1
|
Zhi Y, Yu J, Zhong Y, Fu H, Zhou X, Yi W, Yuan L, Xu Z, Xu D. WDR62 controls cortical radial migration and callosal projection of neurons in the developing cerebral cortex. Neurobiol Dis 2025; 211:106951. [PMID: 40349858 DOI: 10.1016/j.nbd.2025.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
WD repeat domain 62 (WDR62) was identified as the second most causative gene of autosomal recessive primary microcephaly (MCPH) frequently associated structural abnormalities such as lissencephaly, polymicrogyria as well as hypoplasia of the corpus callosum, however, underlining mechanism behind these abnormality remains unknown. Here we show that either ablation of WDR62 in neural progenitor cells (NPCs) or post-mitotic neurons both impedes cortical neuronal radial migration in the developing brain. WDR62 modulates the transition from multipolar to bipolar states in migrating neurons and ensures the accurate formation of contralateral projections of callosal neurons. Our results further indicated that ASD-related mutations in WDR62 are associated with a reduced capacity for neuronal migration in the developing brain. Finally, we provide the molecular evidence that the levels of Reelin, a key modulator of neuronal migration and high confidence ASD candidate gene, were significantly reduced in the brains of Wdr62 deficient mice. These finding define critical roles for WDR62 in cortical neuronal radial migration and callosal projection which provides insights into the pathogenesis of WDR62 deficiency-related brain dysplasia.
Collapse
Affiliation(s)
- Yiqiang Zhi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350005, China
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China
| | - Yilin Zhong
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350005, China
| | - Honggao Fu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350005, China
| | - Xiaokun Zhou
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China
| | - Wenxiang Yi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350005, China
| | - Ling Yuan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410028, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
2
|
Huang Y, Kuang X, Jiangzhou H, Li M, Yang D, Lai D. Using anti-Müllerian hormone to predict premature ovarian insufficiency: a retrospective cross-sectional study. Front Endocrinol (Lausanne) 2024; 15:1454802. [PMID: 39629049 PMCID: PMC11611575 DOI: 10.3389/fendo.2024.1454802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Background Premature ovarian insufficiency/failure (POI/POF) is a significant issue for women of reproductive age. Anti-Müllerian hormone (AMH) is a potential biomarker of ovarian reserve, but its clinical value in diagnosing and predicting POI/POF remains unclear. This study aimed to analyze the correlation between AMH and basal follicle-stimulating hormone (FSH) levels in women aged 18 to 40 and evaluate AMH's predictive value for POI/POF. Methods A total of 21,143 participants aged 18-40 who visited the gynecology department or underwent physical examinations at the International Peace Maternity and Child Health Hospital in Shanghai, China, from July 2016 to June 2021 were enrolled. Demographic information and laboratory test results were collected, including age, FSH, AMH, E2 and test dates. Participants were grouped by FSH and AMH levels, and subgroup analyses were performed to investigate the relationship between these hormones and age. The AMH level associated with POI risk was evaluated using restricted cubic splines (RCS) and logistic regression. Clinical benefit was assessed by decision curve analysis (DCA). Results Participants with higher FSH levels had significantly lower median AMH levels and vice versa(p<0.001). At AMH ≥ 0.5 ng/mL, FSH levels were normal or slightly elevated with age. At AMH level below 0.5ng/ml,basal FSH increased significantly with age. At FSH <10 IU/L, AMH levels show a trend of rising and then decreasing with age, reaching a peak at approximately 25 years old and gradually decreasing with age. At FSH ≥10 IU/L, AMH levels show a gradual downward trend with age, and at FSH >40 IU/L, AMH levels remain very low to undetectable values. The RCS showed that the risk of POI/POF in the overall population sharply increased until serum AMH reached a low level (below 0.5ng/ml). DCA showed that a low AMH level had good clinical diagnostic utility in predicting POI/POF. Conclusion Our analysis of a large dataset suggests that serum AMH levels are inversely correlated with FSH levels and that AMH is a good predictor of POI until it drops to a low level.
Collapse
Affiliation(s)
- Yuanxin Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Guangdong Province Women and Children Hospital, Guangzhou, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xiaojun Kuang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Huiting Jiangzhou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Meiling Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Dongjian Yang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
3
|
Zhang Y, Xing X, Huang L, Su Y, Liu G, Zhang X, Yang Y. WDR64, a testis-specific protein, is involved in the manchette and flagellum formation by interacting with ODF1. Heliyon 2024; 10:e38263. [PMID: 39386799 PMCID: PMC11462348 DOI: 10.1016/j.heliyon.2024.e38263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
The WD40 repeat (WDR) domain is present in a wide range of proteins, providing sites for protein‒protein interactions. Recent studies have shown that WDR proteins play indispensable roles in spermatogenesis, such as in spermatocyte division, sperm head formation and flagellar assembly. In this study, we identified a novel testis-specific gene, WDR64, which has the typical characteristics of WD40 proteins with two β-propellers, and is highly conserved in Mammalia. RT-PCR and Western blot results revealed that WDR64 was highly expressed in testis. WDR64 protein was weakly expressed at postnatal Day 7, increased substantially at postnatal Day 28 and maintained at high levels thereafter. Further immunofluorescence demonstrated that WDR64 was localized posterior to the nucleus in steps 8-14 spermatids in line with the dynamic localization of manchette, moved to the flagella in steps 15-16 spermatids, and localized at the midpiece of the flagellum in mature spermatozoa. To explore the function of WDR64, we performed immunoprecipitation‒mass spectrometry (IP‒MS) to screen its interacting proteins and found that WDR64 interacted with ODF1 to form a complex. The WDR64/ODF1 complex is located at the manchette during nucleus shaping and finally at the midpiece of the mature spermatozoa tail, suggesting that it may be involved in the assembly of the manchette and flagella during spermiogenesis. Our findings provide the first understanding of the expression pattern of WDR64 and its potential molecular mechanism in spermiogenesis.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowei Xing
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Huang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuyan Su
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Gang Liu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Xinxing Zhang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Youbo Yang
- Department of Endocrinology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Aslam K, Saeed A, Saeed HI, Bashir R, Abid H, Akhtar R, Habib N, Khan R, Asif R, Rafiq S, Asif M, Makhdoom EUH, Hussain MS, Baig SM, Anjum I. Molecular genetics, neuroimaging outcomes, and structural analyses of novel and recurrent variants of WDR62 gene in two consanguineous Pakistani families with autosomal recessive primary microcephaly. Mol Biol Rep 2024; 51:783. [PMID: 38926176 DOI: 10.1007/s11033-024-09728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental and genetically heterogeneous disorder, characterized by small cranium size (> - 3 SD below mean) and often results in varying degree of intellectual disability. Thirty genes have been identified for the etiology of this disorder due to its clinical and genetic heterogeneity. METHODS AND RESULTS Here, we report two consanguineous Pakistani families affected with MCPH exhibiting mutation in WDR62 gene. The investigation approach involved Next Generation Sequencing (NGS) gene panel sequencing coupled with linkage analysis followed by validation of identified variants through automated Sanger sequencing and Barcode-Tagged (BT) sequencing. The molecular genetic analysis revealed one novel splice site variant (NM_001083961.2(WDR62):c.1372-1del) in Family A and one known exonic variant NM_001083961.2(WDR62):c.3936dup (p.Val1313Argfs*18) in Family B. Magnetic Resonance Imaging (MRI) scans were also employed to gain insights into the structural architecture of affected individuals. Neurological assessments showed the reduced gyral and sulcal patterns along with normal corpus callosum in affected individuals harboring novel variant. In silico assessments of the identified variants were conducted using different tools to confirm the pathogenicity of these variants. Through In silico analyses, both variants were identified as disease causing and protein modeling of exonic variant indicates subtle conformational alterations in prophesied protein structure. CONCLUSION This study identifies a novel variant (c.1372-1del) and a recurrent pathogenic variant c.3936dup (p.Val1313Argfs*18) in the WDR62 gene among the Pakistani population, expanding the mutation spectrum for MCPH. These findings emphasize the importance of genetic counseling and awareness to reduce consanguinity and address the burden of this disorder.
