1
|
Li S, Liu J, Wang J, Jia D, Sun Y, Ding L, Jiang J, Chen S, Chen F. CmCYC2d is a Regulator of Leaf Abaxial Curling in Chrysanthemum morifolium. PLANT, CELL & ENVIRONMENT 2025; 48:4245-4265. [PMID: 39934960 DOI: 10.1111/pce.15410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Leaf morphology is crucial for plant photosynthesis and stress adaptation. While CIN-like TCP transcription factors are well-known for their roles in leaf curling and morphogenesis, the function of CYC-like TCPs in leaf development remains largely unexplored. This study identifies CmCYC2d as a key regulator of abaxial leaf curling in Chrysanthemum morifolium. Phenotypic analysis revealed that the downward curling observed in OX-CmCYC2d transgenic lines was primarily due to the enlargement of adaxial epidermal cells. Furthermore, a reduction in epidermal cell number was identified as a significant contributor to the smaller leaf area in these plants. Transcriptome and WGCNA analyses highlighted CmSAUR55 as a potential downstream target of CmCYC2d. ChIP-qPCR, EMSA, and LUC assays confirmed that CmCYC2d directly bound to the CmSAUR55 promoter. Additionally, transcriptome data revealed that the reduced cell number in OX-CmCYC2d transgenic lines may be mediated by auxin-related pathways and key genes such as CNR7. The CmCYC2d-CmSAUR55 module was also closely linked to the development of enlarged adaxial epidermal cells in the leaf sinus, emphasising its role in this developmental process. This study highlights the regulatory role of CmCYC2d in leaf development and sheds light on the molecular mechanisms underlying leaf curling in chrysanthemum.
Collapse
Affiliation(s)
- Song Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Junqing Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Diwen Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - YanYan Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Vanneste S, Pei Y, Friml J. Mechanisms of auxin action in plant growth and development. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00851-2. [PMID: 40389696 DOI: 10.1038/s41580-025-00851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/21/2025]
Abstract
The phytohormone auxin is a major signal coordinating growth and development in plants. The variety of its effects arises from its ability to form local auxin maxima and gradients within tissues, generated through directional cell-to-cell transport and elaborate metabolic control. These auxin distribution patterns instruct cells in a context-dependent manner to undergo predefined developmental transitions. In this Review, we discuss advances in auxin action at the level of homeostasis and signalling. We highlight key insights into the structural basis of PIN-mediated intercellular auxin transport and explore two novel non-transcriptional auxin signalling mechanisms: one involving intracellular Ca2+ transients and another involving cell-surface auxin perception that mediates global, ultrafast phosphorylation. Furthermore, we examine emerging evidence indicating the involvement of cyclic adenosine monophosphate as a second messenger in the transcriptional auxin response. Together, these recent developments in auxin research have profoundly deepened our understanding of the complex and diverse activities of auxin in plant growth and development.
Collapse
Affiliation(s)
- Steffen Vanneste
- HortiCell, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Yuanrong Pei
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
3
|
Gorshkova T, Gorshkov O, Mokshina N. How it all begins: molecular players of the early graviresponse in the non-elongating part of flax stem. PLANT MOLECULAR BIOLOGY 2025; 115:61. [PMID: 40285981 DOI: 10.1007/s11103-025-01588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Plants have developed two major strategies to adjust their position in response to gravity: differential cell growth on opposing sides of elongating regions and complex processes in non-elongating stem parts, such as the development of reaction wood. Gravistimulation of flax plants induces gravitropic curvature in non-elongating stem parts, largely associated with modifications in phloem and xylem fibers. To gain insight into the key "triggers" and "forward players" that induce negative gravitropic reactions, transcriptome profiling of phloem fibers and xylem tissues from the pulling and opposite stem sides was conducted 1 and 8 h after gravistimulation. The first observed reaction was the activation of processes associated with RNA synthesis and protein folding in both tissues and stem sides, followed by the activation of kinases and transferases. Transcriptomic data revealed rapid and substantial shifts in chloroplast metabolism across all analyzed tissues, including the temporal activation of the branched-chain amino acid pathway, adjustments to light-harvesting complexes, and jasmonic acid biosynthesis. Notably, auxin transporter genes were activated only in the xylem, while other auxin-related genes showed minimal upregulation 1 h after stem inclination in any analyzed sample. Asymmetric changes between stem sides included the sharp activation of ethylene-related genes in the phloem fibers of the opposite stem side, as well as tertiary cell wall deposition in both the phloem and xylem fibers of the pulling stem side during the later stages of the graviresponse. These results provide valuable insights into the mechanisms underlying plant response to gravity.
Collapse
Affiliation(s)
- Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| | - Oleg Gorshkov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| | - Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia.
| |
Collapse
|
4
|
Wang J, Jin D, Deng Z, Zheng L, Guo P, Ji Y, Song Z, Zeng HY, Kinoshita T, Liao Z, Chen H, Deng XW, Wei N. The apoplastic pH is a key determinant in the hypocotyl growth response to auxin dosage and light. NATURE PLANTS 2025; 11:279-294. [PMID: 39953357 PMCID: PMC11842274 DOI: 10.1038/s41477-025-01910-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/20/2024] [Indexed: 02/17/2025]
Abstract
Auxin is a core phytohormone regulating plant elongation growth. While auxin typically promotes hypocotyl elongation, excessive amounts of auxin inhibit elongation. Moreover, auxin usually promotes light-grown, but inhibits dark-grown hypocotyl elongation. How dosage and light condition change the plant's response to auxin, also known as auxin's biphasic effect or dual effect, has long been mysterious. Auxin induces cell expansion primarily through apoplastic acidification and the subsequent 'acid growth' mechanism. Here we show that this pathway operates for both stimulatory and inhibitory auxin doses and under both dark and light conditions. Regardless of the dosage, more auxin induces more transcripts of SAURs (Small Auxin-Up RNAs), leading to a stronger activation of plasma membrane H+-ATPases (AHAs) and progressive acidification of the apoplast in hypocotyl epidermis. Apoplastic acidification promotes growth but only above a certain pH threshold, below which excessive acidification inhibits elongation. Auxin overdosage-triggered hypocotyl inhibition can be alleviated by suppressing the AHA activity or raising the apoplastic pH. Light-grown hypocotyls exhibit a higher apoplastic pH, which impedes cell elongation and counteracts auxin-induced over-acidification. Auxin and light antagonistically regulate the SAUR-PP2C.D-AHA pathway in the hypocotyl and influence plant elongation growth. Our findings suggest that the biphasic effect of auxin results from the biphasic response of hypocotyl cells to decreasing apoplastic pH.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Life Sciences, Southwest University, Chongqing, China
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- School of Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, China
| | - Dan Jin
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zhaoguo Deng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lidan Zheng
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Pengru Guo
- Microlens Technologies Co. Ltd., Beijing, China
| | - Yusi Ji
- Microlens Technologies Co. Ltd., Beijing, China
| | - Zihao Song
- School of Life Sciences, Southwest University, Chongqing, China
| | - Hai Yue Zeng
- School of Life Sciences, Southwest University, Chongqing, China
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Haodong Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xing Wang Deng
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
5
|
Dong D, Deng Q, Zhang J, Jia C, Gao M, Wang Y, Zhang L, Zhang N, Guo YD. Transcription factor SlSTOP1 regulates Small Auxin-Up RNA Genes for tomato root elongation under aluminum stress. PLANT PHYSIOLOGY 2024; 196:2654-2668. [PMID: 39343733 DOI: 10.1093/plphys/kiae519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Aluminum (Al) stress, a prevalent constraint in acidic soils, inhibits plant growth by inhibiting root elongation through restricted cell expansion. The molecular mechanisms of Al-induced root inhibition, however, are not fully understood. This study aimed to elucidate the role of Small Auxin-up RNAs (SlSAURs), which function downstream of the key Al stress-responsive transcription factor SENSITIVE TO PROTON RHIZOTOXICITY 1 (SlSTOP1) and its enhancer STOP1-INTERACTING ZINC-FINGER PROTEIN 1 (SlSZP1), in modulating root elongation under Al stress in tomato (Solanum lycopersicum). Our findings demonstrated that tomato lines with knocked-out SlSAURs exhibited shorter root lengths when subjected to Al stress. Further investigation into the underlying mechanisms revealed that SlSAURs interact with Type 2C Protein Phosphatases (SlPP2Cs), specifically D-clade Type 2C Protein Phosphatases (SlPP2C.Ds). This interaction was pivotal as it suppresses the phosphatase activity, leading to the degradation of SlPP2C.D's inhibitory effect on plasma membrane H+-ATPase. Consequently, this promoted cell expansion and root elongation under Al stress. These findings increase our understanding of the molecular mechanisms by which Al ions modulate root elongation. The discovery of the SlSAUR-SlPP2C.D interaction and its impact on H+-ATPase activity also provides a perspective on the adaptive strategies employed by plants to cope with Al toxicity, which may lead to the development of tomato cultivars with enhanced Al stress tolerance, thereby improving crop productivity in acidic soils.
Collapse
Affiliation(s)
- Danhui Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qilin Deng
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Congyang Jia
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ming Gao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yiran Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Chen W, Xu J, Chen J, Wang JF, Zhang S, Pei ZM. Acidic Stress Induces Cytosolic Free Calcium Oscillation, and an Appropriate Low pH Helps Maintain the Circadian Clock in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3107. [PMID: 39520026 PMCID: PMC11548685 DOI: 10.3390/plants13213107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Acidic stress is a formidable environmental factor that exerts adverse effects on plant growth and development, ultimately leading to a potential reduction in agricultural productivity. A low pH triggers Ca2+ influx across the plasma membrane (PM), eliciting distinct responses under various acidic pH levels. However, the underlying mechanisms by which Arabidopsis plant cells generate stimulus-specific Ca2+ signals in response to acidic stress remain largely unexplored. The experimentally induced stimulus may elicit spikes in cytosolic free Ca2+ concentration ([Ca2+]i) spikes or complex [Ca2+]i oscillations that persist for 20 min over a long-term of 24 h or even several days within the plant cytosol and chloroplast. This study investigated the increase in [Ca2+]i under a gradient of low pH stress ranging from pH 3.0 to 6.0. Notably, the peak of [Ca2+]i elevation was lower at pH 4.0 than at pH 3.0 during the initial 8 h, while other pH levels did not significantly increase [Ca2+]i compared to low acidic stress conditions. Lanthanum chloride (LaCl3) can effectively suppress the influx of [Ca2+]i from the apoplastic to the cytoplasm in plants under acid stress, with no discernible difference in intracellular calcium levels observed in Arabidopsis. Following 8 h of acid treatment in the darkness, the intracellular baseline Ca2+ levels in Arabidopsis were significantly elevated when exposed to low pH stress. A moderately low pH, specifically 4.0, may function as a spatial-temporal input into the circadian clock system. These findings suggest that acid stimulation can exert a continuous influence on intracellular calcium levels, as well as plant growth and development.
