with TCDD were used to perform RNA-Seq, ATAC-Seq, and functional phenotypic assays. ChIP-Seq was performed with antibodies against Aryl-hydrocarbon receptor (AHR) and TCF21, two of known SMC modulating transcription factors. Results Modulated SMC were the most transcriptionally responsive cell type to dioxin in the atherosclerotic aorta. Dioxin accelerated disease phenotype by promoting a modulated SMC phenotype early, resulting in increased lesion size, migration of SMC, and macrophage recruitment to the lesion. We found C3 expressing modulated SMCs to be likely contributing to the increased macrophage recruitment and inflammation. Analysis of the RNA-Seq data from HCASMC treated with TCDD showed differential enrichment of biological pathways related to cell migration, localization, and inflammation. Furthermore, ATAC-Seq data showed a significant activation for pathways regulating vascular development, cell migration, inflammation, and apoptosis. With TCDD treatment, there was also enrichment of AHR ChIP-Seq peaks, while the TCF21 enrichment decreased significantly. The SMC-specific Ahr knockout resulted in increased oxidative stress in SMC, increased lesion size and macrophage content, and loss of SMC lineage cells in the lesion cap when exposed to TCDD, consistent with a more vulnerable plaque phenotype. Conclusion Dioxin adversely remodels atherosclerotic plaque by accelerating the SMC- phenotypic modulation, and increasing inflammation and oxidative stress resulting in increased macrophage recruitment and lesion size. Dioxin may adversely affect the SMC phenotype and disease state by affecting the TCF21 occupancy in the open chromatin regions. Furthermore, we observed that SMC-specific deletion of Ahr in mice resulted in worsening of dioxin mediated SMC modulation and atherosclerosis, suggesting that Ahr in SMC confers protection against dioxin by promoting a stable plaque phenotype and reducing dioxin induced oxidative stress. Summary Exposure to dioxin, an environmental pollutant present in tobacco smoke and air pollution, accelerates smooth muscle cell modulation, and atherosclerosis.Dioxin exposure leads to inflammatory smooth muscle cell phenotype characterized by complement pathway activation and increased macrophage recruitment to plaqueAryl-hydrocarbon receptor in SMC protects against oxidative stress, and promotes a stable plaque phenotype.
Collapse
|
6
|
Mensah IK, Gowher H. Epigenetic Regulation of Mammalian Cardiomyocyte Development. EPIGENOMES 2024; 8:25. [PMID: 39051183 PMCID: PMC11270418 DOI: 10.3390/epigenomes8030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The heart is the first organ formed during mammalian development and functions to distribute nutrients and oxygen to other parts of the developing embryo. Cardiomyocytes are the major cell types of the heart and provide both structural support and contractile function to the heart. The successful differentiation of cardiomyocytes during early development is under tight regulation by physical and molecular factors. We have reviewed current studies on epigenetic factors critical for cardiomyocyte differentiation, including DNA methylation, histone modifications, chromatin remodelers, and noncoding RNAs. This review also provides comprehensive details on structural and morphological changes associated with the differentiation of fetal and postnatal cardiomyocytes and highlights their differences. A holistic understanding of all aspects of cardiomyocyte development is critical for the successful in vitro differentiation of cardiomyocytes for therapeutic purposes.
Collapse
Affiliation(s)
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Tang X, Zeng P, Liu K, Qing L, Sun Y, Liu X, Lu L, Wei C, Wang J, Jiang S, Sun J, Chang W, Yu H, Chen H, Zhou J, Xu C, Fan L, Miao YL, Ding J. The PTM profiling of CTCF reveals the regulation of 3D chromatin structure by O-GlcNAcylation. Nat Commun 2024; 15:2813. [PMID: 38561336 PMCID: PMC10985093 DOI: 10.1038/s41467-024-47048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
CCCTC-binding factor (CTCF), a ubiquitously expressed and highly conserved protein, is known to play a critical role in chromatin structure. Post-translational modifications (PTMs) diversify the functions of protein to regulate numerous cellular processes. However, the effects of PTMs on the genome-wide binding of CTCF and the organization of three-dimensional (3D) chromatin structure have not been fully understood. In this study, we uncovered the PTM profiling of CTCF and demonstrated that CTCF can be O-GlcNAcylated and arginine methylated. Functionally, we demonstrated that O-GlcNAcylation inhibits CTCF binding to chromatin. Meanwhile, deficiency of CTCF O-GlcNAcylation results in the disruption of loop domains and the alteration of chromatin loops associated with cellular development. Furthermore, the deficiency of CTCF O-GlcNAcylation increases the expression of developmental genes and negatively regulates maintenance and establishment of stem cell pluripotency. In conclusion, these results provide key insights into the role of PTMs for the 3D chromatin structure.
Collapse
Affiliation(s)
- Xiuxiao Tang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Pharmacology and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Pengguihang Zeng
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Kezhi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Li Qing
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yifei Sun
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinyi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lizi Lu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chao Wei
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jun Sun
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Wakam Chang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Jiaguo Zhou
- Department of Pharmacology and Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chengfang Xu
- The obstetric and gynecology Department of The third affiliated hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Lili Fan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Junjun Ding
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Puri D, Maaßen C, Varona Baranda M, Zeevaert K, Hahnfeld L, Hauser A, Fornero G, Elsafi Mabrouk MH, Wagner W. CTCF deletion alters the pluripotency and DNA methylation profile of human iPSCs. Front Cell Dev Biol 2023; 11:1302448. [PMID: 38099298 PMCID: PMC10720430 DOI: 10.3389/fcell.2023.1302448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Pluripotent stem cells are characterized by their differentiation potential toward endoderm, mesoderm, and ectoderm. However, it is still largely unclear how these cell-fate decisions are mediated by epigenetic mechanisms. In this study, we explored the relevance of CCCTC-binding factor (CTCF), a zinc finger-containing DNA-binding protein, which mediates long-range chromatin organization, for directed cell-fate determination. We generated human induced pluripotent stem cell (iPSC) lines with deletions in the protein-coding region in exon 3 of CTCF, resulting in shorter transcripts and overall reduced protein expression. Chromatin immunoprecipitation showed a considerable loss of CTCF binding to target sites. The CTCF deletions resulted in slower growth and modest global changes in gene expression, with downregulation of a subset of pluripotency-associated genes and neuroectodermal genes. CTCF deletion also evoked DNA methylation changes, which were moderately associated with differential gene expression. Notably, CTCF-deletions lead to upregulation of endo-mesodermal associated marker genes and epigenetic signatures, whereas ectodermal differentiation was defective. These results indicate that CTCF plays an important role in the maintenance of pluripotency and differentiation, especially towards ectodermal lineages.
Collapse
Affiliation(s)
- Deepika Puri
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Catharina Maaßen
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Monica Varona Baranda
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Kira Zeevaert
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Lena Hahnfeld
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Annika Hauser
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Giulia Fornero
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Mohamed H. Elsafi Mabrouk
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
9
|
Liu Y, Wan X, Li H, Chen Y, Hu X, Chen H, Zhu D, Li C, Zhang Y. CTCF coordinates cell fate specification via orchestrating regulatory hubs with pioneer transcription factors. Cell Rep 2023; 42:113259. [PMID: 37851578 DOI: 10.1016/j.celrep.2023.113259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 06/17/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
CCCTC-binding factor (CTCF), a ubiquitously expressed architectural protein, has emerged as a key regulator of cell identity gene transcription. However, the precise molecular mechanism underlying specialized functions of CTCF remains elusive. Here, we investigate the mechanism through integrative analyses of primary hepatocytes, myocytes, and B cells from mouse and human. We demonstrate that CTCF cooperates with lineage-specific pioneer transcription factors (TFs), including MyoD, FOXA, and PU.1, to control cell identity at 1D and 3D levels. At the 1D level, pioneer TFs facilitate lineage-specific CTCF occupancy via opening chromatin. At the 3D level, CTCF and pioneer TFs form regulatory hubs to govern the expression of cell identity genes. This mechanism is validated using MyoD-null mice, CTCF knockout mice, and CRISPR editing during myogenic differentiation. Collectively, these findings uncover a general mechanism whereby CTCF acts as a cell identity cofactor to control cell identity genes via orchestrating regulatory hubs with pioneer TFs.