Collapse
Affiliation(s)
- Komal Aslam
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
- Department of Biotechnology, Lahore College for Women, University, Lahore, Pakistan
| | - Aysha Saeed
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
- Faculty of Engineering and IT, School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Hafiza Iqra Saeed
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Rasheeda Bashir
- Department of Biotechnology, Lahore College for Women, University, Lahore, Pakistan
| | - Hanna Abid
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
- WU, Vienna, Austria
| | - Roeha Akhtar
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
- Department of Biotechnology, Lahore College for Women, University, Lahore, Pakistan
| | - Nida Habib
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Ramisha Khan
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
- School of Medicine, Deakin University, Melbourne, Australia
| | - Roha Asif
- Department of Biotechnology, Lahore College for Women, University, Lahore, Pakistan
| | | | - Maria Asif
- Faculty of Medicine and University Hospital Cologne, Cologne Center for Genomics (CCG), University of Cologne, 50931, Cologne, Germany
| | - Ehtisham Ul Haq Makhdoom
- Department of Physiology, Faculty of Life Sciences, Neurochemical Biology and Genetics Laboratory (NGL), Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Sajid Hussain
- Faculty of Medicine and University Hospital Cologne, Cologne Center for Genomics (CCG), University of Cologne, 50931, Cologne, Germany
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan.
| |
Collapse
|
5
|
Bakhshalizadeh S, Bird AD, Sreenivasan R, Bell KM, Robevska G, van den Bergen J, Asghari-Jafarabadi M, Kueh AJ, Touraine P, Lokchine A, Jaillard S, Ayers KL, Wilhelm D, Sinclair AH, Tucker EJ. A Human Homozygous HELQ Missense Variant Does Not Cause Premature Ovarian Insufficiency in a Mouse Model. Genes (Basel) 2024; 15:333. [PMID: 38540391 PMCID: PMC10970702 DOI: 10.3390/genes15030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
Disruption of meiosis and DNA repair genes is associated with female fertility disorders like premature ovarian insufficiency (POI). In this study, we identified a homozygous missense variant in the HELQ gene (c.596 A>C; p.Gln199Pro) through whole exome sequencing in a POI patient, a condition associated with disrupted ovarian function and female infertility. HELQ, an enzyme involved in DNA repair, plays a crucial role in repairing DNA cross-links and has been linked to germ cell maintenance, fertility, and tumour suppression in mice. To explore the potential association of the HELQ variant with POI, we used CRISPR/Cas9 to create a knock-in mouse model harbouring the equivalent of the human HELQ variant identified in the POI patient. Surprisingly, Helq knock-in mice showed no discernible phenotype, with fertility levels, histological features, and follicle development similar to wild-type mice. Despite the lack of observable effects in mice, the potential role of HELQ in human fertility, especially in the context of POI, should not be dismissed. Larger studies encompassing diverse ethnic populations and alternative functional approaches will be necessary to further examine the role of HELQ in POI. Our results underscore the potential uncertainties associated with genomic variants and the limitations of in vivo animal modelling.
Collapse
Affiliation(s)
- Shabnam Bakhshalizadeh
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Anthony D. Bird
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; (A.D.B.); (D.W.)
- Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Rajini Sreenivasan
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Katrina M. Bell
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Gorjana Robevska
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Jocelyn van den Bergen
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Mohammad Asghari-Jafarabadi
- Biostatistics Unit, School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia;
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Andrew J. Kueh
- The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Pitie Salpetriere Hospital, AP-HP, Sorbonne University Medicine, 75013 Paris, France;
| | - Anna Lokchine
- IRSET (Institut de Recherche en Santé, Environnement et Travail), INSERM/EHESP/Univ Rennes/CHU Rennes–UMR_S 1085, 35000 Rennes, France; (A.L.); (S.J.)
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 35033 Rennes, France
| | - Sylvie Jaillard
- IRSET (Institut de Recherche en Santé, Environnement et Travail), INSERM/EHESP/Univ Rennes/CHU Rennes–UMR_S 1085, 35000 Rennes, France; (A.L.); (S.J.)
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 35033 Rennes, France
| | - Katie L. Ayers
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Dagmar Wilhelm
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; (A.D.B.); (D.W.)
| | - Andrew H. Sinclair
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Elena J. Tucker
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
6
|
Xu D, Zhi Y, Liu X, Guan L, Yu J, Zhang D, Zhang W, Wang Y, Tao W, Xu Z. WDR62-deficiency Causes Autism-like Behaviors Independent of Microcephaly in Mice. Neurosci Bull 2023; 39:1333-1347. [PMID: 36571716 PMCID: PMC10465473 DOI: 10.1007/s12264-022-00997-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/19/2022] [Indexed: 12/27/2022] Open
Abstract
Brain size abnormality is correlated with an increased frequency of autism spectrum disorder (ASD) in offspring. Genetic analysis indicates that heterozygous mutations of the WD repeat domain 62 (WDR62) are associated with ASD. However, biological evidence is still lacking. Our study showed that Wdr62 knockout (KO) led to reduced brain size with impaired learning and memory, as well as ASD-like behaviors in mice. Interestingly, Wdr62 Nex-cKO mice (depletion of WDR62 in differentiated neurons) had a largely normal brain size but with aberrant social interactions and repetitive behaviors. WDR62 regulated dendritic spinogenesis and excitatory synaptic transmission in cortical pyramidal neurons. Finally, we revealed that retinoic acid gavages significantly alleviated ASD-like behaviors in mice with WDR62 haploinsufficiency, probably by complementing the expression of ASD and synapse-related genes. Our findings provide a new perspective on the relationship between the microcephaly gene WDR62 and ASD etiology that will benefit clinical diagnosis and intervention of ASD.
Collapse
Affiliation(s)
- Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, 350005, China.