Collapse
Affiliation(s)
- Wei Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jing Xu
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jia Chen
- Center on Plant Environmental Sensing, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jun-Feng Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shu Zhang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
7
|
Fang C, Wu J, Liang W. Systematic Investigation of Aluminum Stress-Related Genes and Their Critical Roles in Plants. Int J Mol Sci 2024; 25:9045. [PMID: 39201731 PMCID: PMC11354972 DOI: 10.3390/ijms25169045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Aluminum (Al) stress is a dominant obstacle for plant growth in acidic soil, which accounts for approximately 40-50% of the world's potential arable land. The identification and characterization of Al stress response (Al-SR) genes in Arabidopsis, rice, and other plants have deepened our understanding of Al's molecular mechanisms. However, as a crop sensitive to acidic soil, only eight Al-SR genes have been identified and functionally characterized in maize. In this review, we summarize the Al-SR genes in plants, including their classifications, subcellular localizations, expression organs, functions, and primarily molecular regulatory networks. Moreover, we predict 166 putative Al-SR genes in maize based on orthologue analyses, facilitating a comprehensive understanding of the impact of Al stress on maize growth and development. Finally, we highlight the potential applications of alleviating Al toxicity in crop production. This review deepens our understanding of the Al response in plants and provides a blueprint for alleviating Al toxicity in crop production.
Collapse
Affiliation(s)
- Chaowei Fang
- College of Life Science, Henan Normal University, Xinxiang 453007, China;
| | - Jiajing Wu
- Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, China;
| | - Weihong Liang
- College of Life Science, Henan Normal University, Xinxiang 453007, China;
| |
Collapse
|
8
|
Li XM, Zhai HH, An XH, Zhang H, Zhang X, Wang P, Chen H, Tian Y. PpSAUR5 promotes plant growth by regulating lignin and hormone pathways. FRONTIERS IN PLANT SCIENCE 2024; 15:1291693. [PMID: 38984157 PMCID: PMC11231374 DOI: 10.3389/fpls.2024.1291693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 05/08/2024] [Indexed: 07/11/2024]
Abstract
Introduction Peach (Prunus persica) has a high nutritional and economic value. However, its overgrowth can lead to yield loss. Regulating the growth of peach trees is challenging. The small auxin-up RNA (SAUR) gene family is the largest family of auxin-responsive genes, which play important roles in plant growth and development. However, members of this gene family are rarely reported in peach. Methods In this study, we measured leaf area, chlorophyll and lignin content to detect the role of PpSAUR5 on growth through transgenic Arabidopsis. Results PpSAUR5 responds to auxin and gibberellin, promoting and inhibiting the synthesis of gibberellin and auxin, respectively. The heterologous transformation of PpSAUR5 in Arabidopsis led to enhanced growth of leaves and siliques, lightening of leaf color, decrease in chlorophyll content, increase in lignin content, abnormalities in the floral organs, and distortion of the inflorescence axis. Transcriptome data analysis of PpSAUR5 overexpression and wild-type lines revealed 854 differentially expressed genes (DEGs). GO and KEGG analyses showed that the DEGs were primarily involved in biological processes, such as cellular processes, metabolic processes, response to stimuli, and catalytic activity. These genes were mainly enriched in pathways, such as phenylalanine biosynthesis, phytohormone signaling, and MAPK signaling. Discussion In summary, these results suggested that PpSAUR5 might regulate tree vigor by modulating the synthesis of auxin and gibberellin. Future studies can use PpSAUR5 as a candidate gene to elucidate the potential regulatory mechanisms underlying peach tree vigor.
Collapse
Affiliation(s)
- Xin-Miao Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Han-Han Zhai
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiu-Hong An
- National Engineering Research Center for Agriculture in Northern Moutainous Areas, Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - He Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Xueying Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Pengfei Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Haijiang Chen
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Yi Tian
- National Engineering Research Center for Agriculture in Northern Moutainous Areas, Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
9
|
He M, Chen P, Li M, Lei F, Lu W, Jiang C, Liu J, Li Y, Xiao J, Zheng Y. Physiological and transcriptome analysis of changes in endogenous hormone and sugar content during the formation of tender asparagus stems. BMC PLANT BIOLOGY 2024; 24:581. [PMID: 38898382 PMCID: PMC11186092 DOI: 10.1186/s12870-024-05277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Asparagus is a nutritionally dense stem vegetable whose growth and development are correlated with its quality and yield. To investigate the dynamic changes and underlying mechanisms during the elongation and growth process of asparagus stems, we documented the growth pattern of asparagus and selected stem segments from four consecutive elongation stages using physiological and transcriptome analyses. Notably, the growth rate of asparagus accelerated at a length of 25 cm. A significant decrease in the concentration of sucrose, fructose, glucose, and additional sugars was observed in the elongation region of tender stems. Conversely, the levels of auxin and gibberellins(GAs) were elevated along with increased activity of enzymes involved in sucrose degradation. A significant positive correlation existed between auxin, GAs, and enzymes involved in sucrose degradation. The ABA content gradually increased with stem elongation. The tissue section showed that cell elongation is an inherent manifestation of stem elongation. The differential genes screened by transcriptome analysis were enriched in pathways such as starch and sucrose metabolism, phytohormone synthesis metabolism, and signal transduction. The expression levels of genes such as ARF, GA20ox, NCED, PIF4, and otherswere upregulated during stem elongation, while DAO, GA2ox, and other genes were downregulated. The gene expression level was consistent with changes in hormone content and influenced the cell length elongation. Additionally, the expression results of RT-qPCR were consistent with RNA-seq. The observed variations in gene expression levels, endogenous hormones and sugar changes during the elongation and growth of asparagus tender stems offer valuable insights for future investigations into the molecular mechanisms of asparagus stem growth and development and provide a theoretical foundation for cultivation and production practices.
Collapse
Affiliation(s)
- Maolin He
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peiran Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fengyun Lei
- Agricultural Equipment Research Institute, Chengdu Academy of Agricultural and Forest Sciences, Chengdu, 611130, China
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chengyao Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junting Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanwen Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiachang Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
10
|
Li D, Fan L, Shu Q, Guo F. Ectopic expression of OsWOX9A alters leaf anatomy and plant architecture in rice. PLANTA 2024; 260:30. [PMID: 38879830 DOI: 10.1007/s00425-024-04463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Ectopic expression of OsWOX9A induces narrow adaxially rolled rice leaves with larger bulliform cells and fewer large veins, probably through regulating the expression of auxin-related and expansin genes. The WUSCHEL-related homeobox (WOX) family plays a pivotal role in plant development by regulating genes involved in various aspects of growth and differentiation. OsWOX9A (DWT1) has been linked to tiller growth, uniform plant growth, and flower meristem activity. However, its impact on leaf growth and development in rice has not been studied. In this study, we investigated the biological role of OsWOX9A in rice growth and development using transgenic plants. Overexpression of OsWOX9A conferred narrow adaxially rolled rice leaves and altered plant architecture. These plants exhibited larger bulliform cells and fewer larger veins compared to wild-type plants. OsWOX9A overexpression also reduced plant height, tiller number, and seed-setting rate. Comparative transcriptome analysis revealed several differentially expressed auxin-related and expansin genes in OsWOX9A overexpressing plants, consistent with their roles in leaf and plant development. These results indicate that the ectopic expression of OsWOX9A may have multiple effects on the development and growth of rice, providing a more comprehensive picture of how the WOX9 subfamily contributes to leaf development and plant architecture.
Collapse
Affiliation(s)
- Dandan Li
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China
| | - Longjiang Fan
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China
| | - Qingyao Shu
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fu Guo
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China.
- Hainan Seed Industry Laboratory, Yazhou Bay Science and Technology City, Sanya, 572025, China.
| |
Collapse
|
11
|
Cohen JD, Strader LC. An auxin research odyssey: 1989-2023. THE PLANT CELL 2024; 36:1410-1428. [PMID: 38382088 PMCID: PMC11062468 DOI: 10.1093/plcell/koae054] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.
Collapse
Affiliation(s)
- Jerry D Cohen
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
12
|
Wang JL, Wang M, Zhang L, Li YX, Li JJ, Li YY, Pu ZX, Li DY, Liu XN, Guo W, Di DW, Li XF, Guo GQ, Wu L. WAV E3 ubiquitin ligases mediate degradation of IAA32/34 in the TMK1-mediated auxin signaling pathway during apical hook development. Proc Natl Acad Sci U S A 2024; 121:e2314353121. [PMID: 38635634 PMCID: PMC11047095 DOI: 10.1073/pnas.2314353121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Auxin regulates plant growth and development through downstream signaling pathways, including the best-known SCFTIR1/AFB-Aux/IAA-ARF pathway and several other less characterized "noncanonical" pathways. Recently, one SCFTIR1/AFB-independent noncanonical pathway, mediated by Transmembrane Kinase 1 (TMK1), was discovered through the analyses of its functions in Arabidopsis apical hook development. Asymmetric accumulation of auxin on the concave side of the apical hook triggers DAR1-catalyzed release of the C-terminal of TMK1, which migrates into the nucleus, where it phosphorylates and stabilizes IAA32/34 to inhibit cell elongation, which is essential for full apical hook formation. However, the molecular factors mediating IAA32/34 degradation have not been identified. Here, we show that proteins in the CYTOKININ INDUCED ROOT WAVING 1 (CKRW1)/WAVY GROWTH 3 (WAV3) subfamily act as E3 ubiquitin ligases to target IAA32/34 for ubiquitination and degradation, which is inhibited by TMK1c-mediated phosphorylation. This antagonistic interaction between TMK1c and CKRW1/WAV3 subfamily E3 ubiquitin ligases regulates IAA32/34 levels to control differential cell elongation along opposite sides of the apical hook.