Collapse
Affiliation(s)
- Yuting Liu
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Xin Wan
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Hu Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Yingxi Chen
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Xiaodi Hu
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Taiping Road 27TH, Haidian District, Beijing 100850, China
| | - Dahai Zhu
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China.
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing 100871, China.
| | - Yong Zhang
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China.
| |
Collapse
|
10
|
Yu R, Roseman S, Siegenfeld AP, Nguyen SC, Joyce EF, Liau BB, Krantz ID, Alexander KA, Berger SL. CTCF/cohesin organize the ground state of chromatin-nuclear speckle association. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550178. [PMID: 37961560 PMCID: PMC10634669 DOI: 10.1101/2023.07.22.550178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The interchromatin space in the cell nucleus contains various membrane-less nuclear bodies. Recent findings indicate that nuclear speckles, comprising a distinct nuclear body, exhibit interactions with certain chromatin regions in a ground state. Key questions are how this ground state of chromatin-nuclear speckle association is established and what are the gene regulatory roles of this layer of nuclear organization. We report here that chromatin structural factors CTCF and cohesin are required for full ground state association between DNA and nuclear speckles. Disruption of ground state DNA-speckle contacts via either CTCF depletion or cohesin depletion had minor effects on basal level expression of speckle-associated genes, however we show strong negative effects on stimulus-dependent induction of speckle-associated genes. We identified a putative speckle targeting motif (STM) within cohesin subunit RAD21 and demonstrated that the STM is required for chromatin-nuclear speckle association. In contrast to reduction of CTCF or RAD21, depletion of the cohesin releasing factor WAPL stabilized cohesin on chromatin and DNA-speckle contacts, resulting in enhanced inducibility of speckle-associated genes. In addition, we observed disruption of chromatin-nuclear speckle association in patient derived cells with Cornelia de Lange syndrome (CdLS), a congenital neurodevelopmental diagnosis involving defective cohesin pathways, thus revealing nuclear speckles as an avenue for therapeutic inquiry. In summary, our findings reveal a mechanism to establish the ground organizational state of chromatin-speckle association, to promote gene inducibility, and with relevance to human disease.
Collapse
|
11
|
Sen D, Maniyadath B, Chowdhury S, Kaur A, Khatri S, Chakraborty A, Mehendale N, Nadagouda S, Sandra U, Kamat SS, Kolthur-Seetharam U. Metabolic regulation of CTCF expression and chromatin association dictates starvation response in mice and flies. iScience 2023; 26:107128. [PMID: 37416476 PMCID: PMC10320512 DOI: 10.1016/j.isci.2023.107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 05/16/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Coordinated temporal control of gene expression is essential for physiological homeostasis, especially during metabolic transitions. However, the interplay between chromatin architectural proteins and metabolism in regulating transcription is less understood. Here, we demonstrate a conserved bidirectional interplay between CTCF (CCCTC-binding factor) expression/function and metabolic inputs during feed-fast cycles. Our results indicate that its loci-specific functional diversity is associated with physiological plasticity in mouse hepatocytes. CTCF differential expression and long non-coding RNA-Jpx mediated changes in chromatin occupancy, unraveled its paradoxical yet tuneable functions, which are governed by metabolic inputs. We illustrate the key role of CTCF in controlling temporal cascade of transcriptional response, with effects on hepatic mitochondrial energetics and lipidome. Underscoring the evolutionary conservation of CTCF-dependent metabolic homeostasis, CTCF knockdown in flies abrogated starvation resistance. In summary, we demonstrate the interplay between CTCF and metabolic inputs that highlights the coupled plasticity of physiological responses and chromatin function.
Collapse
Affiliation(s)
- Devashish Sen
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Babukrishna Maniyadath
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Shreyam Chowdhury
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Arshdeep Kaur
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Subhash Khatri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Neelay Mehendale
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Snigdha Nadagouda
- Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, Telangana 500046, India
| | - U.S. Sandra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Siddhesh S. Kamat
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
- Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, Telangana 500046, India
| |
Collapse
|
12
|
Torres-Flores U, Díaz-Espinosa F, López-Santaella T, Rebollar-Vega R, Vázquez-Jiménez A, Taylor IJ, Ortiz-Hernández R, Echeverría OM, Vázquez-Nin GH, Gutierrez-Ruiz MC, De la Rosa-Velázquez IA, Resendis-Antonio O, Hernández-Hernandez A. Spermiogenesis alterations in the absence of CTCF revealed by single cell RNA sequencing. Front Cell Dev Biol 2023; 11:1119514. [PMID: 37065848 PMCID: PMC10097911 DOI: 10.3389/fcell.2023.1119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
CTCF is an architectonic protein that organizes the genome inside the nucleus in almost all eukaryotic cells. There is evidence that CTCF plays a critical role during spermatogenesis as its depletion produces abnormal sperm and infertility. However, defects produced by its depletion throughout spermatogenesis have not been fully characterized. In this work, we performed single cell RNA sequencing in spermatogenic cells with and without CTCF. We uncovered defects in transcriptional programs that explain the severity of the damage in the produced sperm. In the early stages of spermatogenesis, transcriptional alterations are mild. As germ cells go through the specialization stage or spermiogenesis, transcriptional profiles become more altered. We found morphology defects in spermatids that support the alterations in their transcriptional profiles. Altogether, our study sheds light on the contribution of CTCF to the phenotype of male gametes and provides a fundamental description of its role at different stages of spermiogenesis.
Collapse
Affiliation(s)
- Ulises Torres-Flores
- Graduate Program in Experimental Biology, DCBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México City, Mexico
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
| | - Fernanda Díaz-Espinosa
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
| | - Tayde López-Santaella
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
| | - Rosa Rebollar-Vega
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas yNutrición Salvador Zubirán, México City, Mexico
| | - Aarón Vázquez-Jiménez
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación-Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City, Mexico
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ian J. Taylor
- BD Life Sciences Informatics, Ashland, OR, United States
| | - Rosario Ortiz-Hernández
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Olga M. Echeverría
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo H. Vázquez-Nin
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Concepción Gutierrez-Ruiz
- Laboratorio de Fisiología Celular y Medicina Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-I, Mexico City, Mexico
| | - Inti Alberto De la Rosa-Velázquez
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas yNutrición Salvador Zubirán, México City, Mexico
| | - Osbaldo Resendis-Antonio
- Coordinación de la Investigación Científica-Red de Apoyo a la Investigación-Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City, Mexico
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- *Correspondence: Osbaldo Resendis-Antonio, ; Abrahan Hernández-Hernandez,
| | - Abrahan Hernández-Hernandez
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantíl de México Federico Gómez, México City, Mexico
- *Correspondence: Osbaldo Resendis-Antonio, ; Abrahan Hernández-Hernandez,
| |
Collapse
|
13
|
Zhang J, Ouyang Z, Xia L, Wang Q, Zheng F, Xu K, Xing Y, Wei K, Shi S, Li C, Yang J. Dynamic chromatin landscape encodes programs for perinatal transition of cardiomyocytes. Cell Death Dis 2023; 9:11. [PMID: 36653336 PMCID: PMC9849264 DOI: 10.1038/s41420-023-01322-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
The perinatal period occurring immediately before and after birth is critical for cardiomyocytes because they must change rapidly to accommodate the switch from fetal to neonatal circulation after birth. This transition is a well-orchestrated process, and any perturbation leads to unhealthy cardiomyocytes and heart disease. Despite its importance, little is known about how this transition is regulated and controlled. Here, by mapping the genome-wide chromatin accessibility, transcription-centered long-range chromatin interactions and gene expression in cardiomyocytes undergoing perinatal transition, we discovered two key transcription factors, MEF2 and AP1, that are crucial for driving the phenotypic changes within the perinatal window. Thousands of dynamic regulatory elements were found in perinatal cardiomyocytes and we show these elements mediated the transcriptional reprogramming through an elegant chromatin high-order architecture. We recompiled transcriptional program of induced stem cell-derived cardiomyocytes according to our discovered network, and they showed adult cardiomyocyte-like electrophysiological expression. Our work provides a comprehensive regulatory resource of cardiomyocytes perinatal reprogramming, and aids the gap-filling of cardiac translational research.