| | - Yiqiang Zhi
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, 350108, China
| | - Xinyi Liu
- University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Guan
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, 350108, China
| | - Dan Zhang
- University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiya Zhang
- University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wucheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Single cell epigenomic and transcriptomic analysis uncovers potential transcription factors regulating mitotic/meiotic switch. Cell Death Dis 2023; 14:134. [PMID: 36797258 PMCID: PMC9935506 DOI: 10.1038/s41419-023-05671-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
In order to reveal the complex mechanism governing the mitotic/meiotic switch in female germ cells at epigenomic and genomic levels, we examined the chromatin accessibility (scATAC-seq) and the transcriptional dynamics (scRNA-seq) in germ cells of mouse embryonic ovary between E11.5 to 13.5 at single-cell resolution. Adopting a strict transcription factors (TFs) screening framework that makes it easier to understand the single-cell chromatin signature and a TF interaction algorithm that integrates the transcript levels, chromatin accessibility, and motif scores, we identified 14 TFs potentially regulating the mitotic/meiotic switch, including TCFL5, E2F1, E2F2, E2F6, E2F8, BATF3, SP1, FOS, FOXN3, VEZF1, GBX2, CEBPG, JUND, and TFDP1. Focusing on TCFL5, we constructed Tcfl5+/- mice which showed significantly reduced fertility and found that decreasing TCFL5 expression in cultured E12.5 ovaries by RNAi impaired meiotic progression from leptotene to zygotene. Bioinformatics analysis of published results of the embryonic germ cell transcriptome and the finding that in these cells central meiotic genes (Stra8, Tcfl5, Sycp3, and E2f2) possess open chromatin status already at the mitotic stage together with other features of TCFL5 (potential capability to interact with core TFs and activate meiotic genes, its progressive activation after preleptotene, binding sites in the promoter region of E2f2 and Sycp3), indicated extensive amplification of transcriptional programs associated to mitotic/meiotic switch with an important contribution of TCFL5. We conclude that the identified TFs, are involved in various stages of the mitotic/meiotic switch in female germ cells, TCFL5 primarily in meiotic progression. Further investigation on these factors might give a significant contribution to unravel the molecular mechanisms of this fundamental process of oogenesis and provide clues about pathologies in women such as primary ovarian insufficiency (POI) due at least in part to meiotic defects.
Collapse
|
8
|
Gong X, Zhang Y, Ai J, Li K. Application of Single-Cell RNA Sequencing in Ovarian Development. Biomolecules 2022; 13:47. [PMID: 36671432 PMCID: PMC9855652 DOI: 10.3390/biom13010047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
The ovary is a female reproductive organ that plays a key role in fertility and the maintenance of endocrine homeostasis, which is of great importance to women's health. It is characterized by a high heterogeneity, with different cellular subpopulations primarily containing oocytes, granulosa cells, stromal cells, endothelial cells, vascular smooth muscle cells, and diverse immune cell types. Each has unique and important functions. From the fetal period to old age, the ovary experiences continuous structural and functional changes, with the gene expression of each cell type undergoing dramatic changes. In addition, ovarian development strongly relies on the communication between germ and somatic cells. Compared to traditional bulk RNA sequencing techniques, the single-cell RNA sequencing (scRNA-seq) approach has substantial advantages in analyzing individual cells within an ever-changing and complicated tissue, classifying them into cell types, characterizing single cells, delineating the cellular developmental trajectory, and studying cell-to-cell interactions. In this review, we present single-cell transcriptome mapping of the ovary, summarize the characteristics of the important constituent cells of the ovary and the critical cellular developmental processes, and describe key signaling pathways for cell-to-cell communication in the ovary, as revealed by scRNA-seq. This review will undoubtedly improve our understanding of the characteristics of ovarian cells and development, thus enabling the identification of novel therapeutic targets for ovarian-related diseases.
Collapse
Affiliation(s)
| | | | - Jihui Ai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Higgins K, Moore BA, Berberovic Z, Adissu HA, Eskandarian M, Flenniken AM, Shao A, Imai DM, Clary D, Lanoue L, Newbigging S, Nutter LMJ, Adams DJ, Bosch F, Braun RE, Brown SDM, Dickinson ME, Dobbie M, Flicek P, Gao X, Galande S, Grobler A, Heaney JD, Herault Y, de Angelis MH, Chin HJG, Mammano F, Qin C, Shiroishi T, Sedlacek R, Seong JK, Xu Y, Lloyd KCK, McKerlie C, Moshiri A. Analysis of genome-wide knockout mouse database identifies candidate ciliopathy genes. Sci Rep 2022; 12:20791. [PMID: 36456625 PMCID: PMC9715561 DOI: 10.1038/s41598-022-19710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
We searched a database of single-gene knockout (KO) mice produced by the International Mouse Phenotyping Consortium (IMPC) to identify candidate ciliopathy genes. We first screened for phenotypes in mouse lines with both ocular and renal or reproductive trait abnormalities. The STRING protein interaction tool was used to identify interactions between known cilia gene products and those encoded by the genes in individual knockout mouse strains in order to generate a list of "candidate ciliopathy genes." From this list, 32 genes encoded proteins predicted to interact with known ciliopathy proteins. Of these, 25 had no previously described roles in ciliary pathobiology. Histological and morphological evidence of phenotypes found in ciliopathies in knockout mouse lines are presented as examples (genes Abi2, Wdr62, Ap4e1, Dync1li1, and Prkab1). Phenotyping data and descriptions generated on IMPC mouse line are useful for mechanistic studies, target discovery, rare disease diagnosis, and preclinical therapeutic development trials. Here we demonstrate the effective use of the IMPC phenotype data to uncover genes with no previous role in ciliary biology, which may be clinically relevant for identification of novel disease genes implicated in ciliopathies.
Collapse
Affiliation(s)
- Kendall Higgins
- The University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Bret A Moore
- Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, Gainesville, FL, 32608, USA
| | - Zorana Berberovic
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | | | - Mohammad Eskandarian
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Andy Shao
- University of Reno, Nevada, School of Medicine, Reno, NV, 89557, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, U.C. Davis, Davis, 95616, USA
| | - Dave Clary
- Mouse Biology Program, U.C. Davis, Davis, CA, 95618, USA
| | - Louise Lanoue
- Mouse Biology Program, U.C. Davis, Davis, CA, 95618, USA
| | - Susan Newbigging
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - David J Adams
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Fatima Bosch
- Centre of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | | | - Steve D M Brown
- Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Mary E Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael Dobbie
- Phenomics Australia, The Australian National University, 131 Garran Rd, Acton, Canberra, ACT, 2601, Australia
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061, China
| | - Sanjeev Galande
- Indian Institutes of Science Education and Research, Dr. Homi Bhabha Rd, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra, 411008, India
| | - Anne Grobler
- Faculty of Health Sciences, PCDDP North-West University, North-West University Potchefstroom Campus 11 Hoffman Street, Potchefstroom, 2531, South Africa
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67400, Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, Université of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Hsian-Jean Genie Chin
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), 3F., No. 106, Sec. 2, Heping E. Rd., Da'an Dist., Taipei City, 106214, Taiwan (R.O.C.)
| | - Fabio Mammano
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Adriano Buzzati-Traverso Campus, Via Ramarini, 00015, Monterotondo Scalo, Italy
| | - Chuan Qin
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), Beijing, China
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Science, 5 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | | | - Radislav Sedlacek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, IMG BIOCEV Building SO.02 Prumyslova 595, 252 50, Vestec, Czech Republic
| | - J-K Seong
- Korea Mouse Phenotyping Consortium (KMPC) and BK21 Program for Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea
| | - Ying Xu
- CAM-SU Genomic Resource Center, Soochow University, Organization Planning of No. 1 Shizi Street, Suzhou, 215123, China
| | - K C Kent Lloyd
- Mouse Biology Program, U.C. Davis, Davis, CA, 95618, USA
- Department of Surgery, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA
| | - Colin McKerlie
- The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children (SickKids), The Centre for Phenogenomics, Faculty of Medicine, University of Toronto, 25 Orde Street, Toronto, ON, M5T 3H7, USA.
| | - Ala Moshiri
- Department of Ophthalmology and Vision Science, School of Medicine, U.C. Davis Eye Center, 4860 Y. Street, Suite 2400, Sacramento, CA, 95817, USA.