Collapse
Affiliation(s)
- Jun-Li Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Ming Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210008, People’s Republic of China
| | - Li Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Basic Forestry and Proteomics Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou350002, People’s Republic of China
| | - You-Xia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Jing-Jing Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Yu-Yang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Zuo-Xian Pu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Dan-Yang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Xing-Nan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Wang Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Dong-Wei Di
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, People’s Republic of China
| | - Xiao-Feng Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Guang-Qin Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Lei Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| |
Collapse
|
13
|
Kuhn A, Roosjen M, Mutte S, Dubey SM, Carrillo Carrasco VP, Boeren S, Monzer A, Koehorst J, Kohchi T, Nishihama R, Fendrych M, Sprakel J, Friml J, Weijers D. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell 2024; 187:130-148.e17. [PMID: 38128538 PMCID: PMC10783624 DOI: 10.1016/j.cell.2023.11.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/29/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage.
Collapse
Affiliation(s)
- Andre Kuhn
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Sumanth Mutte
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Shiv Mani Dubey
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Aline Monzer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jasper Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands.
| |
Collapse
|
14
|
Agrahari RK, Kobayashi Y, Enomoto T, Miyachi T, Sakuma M, Fujita M, Ogata T, Fujita Y, Iuchi S, Kobayashi M, Yamamoto YY, Koyama H. STOP1-regulated SMALL AUXIN UP RNA55 ( SAUR55) is involved in proton/malate co-secretion for Al tolerance in Arabidopsis. PLANT DIRECT 2024; 8:e557. [PMID: 38161730 PMCID: PMC10755337 DOI: 10.1002/pld3.557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/25/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Proton (H+) release is linked to aluminum (Al)-enhanced organic acids (OAs) excretion from the roots under Al rhizotoxicity in plants. It is well-reported that the Al-enhanced organic acid excretion mechanism is regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1), a zinc-finger TF that regulates major Al tolerance genes. However, the mechanism of H+ release linked to OAs excretion under Al stress has not been fully elucidated. Recent physiological and molecular-genetic studies have implicated the involvement of SMALL AUXIN UP RNAs (SAURs) in the activation of plasma membrane H+-ATPases for stress responses in plants. We hypothesized that STOP1 is involved in the regulation of Al-responsive SAURs, which may contribute to the co-secretion of protons and malate under Al stress conditions. In our transcriptome analysis of the roots of the stop1 (sensitive to proton rhizotoxicity1) mutant, we found that STOP1 regulates the transcription of one of the SAURs, namely SAUR55. Furthermore, we observed that the expression of SAUR55 was induced by Al and repressed in the STOP1 T-DNA insertion knockout (KO) mutant (STOP1-KO). Through in silico analysis, we identified a functional STOP1-binding site in the promoter of SAUR55. Subsequent in vitro and in vivo studies confirmed that STOP1 directly binds to the promoter of SAUR55. This suggests that STOP1 directly regulates the expression of SAUR55 under Al stress. We next examined proton release in the rhizosphere and malate excretion in the T-DNA insertion KO mutant of SAUR55 (saur55), in conjunction with STOP1-KO. Both saur55 and STOP1-KO suppressed rhizosphere acidification and malate release under Al stress. Additionally, the root growth of saur55 was sensitive to Al-containing media. In contrast, the overexpressed line of SAUR55 enhanced rhizosphere acidification and malate release, leading to increased Al tolerance. These associations with Al tolerance were also observed in natural variations of Arabidopsis. These findings demonstrate that transcriptional regulation of SAUR55 by STOP1 positively regulates H+ excretion via PM H+-ATPase 2 which enhances Al tolerance by malate secretion from the roots of Arabidopsis. The activation of PM H+-ATPase 2 by SAUR55 was suggested to be due to PP2C.D2/D5 inhibition by interaction on the plasma membrane with its phosphatase. Furthermore, RNAi-suppression of NtSTOP1 in tobacco shows suppression of rhizosphere acidification under Al stress, which was associated with the suppression of SAUR55 orthologs, which are inducible by Al in tobacco. It suggests that transcriptional regulation of Al-inducible SAURs by STOP1 plays a critical role in OAs excretion in several plant species as an Al tolerance mechanism.
Collapse
Affiliation(s)
| | | | - Takuo Enomoto
- Faculty of Applied Biological SciencesGifu UniversityGifuJapan
| | - Tasuku Miyachi
- Faculty of Applied Biological SciencesGifu UniversityGifuJapan
| | - Marie Sakuma
- Mass Spectrometry and Microscopy UnitRIKEN Center for Sustainable Resource ScienceTsukubaIbarakiJapan
| | - Miki Fujita
- Mass Spectrometry and Microscopy UnitRIKEN Center for Sustainable Resource ScienceTsukubaIbarakiJapan
| | - Takuya Ogata
- Biological Resources and Post‐harvest DivisionJapan International Research Center for Agricultural Sciences (JIRCAS)TsukubaIbarakiJapan
| | - Yasunari Fujita
- Biological Resources and Post‐harvest DivisionJapan International Research Center for Agricultural Sciences (JIRCAS)TsukubaIbarakiJapan
- Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Satoshi Iuchi
- Experimental Plant DivisionRIKEN BioResource Research CenterTsukubaIbarakiJapan
| | - Masatomo Kobayashi
- Experimental Plant DivisionRIKEN BioResource Research CenterTsukubaIbarakiJapan
| | | | - Hiroyuki Koyama
- Faculty of Applied Biological SciencesGifu UniversityGifuJapan
| |
Collapse
|
15
|
Bianchimano L, De Luca MB, Borniego MB, Iglesias MJ, Casal JJ. Temperature regulation of auxin-related gene expression and its implications for plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7015-7033. [PMID: 37422862 DOI: 10.1093/jxb/erad265] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Twenty-five years ago, a seminal paper demonstrated that warm temperatures increase auxin levels to promote hypocotyl growth in Arabidopsis thaliana. Here we highlight recent advances in auxin-mediated thermomorphogenesis and identify unanswered questions. In the warmth, PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF7 bind the YUCCA8 gene promoter and, in concert with histone modifications, enhance its expression to increase auxin synthesis in the cotyledons. Once transported to the hypocotyl, auxin promotes cell elongation. The meta-analysis of expression of auxin-related genes in seedlings exposed to temperatures ranging from cold to hot shows complex patterns of response. Changes in auxin only partially account for these responses. The expression of many SMALL AUXIN UP RNA (SAUR) genes reaches a maximum in the warmth, decreasing towards both temperature extremes in correlation with the rate of hypocotyl growth. Warm temperatures enhance primary root growth, the response requires auxin, and the hormone levels increase in the root tip but the impacts on cell division and cell expansion are not clear. A deeper understanding of auxin-mediated temperature control of plant architecture is necessary to face the challenge of global warming.
Collapse
Affiliation(s)
- Luciana Bianchimano
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - María Belén De Luca
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - María Belén Borniego
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - María José Iglesias
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires C1428EHA, Argentina
| | - Jorge J Casal
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina
| |
Collapse
|
16
|
Yang L, Luo S, Jiao J, Yan W, Zeng B, He H, He G. Integrated Transcriptomic and Metabolomic Analysis Reveals the Mechanism of Gibberellic acid Regulates the Growth and Flavonoid Synthesis in Phellodendron chinense Schneid Seedlings. Int J Mol Sci 2023; 24:16045. [PMID: 38003235 PMCID: PMC10671667 DOI: 10.3390/ijms242216045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The phytohormone gibberellic acids (GAs) play a crucial role in the processes of growth, organ development, and secondary metabolism. However, the mechanism of exogenous GA3 regulating the growth and flavonoid synthesis in Phellodendron chinense Schneid (P. chinense Schneid) seedlings remains unclear. In this study, the physicochemical properties, gene expression level, and secondary metabolite of P. chinense Schneid seedlings under GA3 treatment were investigated. The results showed that GA3 significantly improved the plant height, ground diameter, fresh weight, chlorophyll content, soluble substance content, superoxide dismutase, and peroxidase activities. This was accompanied by elevated relative expression levels of Pc(S)-GA2ox, Pc(S)-DELLA, Pc(S)-SAUR50, Pc(S)-PsaD, Pc(S)-Psb 27, Pc(S)-PGK, Pc(S)-CER3, and Pc(S)-FBA unigenes. Conversely, a notable reduction was observed in the carotenoid content, catalase activity and the relative expression abundances of Pc(S)-KAO, Pc(S)-GID1/2, and Pc(S)-GH 3.6 unigenes in leaves of P. chinense Schneid seedlings (p < 0.05). Furthermore, GA3 evidently decreased the contents of pinocembrin, pinobanksin, isosakuranetin, naringin, naringenin, (-)-epicatechin, tricetin, luteolin, and vitexin belonged to flavonoid in stem bark of P. chinense Schneid seedlings (p < 0.05). These results indicated that exogenous GA3 promoted growth through improving chlorophyll content and gene expression in photosynthesis and phytohormone signal pathway and inhibited flavonoid synthesis in P. chinense Schneid seedlings.
Collapse
Affiliation(s)
- Lv Yang
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Shengwei Luo
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Jing Jiao
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Baiquan Zeng
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Hanjie He
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Sciences and Technology, Central South University of Forestry & Technology, Changsha 410004, China; (L.Y.); (S.L.); (J.J.); (W.Y.); (B.Z.)
| | - Gongxiu He
- College of Forestry, Central South University of Forestry & Technology, Changsha 410004, China
| |
Collapse
|
17
|
Ren Z, Liu Y, Li L, Wang X, Zhou Y, Zhang M, Li Z, Yi F, Duan L. Deciphering transcriptional mechanisms of maize internodal elongation by regulatory network analysis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4503-4519. [PMID: 37170764 DOI: 10.1093/jxb/erad178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/10/2023] [Indexed: 05/13/2023]
Abstract
The lengths of the basal internodes is an important factor for lodging resistance of maize (Zea mays). In this study, foliar application of coronatine (COR) to 10 cultivars at the V8 growth stage had different suppression effects on the length of the eighth internode, with three being categorized as strong-inhibition cultivars (SC), five as moderate (MC), and two as weak (WC). RNA-sequencing of the eighth internode of the cultivars revealed a total of 7895 internode elongation-regulating genes, including 777 transcription factors (TFs). Genes related to the hormones cytokinin, gibberellin, auxin, and ethylene in the SC group were significantly down-regulated compared to WC, and more cell-cycle regulatory factors and cell wall-related genes showed significant changes, which severely inhibited internode elongation. In addition, we used EMSAs to explore the direct regulatory relationship between two important TFs, ZmABI7 and ZmMYB117, which regulate the cell cycle and cell wall modification by directly binding to the promoters of their target genes ZmCYC1, ZmCYC3, ZmCYC7, and ZmCPP1. The transcriptome reported in this study will provide a useful resource for studying maize internode development, with potential use for targeted genetic control of internode length to improve the lodging resistance of maize.