Collapse
Affiliation(s)
- Jing Zhang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XJiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| | - Zhaohui Ouyang
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092 Shanghai, China
| | - Limei Xia
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XJiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| | - Qi Wang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XJiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| | - Feng Zheng
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XJiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| | - Kun Xu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XJiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| | - Yuexian Xing
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| | - Ke Wei
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092 Shanghai, China
| | - Shaolin Shi
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| | - Chaojun Li
- grid.89957.3a0000 0000 9255 8984State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Gusu School, Nanjing Medical University, 211166 Nanjing, China
| | - Jingping Yang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China ,grid.41156.370000 0001 2314 964XJiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093 Nanjing, Jiangsu China
| |
Collapse
|
14
|
Andreu MJ, Alvarez-Franco A, Portela M, Gimenez-Llorente D, Cuadrado A, Badia-Careaga C, Tiana M, Losada A, Manzanares M. Establishment of 3D chromatin structure after fertilization and the metabolic switch at the morula-to-blastocyst transition require CTCF. Cell Rep 2022; 41:111501. [DOI: 10.1016/j.celrep.2022.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/22/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
|
15
|
Gong S, Hu G, Guo R, Zhang J, Yang Y, Ji B, Li G, Yao H. CTCF acetylation at lysine 20 is required for the early cardiac mesoderm differentiation of embryonic stem cells. CELL REGENERATION 2022; 11:34. [PMID: 36117192 PMCID: PMC9482892 DOI: 10.1186/s13619-022-00131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/31/2022] [Indexed: 11/15/2022]
Abstract
The CCCTC-binding factor (CTCF) protein and its modified forms regulate gene expression and genome organization. However, information on CTCF acetylation and its biological function is still lacking. Here, we show that CTCF can be acetylated at lysine 20 (CTCF-K20) by CREB-binding protein (CBP) and deacetylated by histone deacetylase 6 (HDAC6). CTCF-K20 is required for the CTCF interaction with CBP. A CTCF point mutation at lysine 20 had no effect on self-renewal but blocked the mesoderm differentiation of mouse embryonic stem cells (mESCs). The CTCF-K20 mutation reduced CTCF binding to the promoters and enhancers of genes associated with early cardiac mesoderm differentiation, resulting in diminished chromatin accessibility and decreased enhancer-promoter interactions, impairing gene expression. In summary, this study reveals the important roles of CTCF-K20 in regulating CTCF genomic functions and mESC differentiation into mesoderm.
Collapse
|
16
|
Xu X, Zou R, Liu X, Liu J, Su Q. Epithelial-mesenchymal transition-related genes in coronary artery disease. Open Med (Wars) 2022; 17:781-800. [PMID: 35529472 PMCID: PMC9034345 DOI: 10.1515/med-2022-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/26/2022] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Epithelial-mesenchymal transition (EMT) is critical in the development of coronary artery disease (CAD). However, landscapes of EMT-related genes have not been fully established in CAD. We identified the differentially expressed mRNAs and lncRNAs (DElncRNAs) from the Gene Expression Omnibus database. Pearson’s correlation analysis, the least absolute shrinkage and selection operator regression, and support vector machine reverse feature elimination algorithms were used to screen EMT-related lncRNAs. The cis–trans regulatory networks were constructed based on EMT-related lncRNAs. Quantitative real-time polymerase chain reaction was performed to validate the expression of EMT-related genes in a cohort of six patients with CAD and six healthy controls. We further estimated the infiltration of the immune cells in CAD patients with five algorithms, and the correlation between EMT-related genes and infiltrating immune cells was analyzed. We identified eight EMT-related lncRNAs in CAD. The area under curve value was greater than 0.95. The immune analysis revealed significant CD8 T cells, monocytes, and NK cells in CAD and found that EMT-related lncRNAs were correlated with these immune cell subsets. Moreover, SNAI2, an EMT-TF gene, was found in the trans-regulatory network of EMT-related lncRNAs. Further, we found SNAI2 as a biomarker for the diagnosis of CAD but it also had a close correlation with immune cell subsets in CAD. Eight EMT-related lncRNAs and SNAI2 have important significance in the diagnosis of CAD patients.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, China
| | - Renchao Zou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, China
| | - Xiaoyong Liu
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, China
| | - Jia Liu
- Department of Laboratory Animal Science, Kunming Medical University, Kunming City, Yunnan Province, 650500, China
| | - Qianqian Su
- Department of Laboratory Animal Science, Kunming Medical University, Kunming City, Yunnan Province, 650500, China
| |
Collapse
|
17
|
Cummings CT, Rowley MJ. Implications of Dosage Deficiencies in CTCF and Cohesin on Genome Organization, Gene Expression, and Human Neurodevelopment. Genes (Basel) 2022; 13:583. [PMID: 35456389 PMCID: PMC9030571 DOI: 10.3390/genes13040583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Properly organizing DNA within the nucleus is critical to ensure normal downstream nuclear functions. CTCF and cohesin act as major architectural proteins, working in concert to generate thousands of high-intensity chromatin loops. Due to their central role in loop formation, a massive research effort has been dedicated to investigating the mechanism by which CTCF and cohesin create these loops. Recent results lead to questioning the direct impact of CTCF loops on gene expression. Additionally, results of controlled depletion experiments in cell lines has indicated that genome architecture may be somewhat resistant to incomplete deficiencies in CTCF or cohesin. However, heterozygous human genetic deficiencies in CTCF and cohesin have illustrated the importance of their dosage in genome architecture, cellular processes, animal behavior, and disease phenotypes. Thus, the importance of considering CTCF or cohesin levels is especially made clear by these heterozygous germline variants that characterize genetic syndromes, which are increasingly recognized in clinical practice. Defined primarily by developmental delay and intellectual disability, the phenotypes of CTCF and cohesin deficiency illustrate the importance of architectural proteins particularly in neurodevelopment. We discuss the distinct roles of CTCF and cohesin in forming chromatin loops, highlight the major role that dosage of each protein plays in the amplitude of observed effects on gene expression, and contrast these results to heterozygous mutation phenotypes in murine models and clinical patients. Insights highlighted by this comparison have implications for future research into these newly emerging genetic syndromes.
Collapse
Affiliation(s)
- Christopher T. Cummings
- Munroe-Meyer Institute, Department of Genetic Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - M. Jordan Rowley
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
18
|
Liao Y, Zhu L, Wang Y. Maturation of Stem Cell-Derived Cardiomyocytes: Foe in Translation Medicine. Int J Stem Cells 2021; 14:366-385. [PMID: 34711701 PMCID: PMC8611306 DOI: 10.15283/ijsc21077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
With the in-depth study of heart development, many human cardiomyocytes (CMs) have been generated in a laboratory environment. CMs derived from pluripotent stem cells (PSCs) have been widely used for a series of applications such as laboratory studies, drug toxicology screening, cardiac disease models, and as an unlimited resource for cell-based cardiac regeneration therapy. However, the low maturity of the induced CMs significantly impedes their applicability. Scientists have been committed to improving the maturation of CMs to achieve the purpose of heart regeneration in the past decades. In this review, we take CMs maturation as the main object of discussion, describe the characteristics of CMs maturation, summarize the key regulatory mechanism of regulating maturation and address the approaches to promote CMs maturation. The maturation of CM is gradually improving due to the incorporation of advanced technologies and is expected to continue.
Collapse
Affiliation(s)
- Yingnan Liao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Liyuan Zhu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
19
|
CTCF knockout in zebrafish induces alterations in regulatory landscapes and developmental gene expression. Nat Commun 2021; 12:5415. [PMID: 34518536 PMCID: PMC8438036 DOI: 10.1038/s41467-021-25604-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/16/2021] [Indexed: 02/08/2023] Open
Abstract
Coordinated chromatin interactions between enhancers and promoters are critical for gene regulation. The architectural protein CTCF mediates chromatin looping and is enriched at the boundaries of topologically associating domains (TADs), which are sub-megabase chromatin structures. In vitro CTCF depletion leads to a loss of TADs but has only limited effects over gene expression, challenging the concept that CTCF-mediated chromatin structures are a fundamental requirement for gene regulation. However, how CTCF and a perturbed chromatin structure impacts gene expression during development remains poorly understood. Here we link the loss of CTCF and gene regulation during patterning and organogenesis in a ctcf knockout zebrafish model. CTCF absence leads to loss of chromatin structure and affects the expression of thousands of genes, including many developmental regulators. Our results demonstrate the essential role of CTCF in providing the structural context for enhancer-promoter interactions, thus regulating developmental genes.