| |
Collapse
|
10
|
Hao L, Ma J, Wu F, Ma X, Qian M, Sheng W, Yan T, Tang N, Jiang X, Zhang B, Xiao D, Qian Y, Zhang J, Jiang N, Zhou W, Chen W, Ma D, Huang G. WDR62 variants contribute to congenital heart disease by inhibiting cardiomyocyte proliferation. Clin Transl Med 2022; 12:e941. [PMID: 35808830 PMCID: PMC9270576 DOI: 10.1002/ctm2.941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Congenital heart disease (CHD) is the most common birth defect and has high heritability. Although some susceptibility genes have been identified, the genetic basis underlying the majority of CHD cases is still undefined. Methods A total of 1320 unrelated CHD patients were enrolled in our study. Exome‐wide association analysis between 37 tetralogy of Fallot (TOF) patients and 208 Han Chinese controls from the 1000 Genomes Project was performed to identify the novel candidate gene WD repeat‐containing protein 62 (WDR62). WDR62 variants were searched in another expanded set of 200 TOF patients by Sanger sequencing. Rescue experiments in zebrafish were conducted to observe the effects of WDR62 variants. The roles of WDR62 in heart development were examined in mouse models with Wdr62 deficiency. WDR62 variants were investigated in an additional 1083 CHD patients with similar heart phenotypes to knockout mice by multiplex PCR‐targeting sequencing. The cellular phenotypes of WDR62 deficiency and variants were tested in cardiomyocytes, and the molecular mechanisms were preliminarily explored by RNA‐seq and co‐immunoprecipitation. Results Seven WDR62 coding variants were identified in the 237 TOF patients and all were indicated to be loss of function variants. A total of 25 coding and 22 non‐coding WDR62 variants were identified in 80 (6%) of the 1320 CHD cases sequenced, with a higher proportion of WDR62 variation (8%) found in the ventricular septal defect (VSD) cohort. WDR62 deficiency resulted in a series of heart defects affecting the outflow tract and right ventricle in mouse models, including VSD as the major abnormality. Cell cycle arrest and an increased number of cells with multipolar spindles that inhibited proliferation were observed in cardiomyocytes with variants or knockdown of WDR62. WDR62 deficiency weakened the association between WDR62 and the cell cycle‐regulated kinase AURKA on spindle poles, reduced the phosphorylation of AURKA, and decreased expression of target genes related to cell cycle and spindle assembly shared by WDR62 and AURKA. Conclusions WDR62 was identified as a novel susceptibility gene for CHD with high variant frequency. WDR62 was shown to participate in the cardiac development by affecting spindle assembly and cell cycle pathway in cardiomyocytes.
Collapse
Affiliation(s)
- Lili Hao
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing Ma
- ENT institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Feizhen Wu
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaojing Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Maoxiang Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Sheng
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Tizhen Yan
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Ning Tang
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Xin Jiang
- Medical Laboratory of Nantong ZhongKe, Nantong, Jiangsu
| | - Bowen Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanyan Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenhao Zhou
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Weicheng Chen
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Duan Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guoying Huang
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
11
|
Qin Y, Ni P, Zhang Q, Wang X, Du X, Yin Z, Wang L, Ye L, Chen L. Hbxip is essential for murine embryogenesis and regulates embryonic stem cell differentiation through activating mTORC1. Development 2022; 149:275503. [DOI: 10.1242/dev.200527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
HBXIP, also named LAMTOR5, has been well characterized as a transcriptional co-activator in various cancers. However, the role of Hbxip in normal development remains unexplored. Here, we demonstrated that homozygous knockout of Hbxip leads to embryonic lethality, with retarded growth around E7.5, and that depletion of Hbxip compromises the self-renewal of embryonic stem cells (ESCs), with reduced expression of pluripotency genes, reduced cell proliferation and decreased colony-forming capacity. In addition, both Hbxip−/− ESCs and E7.5 embryos displayed defects in ectodermal and mesodermal differentiation. Mechanistically, Hbxip interacts with other components of the Ragulator complex, which is required for mTORC1 activation by amino acids. Importantly, ESCs depleted of Ragulator subunits, Lamtor3 or Lamtor4, displayed differentiation defects similar to those of Hbxip−/− ESCs. Moreover, Hbxip−/−, p14−/− and p18−/− mice, lacking subunits of the Ragulator complex, also shared similar phenotypes, embryonic lethality and retarded growth around E7-E8. Thus, we conclude that Hbxip plays a pivotal role in the development and differentiation of the epiblast, as well as the self-renewal and differentiation of ESCs, through activating mTORC1 signaling.
Collapse
Affiliation(s)
- Yan Qin
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University , Tianjin 300071 , China
| | - Peiling Ni
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University , Tianjin 300071 , China
| | - Qingye Zhang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University , Tianjin 300071 , China
| | - Xiao Wang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University , Tianjin 300071 , China
| | - Xiaoling Du
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University , Tianjin 300071 , China
| | - Zixi Yin
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University , Tianjin 300071 , China
| | - Lingling Wang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University , Tianjin 300071 , China
| | - Lihong Ye
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University , Tianjin 300071 , China
| | - Lingyi Chen
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University , Tianjin 300071 , China
| |
Collapse
|
12
|
Wang YS, Chen C, Ahmad MJ, Chen F, Ding ZM, Yang SJ, Chen YW, Duan ZQ, Liu M, Liang AX, He CJ, Hua GH, Huo LJ. WDR62 regulates mouse oocyte meiotic maturation related to p-JNK and H3K9 trimethylation. Int J Biochem Cell Biol 2022; 144:106169. [PMID: 35093571 DOI: 10.1016/j.biocel.2022.106169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/01/2023]
Abstract
WDR62 (WD40-repeat protein 62) participates in diverse biological process, especially mitotic spindle organization via regulating centriole biogenesis and the function of centriole-associated protein. However, the role of WDR62 exerts in spindle assembly and meiotic progression control in oocytes lacking typical centrosomes remains obscure. In a previous study, we reported that WDR62 is involved in spindle migration and asymmetric cytokinesis in mouse oocyte meiosis. In the current study, another novel function of WDR62 regulating cell cycle progression through meiotic spindle formation during oocyte meiotic maturation was found. Knockdown of WDR62 through siRNA microinjection disrupted the meiotic cell cycle and induced metaphase-I (MI) arrest coupled with severe spindle abnormality, chromosome misalignment, and aneuploid generation. Moreover, WDR62 depletion induced defective kinetochore-microtubule attachments (K-MT) and activated spindle assembly checkpoint (SAC), which could trigger the arrest of meiotic progression. Further study demonstrated that depletion of WDR62 was associated with an aberrant location of p-JNK and reduced its expression level; concomitantly, status of H3K9 trimethylation was also altered. In addition, phenotypes similar to WDR62 depletion were observed during the function-loss analysis of p-JNK using a specific inhibitor (SP600125), which signifies that WDR62 is important for spindle organization and meiotic progression, and this function might be via its regulation of p-JNK. In conclusion, this study revealed that WDR62 functions in multiple ways during oocyte meiotic maturation, which could be related to p-JNK and H3K9 trimethylation.