Collapse
Affiliation(s)
- Zhaobin Ren
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China
| | - Yingru Liu
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China
- North China Key Laboratory for Crop Germplasm Resources, Ministry of Education, State Key Laboratory of North China Crop Improvement and Regulation & College of Agronomy, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Lu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China
| | - Xing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China
| | - Fei Yi
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
18
|
Serre NBC, Wernerová D, Vittal P, Dubey SM, Medvecká E, Jelínková A, Petrášek J, Grossmann G, Fendrych M. The AUX1-AFB1-CNGC14 module establishes a longitudinal root surface pH profile. eLife 2023; 12:e85193. [PMID: 37449525 PMCID: PMC10414970 DOI: 10.7554/elife.85193] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Plant roots navigate in the soil environment following the gravity vector. Cell divisions in the meristem and rapid cell growth in the elongation zone propel the root tips through the soil. Actively elongating cells acidify their apoplast to enable cell wall extension by the activity of plasma membrane AHA H+-ATPases. The phytohormone auxin, central regulator of gravitropic response and root development, inhibits root cell growth, likely by rising the pH of the apoplast. However, the role of auxin in the regulation of the apoplastic pH gradient along the root tip is unclear. Here, we show, by using an improved method for visualization and quantification of root surface pH, that the Arabidopsis thaliana root surface pH shows distinct acidic and alkaline zones, which are not primarily determined by the activity of AHA H+-ATPases. Instead, the distinct domain of alkaline pH in the root transition zone is controlled by a rapid auxin response module, consisting of the AUX1 auxin influx carrier, the AFB1 auxin co-receptor, and the CNCG14 calcium channel. We demonstrate that the rapid auxin response pathway is required for an efficient navigation of the root tip.
Collapse
Affiliation(s)
- Nelson BC Serre
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Daša Wernerová
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
- Institute of Cell and Interaction Biology, Heinrich-Heine-University DüsseldorfDüsseldorfGermany
| | - Pruthvi Vittal
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Shiv Mani Dubey
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Eva Medvecká
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Adriana Jelínková
- Institute of Experimental Botany, Czech Academy of SciencesPragueCzech Republic
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
- Institute of Experimental Botany, Czech Academy of SciencesPragueCzech Republic
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine-University DüsseldorfDüsseldorfGermany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich-Heine-University DüsseldorfDüsseldorfGermany
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| |
Collapse
|
19
|
Xie W, Liu S, Gao H, Wu J, Liu D, Kinoshita T, Huang CF. PP2C.D phosphatase SAL1 positively regulates aluminum resistance via restriction of aluminum uptake in rice. PLANT PHYSIOLOGY 2023; 192:1498-1516. [PMID: 36823690 PMCID: PMC10231357 DOI: 10.1093/plphys/kiad122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Aluminum (Al) toxicity represents a primary constraint for crop production in acidic soils. Rice (Oryza sativa) is a highly Al-resistant species; however, the molecular mechanisms underlying its high Al resistance are still not fully understood. Here, we identified SAL1 (SENSITIVE TO ALUMINUM 1), which encodes a plasma membrane (PM)-localized PP2C.D phosphatase, as a crucial regulator of Al resistance using a forward genetic screen. SAL1 was found to interact with and inhibit the activity of PM H+-ATPases, and mutation of SAL1 increased PM H+-ATPase activity and Al uptake, causing hypersensitivity to internal Al toxicity. Furthermore, knockout of NRAT1 (NRAMP ALUMINUM TRANSPORTER 1) encoding an Al uptake transporter in a sal1 background rescued the Al-sensitive phenotype of sal1, revealing that coordination of Al accumulation in the cell, wall and symplasm is critical for Al resistance in rice. By contrast, we found that mutations of PP2C.D phosphatase-encoding genes in Arabidopsis (Arabidopsis thaliana) enhanced Al resistance, which was attributed to increased malate secretion. Our results reveal the importance of PP2C.D phosphatases in Al resistance and the different strategies used by rice and Arabidopsis to defend against Al toxicity.
Collapse
Affiliation(s)
- Wenxiang Xie
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huiling Gao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Dilin Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Chao-Feng Huang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Ang ACH, Østergaard L. Save your TIRs - more to auxin than meets the eye. THE NEW PHYTOLOGIST 2023; 238:971-976. [PMID: 36721296 PMCID: PMC10952682 DOI: 10.1111/nph.18783] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Auxin has long been known as an important regulator of plant growth and development. Classical studies in auxin biology have uncovered a 'canonical' transcriptional auxin-signalling pathway involving the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) receptors. TIR1/AFB perception of auxin triggers the degradation of repressors and the derepression of auxin-responsive genes. Nevertheless, the canonical pathway cannot account for all aspects of auxin biology, such as physiological responses that are too rapid for transcriptional regulation. This Tansley insight will explore several 'non-canonical' pathways that have been described in recent years mediating fast auxin responses. We focus on the interplay between a nontranscriptional branch of TIR1/AFB signalling and a TRANSMEMBRANE KINASE1 (TMK1)-mediated pathway in root acid growth. Other developmental aspects involving the TMKs and their association with the controversial AUXIN-BINDING PROTEIN 1 (ABP1) will be discussed. Finally, we provide an updated overview of the ETTIN (ETT)-mediated pathway in contexts outside of gynoecium development.
Collapse
Affiliation(s)
| | - Lars Østergaard
- John Innes CentreNorwichNR4 7UHUK
- Department of BiologyUniversity of OxfordOxfordOX1 3RBUK
| |
Collapse
|
21
|
Kinoshita SN, Suzuki T, Kiba T, Sakakibara H, Kinoshita T. Photosynthetic-Product-Dependent Activation of Plasma Membrane H+-ATPase and Nitrate Uptake in Arabidopsis Leaves. PLANT & CELL PHYSIOLOGY 2023; 64:191-203. [PMID: 36705265 PMCID: PMC9977229 DOI: 10.1093/pcp/pcac157] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/22/2022] [Accepted: 11/08/2022] [Indexed: 06/18/2023]
Abstract
Plasma membrane (PM) proton-translocating adenosine triphosphatase (H+-ATPase) is a pivotal enzyme for plant growth and development that acts as a primary transporter and is activated by phosphorylation of the penultimate residue, threonine, at the C-terminus. Small Auxin-Up RNA family proteins maintain the phosphorylation level via inhibiting dephosphorylation of the residue by protein phosphatase 2C-D clade. Photosynthetically active radiation activates PM H+-ATPase via phosphorylation in mesophyll cells of Arabidopsis thaliana, and phosphorylation of PM H+-ATPase depends on photosynthesis and photosynthesis-related sugar supplementation, such as sucrose, fructose and glucose. However, the molecular mechanism and physiological role of photosynthesis-dependent PM H+-ATPase activation are still unknown. Analysis using sugar analogs, such as palatinose, turanose and 2-deoxy glucose, revealed that sucrose metabolites and products of glycolysis such as pyruvate induce phosphorylation of PM H+-ATPase. Transcriptome analysis showed that the novel isoform of the Small Auxin-Up RNA genes, SAUR30, is upregulated in a light- and sucrose-dependent manner. Time-course analyses of sucrose supplementation showed that the phosphorylation level of PM H+-ATPase increased within 10 min, but the expression level of SAUR30 increased later than 10 min. The results suggest that two temporal regulations may participate in the regulation of PM H+-ATPase. Interestingly, a 15NO3- uptake assay in leaves showed that light increases 15NO3- uptake and that increment of 15NO3- uptake depends on PM H+-ATPase activity. The results opened the possibility of the physiological role of photosynthesis-dependent PM H+-ATPase activation in the uptake of NO3-. We speculate that PM H+-ATPase may connect photosynthesis and nitrogen metabolism in leaves.
Collapse
Affiliation(s)
- Satoru N Kinoshita
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501 Japan
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8602 Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8602 Japan
| | | |
Collapse
|
22
|
Li L, Chen X. Auxin regulation on crop: from mechanisms to opportunities in soybean breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:16. [PMID: 37313296 PMCID: PMC10248601 DOI: 10.1007/s11032-023-01361-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 06/15/2023]
Abstract
Breeding crop varieties with high yield and ideal plant architecture is a desirable goal of agricultural science. The success of "Green Revolution" in cereal crops provides opportunities to incorporate phytohormones in crop breeding. Auxin is a critical phytohormone to determine nearly all the aspects of plant development. Despite the current knowledge regarding auxin biosynthesis, auxin transport and auxin signaling have been well characterized in model Arabidopsis (Arabidopsis thaliana) plants, how auxin regulates crop architecture is far from being understood, and the introduction of auxin biology in crop breeding stays in the theoretical stage. Here, we give an overview on molecular mechanisms of auxin biology in Arabidopsis, and mainly summarize auxin contributions for crop plant development. Furthermore, we propose potential opportunities to integrate auxin biology in soybean (Glycine max) breeding.
Collapse
Affiliation(s)
- Linfang Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|
23
|
Wang Y, Peng Y, Guo H. To curve for survival: Apical hook development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:324-342. [PMID: 36562414 DOI: 10.1111/jipb.13441] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Apical hook is a simple curved structure formed at the upper part of hypocotyls when dicot seeds germinate in darkness. The hook structure is transient but essential for seedlings' survival during soil emergence due to its efficient protection of the delicate shoot apex from mechanical injury. As a superb model system for studying plant differential growth, apical hook has fascinated botanists as early as the Darwin age, and significant advances have been achieved at both the morphological and molecular levels to understand how apical hook development is regulated. Here, we will mainly summarize the research progress at these two levels. We will also briefly compare the growth dynamics between apical hook and hypocotyl gravitropic bending at early seed germination phase, with the aim to deduce a certain consensus on their connections. Finally, we will outline the remaining questions and future research perspectives for apical hook development.