Collapse
|
20
|
Choi Y, Song MJ, Jung WJ, Jeong H, Park S, Yang B, Lee EC, Joo JS, Choi D, Koo SH, Kim EK, Nam KT, Kim HP. Liver-Specific Deletion of Mouse CTCF Leads to Hepatic Steatosis via Augmented PPARγ Signaling. Cell Mol Gastroenterol Hepatol 2021; 12:1761-1787. [PMID: 34358714 PMCID: PMC8551791 DOI: 10.1016/j.jcmgh.2021.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The liver is the major organ for metabolizing lipids, and malfunction of the liver leads to various diseases. Nonalcoholic fatty liver disease is rapidly becoming a major health concern worldwide and is characterized by abnormal retention of excess lipids in the liver. CCCTC-binding factor (CTCF) is a highly conserved zinc finger protein that regulates higher-order chromatin organization and is involved in various gene regulation processes. Here, we sought to determine the physiological role of CTCF in hepatic lipid metabolism. METHODS We generated liver-specific, CTCF-ablated and/or CD36 whole-body knockout mice. Overexpression or knockdown of peroxisome proliferator-activated receptor (PPAR)γ in the liver was achieved using adenovirus. Mice were examined for development of hepatic steatosis and inflammation. RNA sequencing was performed to identify genes affected by CTCF depletion. Genome-wide occupancy of H3K27 acetylation, PPARγ, and CTCF were analyzed by chromatin immunoprecipitation sequencing. Genome-wide chromatin interactions were analyzed by in situ Hi-C. RESULTS Liver-specific, CTCF-deficient mice developed hepatic steatosis and inflammation when fed a standard chow diet. Global analysis of the transcriptome and enhancer landscape revealed that CTCF-depleted liver showed enhanced accumulation of PPARγ in the nucleus, which leads to increased expression of its downstream target genes, including fat storage-related gene CD36, which is involved in the lipid metabolic process. Hepatic steatosis developed in liver-specific, CTCF-deficient mice was ameliorated by repression of PPARγ via pharmacologic blockade or adenovirus-mediated knockdown, but hardly rescued by additional knockout of CD36. CONCLUSIONS Our data indicate that liver-specific deletion of CTCF leads to hepatosteatosis through augmented PPARγ DNA-binding activity, which up-regulates its downstream target genes associated with the lipid metabolic process.
Collapse
Affiliation(s)
- Yeeun Choi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Seoul, Korea; Brain Korea 21 Plus Project for Medical Science, Seoul, Korea
| | - Min-Ji Song
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Seoul, Korea
| | - Woong-Jae Jung
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Seoul, Korea; Department of Bioinformatics, Graduate School of Soongsil University, Seoul, Korea
| | - Haengdueng Jeong
- Brain Korea 21 Plus Project for Medical Science, Seoul, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seokjae Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea; Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Bobae Yang
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Seoul, Korea; Brain Korea 21 Plus Project for Medical Science, Seoul, Korea
| | - Eun-Chong Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Seoul, Korea; Brain Korea 21 Plus Project for Medical Science, Seoul, Korea
| | - Jung-Sik Joo
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Seoul, Korea; Brain Korea 21 Plus Project for Medical Science, Seoul, Korea
| | - Dahee Choi
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea; Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Ki Taek Nam
- Brain Korea 21 Plus Project for Medical Science, Seoul, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Seoul, Korea; Brain Korea 21 Plus Project for Medical Science, Seoul, Korea.
| |
Collapse
|
21
|
Abstract
Manipulation of microRNA (miRNA) expression has been shown to induce cardiac regeneration, consolidating their therapeutic potential. However, studies often validate only a few miRNA targets in each experiment and hold these targets entirely accountable for the miRNAs' action, ignoring the other potential molecular and cellular events involved. In this report, experimentally validated miRNAs are used as a window of discovery for the possible genes and signaling pathways that are implicated in cardiac regeneration. A thorough evidence search was conducted, and identified miRNAs were submitted for in silico dissection using reliable bioinformatics tools. A total of 46 miRNAs were retrieved from existing literature. Shared targets between miRNAs included well-recognized genes such as BCL-2, CCND1, and PTEN. Transcription factors that are possibly involved in the regeneration process such as SP1, CTCF, and ZNF263 were also identified. The analysis confirmed well-established signaling pathways involved in cardiac regeneration such as Hippo, MAPK, and AKT signaling, and revealed new pathways such as ECM-receptor interaction, and FoxO signaling on top of hormonal pathways such as thyroid, adrenergic, and estrogen signaling pathways. Additionally, a set of differentially expressed miRNAs were identified as potential future experimental candidates.
Collapse
|
22
|
Cocaine-related DNA methylation in caudate neurons alters 3D chromatin structure of the IRXA gene cluster. Mol Psychiatry 2021; 26:3134-3151. [PMID: 33046833 PMCID: PMC8039060 DOI: 10.1038/s41380-020-00909-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 02/01/2023]
Abstract
Epigenetic mechanisms, like those involving DNA methylation, are thought to mediate the relationship between chronic cocaine dependence and molecular changes in addiction-related neurocircuitry, but have been understudied in human brain. We initially used reduced representation bisulfite sequencing (RRBS) to generate a methylome-wide profile of cocaine dependence in human post-mortem caudate tissue. We focused on the Iroquois Homeobox A (IRXA) gene cluster, where hypomethylation in exon 3 of IRX2 in neuronal nuclei was associated with cocaine dependence. We replicated this finding in an independent cohort and found similar results in the dorsal striatum from cocaine self-administering mice. Using epigenome editing and 3C assays, we demonstrated a causal relationship between methylation within the IRX2 gene body, CTCF protein binding, three-dimensional (3D) chromatin interaction, and gene expression. Together, these findings suggest that cocaine-related hypomethylation of IRX2 contributes to the development and maintenance of cocaine dependence through alterations in 3D chromatin structure in the caudate nucleus.
Collapse
|
23
|
George RM, Firulli AB. Epigenetics and Heart Development. Front Cell Dev Biol 2021; 9:637996. [PMID: 34026751 PMCID: PMC8136428 DOI: 10.3389/fcell.2021.637996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/26/2021] [Indexed: 11/24/2022] Open
Abstract
Epigenetic control of gene expression during cardiac development and disease has been a topic of intense research in recent years. Advances in experimental methods to study DNA accessibility, transcription factor occupancy, and chromatin conformation capture technologies have helped identify regions of chromatin structure that play a role in regulating access of transcription factors to the promoter elements of genes, thereby modulating expression. These chromatin structures facilitate enhancer contacts across large genomic distances and function to insulate genes from cis-regulatory elements that lie outside the boundaries for the gene of interest. Changes in transcription factor occupancy due to changes in chromatin accessibility have been implicated in congenital heart disease. However, the factors controlling this process and their role in changing gene expression during development or disease remain unclear. In this review, we focus on recent advances in the understanding of epigenetic factors controlling cardiac morphogenesis and their role in diseases.
Collapse
Affiliation(s)
- Rajani M George
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
24
|
Agrawal P, Rao S. Super-Enhancers and CTCF in Early Embryonic Cell Fate Decisions. Front Cell Dev Biol 2021; 9:653669. [PMID: 33842482 PMCID: PMC8027350 DOI: 10.3389/fcell.2021.653669] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/18/2021] [Indexed: 12/04/2022] Open
Abstract
Cell fate decisions are the backbone of many developmental and disease processes. In early mammalian development, precise gene expression changes underly the rapid division of a single cell that leads to the embryo and are critically dependent on autonomous cell changes in gene expression. To understand how these lineage specifications events are mediated, scientists have had to look past protein coding genes to the cis regulatory elements (CREs), including enhancers and insulators, that modulate gene expression. One class of enhancers, termed super-enhancers, is highly active and cell-type specific, implying their critical role in modulating cell-type specific gene expression. Deletion or mutations within these CREs adversely affect gene expression and development and can cause disease. In this mini-review we discuss recent studies describing the potential roles of two CREs, enhancers and binding sites for CTCF, in early mammalian development.