Collapse
Affiliation(s)
- Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chao Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yang-Wu Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chang-Jiu He
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Guo-Hua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
13
|
Abstract
Primary ovarian insufficiency (POI) is determined by exhaustion of follicles in the ovaries, which leads to infertility before the age of 40 years. It is characterized by a strong familial and heterogeneous genetic background. Therefore, we will mainly discuss the genetic basis of POI in this review. We identified 107 genes related to POI etiology in mammals described by several independent groups. Thirty-four of these genes (AARS2, AIRE, ANTXR1, ATM, BMPR1B, CLPP, CYP17A1, CYP19A1, DCAF17, EIF2B, ERAL1, FANCA, FANCC, FMR1, FOXL2, GALT, GNAS, HARS2, HSD17B4, LARS2, LMNA, MGME1, NBN, PMM2, POLG, PREPL, RCBTB1, RECQL2/3/4, STAR, TWNK, and XRCC4/9) have been linked to syndromic POI and are mainly implicated in metabolism function and meiosis/DNA repair. In addition, the majority of genes associated with nonsyndromic POI, widely expanded by high-throughput techniques over the last decade, have been implicated in ovarian development and meiosis/DNA repair pathways (ATG7, ATG9, ANKRD31, BMP8B, BMP15, BMPR1A, BMPR1B, BMPR2, BNC1, BRCA2, CPEB1, C14ORF39, DAZL, DIAPH2, DMC1, ERCC6, FANCL, FANCM, FIGLA, FSHR, GATA4, GDF9, GJA4, HELQ, HSF2BP, HFM1, INSL3, LHCGR, LHX8, MCM8, MCM9, MEIOB, MSH4, MSH5, NANOS3, NOBOX, NOTCH2, NR5A1, NUP107, PGRMC1, POLR3H, PRDM1, PRDM9, PSMC3IP, SOHLH1, SOHLH2, SPIDR, STAG3, SYCE1, TP63, UBR2, WDR62, and XRCC2), whereas a few are related to metabolic functions (EIF4ENIF1, KHDRBS1, MRPS22, POLR2C). Some genes, such as STRA8, FOXO3A, KIT, KITL, WNT4, and FANCE, have been shown to cause ovarian insufficiency in rodents, but mutations in these genes have yet to be elucidated in women affected by POI. Lastly, some genes have been rarely implicated in its etiology (AMH, AMHR2, ERRC2, ESR1, INHA, LMN4, POF1B, POU5F1, REC8, SMC1B). Considering the heterogeneous genetic and familial background of this disorder, we hope that an overview of literature data would reinforce that genetic screening of those patients is worthwhile and helpful for better genetic counseling and patient management.
Collapse
Affiliation(s)
- Monica Malheiros França
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Section of Endocrinology Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, USA.
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
14
|
Benoit B, Baillet A, Poüs C. Cytoskeleton and Associated Proteins: Pleiotropic JNK Substrates and Regulators. Int J Mol Sci 2021; 22:8375. [PMID: 34445080 PMCID: PMC8395060 DOI: 10.3390/ijms22168375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
This review extensively reports data from the literature concerning the complex relationships between the stress-induced c-Jun N-terminal kinases (JNKs) and the four main cytoskeleton elements, which are actin filaments, microtubules, intermediate filaments, and septins. To a lesser extent, we also focused on the two membrane-associated cytoskeletons spectrin and ESCRT-III. We gather the mechanisms controlling cytoskeleton-associated JNK activation and the known cytoskeleton-related substrates directly phosphorylated by JNK. We also point out specific locations of the JNK upstream regulators at cytoskeletal components. We finally compile available techniques and tools that could allow a better characterization of the interplay between the different types of cytoskeleton filaments upon JNK-mediated stress and during development. This overview may bring new important information for applied medical research.
Collapse
Affiliation(s)
- Béatrice Benoit
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
| | - Anita Baillet
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
| | - Christian Poüs
- Université Paris-Saclay, INSERM UMR-S-1193, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France; (A.B.); (C.P.)
- Biochimie-Hormonologie, AP-HP Université Paris-Saclay, Site Antoine Béclère, 157 Rue de la Porte de Trivaux, 92141 Clamart, France
| |
Collapse
|
15
|
Sun B, Yeh J. Onco-fertility and personalized testing for potential for loss of ovarian reserve in patients undergoing chemotherapy: proposed next steps for development of genetic testing to predict changes in ovarian reserve. FERTILITY RESEARCH AND PRACTICE 2021; 7:13. [PMID: 34193292 PMCID: PMC8244159 DOI: 10.1186/s40738-021-00105-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
Women of reproductive age undergoing chemotherapy face the risk of irreversible ovarian insufficiency. Current methods of ovarian reserve testing do not accurately predict future reproductive potential for patients undergoing chemotherapy. Genetic markers that more accurately predict the reproductive potential of each patient undergoing chemotherapy would be critical tools that would be useful for evidence-based fertility preservation counselling. To assess the possible approaches to take to develop personalized genetic testing for these patients, we review current literature regarding mechanisms of ovarian damage due to chemotherapy and genetic variants associated with both the damage mechanisms and primary ovarian insufficiency. The medical literature point to a number of genetic variants associated with mechanisms of ovarian damage and primary ovarian insufficiency. Those variants that appear at a higher frequency, with known pathways, may be considered as potential genetic markers for predictive ovarian reserve testing. We propose developing personalized testing of the potential for loss of ovarian function for patients with cancer, prior to chemotherapy treatment. There are advantages of using genetic markers complementary to the current ovarian reserve markers of AMH, antral follicle count and day 3 FSH as predictors of preservation of fertility after chemotherapy. Genetic markers will help identify upstream pathways leading to high risk of ovarian failure not detected by present clinical markers. Their predictive value is mechanism-based and will encourage research towards understanding the multiple pathways contributing to ovarian failure after chemotherapy.
Collapse
Affiliation(s)
- Bei Sun
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - John Yeh
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, University of Massachusetts Medical School, UMass Memorial Medical Center, 119 Belmont Street, Worcester, MA, 01605, USA.
| |
Collapse
|
16
|
Huang J, Liang Z, Guan C, Hua S, Jiang K. WDR62 regulates spindle dynamics as an adaptor protein between TPX2/Aurora A and katanin. J Cell Biol 2021; 220:212395. [PMID: 34137789 PMCID: PMC8240853 DOI: 10.1083/jcb.202007167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 04/12/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
WDR62 is a microcephaly-related, microtubule (MT)-associated protein (MAP) that localizes to the spindle pole and regulates spindle organization, but the underlying mechanisms remain elusive. Here, we show that WDR62 regulates spindle dynamics by recruiting katanin to the spindle pole and further reveal a TPX2–Aurora A–WDR62–katanin axis in cells. By combining cellular and in vitro experiments, we demonstrate that WDR62 shows preference for curved segments of dynamic GDP-MTs, as well as GMPCPP- and paclitaxel-stabilized MTs, suggesting that it recognizes extended MT lattice. Consistent with this property, WDR62 alone is inefficient in recruiting katanin to GDP-MTs, while WDR62 complexed with TPX2/Aurora A can potently promote katanin-mediated severing of GDP-MTs in vitro. In addition, the MT-binding affinity of WDR62 is autoinhibited through JNK phosphorylation-induced intramolecular interaction. We propose that WDR62 is an atypical MAP and functions as an adaptor protein between its recruiting factor TPX2/Aurora A and the effector katanin to orchestrate the regulation of spindle dynamics.