Collapse
Affiliation(s)
- Yichuan Wang
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yang Peng
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
24
|
Fu H, Yu X, Jiang Y, Wang Y, Yang Y, Chen S, Chen Q, Guo Y. SALT OVERLY SENSITIVE 1 is inhibited by clade D Protein phosphatase 2C D6 and D7 in Arabidopsis thaliana. THE PLANT CELL 2023; 35:279-297. [PMID: 36149299 PMCID: PMC9806586 DOI: 10.1093/plcell/koac283] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/08/2022] [Indexed: 05/15/2023]
Abstract
The salt overly sensitive (SOS) pathway is essential for maintaining sodium ion homeostasis in plants. This conserved pathway is activated by a calcium signaling-dependent phosphorylation cascade. However, the identity of the phosphatases and their regulatory mechanisms that would deactivate the SOS pathway remain unclear. In this study, we demonstrate that PP2C.D6 and PP2C.D7, which belong to clade D of the protein phosphatase 2C (PP2C) subfamily in Arabidopsis thaliana, directly interact with SOS1 and inhibit its Na+/H+ antiporter activity under non-salt-stress conditions. Upon salt stress, SOS3-LIKE CALCIUM-BINDING PROTEIN8 (SCaBP8), a member of the SOS pathway, interacts with the PP2Cs and suppresses their phosphatase activity; simultaneously, SCaBP8 regulates the subcellular localization of PP2C.D6 by releasing it from the plasma membrane. Thus, we identified two negative regulators of the SOS pathway that repress SOS1 activity under nonstress conditions. These processes set the stage for the activation of SOS1 by the kinase SOS2 to achieve plant salt tolerance. Our results suggest that reversible phosphorylation/dephosphorylation is crucial for the regulation of the SOS pathway, and that calcium sensors play dual roles in activating/deactivating SOS2 and PP2C phosphatases under salt stress.
Collapse
Affiliation(s)
- Haiqi Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiang Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuhan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 100093, China
| | - Qijun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Wang J, Sun N, Zheng L, Zhang F, Xiang M, Chen H, Deng XW, Wei N. Brassinosteroids promote etiolated apical structures in darkness by amplifying the ethylene response via the EBF-EIN3/PIF3 circuit. THE PLANT CELL 2023; 35:390-408. [PMID: 36321994 PMCID: PMC9806594 DOI: 10.1093/plcell/koac316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Germinated plants grow in darkness until they emerge above the soil. To help the seedling penetrate the soil, most dicot seedlings develop an etiolated apical structure consisting of an apical hook and folded, unexpanded cotyledons atop a rapidly elongating hypocotyl. Brassinosteroids (BRs) are necessary for etiolated apical development, but their precise role and mechanisms remain unclear. Arabidopsis thaliana SMALL AUXIN UP RNA17 (SAUR17) is an apical-organ-specific regulator that promotes production of an apical hook and closed cotyledons. In darkness, ethylene and BRs stimulate SAUR17 expression by transcription factor complexes containing PHYTOCHROME-INTERACTING FACTORs (PIFs), ETHYLENE INSENSITIVE 3 (EIN3), and its homolog EIN3-LIKE 1 (EIL1), and BRASSINAZOLE RESISTANT1 (BZR1). BZR1 requires EIN3 and PIFs for enhanced DNA-binding and transcriptional activation of the SAUR17 promoter; while EIN3, PIF3, and PIF4 stability depends on BR signaling. BZR1 transcriptionally downregulates EIN3-BINDING F-BOX 1 and 2 (EBF1 and EBF2), which encode ubiquitin ligases mediating EIN3 and PIF3 protein degradation. By modulating the EBF-EIN3/PIF protein-stability circuit, BRs induce EIN3 and PIF3 accumulation, which underlies BR-responsive expression of SAUR17 and HOOKLESS1 and ultimately apical hook development. We suggest that in the etiolated development of apical structures, BRs primarily modulate plant sensitivity to darkness and ethylene.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Life Sciences, Southwest University, Chongqing 400715, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Sun
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Lidan Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fangfang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mengda Xiang
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
26
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
27
|
The evolution of plant proton pump regulation via the R domain may have facilitated plant terrestrialization. Commun Biol 2022; 5:1312. [PMID: 36446861 PMCID: PMC9708826 DOI: 10.1038/s42003-022-04291-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Plasma membrane (PM) H+-ATPases are the electrogenic proton pumps that export H+ from plant and fungal cells to acidify the surroundings and generate a membrane potential. Plant PM H+-ATPases are equipped with a C‑terminal autoinhibitory regulatory (R) domain of about 100 amino acid residues, which could not be identified in the PM H+-ATPases of green algae but appeared fully developed in immediate streptophyte algal predecessors of land plants. To explore the physiological significance of this domain, we created in vivo C-terminal truncations of autoinhibited PM H+‑ATPase2 (AHA2), one of the two major isoforms in the land plant Arabidopsis thaliana. As more residues were deleted, the mutant plants became progressively more efficient in proton extrusion, concomitant with increased expansion growth and nutrient uptake. However, as the hyperactivated AHA2 also contributed to stomatal pore opening, which provides an exit pathway for water and an entrance pathway for pests, the mutant plants were more susceptible to biotic and abiotic stresses, pathogen invasion and water loss, respectively. Taken together, our results demonstrate that pump regulation through the R domain is crucial for land plant fitness and by controlling growth and nutrient uptake might have been necessary already for the successful water-to-land transition of plants.
Collapse
|
28
|
MdPP2C24/37, Protein Phosphatase Type 2Cs from Apple, Interact with MdPYL2/12 to Negatively Regulate ABA Signaling in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms232214375. [PMID: 36430851 PMCID: PMC9696740 DOI: 10.3390/ijms232214375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The phytohormone abscisic acid (ABA) plays an important role in the ability of plants to cope with drought stress. As core members of the ABA signaling pathway, protein phosphatase type 2Cs (PP2Cs) have been reported in many species. However, the functions of MdPP2Cs in apple (Malus domestica) are unclear. In this study, we identified two PP2C-encoding genes, MdPP2C24/37, with conserved PP2C catalytic domains, using sequence alignment. The nucleus-located MdPP2C24/37 genes were induced by ABA or mannitol in apple. Genetic analysis revealed that overexpression of MdPP2C24/37 in Arabidopsis thaliana led to plant insensitivity to ABA or mannitol treatment, in terms of inhibiting seed germination and overall seedling establishment. The expression of stress marker genes was upregulated in MdPP2C24/37 transgenic lines. At the same time, MdPP2C24/37 transgenic lines displayed inhibited ABA-mediated stomatal closure, which led to higher water loss rates. Moreover, when exposed to drought stress, chlorophyll levels decreased and MDA and H2O2 levels accumulated in the MdPP2C24/37 transgenic lines. Further, MdPP2C24/37 interacted with MdPYL2/12 in vitro and vivo. The results indicate that MdPP2C24/37 act as negative regulators in response to ABA-mediated drought resistance.
Collapse
|
29
|
Overexpression of a Plasma Membrane H +-ATPase Gene OSA1 Stimulates the Uptake of Primary Macronutrients in Rice Roots. Int J Mol Sci 2022; 23:ijms232213904. [PMID: 36430382 PMCID: PMC9697395 DOI: 10.3390/ijms232213904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Plasma membrane (PM) H+-ATPase is a master enzyme involved in various plant physiological processes, such as stomatal movements in leaves and nutrient uptake and transport in roots. Overexpression of Oryza sativa PM H+-ATPase 1 (OSA1) has been known to increase NH4+ uptake in rice roots. Although electrophysiological and pharmacological experiments have shown that the transport of many substances is dependent on the proton motive force provided by PM H+-ATPase, the exact role of PM H+-ATPase on the uptake of nutrients in plant roots, especially for the primary macronutrients N, P, and K, is still largely unknown. Here, we used OSA1 overexpression lines (OSA1-oxs) and gene-knockout osa1 mutants to investigate the effect of modulation of PM H+-ATPase on the absorption of N, P, and K nutrients through the use of a nutrient-exhaustive method and noninvasive microtest technology (NMT) in rice roots. Our results showed that under different concentrations of P and K, the uptake rates of P and K were enhanced in OSA1-oxs; by contrast, the uptake rates of P and K were significantly reduced in roots of osa1 mutants when compared with wild-type. In addition, the net influx rates of NH4+ and K+, as well as the efflux rate of H+, were enhanced in OSA1-oxs and suppressed in osa1 mutants under low concentration conditions. In summary, this study indicated that overexpression of OSA1 stimulated the uptake rate of N, P, and K and promoted flux rates of cations (i.e., H+, NH4+, and K+) in rice roots. These results may provide a novel insight into improving the coordinated utilization of macronutrients in crop plants.
Collapse
|
30
|
Nagpal P, Reeves PH, Wong JH, Armengot L, Chae K, Rieveschl NB, Trinidad B, Davidsdottir V, Jain P, Gray WM, Jaillais Y, Reed JW. SAUR63 stimulates cell growth at the plasma membrane. PLoS Genet 2022; 18:e1010375. [PMID: 36121899 PMCID: PMC9522268 DOI: 10.1371/journal.pgen.1010375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/29/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
In plants, regulated cell expansion determines organ size and shape. Several members of the family of redundantly acting Small Auxin Up RNA (SAUR) proteins can stimulate plasma membrane (PM) H+-ATPase proton pumping activity by inhibiting PM-associated PP2C.D phosphatases, thereby increasing the PM electrochemical potential, acidifying the apoplast, and stimulating cell expansion. Similarly, Arabidopsis thaliana SAUR63 was able to increase growth of various organs, antagonize PP2C.D5 phosphatase, and increase H+-ATPase activity. Using a gain-of-function approach to bypass genetic redundancy, we dissected structural requirements for SAUR63 growth-promoting activity. The divergent N-terminal domain of SAUR63 has a predicted basic amphipathic α-helix and was able to drive partial PM association. Deletion of the N-terminal domain decreased PM association of a SAUR63 fusion protein, as well as decreasing protein level and eliminating growth-promoting activity. Conversely, forced PM association restored ability to promote H+-ATPase activity and cell expansion, indicating that SAUR63 is active when PM-associated. Lipid binding assays and perturbations of PM lipid composition indicate that the N-terminal domain can interact with PM anionic lipids. Mutations in the conserved SAUR domain also reduced PM association in root cells. Thus, both the N-terminal domain and the SAUR domain may cooperatively mediate the SAUR63 PM association required to promote growth. Plant organs reach their final shape and size after substantial cell expansion. Proton pumps at the plasma membrane promote cell expansion by acidifying the cell wall to loosen it, and by increasing electrochemical potential across the plasma membrane for solute uptake that maintains intracellular turgor. Plasma-membrane-associated proteins tightly regulate proton pump activity, in order for organs to grow to an appropriate extent. We have studied requirements for activity of one such regulatory protein in the model plant Arabidopsis called SAUR63. This protein is made rapidly in response to plant growth hormones, and it increases proton pump activity to promote organ growth. These activities depend on its binding to anionic lipids in the plasma membrane, and forced plasma membrane association of SAUR63 can increase growth. Many proteins in the same family are found within Arabidopsis and in all land plants, and likely differ in their affinity for the plasma membrane or in other properties. Further studies of other family members may show how such proteins regulate growth under diverse physiological contexts.