Collapse
Affiliation(s)
- Puja Agrawal
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
25
|
Yuan X, Scott IC, Wilson MD. Heart Enhancers: Development and Disease Control at a Distance. Front Genet 2021; 12:642975. [PMID: 33777110 PMCID: PMC7987942 DOI: 10.3389/fgene.2021.642975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bound by lineage-determining transcription factors and signaling effectors, enhancers play essential roles in controlling spatiotemporal gene expression profiles during development, homeostasis and disease. Recent synergistic advances in functional genomic technologies, combined with the developmental biology toolbox, have resulted in unprecedented genome-wide annotation of heart enhancers and their target genes. Starting with early studies of vertebrate heart enhancers and ending with state-of-the-art genome-wide enhancer discovery and testing, we will review how studying heart enhancers in metazoan species has helped inform our understanding of cardiac development and disease.
Collapse
Affiliation(s)
- Xuefei Yuan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
MACMIC Reveals A Dual Role of CTCF in Epigenetic Regulation of Cell Identity Genes. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:140-153. [PMID: 33677108 PMCID: PMC8498966 DOI: 10.1016/j.gpb.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 11/23/2022]
Abstract
Numerous studies of relationship between epigenomic features have focused on their strong correlation across the genome, likely because such relationship can be easily identified by many established methods for correlation analysis. However, two features with little correlation may still colocalize at many genomic sites to implement important functions. There is no bioinformatic tool for researchers to specifically identify such feature pairs. Here, we develop a method to identify feature pairs in which two features have maximal colocalization minimal correlation (MACMIC) across the genome. By MACMIC analysis of 3306 feature pairs in 16 human cell types, we reveal a dual role of CCCTC-binding factor (CTCF) in epigenetic regulation of cell identity genes. Although super-enhancers are associated with activation of target genes, only a subset of super-enhancers colocalized with CTCF regulate cell identity genes. At super-enhancers colocalized with CTCF, CTCF is required for the active marker H3K27ac in cell types requiring the activation, and also required for the repressive marker H3K27me3 in other cell types requiring repression. Our work demonstrates the biological utility of the MACMIC analysis and reveals a key role for CTCF in epigenetic regulation of cell identity. The code for MACMIC is available at https://github.com/bxia888/MACMIC.
Collapse
|
27
|
Bertero A, Rosa-Garrido M. Three-dimensional chromatin organization in cardiac development and disease. J Mol Cell Cardiol 2021; 151:89-105. [PMID: 33242466 PMCID: PMC11056610 DOI: 10.1016/j.yjmcc.2020.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Recent technological advancements in the field of chromatin biology have rewritten the textbook on nuclear organization. We now appreciate that the folding of chromatin in the three-dimensional space (i.e. its 3D "architecture") is non-random, hierarchical, and highly complex. While 3D chromatin structure is partially encoded in the primary sequence and thereby broadly conserved across cell types and states, a substantial portion of the genome seems to be dynamic during development or in disease. Moreover, there is growing evidence that at least some of the 3D structure of chromatin is functionally linked to gene regulation, both being modulated by and impacting on multiple nuclear processes (including DNA replication, transcription, and RNA splicing). In recent years, these new concepts have nourished several investigations about the functional role of 3D chromatin topology dynamics in the heart during development and disease. This review aims to provide a comprehensive overview of our current understanding in this field, and to discuss how this knowledge can inform further research as well as clinical practice.
Collapse
Affiliation(s)
- Alessandro Bertero
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA 98109, USA.
| | - Manuel Rosa-Garrido
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, 650 Charles Young Dr, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Hall AW, Chaffin M, Roselli C, Lin H, Lubitz SA, Bianchi V, Geeven G, Bedi K, Margulies KB, de Laat W, Tucker NR, Ellinor PT. Epigenetic Analyses of Human Left Atrial Tissue Identifies Gene Networks Underlying Atrial Fibrillation. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2020; 13:e003085. [PMID: 33155827 PMCID: PMC8240092 DOI: 10.1161/circgen.120.003085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) often arises from structural abnormalities in the left atria (LA). Annotation of the noncoding genome in human LA is limited, as are effects on gene expression and chromatin architecture. Many AF-associated genetic variants reside in noncoding regions; this knowledge gap impairs efforts to understand the molecular mechanisms of AF and cardiac conduction phenotypes. METHODS We generated a model of the LA noncoding genome by profiling 7 histone post-translational modifications (active: H3K4me3, H3K4me2, H3K4me1, H3K27ac, H3K36me3; repressive: H3K27me3, H3K9me3), CTCF binding, and gene expression in samples from 5 individuals without structural heart disease or AF. We used MACS2 to identify peak regions (P<0.01), applied a Markov model to classify regulatory elements, and annotated this model with matched gene expression data. We intersected chromatin states with expression quantitative trait locus, DNA methylation, and HiC chromatin interaction data from LA and left ventricle. Finally, we integrated genome-wide association data for AF and electrocardiographic traits to link disease-related variants to genes. RESULTS Our model identified 21 epigenetic states, encompassing regulatory motifs, such as promoters, enhancers, and repressed regions. Genes were regulated by proximal chromatin states; repressive states were associated with a significant reduction in gene expression (P<2×10-16). Chromatin states were differentially methylated, promoters were less methylated than repressed regions (P<2×10-16). We identified over 15 000 LA-specific enhancers, defined by homeobox family motifs, and annotated several cardiovascular disease susceptibility loci. Intersecting AF and PR genome-wide association studies loci with long-range chromatin conformation data identified a gene interaction network dominated by NKX2-5, TBX3, ZFHX3, and SYNPO2L. CONCLUSIONS Profiling the noncoding genome provides new insights into the gene expression and chromatin regulation in human LA tissue. These findings enabled identification of a gene network underlying AF; our experimental and analytic approach can be extended to identify molecular mechanisms for other cardiac diseases and traits.
Collapse
Affiliation(s)
- Amelia Weber Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
| | - Mark Chaffin
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
| | - Carolina Roselli
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
| | - Honghuang Lin
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Steven A. Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
| | - Valerio Bianchi
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands
| | - Geert Geeven
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kenneth Bedi
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kenneth B. Margulies
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nathan R. Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
- Masonic Medical Research Institute, Utica, NY
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge, MA
| |
Collapse
|
29
|
Cogliati S, Herranz F, Ruiz-Cabello J, Enríquez JA. Digitonin concentration is determinant for mitochondrial supercomplexes analysis by BlueNative page. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148332. [PMID: 33129827 DOI: 10.1016/j.bbabio.2020.148332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
The BlueNative page (BNGE) gel has been the reference technique for studying the electron transport chain organization since it was established 20 years ago. Although the migration of supercomplexes has been demonstrated being real, there are still several concerns about its ability to reveal genuine interactions between respiratory complexes. Moreover, the use of different solubilization conditions generates conflicting interpretations. Here, we thoroughly compare the impact of different digitonin concentrations on the liquid dispersions' physical properties and correlate with the respiratory complexes' migration pattern and supercomplexes. Our results demonstrate that digitonin concentration generates liquid dispersions with specific size and variability critical to distinguish between a real association of complexes from being trapped in the same micelle.
Collapse
Affiliation(s)
- Sara Cogliati
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.
| | - Fernando Herranz
- NanoMedMol, Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28006 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jesús Ruiz-Cabello
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; Center for Cooperative Research in Biomaterials (CIC biomaGUNE, 2014), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; CIBERFES, Madrid, Spain.
| |
Collapse
|
30
|
Pérez-Amado CJ, Tovar H, Gómez-Romero L, Beltrán-Anaya FO, Bautista-Piña V, Dominguez-Reyes C, Villegas-Carlos F, Tenorio-Torres A, Alfaro-Ruíz LA, Hidalgo-Miranda A, Jiménez-Morales S. Mitochondrial DNA Mutation Analysis in Breast Cancer: Shifting From Germline Heteroplasmy Toward Homoplasmy in Tumors. Front Oncol 2020; 10:572954. [PMID: 33194675 PMCID: PMC7653098 DOI: 10.3389/fonc.2020.572954] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Studies have suggested a potential role of somatic mitochondrial mutations in cancer development. To analyze the landscape of somatic mitochondrial mutation in breast cancer and to determine whether mitochondrial DNA (mtDNA) mutational burden is correlated with overall survival (OS), we sequenced whole mtDNA from 92 matched-paired primary breast tumors and peripheral blood. A total of 324 germline variants and 173 somatic mutations were found in the tumors. The most common germline allele was 663G (12S), showing lower heteroplasmy levels in peripheral blood lymphocytes than in their matched tumors, even reaching homoplasmic status in several cases. The heteroplasmy load was higher in tumors than in their paired normal tissues. Somatic mtDNA mutations were found in 73.9% of breast tumors; 59% of these mutations were located in the coding region (66.7% non-synonymous and 33.3% synonymous). Although the CO1 gene presented the highest number of mutations, tRNA genes (T,C, and W), rRNA 12S, and CO1 and ATP6 exhibited the highest mutation rates. No specific mtDNA mutational profile was associated with molecular subtypes of breast cancer, and we found no correlation between mtDNA mutational burden and OS. Future investigations will provide insight into the molecular mechanisms through which mtDNA mutations and heteroplasmy shifting contribute to breast cancer development.