Collapse
Affiliation(s)
- Junjie Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhuobi Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Cuirong Guan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shasha Hua
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Kai Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Ho UY, Feng CWA, Yeap YY, Bain AL, Wei Z, Shohayeb B, Reichelt ME, Homer H, Khanna KK, Bowles J, Ng DCH. WDR62 is required for centriole duplication in spermatogenesis and manchette removal in spermiogenesis. Commun Biol 2021; 4:645. [PMID: 34059773 PMCID: PMC8167107 DOI: 10.1038/s42003-021-02171-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
WDR62 is a scaffold protein involved in centriole duplication and spindle assembly during mitosis. Mutations in WDR62 can cause primary microcephaly and premature ovarian insufficiency. We have generated a genetrap mouse model deficient in WDR62 and characterised the developmental effects of WDR62 deficiency during meiosis in the testis. We have found that WDR62 deficiency leads to centriole underduplication in the spermatocytes due to reduced or delayed CEP63 accumulation in the pericentriolar matrix. This resulted in prolonged metaphase that led to apoptosis. Round spermatids that inherited a pair of centrioles progressed through spermiogenesis, however, manchette removal was delayed in WDR62 deficient spermatids due to delayed Katanin p80 accumulation in the manchette, thus producing misshapen spermatid heads with elongated manchettes. In mice, WDR62 deficiency resembles oligoasthenoteratospermia, a common form of subfertility in men that is characterised by low sperm counts, poor motility and abnormal morphology. Therefore, proper WDR62 function is necessary for timely spermatogenesis and spermiogenesis during male reproduction. Uda Ho et al find that loss of centriolar scaffold protein WDR62 in mouse testis leads to defects in spermatogenesis. They find that WDR62 deficiency leads to centriole underduplication in spermatocytes and delayed manchette removal in spermatids due to delayed Katanin p80 accumulation.
Collapse
Affiliation(s)
- Uda Y Ho
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Chun-Wei Allen Feng
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yvonne Y Yeap
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda L Bain
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Zhe Wei
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Belal Shohayeb
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Hayden Homer
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Dominic C H Ng
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
18
|
Dong F, Chen M, Chen M, Jiang L, Shen Z, Ma L, Han C, Guo X, Gao F. PRMT5 Is Involved in Spermatogonial Stem Cells Maintenance by Regulating Plzf Expression via Modulation of Lysine Histone Modifications. Front Cell Dev Biol 2021; 9:673258. [PMID: 34113620 PMCID: PMC8185031 DOI: 10.3389/fcell.2021.673258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) catalyzes the formation of mono- or symmetric dimethylarginine residues on histones and non-histone substrates and has been demonstrated to play important roles in many biological processes. In the present study, we observed that PRMT5 is abundantly expressed in spermatogonial stem cells (SSCs) and that Prmt5 deletion results in a progressive loss of SSCs and male infertility. The proliferation of Prmt5-deficient SSCs cultured in vitro exhibited abnormal proliferation, cell cycle arrest in G0/G1 phase and a significant increase in apoptosis. Furthermore, PLZF expression was dramatically reduced in Prmt5-deficient SSCs, and the levels of H3K9me2 and H3K27me2 were increased in the proximal promoter region of the Plzf gene in Prmt5-deficient SSCs. Further study revealed that the expression of lysine demethylases (JMJD1A, JMJD1B, JMJD1C, and KDM6B) was significantly reduced in Prmt5-deficient SSCs and that the level of permissive arginine methylation H3R2me2s was significantly decreased at the upstream promoter region of these genes in Prmt5-deficient SSCs. Our results demonstrate that PRMT5 regulates spermatogonial stem cell development by modulating histone H3 lysine modifications.
Collapse
Affiliation(s)
- Fangfang Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Min Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Lin Jiang
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Longfei Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xudong Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Zhi Y, Zhou X, Yu J, Yuan L, Zhang H, Ng DCH, Xu Z, Xu D. Pathophysiological Significance of WDR62 and JNK Signaling in Human Diseases. Front Cell Dev Biol 2021; 9:640753. [PMID: 33937237 PMCID: PMC8086514 DOI: 10.3389/fcell.2021.640753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/29/2021] [Indexed: 12/31/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK) is highly evolutionarily conserved and plays important roles in a broad range of physiological and pathological processes. The WD40-repeat protein 62 (WDR62) is a scaffold protein that recruits different components of the JNK signaling pathway to regulate several human diseases including neurological disorders, infertility, and tumorigenesis. Recent studies revealed that WDR62 regulates the process of neural stem cell mitosis and germ cell meiosis through JNK signaling. In this review we summarize the roles of WDR62 and JNK signaling in neuronal and non-neuronal contexts and discuss how JNK-dependent signaling regulates both processes. WDR62 is involved in various human disorders via JNK signaling regulation, and may represent a promising therapeutic strategy for the treatment of related diseases.
Collapse
Affiliation(s)
- Yiqiang Zhi
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Xiaokun Zhou
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Ling Yuan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Hongsheng Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Dominic C H Ng
- Faculty of Medicine, School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Li L, Peng Q, Gong M, Ling L, Xu Y, Liu Q. Using lncRNA Sequencing to Reveal a Putative lncRNA-mRNA Correlation Network and the Potential Role of PCBP1-AS1 in the Pathogenesis of Cervical Cancer. Front Oncol 2021; 11:634732. [PMID: 33833992 PMCID: PMC8023048 DOI: 10.3389/fonc.2021.634732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background/Aims Long non-coding RNAs (lncRNAs) play important roles in many diseases and participate in posttranscriptional regulatory networks in tumors. However, the functions of major lncRNAs in cervical cancer are unclear. Therefore, the aim of this study was to construct a lncRNA-mRNA coexpression functional network and analyze lncRNAs that might contribute to the pathogenesis of cervical cancer. Methods Differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) between three pairs of cervical cancer tissues and adjacent mucosa were identified by lncRNA microarray analysis. LncRNA-mRNA correlation analysis and functional enrichment were performed on the DEGs. From the correlation network, PCBP1-AS1 was selected as a candidate for further analysis. PCBP1-AS1 expression was examined by qPCR, and Kaplan-Meier survival, clinicopathology, GSEA, and immune infiltration analysis of PCBP1-AS1 were performed. The immune responses of PCBP1-AS1 expression in cervical cancer were analyzed using TIMER and western blot. PCBP1-AS1 was knocked down and overexpressed to evaluate its role in cell proliferation, migration, and invasion. Results A total of 130 lncRNAs were significantly differentially expressed in cervical cancer patient samples compared with control samples. Differentially expressed mRNAs in the lncRNA-mRNA interaction network were involved in the EMT process. Combined with the Kaplan-Meier survival analyses, the coexpression network revealed that PCBP1-AS1 was significantly associated with OS and clinicopathological parameters in cervical cancer patients. Moreover, PCBP1-AS1 expression was not only significantly increased in cervical cancer specimens but also associated with tumor stage, TNM, and invasion. GSEA revealed that PCBP1-AS1 is closely correlated with cell biological function via the p53 and notch signaling pathways. TIMER analysis revealed that the numbers of NK cells and M2 macrophages decreased when PCBP1-AS1 expression was high, which was consistent with the western blot results in clinical samples. Furthermore, in vitro experiments showed that high expression of PCBP1-AS1 promoted cell proliferation, migration, and invasion. Conclusions Transcriptomic and lncRNA-mRNA correlation analyses revealed that PCBP1-AS1 plays a key role as an independent prognostic factor in patients with cervical cancer. The identification of PCBP1-AS1 as a new biomarker for cervical cancer could help explain how changes in the immune environment promote cervical cancer development.