Collapse
Affiliation(s)
- Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Paul H. Reeves
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Keun Chae
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nathaniel B. Rieveschl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brendan Trinidad
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vala Davidsdottir
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Prateek Jain
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Jason W. Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
- * E-mail:
| |
Collapse
|
31
|
Sobol G, Chakraborty J, Martin GB, Sessa G. The Emerging Role of PP2C Phosphatases in Tomato Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:737-747. [PMID: 35696659 DOI: 10.1094/mpmi-02-22-0037-cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The antagonistic effect of plant immunity on growth likely drove evolution of molecular mechanisms that prevent accidental initiation and prolonged activation of plant immune responses. Signaling networks of pattern-triggered and effector-triggered immunity, the two main layers of plant immunity, are tightly regulated by the activity of protein phosphatases that dephosphorylate their protein substrates and reverse the action of protein kinases. Members of the PP2C class of protein phosphatases have emerged as key negative regulators of plant immunity, primarily from research in the model plant Arabidopsis thaliana, revealing the potential to employ PP2C proteins to enhance plant disease resistance. As a first step towards focusing on the PP2C family for both basic and translational research, we analyzed the tomato genome sequence to ascertain the complement of the tomato PP2C family, identify conserved protein domains and signals in PP2C amino acid sequences, and examine domain combinations in individual proteins. We then identified tomato PP2Cs that are candidate regulators of single or multiple layers of the immune signaling network by in-depth analysis of publicly available RNA-seq datasets. These included expression profiles of plants treated with fungal or bacterial pathogen-associated molecular patterns, with pathogenic, nonpathogenic, and disarmed bacteria, as well as pathogenic fungi and oomycetes. Finally, we discuss the possible use of immunity-associated PP2Cs to better understand the signaling networks of plant immunity and to engineer durable and broad disease resistance in crop plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Guy Sobol
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Joydeep Chakraborty
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Guido Sessa
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|
32
|
PIF7 is a master regulator of thermomorphogenesis in shade. Nat Commun 2022; 13:4942. [PMID: 36038577 PMCID: PMC9424238 DOI: 10.1038/s41467-022-32585-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/06/2022] [Indexed: 11/26/2022] Open
Abstract
The size of plant organs is highly responsive to environmental conditions. The plant’s embryonic stem, or hypocotyl, displays phenotypic plasticity, in response to light and temperature. The hypocotyl of shade avoiding species elongates to outcompete neighboring plants and secure access to sunlight. Similar elongation occurs in high temperature. However, it is poorly understood how environmental light and temperature cues interact to effect plant growth. We found that shade combined with warm temperature produces a synergistic hypocotyl growth response that dependent on PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) and auxin. This unique but agriculturally relevant scenario was almost totally independent on PIF4 activity. We show that warm temperature is sufficient to promote PIF7 DNA binding but not transcriptional activation and we demonstrate that additional, unknown factor/s must be working downstream of the phyB-PIF-auxin module. Our findings will improve the predictions of how plants will respond to increased ambient temperatures when grown at high density. Plant hypocotyl elongation response to light and temperature. Here the authors show that shade combined with warm temperature synergistically enhances the hypocotyl growth response via the PIF7 transcription factor, auxin, and as yet unknown factor.
Collapse
|
33
|
Li M, Liu C, Hepworth SR, Ma C, Li H, Li J, Wang SM, Yin H. SAUR15 interaction with BRI1 activates plasma membrane H+-ATPase to promote organ development of Arabidopsis. PLANT PHYSIOLOGY 2022; 189:2454-2466. [PMID: 35511168 PMCID: PMC9343009 DOI: 10.1093/plphys/kiac194] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/25/2022] [Indexed: 05/13/2023]
Abstract
Brassinosteroids (BRs) are an important group of plant steroid hormones that regulate growth and development. Several members of the SMALL AUXIN UP RNA (SAUR) family have roles in BR-regulated hypocotyl elongation and root growth. However, the mechanisms are unclear. Here, we show in Arabidopsis (Arabidopsis thaliana) that SAUR15 interacts with cell surface receptor-like kinase BRASSINOSTEROID-INSENSITIVE 1 (BRI1) in BR-treated plants, resulting in enhanced BRI1 phosphorylation status and recruitment of the co-receptor BRI1-ASSOCIATED RECEPTOR KINASE 1. Genetic and phenotypic assays indicated that the SAUR15 effect on BRI1 can be uncoupled from BRASSINOSTEROID INSENSITIVE 2 activity. Instead, we show that SAUR15 promotes BRI1 direct activation of plasma membrane H+-ATPase (PM H+-ATPase) via phosphorylation. Consequently, SAUR15-BRI1-PM H+-ATPase acts as a direct, PM-based mode of BR signaling that drives cell expansion to promote the growth and development of various organs. These data define an alternate mode of BR signaling in plants.
Collapse
Affiliation(s)
- Mengzhan Li
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Chunli Liu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Shelley R Hepworth
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Chaofan Ma
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Hong Li
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | | | - Hongju Yin
- Authors for correspondence: (H.Y.) and (S.M.W.)
| |
Collapse
|
34
|
Zeng Y, Tang Y, Shen S, Zhang M, Chen L, Ye D, Zhang X. Plant-specific small peptide AtZSP1 interacts with ROCK1 to regulate organ size in Arabidopsis. THE NEW PHYTOLOGIST 2022; 234:1696-1713. [PMID: 35285523 DOI: 10.1111/nph.18093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Organ size is an important agronomic trait. Small peptides function in various stages of plant growth, but their regulatory mechanisms in organ growth remain poorly understood. Here, we characterize a novel small peptide, AtZSP1, which positively regulates organ size in Arabidopsis. Loss-of-function mutant atzsp1-1 exhibited small organs, whereas AtZSP1 overexpression plants (p35S:AtZSP1#1) produced larger organs. Differentially expressed genes in the shoots of atzsp1-1 and p35S:AtZSP1#1 were enriched in the cytokinin pathway. Further analysis on shoots of atzsp1-1 showed that endogenous cytokinin levels were significantly reduced, consistent with reduced expression of the cytokinin response genes ARR5/6/7 and a decrease in pARR5:GUS activity. By contrast, cytokinin levels were elevated in p35S:AtZSP1#1. These results indicate that AtZSP1 affects shoot size via changes in cytokinin levels. AtZSP1 is ubiquitously expressed and encodes a 57-amino acid endomembrane-associated protein that is highly conserved among plant species. AtZSP1 interacts with ROCK1 at the endomembrane. Genetic analysis confirmed that the small organs and low cytokinin levels in atzsp1-1 shoots are partially suppressed by the rock1-4 mutation, suggesting that AtZSP1 may function in a common pathway with ROCK1 to antagonistically regulate organ growth. Our study identified an unknown small peptide, AtZSP1, and defined its function in regulating organ size in Arabidopsis.
Collapse
Affiliation(s)
- Yuejuan Zeng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Tang
- University of California, Berkeley, 371 Koshland Hall, Berkeley, CA, 94720, USA
| | - Simin Shen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Man Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Liqun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueqin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
35
|
Miao R, Russinova E, Rodriguez PL. Tripartite hormonal regulation of plasma membrane H +-ATPase activity. TRENDS IN PLANT SCIENCE 2022; 27:588-600. [PMID: 35034860 DOI: 10.1016/j.tplants.2021.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 05/27/2023]
Abstract
The enzyme activity of the plasma membrane (PM) proton pump, well known as arabidopsis PM H+-ATPase (AHA) in the model plant arabidopsis (Arabidopsis thaliana), is controlled by phosphorylation. Three different classes of phytohormones, brassinosteroids (BRs), abscisic acid (ABA), and auxin regulate plant growth and responses to environmental stimuli, at least in part by modulating the activity of the pump through phosphorylation of the penultimate Thr residue in its carboxyl terminus. Here, we review the current knowledge regarding this tripartite hormonal AHA regulation and highlight mechanisms of activation and deactivation, as well as the significance of hormonal crosstalk. Understanding the complexity of PM H+-ATPase regulation in plants might provide new strategies for sustainable agriculture.
Collapse
Affiliation(s)
- Rui Miao
- College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia, ES-46022, Valencia, Spain.
| |
Collapse
|
36
|
The molecular mechanism of plasma membrane H +-ATPases in plant responses to abiotic stress. J Genet Genomics 2022; 49:715-725. [PMID: 35654346 DOI: 10.1016/j.jgg.2022.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022]
Abstract
Plasma membrane H+-ATPases (PM H+-ATPases) are critical proton pumps that export protons from the cytoplasm to the apoplast. The resulting proton gradient and difference in electrical potential energize various secondary active transport events. PM H+-ATPases play essential roles in plant growth, development, and stress responses. In this review, we focus on recent studies of the mechanism of PM H+-ATPases in response to abiotic stresses in plants, such as salt and high pH, temperature, drought, light, macronutrient deficiency, acidic soil and aluminum stress, as well as heavy metal toxicity. Moreover, we discuss remaining outstanding questions about how PM H+-ATPases contribute to abiotic stress responses.
Collapse
|
37
|
Abstract
Auxin has always been at the forefront of research in plant physiology and development. Since the earliest contemplations by Julius von Sachs and Charles Darwin, more than a century-long struggle has been waged to understand its function. This largely reflects the failures, successes, and inevitable progress in the entire field of plant signaling and development. Here I present 14 stations on our long and sometimes mystical journey to understand auxin. These highlights were selected to give a flavor of the field and to show the scope and limits of our current knowledge. A special focus is put on features that make auxin unique among phytohormones, such as its dynamic, directional transport network, which integrates external and internal signals, including self-organizing feedback. Accented are persistent mysteries and controversies. The unexpected discoveries related to rapid auxin responses and growth regulation recently disturbed our contentment regarding understanding of the auxin signaling mechanism. These new revelations, along with advances in technology, usher us into a new, exciting era in auxin research.