Collapse
Affiliation(s)
- Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Programa de Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hugo Tovar
- Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Laura Gómez-Romero
- Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Investigación en Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | | | | | | | | | - Luis Alberto Alfaro-Ruíz
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
31
|
Liu CF, Abnousi A, Bazeley P, Ni Y, Morley M, Moravec CS, Hu M, Tang WHW. Global analysis of histone modifications and long-range chromatin interactions revealed the differential cistrome changes and novel transcriptional players in human dilated cardiomyopathy. J Mol Cell Cardiol 2020; 145:30-42. [PMID: 32533974 DOI: 10.1016/j.yjmcc.2020.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acetylation and methylation of histones alter the chromatin structure and accessibility that affect transcriptional regulators binding to enhancers and promoters. The binding of transcriptional regulators enables the interaction between enhancers and promoters, thus affecting gene expression. However, our knowledge of these epigenetic alternations in patients with heart failure remains limited. METHODS AND RESULTS From the comprehensive analysis of major histone modifications, 3-dimensional chromatin interactions, and transcriptome in left ventricular (LV) tissues from dilated cardiomyopathy (DCM) patients and non-heart failure (NF) donors, differential active enhancer and promoter regions were identified between NF and DCM. Moreover, the genome-wide average promoter signal is significantly lower in DCM than in NF. Super-enhancer (SE) analysis revealed that fewer SEs were found in DCM LVs than in NF ones, and three unique SE-associated genes between NF and DCM were identified. Moreover, SEs are enriched within the genomic region associated with long-range chromatin interactions. The differential enhancer-promoter interactions were observed in the known heart failure gene loci and are correlated with the gene expression levels. Motif analysis identified known cardiac factors and possible novel players for DCM. CONCLUSIONS We have established the cistrome of four histone modifications and chromatin interactome for enhancers and promoters in NF and DCM tissues. Differential histone modifications and enhancer-promoter interactions were found in DCM, which were associated with gene expression levels of a subset of disease-associated genes in human heart failure.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, USA
| | - Armen Abnousi
- Quantitative Health Sciences, Lerner Research Institute, USA
| | - Peter Bazeley
- Quantitative Health Sciences, Lerner Research Institute, USA
| | - Ying Ni
- Taussig Cancer Institute, Heart and Vascular Institute, Cleveland Clinic, OH, USA
| | | | - Christine S Moravec
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, USA
| | - Ming Hu
- Quantitative Health Sciences, Lerner Research Institute, USA
| | - W H Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, USA; Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, OH, USA.
| |
Collapse
|
32
|
Abstract
Pathological cardiac remodeling is induced through multiple mechanisms that include neurohumoral and biomechanical stress resulting in transcriptional alterations that ultimately become maladaptive and lead to the development of heart failure (HF). Although cardiac transcriptional remodeling is mediated by the activation of numerous signaling pathways that converge on a limited number of transcription factors (TFs) that promote hypertrophy (pro-hypertrophic TFs), the current therapeutic approach to prevent HF utilizes pharmacological inhibitors that largely target specific receptors that are activated in response to pathological stimuli. Thus, there is limited efficacy with the current pharmacological approaches to inhibit transcriptional remodeling associated with the development of HF. Recent evidence suggests that these pro-hypertrophic TFs co-localize at enhancers to cooperatively activate transcription associated with pathological cardiac remodeling. In disease states, including cancer and HF, evidence suggests that the general transcriptional machinery is disproportionately bound at enhancers. Therefore, pharmacological inhibition of transcriptional machinery that integrates pro-hypertrophic TFs may represent a promising alternative therapeutic approach to limit pathological remodeling associated with the development of HF.
Collapse
|
33
|
Abstract
Maturation is the last phase of heart development that prepares the organ for strong, efficient, and persistent pumping throughout the mammal's lifespan. This process is characterized by structural, gene expression, metabolic, and functional specializations in cardiomyocytes as the heart transits from fetal to adult states. Cardiomyocyte maturation gained increased attention recently due to the maturation defects in pluripotent stem cell-derived cardiomyocyte, its antagonistic effect on myocardial regeneration, and its potential contribution to cardiac disease. Here, we review the major hallmarks of ventricular cardiomyocyte maturation and summarize key regulatory mechanisms that promote and coordinate these cellular events. With advances in the technical platforms used for cardiomyocyte maturation research, we expect significant progress in the future that will deepen our understanding of this process and lead to better maturation of pluripotent stem cell-derived cardiomyocyte and novel therapeutic strategies for heart disease.
Collapse
Affiliation(s)
- Yuxuan Guo
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - William Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
34
|
Zeng Z, Huang N, Zhang Y, Wang Y, Su Y, Zhang H, An Y. CTCF inhibits endoplasmic reticulum stress and apoptosis in cardiomyocytes by upregulating RYR2 via inhibiting S100A1. Life Sci 2019; 242:117158. [PMID: 31837328 DOI: 10.1016/j.lfs.2019.117158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
AIMS Pediatric heart failure is a common cardiovascular disease in clinical pediatrics. CCCTC-binding factor (CTCF), a novel transcriptional repressor, was reported to participate in the occurrence of various cardiovascular diseases. The present study focuses on exploring the effects of CTCF on tunicamycin (TM)-induced endoplasmic reticulum (ER) stress, and investigating the underlying mechanisms. MATERIALS AND METHOD Expression of CTCF in blood samples of heart failure children and TM-induced cardiomyocytes were evaluated by real-time quantitative PCR (RT-qPCR). Apoptotic rate of cardiomyocytes was detected by Annexin v assay. Western blotting and enzyme-linked immunosorbent assay (ELISA) were applied to examine the effect of CTCF on ER stress. Co-immunoprecipitation and western blotting were devoted to explore the mechanism by which CTCF contributes to ER stress. KEY FINDINGS We proved that CTCF was lowly expressed in blood samples of heart failure children and TM-induced cardiomyocytes, and overexpression of CTCF weaken the TM-induced ER stress. Using co-immunoprecipitation and protein blots, we demonstrated that CTCF upregulates RYR2 by inhibiting S100A1, thus mediating the PERK signaling pathway and regulating ER stress. SIGNIFICANCE Our data revealed that CTCF protects cardiomyocytes from ER stress through S100A1-RYR2 axis, and can be applied as a therapeutic target for the treatment of pediatric heart failure in future.