Collapse
Affiliation(s)
- Linhan Li
- Department of Gynaecology and Obstetrics, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Qisong Peng
- Department of Clinical Laboratory, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gong
- Department of Gynaecology and Obstetrics, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Ling
- Department of Gynaecology and Obstetrics, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yingxue Xu
- Department of Gynaecology and Obstetrics, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Qiaoling Liu
- Department of Gynaecology and Obstetrics, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Zhang S, Zhu D, Mei X, Li Z, Li J, Xie M, Xie HJW, Wang S, Cheng K. Advances in biomaterials and regenerative medicine for primary ovarian insufficiency therapy. Bioact Mater 2020; 6:1957-1972. [PMID: 33426370 PMCID: PMC7773538 DOI: 10.1016/j.bioactmat.2020.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Primary ovarian insufficiency (POI) is an ovarian dysfunction that affects more than 1 % of women and is characterized by hormone imbalances that afflict women before the age of 40. The typical perimenopausal symptoms result from abnormal levels of sex hormones, especially estrogen. The most prevalent treatment is hormone replacement therapy (HRT), which can relieve symptoms and improve quality of life. However, HRT cannot restore ovarian functions, including secretion, ovulation, and fertility. Recently, as part of a developing field of regenerative medicine, stem cell therapy has been proposed for the treatment of POI. Thus, we recapitulate the literature focusing on the use of stem cells and biomaterials for POI treatment, and sum up the underlying mechanisms of action. A thorough understanding of the work already done can aid in the development of guidelines for future translational applications and clinical trials that aim to cure POI by using regenerative medicine and biomedical engineering strategies. This paper illustrates the in-vivo, in-vitro, and cell-free treatments for POI using stem cells and biomaterials. We provide basic theories and suggestions for future research and clinical therapy translation. This review can help researcher to develop guidelines on stem cells treating POI.
Collapse
Affiliation(s)
- Sichen Zhang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Xuan Mei
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Junlang Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Mengjie Xie
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Halle Jiang Williams Xie
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
22
|
Heddar A, Misrahi M. Concerns regarding the potentially causal role of FANCA heterozygous variants in human primary ovarian insufficiency. Hum Genet 2020; 140:691-694. [PMID: 33151384 DOI: 10.1007/s00439-020-02232-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/20/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Abdelkader Heddar
- Faculté de Médecine; Unité de Génétique Moléculaire Des Maladies Métaboliques Et de La Reproduction, APHP Hôpitaux Universitaires Paris-Saclay, Université Paris Saclay, Hôpital Bicêtre, 94275, Le Kremlin-Bicêtre, France.,Université Paris Saclay, UMR-S 1193, INSERM, Hôpital Paul Brousse, Villejuif, France
| | - Micheline Misrahi
- Faculté de Médecine; Unité de Génétique Moléculaire Des Maladies Métaboliques Et de La Reproduction, APHP Hôpitaux Universitaires Paris-Saclay, Université Paris Saclay, Hôpital Bicêtre, 94275, Le Kremlin-Bicêtre, France. .,Université Paris Saclay, UMR-S 1193, INSERM, Hôpital Paul Brousse, Villejuif, France.
| |
Collapse
|
23
|
Heddar A, Beckers D, Fouquet B, Roland D, Misrahi M. A Novel Phenotype Combining Primary Ovarian Insufficiency Growth Retardation and Pilomatricomas With MCM8 Mutation. J Clin Endocrinol Metab 2020; 105:dgaa155. [PMID: 32242235 DOI: 10.1210/clinem/dgaa155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/01/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Primary Ovarian insufficiency (POI) affects 1% of women aged <40 years and leads most often to definitive infertility with adverse health outcomes. Very recently, genes involved in deoxyribonucleic acid (DNA) repair have been shown to cause POI. OBJECTIVE To identify the cause of a familial POI in a consanguineous Turkish family. DESIGN Exome sequencing was performed in the proposita and her mother. Chromosomal breaks were studied in lymphoblastoid cell lines treated with mitomycin (MMC). SETTING AND PATIENTS The proposita presented intrauterine and postnatal growth retardation, multiple pilomatricomas in childhood, and primary amenorrhea. She was treated with growth hormone (GH) from age 14 to 18 years. RESULTS We identified a novel nonsense variant in exon 9 of the minichromosome maintenance complex component 8 gene (MCM8) NM_001281522.1: c0.925C > T/p.R309* yielding either a truncated protein or nonsense-mediated messenger ribonucleic acid decay.The variant was homozygous in the daughter and heterozygous in the mother. MMC induced DNA breaks and aberrant metaphases in the patient's lymphoblastoid cells. The mother's cells had intermediate but significantly higher chromosomal breaks compared with a control. CONCLUSION We describe a novel phenotype of syndromic POI related to a novel truncating MCM8 variant. We show for the first time that spontaneous tumors (pilomatricomas) are associated with an MCM8 genetic defect, making the screening of this gene necessary before starting GH therapy in patients with POI with short stature, especially in a familial or consanguineous context. Appropriate familial monitoring in the long term is necessary, and fertility preservation should be considered in heterozygous siblings to avoid rapid follicular atresia.
Collapse
Affiliation(s)
- Abdelkader Heddar
- Universités Paris Sud, Paris Saclay, Faculté de Médecine; Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpitaux Universitaires Paris-Sud, Hôpital Bicêtre AP-HP, Le Kremlin-Bicêtre, France
| | - Dominique Beckers
- Université catholique de Louvain, CHU UCL Namur, Pediatric Endocrinology, Yvoir, Belgium
| | - Baptiste Fouquet
- Universités Paris Sud, Paris Saclay, Faculté de Médecine; Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpitaux Universitaires Paris-Sud, Hôpital Bicêtre AP-HP, Le Kremlin-Bicêtre, France
| | - Dominique Roland
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Micheline Misrahi
- Universités Paris Sud, Paris Saclay, Faculté de Médecine; Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpitaux Universitaires Paris-Sud, Hôpital Bicêtre AP-HP, Le Kremlin-Bicêtre, France
| |
Collapse
|
24
|
França MM, Mendonca BB. Genetics of Primary Ovarian Insufficiency in the Next-Generation Sequencing Era. J Endocr Soc 2020; 4:bvz037. [PMID: 32099950 PMCID: PMC7033037 DOI: 10.1210/jendso/bvz037] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is characterized by amenorrhea, increased follicle-stimulating hormone (FSH) levels, and hypoestrogenism, leading to infertility before the age of 40 years. Elucidating the cause of POI is a key point for diagnosing and treating affected women. Here, we review the genetic etiology of POI, highlighting new genes identified in the last few years using next-generation sequencing (NGS) approaches. We searched the MEDLINE/PubMed, Cochrane, and Web of Science databases for articles published in or translated to English. Several genes were found to be associated with POI genetic etiology in humans and animal models (SPIDR, BMPR2, MSH4, MSH5, GJA4, FANCM, POLR2C, MRPS22, KHDRBS1, BNC1, WDR62, ATG7/ATG9, BRCA2, NOTCH2, POLR3H, and TP63). The heterogeneity of POI etiology has been revealed to be remarkable in the NGS era, and discoveries have indicated that meiosis and DNA repair play key roles in POI development.