Collapse
Affiliation(s)
- Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
38
|
Abstract
H+-ATPases, including the phosphorylated intermediate-type (P-type) and vacuolar-type (V-type) H+-ATPases, are important ATP-driven proton pumps that generate membrane potential and provide proton motive force for secondary active transport. P- and V-type H+-ATPases have distinct structures and subcellular localizations and play various roles in growth and stress responses. A P-type H+-ATPase is mainly regulated at the posttranslational level by phosphorylation and dephosphorylation of residues in its autoinhibitory C terminus. The expression and activity of both P- and V-type H+-ATPases are highly regulated by hormones and environmental cues. In this review, we summarize the recent advances in understanding of the evolution, regulation, and physiological roles of P- and V-type H+-ATPases, which coordinate and are involved in plant growth and stress adaptation. Understanding the different roles and the regulatory mechanisms of P- and V-type H+-ATPases provides a new perspective for improving plant growth and stress tolerance by modulating the activity of H+-ATPases, which will mitigate the increasing environmental stress conditions associated with ongoing global climate change.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Weifeng Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| |
Collapse
|
39
|
Zeng J, Zuo T, Liu Y, Tao H, Mo Y, Li C, Zhao L, Gao J. Phylogenetic analysis of PP2C proteins and interactive proteins analyze of BjuPP2C52 in Brassica juncea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:25-31. [PMID: 35306327 DOI: 10.1016/j.plaphy.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Brassica juncea var. tumida Tsen et Lee (Tumorous stem mustard) is an unique vegetable in China. Its enlarged tumorous stem was used as main raw material to produce pickle (Zhacai). In practice, early-bolting happens around 15% of planting area all year and inhibits its production. Here, about 209 PP2C proteins were identified through HMMER software and divided into 13 sub-families in B. juncea. BjuPP2C52 belongs to E sub-family, was up-regulated at reproductive growth stages and interacts with BjuFKF1, a key protein in regulating plant photoperiod flowering, in vitro and in vivo. To explore interactive proteins, BjuPP2C52 was used as bait, 12 potential interactive proteins were screened from yeast library, and they are BjuCOL3, BjuCOL5, BjuAP2, BjuAP2-1, BjuSVP-1, BjuFLC-2, BjuSKP1f, BjuA014572, BjuA008686, BjuO002119, BjuB036787 and BjuA019268. Further study verified that 10 out of the 12 screened proteins interacted with BjuPP2C52 in vivo. qRT-PCR was conducted to understand the expression pattern of those 10 interactive proteins in different tissues and development stages in B. juncea. The results showed that BjuCOL3, BjuCOL5, BjuB036787 and BjuA019268 were significantly up-regulated, while BjuA008686 and BjuO002119 were down-regulated in flowers compared with other four tissues. In developmental stages, BjuCOL5, BjuAP2, BjuAP2-1, BjuA014572, BjuB036787 and BjuA019268 were significantly up-regulated, while BjuSVP-1, BjuA008686 and BjuO002119 were down-regulated at reproductive stages. Based on the results, BjuCOL5, BjuAP2, BjuAP2-1, BjuSVP-1, BjuA014572, BjuB036787 and BjuA019268 may function in regulating flowering time in B. juncea.
Collapse
Affiliation(s)
- Jing Zeng
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, PR China.
| | - Tonghong Zuo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, PR China
| | - Yihua Liu
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, PR China
| | - Hongying Tao
- Chongqing Southeast Academy of Agricultural Sciences, Chongqing, 408100, PR China
| | - Yanling Mo
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, PR China
| | - Changman Li
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, PR China
| | - Liang Zhao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Jian Gao
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, PR China
| |
Collapse
|
40
|
Tian Z, Han J, Che G, Hasi A. Genome-wide characterization and expression analysis of SAUR gene family in Melon (Cucumis melo L.). PLANTA 2022; 255:123. [PMID: 35552537 DOI: 10.1007/s00425-022-03908-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
We identified 66 melon SAUR genes by bioinformatic analyses. CmSAUR19, 38, 58, 62 genes are specifically expressed in different stages of fruit growth, suggesting their participation in regulating fruit development. Auxin plays a crucial role in plant growth by regulating the multiple auxin response genes. However, in melon (Cucumis melo L.), the functions of the auxin early response gene family SAUR (Small auxin up RNA) genes in fruit development are still poorly understood. Through genome-wide characterization of CmSAUR family in melon, we identified a total of 66 CmSAUR genes. The open reading frames of the CmSAUR genes ranged from 234 to 525 bp, containing only one exon and lacking introns. Chromosomal position and phylogenetic tree analyses found that the two gene clusters in the melon chromosome are highly homologous in the Cucurbitaceae plants. Among the four conserved motifs in CmSAUR proteins, motif 1, motif 2, and motif 3 located in most of the family protein sequences, and motif 4 showed a close correlation with the two gene clusters. The CmSAUR28 and CmSAUR58 genes have auxin response elements located in the promoters, suggesting they may be involved in the auxin signaling pathway to regulate fruit development. Through transcriptomic profiling in the four developmental stages of fruit and different lateral organs, we selected 16 differentially-expressed SAUR genes for performing further expression analyses. qRT-PCR results showed that five SAUR genes are specifically expressed in flower organs and ovaries. CmSAUR19 and CmSAUR58 were significantly accumulated in the early developmental stage of the fruit. CmSAUR38 and CmAUR62 showed high expression in the climacteric and post-climacteric stages, suggesting their specific role in controlling fruit ripening. This work provides a foundation for further exploring the function of the SAUR gene in fruit development.
Collapse
Affiliation(s)
- Ze Tian
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Jiadi Han
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Gen Che
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Agula Hasi
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
41
|
Li L, Gallei M, Friml J. Bending to auxin: fast acid growth for tropisms. TRENDS IN PLANT SCIENCE 2022; 27:440-449. [PMID: 34848141 DOI: 10.1016/j.tplants.2021.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The phytohormone auxin is the major growth regulator governing tropic responses including gravitropism. Auxin build-up at the lower side of stimulated shoots promotes cell expansion, whereas in roots it inhibits growth, leading to upward shoot bending and downward root bending, respectively. Yet it remains an enigma how the same signal can trigger such opposite cellular responses. In this review, we discuss several recent unexpected insights into the mechanisms underlying auxin regulation of growth, challenging several existing models. We focus on the divergent mechanisms of apoplastic pH regulation in shoots and roots revisiting the classical Acid Growth Theory and discuss coordinated involvement of multiple auxin signaling pathways. From this emerges a more comprehensive, updated picture how auxin regulates growth.
Collapse
Affiliation(s)
- Lanxin Li
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Michelle Gallei
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
42
|
Akiyama M, Sugimoto H, Inoue SI, Takahashi Y, Hayashi M, Hayashi Y, Mizutani M, Ogawa T, Kinoshita D, Ando E, Park M, Gray WM, Kinoshita T. Type 2C protein phosphatase clade D family members dephosphorylate guard cell plasma membrane H+-ATPase. PLANT PHYSIOLOGY 2022; 188:2228-2240. [PMID: 34894269 PMCID: PMC8968332 DOI: 10.1093/plphys/kiab571] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/05/2021] [Indexed: 05/27/2023]
Abstract
Plasma membrane (PM) H+-ATPase in guard cells is activated by phosphorylation of the penultimate residue, threonine (Thr), in response to blue and red light, promoting stomatal opening. Previous in vitro biochemical investigation suggested that Mg2+- and Mn2+-dependent membrane-localized type 2C protein phosphatase (PP2C)-like activity mediates the dephosphorylation of PM H+-ATPase in guard cells. PP2C clade D (PP2C.D) was later demonstrated to be involved in PM H+-ATPase dephosphorylation during auxin-induced cell expansion in Arabidopsis (Arabidopsis thaliana). However, it is unclear whether PP2C.D phosphatases are involved in PM H+-ATPase dephosphorylation in guard cells. Transient expression experiments using Arabidopsis mesophyll cell protoplasts revealed that all PP2C.D isoforms dephosphorylate the endogenous PM H+-ATPase. We further analyzed PP2C.D6/8/9, which display higher expression levels than other isoforms in guard cells, observing that pp2c.d6, pp2c.d8, and pp2c.d9 single mutants showed similar light-induced stomatal opening and phosphorylation status of PM H+-ATPase in guard cells as Col-0. In contrast, the pp2c.d6/9 double mutant displayed wider stomatal apertures and greater PM H+-ATPase phosphorylation in response to blue light, but delayed dephosphorylation of PM H+-ATPase in guard cells; the pp2c.d6/8/9 triple mutant showed similar phenotypes to those of the pp2c.d6/9 double mutant. Taken together, these results indicate that PP2C.D6 and PP2C.D9 redundantly mediate PM H+-ATPase dephosphorylation in guard cells. Curiously, unlike auxin-induced cell expansion in seedlings, auxin had no effect on the phosphorylation status of PM H+-ATPase in guard cells.
Collapse
Affiliation(s)
| | | | - Shin-ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yohei Takahashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Maki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yuki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Miya Mizutani
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Takumi Ogawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Daichi Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Eigo Ando
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Meeyeon Park
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
43
|
Wu L, Wang H, Liu S, Liu M, Liu J, Wang Y, Sun L, Yang W, Shen H. Mapping of CaPP2C35 involved in the formation of light-green immature pepper (Capsicum annuum L.) fruits via GWAS and BSA. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:591-604. [PMID: 34762177 DOI: 10.1007/s00122-021-03987-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Genome-wide association study, bulked segregant analysis, and genetic analysis delimited the LG locus controlling light-green immature pepper fruits into a 35.07 kbp region on chromosome 10. A strong candidate gene, CaPP2C35, was identified in this region. In pepper (Capsicum annuum L.), the common colors of immature fruits are yellowish white, milky yellow, green, purple, and purplish black. Genes related to dark green, white, and purple immature fruits have been cloned; however, only a few studies have investigated light-green immature fruits. Here, we performed a genetic study using light-green (17C827) and green (17C658) immature fruits. The light-green color of immature fruits was controlled by a single locus-dominant genetic trait compared with the green color of immature fruits. We also performed a genome-wide association study and bulked segregant analysis of immature-fruit color and mapped the LG locus to a 35.07 kbp region on chromosome 10. Only one gene, Capana10g001710, was found in this region. A G-A substitution occurred at the 313th base of the Capana10g001710 coding sequence in 17C827, resulting in the conversion of the α-helix of its encoded PP2C35 protein into a β-fold. The expression of Capana10g001710 (termed CaPP2C35) in 17C827 was significantly higher than in 17C658. Silencing CaPP2C35 in 17C827 resulted in an increase in chlorophyll content in the exocarp and the appearance of green stripes on the surface of the fruit. These results indicate that CaPP2C35 may be involved in the formation of light-green immature fruits by regulating the accumulation of chlorophyll content in the exocarp. Thus, these findings lay the foundation for further studies and genetic improvement of immature-fruit color in pepper.