Collapse
Affiliation(s)
- Zhu Zeng
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China 710003
| | - Nina Huang
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China 710003
| | - Yudan Zhang
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China 710003
| | - Ying Wang
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China 710003
| | - Yufei Su
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China 710003
| | - Huifang Zhang
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China 710003
| | - Yuan An
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China 710003.
| |
Collapse
|
35
|
Foo RSY, Anene-Nzelu CG, Rosa-Garrido M, Vondriska TM. Dissecting Chromatin Architecture for Novel Cardiovascular Disease Targets. Circulation 2019; 140:446-448. [PMID: 31381426 DOI: 10.1161/circulationaha.119.039287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Roger Sik-Yin Foo
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (R.S.-Y.F., C.G.A.-N.)
| | - Chukwuemeka George Anene-Nzelu
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (R.S.-Y.F., C.G.A.-N.).,Genome Institute of Singapore (C.G.A.-N.)
| | - Manuel Rosa-Garrido
- Departments of Anesthesiology, Medicine and Physiology, David Geffen School of Medicine at UCLA (M.R.-G., T.M.V.)
| | - Thomas M Vondriska
- Departments of Anesthesiology, Medicine and Physiology, David Geffen School of Medicine at UCLA (M.R.-G., T.M.V.)
| |
Collapse
|
36
|
Fujita J, Tohyama S, Kishino Y, Okada M, Morita Y. Concise Review: Genetic and Epigenetic Regulation of Cardiac Differentiation from Human Pluripotent Stem Cells. Stem Cells 2019; 37:992-1002. [PMID: 31021504 DOI: 10.1002/stem.3027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/15/2019] [Indexed: 12/28/2022]
Abstract
Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, are the ideal cell sources for disease modeling, drug discovery, and regenerative medicine. In particular, regenerative therapy with hPSC-derived cardiomyocytes (CMs) is an unmet medical need for the treatment of severe heart failure. Cardiac differentiation protocols from hPSCs are made on the basis of cardiac development in vivo. However, current protocols have yet to yield 100% pure CMs, and their maturity is low. Cardiac development is regulated by the cardiac gene network, including transcription factors (TFs). According to our current understanding of cardiac development, cardiac TFs are sequentially expressed during cardiac commitment in hPSCs. Expression levels of each gene are strictly regulated by epigenetic modifications. DNA methylation, histone modification, and noncoding RNAs significantly influence cardiac differentiation. These complex circuits of genetic and epigenetic factors dynamically affect protein expression and metabolic changes in cardiac differentiation and maturation. Here, we review cardiac differentiation protocols and their molecular machinery, closing with a discussion of the future challenges for producing hPSC-derived CMs. Stem Cells 2019;37:992-1002.
Collapse
Affiliation(s)
- Jun Fujita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Marina Okada
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Rajderkar S, Mann JM, Panaretos C, Yumoto K, Li HD, Mishina Y, Ralston B, Kaartinen V. Trim33 is required for appropriate development of pre-cardiogenic mesoderm. Dev Biol 2019; 450:101-114. [PMID: 30940539 DOI: 10.1016/j.ydbio.2019.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022]
Abstract
Congenital cardiac malformations are among the most common birth defects in humans. Here we show that Trim33, a member of the Tif1 subfamily of tripartite domain containing transcriptional cofactors, is required for appropriate differentiation of the pre-cardiogenic mesoderm during a narrow time window in late gastrulation. While mesoderm-specific Trim33 mutants did not display noticeable phenotypes, epiblast-specific Trim33 mutant embryos developed ventricular septal defects, showed sparse trabeculation and abnormally thin compact myocardium, and died as a result of cardiac failure during late gestation. Differentiating embryoid bodies deficient in Trim33 showed an enrichment of gene sets associated with cardiac differentiation and contractility, while the total number of cardiac precursor cells was reduced. Concordantly, cardiac progenitor cell proliferation was reduced in Trim33-deficient embryos. ChIP-Seq performed using antibodies against Trim33 in differentiating embryoid bodies revealed more than 4000 peaks, which were significantly enriched close to genes implicated in stem cell maintenance and mesoderm development. Nearly half of the Trim33 peaks overlapped with binding sites of the Ctcf insulator protein. Our results suggest that Trim33 is required for appropriate differentiation of precardiogenic mesoderm during late gastrulation and that it will likely mediate some of its functions via multi-protein complexes, many of which include the chromatin architectural and insulator protein Ctcf.
Collapse
Affiliation(s)
- Sudha Rajderkar
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey M Mann
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christopher Panaretos
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kenji Yumoto
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hong-Dong Li
- Center for Bioinformatics, School of Information Science and Engineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin Ralston
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
38
|
Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M. Role of Epigenetics in Cardiac Development and Congenital Diseases. Physiol Rev 2019; 98:2453-2475. [PMID: 30156497 DOI: 10.1152/physrev.00048.2017] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The heart is the first organ to be functional in the fetus. Heart formation is a complex morphogenetic process regulated by both genetic and epigenetic mechanisms. Congenital heart diseases (CHD) are the most prominent congenital diseases. Genetics is not sufficient to explain these diseases or the impact of them on patients. Epigenetics is more and more emerging as a basis for cardiac malformations. This review brings the essential knowledge on cardiac biology of development. It further provides a broad background on epigenetics with a focus on three-dimensional conformation of chromatin. Then, we summarize the current knowledge of the impact of epigenetics on cardiac cell fate decision. We further provide an update on the epigenetic anomalies in the genesis of CHD.
Collapse
Affiliation(s)
- Thomas Moore-Morris
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Patrick Piet van Vliet
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Gregor Andelfinger
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Michel Puceat
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| |
Collapse
|
39
|
Cai J, Yang J, Liu Q, Gong Y, Zhang Y, Zhang Z. Selenium deficiency inhibits myocardial development and differentiation by targeting the mir-215-5p/CTCF axis in chicken. Metallomics 2019; 11:415-428. [DOI: 10.1039/c8mt00319j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selenium (Se) is imperative for normal myocardial differentiation and development, and these basic cellular functions can be regulated by miRNA during cardiogenesis.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Jie Yang
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Qi Liu
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Yafan Gong
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Yuan Zhang
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Ziwei Zhang
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment
| |
Collapse
|
40
|
Cui M, Wang Z, Bassel-Duby R, Olson EN. Genetic and epigenetic regulation of cardiomyocytes in development, regeneration and disease. Development 2018; 145:145/24/dev171983. [PMID: 30573475 DOI: 10.1242/dev.171983] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Embryonic and postnatal life depend on the uninterrupted function of cardiac muscle cells. These cells, termed cardiomyocytes, display many fascinating behaviors, including complex morphogenic movements, interactions with other cell types of the heart, persistent contractility and quiescence after birth. Each of these behaviors depends on complex interactions between both cardiac-restricted and widely expressed transcription factors, as well as on epigenetic modifications. Here, we review recent advances in our understanding of the genetic and epigenetic control of cardiomyocyte differentiation and proliferation during heart development, regeneration and disease. We focus on those regulators that are required for both heart development and disease, and highlight the regenerative principles that might be manipulated to restore function to the injured adult heart.
Collapse
Affiliation(s)
- Miao Cui
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Zhaoning Wang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
41
|
Davis Armstrong NM, Chen WM, Brewer MS, Williams SR, Sale MM, Worrall BB, Keene KL. Epigenome-Wide Analyses Identify Two Novel Associations With Recurrent Stroke in the Vitamin Intervention for Stroke Prevention Clinical Trial. Front Genet 2018; 9:358. [PMID: 30237808 PMCID: PMC6135883 DOI: 10.3389/fgene.2018.00358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022] Open
Abstract
DNA methylation, a well-characterized epigenetic modification that is influenced by both environment and genetic variation, has previously been implicated in a number of complex diseases, including cardiovascular disease and stroke. The goal of this study was to evaluate epigenome-wide associations with recurrent stroke and the folate one-carbon metabolism-related trait, plasma homocysteine (hcy). Differential methylation analyses were performed on 473,864 autosomal CpG loci, using Illumina HumanMethylation 450K array data in 180 ischemic stroke cases from the Vitamin Intervention for Stroke Prevention (VISP) clinical trial. Linear regression was used to assess associations between number of strokes prior to VISP enrollment and measures of hcy with degree of methylation (β-values), while logistic regression was used to evaluate recurrent stroke status and incident recurrent stroke associations. All regression analyses were stratified by race. Two differentially methylated CpG sites exceeded epigenome-wide significance (p ≤ 1.055 × 10−7) for prior number of strokes (PNS) in European Americans. The top locus, cg22812874, was located in the ankyrin repeat and SOCS box containing 10 gene (ASB10; p = 3.4 × 10−9; β = −0.0308; 95% CI = −0.040, −0.002). Methylation locus cg00340919, located in an intron of the tetratricopeptide repeat domain 37 gene, was also statistically significant (TTC37; p = 8.74 × 10−8; β = −0.0517; 95% CI = −0.069, −0.034). An additional 138 CpG sites met our threshold for suggestive significance (p ≤ 5 × 10−5). We evaluated DNA methylation associated with recurrent stroke and hcy phenotypes across the epigenome. Hypermethylation at two CpG sites located in ASB10 and TTC37 was associated with fewer strokes prior to VISP enrollment. Our findings present a foundation for additional epigenome-wide studies, as well as mechanistic studies into epigenetic marks that influence recurrent stroke risk.
Collapse
Affiliation(s)
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States.,Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Michael S Brewer
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Stephen R Williams
- Department of Neurology, University of Virginia, Charlottesville, VA, United States
| | - Michèle M Sale
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States.,Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Bradford B Worrall
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States.,Department of Neurology, University of Virginia, Charlottesville, VA, United States
| | - Keith L Keene
- Department of Biology, East Carolina University, Greenville, NC, United States.,Center for Health Disparities, East Carolina University, Greenville, NC, United States
| |
Collapse
|
42
|
Ma JH, Kim HP, Bok J, Shin JO. CTCF is required for maintenance of auditory hair cells and hearing function in the mouse cochlea. Biochem Biophys Res Commun 2018; 503:2646-2652. [PMID: 30107916 DOI: 10.1016/j.bbrc.2018.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Auditory hair cells play an essential role in hearing. These cells convert sound waves, mechanical stimuli, into electrical signals that are conveyed to the brain via spiral ganglion neurons. The hair cells are located in the organ of Corti within the cochlea. They assemble in a special arrangement with three rows of outer hair cells and one row of inner hair cells. The proper differentiation and preservation of auditory hair cells are essential for acquiring and maintaining hearing function, respectively. Many genetic regulatory mechanisms underlying hair-cell differentiation and maintenance have been elucidated to date. However, the role of epigenetic regulation in hair-cell differentiation and maintenance has not been definitively demonstrated. CTCF is an essential epigenetic component that plays a primary role in the organization of global chromatin architecture. To determine the role of CTCF in mammalian hair cells, we specifically deleted Ctcf in developing hair cells by crossing Ctcffl/fl mice with Gfi1Cre/+ mice. Gfi1Cre; Ctcffl/fl mice did not exhibit obvious developmental defects in hair cells until postnatal day 8. However, at 3 weeks, the Ctcf deficiency caused intermittent degeneration of the stereociliary bundles of outer hair cells, resulting in profound hearing impairment. At 5 weeks, most hair cells were degenerated in Gfi1Cre; Ctcffl/fl mice, and defects in other structures of the organ of Corti, such as the tunnel of Corti and Nuel's space, became apparent. These results suggest that CTCF plays an essential role in maintaining hair cells and hearing function in mammalian cochlea.
Collapse
Affiliation(s)
- Ji-Hyun Ma
- Department of Anatomy, Republic of Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Republic of Korea; BK21 PLUS Project for Medical Science, Republic of Korea
| | - Jinwoong Bok
- Department of Anatomy, Republic of Korea; BK21 PLUS Project for Medical Science, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | | |
Collapse
|
43
|
Roy AR, Ahmed A, DiStefano PV, Chi L, Khyzha N, Galjart N, Wilson MD, Fish JE, Delgado-Olguín P. The transcriptional regulator CCCTC-binding factor limits oxidative stress in endothelial cells. J Biol Chem 2018; 293:8449-8461. [PMID: 29610276 PMCID: PMC5986204 DOI: 10.1074/jbc.m117.814699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
The CCCTC-binding factor (CTCF) is a versatile transcriptional regulator required for embryogenesis, but its function in vascular development or in diseases with a vascular component is poorly understood. Here, we found that endothelial Ctcf is essential for mouse vascular development and limits accumulation of reactive oxygen species (ROS). Conditional knockout of Ctcf in endothelial progenitors and their descendants affected embryonic growth, and caused lethality at embryonic day 10.5 because of defective yolk sac and placental vascular development. Analysis of global gene expression revealed Frataxin (Fxn), the gene mutated in Friedreich's ataxia (FRDA), as the most strongly down-regulated gene in Ctcf-deficient placental endothelial cells. Moreover, in vitro reporter assays showed that Ctcf activates the Fxn promoter in endothelial cells. ROS are known to accumulate in the endothelium of FRDA patients. Importantly, Ctcf deficiency induced ROS-mediated DNA damage in endothelial cells in vitro, and in placental endothelium in vivo Taken together, our findings indicate that Ctcf promotes vascular development and limits oxidative stress in endothelial cells. These results reveal a function for Ctcf in vascular development, and suggest a potential mechanism for endothelial dysfunction in FRDA.
Collapse
Affiliation(s)
- Anna R Roy
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Abdalla Ahmed
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter V DiStefano
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Lijun Chi
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Nadiya Khyzha
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Genetics and Genome Biology Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario M5S 3H2, Canada
| | - Paul Delgado-Olguín
- From the Translational Medicine Research Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada,
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario M5S 3H2, Canada
| |
Collapse
|
44
|
CRISPR-based strategies for studying regulatory elements and chromatin structure in mammalian gene control. Mamm Genome 2018; 29:205-228. [PMID: 29196861 PMCID: PMC9881389 DOI: 10.1007/s00335-017-9727-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/27/2017] [Indexed: 01/31/2023]
Abstract
The development of high-throughput methods has enabled the genome-wide identification of putative regulatory elements in a wide variety of mammalian cells at an unprecedented resolution. Extensive genomic studies have revealed the important role of regulatory elements and genetic variation therein in disease formation and risk. In most cases, there is only correlative evidence for the roles of these elements and non-coding changes within these elements in pathogenesis. With the advent of genome- and epigenome-editing tools based on the CRISPR technology, it is now possible to test the functional relevance of the regulatory elements and alterations on a genomic scale. Here, we review the various CRISPR-based strategies that have been developed to functionally validate the candidate regulatory elements in mammals as well as the non-coding genetic variants found to be associated with human disease. We also discuss how these synthetic biology tools have helped to elucidate the role of three-dimensional nuclear architecture and higher-order chromatin organization in shaping functional genome and controlling gene expression.
Collapse
|
45
|
Chisolm DA, Weinmann AS. Metabolites, genome organization, and cellular differentiation gene programs. Curr Opin Immunol 2018; 51:62-67. [PMID: 29525347 PMCID: PMC6015741 DOI: 10.1016/j.coi.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/29/2018] [Indexed: 10/17/2022]
Abstract
The nutrient environment and metabolism play a dynamic role in cellular differentiation and research is elucidating the mechanisms that contribute to this process. Metabolites serve as an effective bridge that helps to translate information about nutrient states into specific interpretations of the genome. Part of this activity relates to the role for metabolites in regulating epigenetic processes as well as a newly appreciated role for metabolites in the regulation of genome organization. In this review, we will highlight recent research that has defined roles for metabolism in the organization and interpretation of the genome and how this influences cellular differentiation decisions. We will integrate information about how nutrients, such as glutamine, regulate metabolites, such as alpha-ketoglutarate, and highlight how these pathways influence epigenetic states as well as CTCF association and genome organization. We will also discuss mechanistic similarities and differences between normal differentiation states associated with embryonic stem (ES) cells and T cells and how this might relate to dysregulated states such as those associated with tumor infiltrating lymphocytes.
Collapse
Affiliation(s)
- Danielle A Chisolm
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amy S Weinmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
46
|
Arzate-Mejía RG, Recillas-Targa F, Corces VG. Developing in 3D: the role of CTCF in cell differentiation. Development 2018; 145:dev137729. [PMID: 29567640 PMCID: PMC5897592 DOI: 10.1242/dev.137729] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CTCF is a highly conserved zinc-finger DNA-binding protein that mediates interactions between distant sequences in the genome. As a consequence, CTCF regulates enhancer-promoter interactions and contributes to the three-dimensional organization of the genome. Recent studies indicate that CTCF is developmentally regulated, suggesting that it plays a role in cell type-specific genome organization. Here, we review these studies and discuss how CTCF functions during the development of various cell and tissue types, ranging from embryonic stem cells and gametes, to neural, muscle and cardiac cells. We propose that the lineage-specific control of CTCF levels, and its partnership with lineage-specific transcription factors, allows for the control of cell type-specific gene expression via chromatin looping.
Collapse
Affiliation(s)
- Rodrigo G Arzate-Mejía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Victor G Corces
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
47
|
Sizer AJ, Martin KA. Respecting boundaries: CTCF, chromatin structural organization, and heart failure. J Thorac Dis 2018; 9:4889-4892. [PMID: 29312684 DOI: 10.21037/jtd.2017.11.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ashley J Sizer
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Kathleen A Martin
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|