Collapse
Affiliation(s)
- Lang Wu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Haoran Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Sujun Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Mengmeng Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jinkui Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yihao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Liang Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wencai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
44
|
Zeng L, Wang JZ, He X, Ke H, Lemos M, Gray WM, Dehesh K. A plastidial retrograde signal potentiates biosynthesis of systemic stress response activators. THE NEW PHYTOLOGIST 2022; 233:1732-1749. [PMID: 34859454 PMCID: PMC8776617 DOI: 10.1111/nph.17890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 05/26/2023]
Abstract
Plants employ an array of intricate and hierarchical signaling cascades to perceive and transduce informational cues to synchronize and tailor adaptive responses. Systemic stress response (SSR) is a recognized complex signaling and response network quintessential to plant's local and distal responses to environmental triggers; however, the identity of the initiating signals has remained fragmented. Here, we show that both biotic (aphids and viral pathogens) and abiotic (high light and wounding) stresses induce accumulation of the plastidial-retrograde-signaling metabolite methylerythritol cyclodiphosphate (MEcPP), leading to reduction of the phytohormone auxin and the subsequent decreased expression of the phosphatase PP2C.D1. This enables phosphorylation of mitogen-activated protein kinases 3/6 and the consequential induction of the downstream events ultimately, resulting in biosynthesis of the two SSR priming metabolites pipecolic acid and N-hydroxy-pipecolic acid. This work identifies plastids as a major initiation site, and the plastidial retrograde signal MEcPP as an initiator of a multicomponent signaling cascade potentiating the biosynthesis of SSR activators, in response to biotic and abiotic triggers.
Collapse
Affiliation(s)
- Liping Zeng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Jin-Zheng Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Xiang He
- Current address: Laboratory of Allergy and Inflammation, Chengdu third people’s hospital branch of National Clinical Research Center for Respiratory Disease, Chengdu 610031, China
| | - Haiyan Ke
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Mark Lemos
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
45
|
Du M, Bou Daher F, Liu Y, Steward A, Tillmann M, Zhang X, Wong JH, Ren H, Cohen JD, Li C, Gray WM. Biphasic control of cell expansion by auxin coordinates etiolated seedling development. SCIENCE ADVANCES 2022; 8:eabj1570. [PMID: 35020423 PMCID: PMC8754305 DOI: 10.1126/sciadv.abj1570] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Seedling emergence is critical for food security. It requires rapid hypocotyl elongation and apical hook formation, both of which are mediated by regulated cell expansion. How these events are coordinated in etiolated seedlings is unclear. Here, we show that biphasic control of cell expansion by the phytohormone auxin underlies this process. Shortly after germination, high auxin levels restrain elongation. This provides a temporal window for apical hook formation, involving a gravity-induced auxin maximum on the eventual concave side of the hook. This auxin maximum induces PP2C.D1 expression, leading to asymmetrical H+-ATPase activity across the hypocotyl that contributes to the differential cell elongation underlying hook development. Subsequently, auxin concentrations decline acropetally and switch from restraining to promoting elongation, thereby driving hypocotyl elongation. Our findings demonstrate how differential auxin concentrations throughout the hypocotyl coordinate etiolated development, leading to successful soil emergence.
Collapse
Affiliation(s)
- Minmin Du
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Firas Bou Daher
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Yuanyuan Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Andrew Steward
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Xiaoyue Zhang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Hong Ren
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Jerry D. Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author. (C.L.); (W.M.G.)
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- Corresponding author. (C.L.); (W.M.G.)
| |
Collapse
|
46
|
Wu Y, Chang Y, Luo L, Tian W, Gong Q, Liu X. Abscisic acid employs NRP-dependent PIN2 vacuolar degradation to suppress auxin-mediated primary root elongation in Arabidopsis. THE NEW PHYTOLOGIST 2022; 233:297-312. [PMID: 34618941 DOI: 10.1111/nph.17783] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
How plants balance growth and stress adaptation is a long-standing topic in plant biology. Abscisic acid (ABA) induces the expression of the stress-responsive Asparagine Rich Protein (NRP), which promotes the vacuolar degradation of PP6 phosphatase FyPP3, releasing ABI5 transcription factor to initiate transcription. Whether NRP is required for growth remains unknown. We generated an nrp1 nrp2 double mutant, which had a dwarf phenotype that can be rescued by inhibiting auxin transport. Insufficient auxin in the transition zone and over-accumulation of auxin at the root tip was responsible for the short elongation zone and short-root phenotype of nrp1 nrp2. The auxin efflux carrier PIN2 over-accumulated in nrp1 nrp2 and became de-polarized at the plasma membrane, leading to slower root basipetal auxin transport. Knock-out of PIN2 suppressed the dwarf phenotype of nrp1 nrp2. Furthermore, ABA can induce NRP-dependent vacuolar degradation of PIN2 to inhibit primary root elongation. FyPP3 also is required for NRP-mediated PIN2 turnover. In summary, in growth condition, NRP promotes PIN2 vacuolar degradation to help maintain PIN2 protein concentration and polarity, facilitating the establishment of the elongation zone and primary root elongation. When stressed, ABA employs this pathway to inhibit root elongation for stress adaptation.
Collapse
Affiliation(s)
- Yanying Wu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yue Chang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Liming Luo
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenqi Tian
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
47
|
Li L, Verstraeten I, Roosjen M, Takahashi K, Rodriguez L, Merrin J, Chen J, Shabala L, Smet W, Ren H, Vanneste S, Shabala S, De Rybel B, Weijers D, Kinoshita T, Gray WM, Friml J. Cell surface and intracellular auxin signalling for H + fluxes in root growth. Nature 2021; 599:273-277. [PMID: 34707283 PMCID: PMC7612300 DOI: 10.1038/s41586-021-04037-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022]
Abstract
Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.
Collapse
Affiliation(s)
- Lanxin Li
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Mark Roosjen
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Koji Takahashi
- Institute of Transformative Bio-Molecules, Division of Biological Science, Nagoya University Chikusa, Nagoya, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, Japan
| | - Lesia Rodriguez
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Jack Merrin
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Jian Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Wouter Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hong Ren
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon, Republic of Korea
- Department of Plants and Crops, HortiCell, Ghent University, Ghent, Belgium
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dolf Weijers
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules, Division of Biological Science, Nagoya University Chikusa, Nagoya, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, Japan
| | - William M Gray
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria.
| |
Collapse
|
48
|
Lin W, Zhou X, Tang W, Takahashi K, Pan X, Dai J, Ren H, Zhu X, Pan S, Zheng H, Gray WM, Xu T, Kinoshita T, Yang Z. TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature 2021; 599:278-282. [PMID: 34707287 PMCID: PMC8549421 DOI: 10.1038/s41586-021-03976-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
The phytohormone auxin controls many processes in plants, at least in part through its regulation of cell expansion1. The acid growth hypothesis has been proposed to explain auxin-stimulated cell expansion for five decades, but the mechanism that underlies auxin-induced cell-wall acidification is poorly characterized. Auxin induces the phosphorylation and activation of the plasma membrane H+-ATPase that pumps protons into the apoplast2, yet how auxin activates its phosphorylation remains unclear. Here we show that the transmembrane kinase (TMK) auxin-signalling proteins interact with plasma membrane H+-ATPases, inducing their phosphorylation, and thereby promoting cell-wall acidification and hypocotyl cell elongation in Arabidopsis. Auxin induced interactions between TMKs and H+-ATPases in the plasma membrane within seconds, as well as TMK-dependent phosphorylation of the penultimate threonine residue on the H+-ATPases. Our genetic, biochemical and molecular evidence demonstrates that TMKs directly phosphorylate plasma membrane H+-ATPase and are required for auxin-induced H+-ATPase activation, apoplastic acidification and cell expansion. Thus, our findings reveal a crucial connection between auxin and plasma membrane H+-ATPase activation in regulating apoplastic pH changes and cell expansion through TMK-based cell surface auxin signalling.
Collapse
Affiliation(s)
- Wenwei Lin
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA
| | - Xiang Zhou
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA
| | - Wenxin Tang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Koji Takahashi
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Xue Pan
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA
| | - Jiawei Dai
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Ren
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, USA
| | - Xiaoyue Zhu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songqin Pan
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, USA
| | - Tongda Xu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Zhenbiao Yang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
- Institute of Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA, USA.
| |
Collapse
|
49
|
Ma Y, Wolf S, Lohmann JU. Casting the Net-Connecting Auxin Signaling to the Plant Genome. Cold Spring Harb Perspect Biol 2021; 13:a040006. [PMID: 33903151 PMCID: PMC8559546 DOI: 10.1101/cshperspect.a040006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin represents one of the most potent and most versatile hormonal signals in the plant kingdom. Built on a simple core of only a few dedicated components, the auxin signaling system plays important roles for diverse aspects of plant development, physiology, and defense. Key to the diversity of context-dependent functional outputs generated by cells in response to this small molecule are gene duplication events and sub-functionalization of signaling components on the one hand, and a deep embedding of the auxin signaling system into complex regulatory networks on the other hand. Together, these evolutionary innovations provide the mechanisms to allow each cell to display a highly specific auxin response that suits its individual requirements. In this review, we discuss the regulatory networks connecting auxin with a large number of diverse pathways at all relevant levels of the signaling system ranging from biosynthesis to transcriptional response.
Collapse
Affiliation(s)
- Yanfei Ma
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Sebastian Wolf
- Cell Wall Signalling Group, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
50
|
Ding M, Zhang M, Zeng H, Hayashi Y, Zhu Y, Kinoshita T. Molecular basis of plasma membrane H +-ATPase function and potential application in the agricultural production. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:10-16. [PMID: 34607207 DOI: 10.1016/j.plaphy.2021.09.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/11/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Increase of crop yield is always the desired goal, manipulation of genes in relation to plant growth is a shortcut to promote crop yield. The plasma membrane (PM) H+-ATPase is the plant master enzyme; the energy yielded by ATP hydrolysis pumps H+ out of cells, establishes the membrane potential, maintains pH homeostasis and provides the proton-motive force required for transmembrane transport of many materials. PM H+-ATPase is involved in root nutrient uptake, epidermal stomatal opening, phloem sucrose loading and unloading, and hypocotyl cell elongation. In this review, we summarize the recent progresses in roles of PM H+-ATPase in nutrient uptake and light-induced stomatal opening and discuss the pivotal role of PM H+-ATPase in crop yield improvement and its potential application in agricultural production by modulating the expression of PM H+-ATPase in crops.
Collapse
Affiliation(s)
- Ming Ding
- Plant Physiology Laboratory of Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Maoxing Zhang
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuki Hayashi
- Plant Physiology Laboratory of Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yiyong Zhu
- College of Resource and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Toshinori Kinoshita
- Plant Physiology Laboratory of Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8602, Japan.
| |
Collapse
|