Collapse
Affiliation(s)
- Monica Malheiros França
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
25
|
Effects of Human Amnion-Derived Mesenchymal Stem Cell (hAD-MSC) Transplantation In Situ on Primary Ovarian Insufficiency in SD Rats. Reprod Sci 2020; 27:1502-1512. [PMID: 31953773 DOI: 10.1007/s43032-020-00147-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Abstract
Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation can repair ovarian injury and improve ovarian function in rats with chemotherapy-induced primary ovarian insufficiency (POI). However, ensuring that stem cells home to the ovary to improve their effects on ovarian injury is challenging. This research aimed to directly inject ovarian tissue with hAD-MSCs and improve the homing of stem cells to the ovary. The animals were divided into POI, hAD-MSC (tail vein) treatment, hAD-MSC (in situ) treatment, and control groups. POI rat models were established by intraperitoneal injection of cyclophosphamide (CTX) and busulfan (BUS). The hAD-MSCs isolated from the amnion were injected into the tail vein or ovary of POI rats. The estrous cycle, serum sex hormone levels, follicle counts, ovarian pathological changes, and proteome of the ovaries were evaluated. hAD-MSCs were successfully isolated and cultured from the amnion. Both hAD-MSC (tail vein) and hAD-MSC (in situ) transplantation increased body weight, improved the AMH levels and follicle numbers, and reduced reproductive organ injuries in POI rats. Transplantation of hAD-MSCs (in situ) upregulated 24 proteins and downregulated 4 proteins. Both hAD-MSC (tail vein) and hAD-MSC (in situ) transplantations can repair ovarian injury and improve ovarian function in rats with chemotherapy-induced POI. The paracrine proteome of hAD-MSCs in the ovarian microenvironment can protect against chemotherapy-induced damage by reducing apoptosis and promoting angiogenesis, cell proliferation, and gene expression.
Collapse
|
26
|
Zhou Y, Qin Y, Qin Y, Xu B, Guo T, Ke H, Chen M, Zhang L, Han F, Li Y, Chen M, Behrens A, Wang Y, Xu Z, Chen ZJ, Gao F. Correction: Wdr62 is involved in female meiotic initiation via activating JNK signaling and associated with POI in humans. PLoS Genet 2019; 15:e1008504. [PMID: 31730645 PMCID: PMC6857852 DOI: 10.1371/journal.pgen.1008504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Kim SM, Yokoyama T, Ng D, Ulu F, Yamazaki Y. Retinoic acid-stimulated ERK1/2 pathway regulates meiotic initiation in cultured fetal germ cells. PLoS One 2019; 14:e0224628. [PMID: 31682623 PMCID: PMC6827903 DOI: 10.1371/journal.pone.0224628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022] Open
Abstract
In murine fetal germ cells, retinoic acid (RA) is an extrinsic cue for meiotic initiation that stimulates transcriptional activation of the Stimulated by retinoic acid gene 8 (Stra8), which is required for entry of germ cells into meiotic prophase I. Canonically, the biological activities of RA are mediated by nuclear RA receptors. Recent studies in somatic cells found that RA noncanonically stimulates intracellular signal transduction pathways to regulate multiple cellular processes. In this study, using a germ cell culture system, we investigated (1) whether RA treatment activates any mitogen-activated protein kinase (MAPK) pathways in fetal germ cells at the time of sex differentiation, and (2) if this is the case, whether the corresponding RA-stimulated signaling pathway regulates Stra8 expression in fetal germ cells and their entry into meiosis. When XX germ cells at embryonic day (E) 12.5 were cultured with RA, the extracellular-signal-regulated kinase (ERK) 1/2 pathway was predominantly activated. MEK1/2 inhibitor (U0126) treatment suppressed the mRNA expressions of RA-induced Stra8 and meiotic marker genes (Rec8, Spo11, Dmc1, and Sycp3) in both XX and XY fetal germ cells. Furthermore, U0126 treatment dramatically reduced STRA8 protein levels and numbers of meiotic cells among cultured XX and XY fetal germ cells even in the presence of RA. Taken together, our results suggest the novel concept that the RA functions by stimulating the ERK1/2 pathway and that this activity is critical for Stra8 expression and meiotic progression in fetal germ cells.
Collapse
Affiliation(s)
- Sung-Min Kim
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States of America
| | - Toshifumi Yokoyama
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States of America
- Department of Animal Science, Kobe University, Kobe, Hyogo, Japan
| | - Dylan Ng
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States of America
| | - Ferhat Ulu
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States of America
| | - Yukiko Yamazaki
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States of America
- * E-mail:
| |
Collapse
|
28
|
Qin Y, Zhou Y, Shen Z, Xu B, Chen M, Li Y, Chen M, Behrens A, Zhou J, Qi X, Meng W, Wang Y, Gao F. WDR62 is involved in spindle assembly by interacting with CEP170 in spermatogenesis. Development 2019; 146:dev.174128. [PMID: 31533924 DOI: 10.1242/dev.174128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 09/09/2019] [Indexed: 01/15/2023]
Abstract
WDR62 is the second most common genetic alteration associated with microcephaly. It has been shown that Wdr62 is required for germ cell meiosis initiation in mice, and the majority of male germ cells are lost in the meiotic defect of first wave spermatogenesis in Wdr62 mutants. Strikingly, in this study, we found that the initiation of meiosis following spermatogenesis was not affected and the germ cells were gradually repopulated at later developmental stages. However, most germ cells were arrested at metaphase of meiosis I and no mature sperm were detected in epididymides. Further, this study demonstrated that metaphase I arrest of Wdr62-deficient spermatocytes was caused by asymmetric distribution of the centrosome and aberrant spindle assembly. Also, mechanistic studies demonstrated that WDR62 interacts with centrosome-associated protein CEP170, and deletion of Wdr62 causes downregulation of the CEP170 protein, which in turn leads to the aberrant spindle assembly. In summary, this study indicates that the meiosis of first wave spermatogenesis and the following spermatogenesis started from spermatogonium is probably regulated by different mechanisms. We also demonstrated a new function of WDR62 in germ cell meiosis, through its interaction with CEP170.
Collapse
Affiliation(s)
- Yan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 100101.,University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China 010070
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 100101.,University of Chinese Academy of Sciences, Beijing, China
| | - Binyang Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 100101.,University of Chinese Academy of Sciences, Beijing, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 100101
| | - Yaqiong Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 100101.,University of Chinese Academy of Sciences, Beijing, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 100101.,University of Chinese Academy of Sciences, Beijing, China
| | - Axel Behrens
- CR-UK London Research Institute, London, United Kingdom
| | - Jingjing Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 100101.,University of Chinese Academy of Sciences, Beijing, China
| | - Xin Qi
- The Department of Chemistry, Beijing Capital Normal University, Beijing, China 100048
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China 100101
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China 100101
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 100101 .,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Novel STAG3 mutations in a Caucasian family with primary ovarian insufficiency. Mol Genet Genomics 2019; 294:1527-1534. [PMID: 31363903 DOI: 10.1007/s00438-019-01594-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/06/2019] [Indexed: 12/31/2022]
Abstract
Primary ovarian insufficiency (POI) affects ~ 1-3, 7% of women under forty and is a public health problem. Most causes are unknown, but an increasing number of genetic causes have been identified recently. The identification of such causes is essential for genetic and therapeutic counseling in patients and their families. We performed whole exome sequencing in two Caucasian sisters displaying non syndromic POI and their unaffected mother. We identified two novel pathogenic variants in STAG3 encoding a meiosis-specific subunit of the cohesin ring, which ensures correct sister chromatid cohesion: a c.3052delC truncating mutation in exon 28 yielding p.Arg1018Aspfs*14, and a c.659T > G substitution in exon seven yielding p.Leu220Arg. Leu220, highly conserved throughout species, belongs to the STAG domain conserved with other mitotic subunits of the cohesion complex STAG1 and 2. In silico analysis reveals that this substitution markedly impacts the structure of this domain. The truncation removes the last 206 C-terminal residues, not conserved in STAG1 and 2, supporting an important specific role in STAG3, especially meiosis. This is the first occurrence of STAG3 mutations in a Caucasian family. Very little is known about the function of STAG proteins domains. The "knock out-like" phenotype described here supports the crucial role of a single residue in the STAG domain and of the C-terminal region in STAG3 function. In conclusion, this observation shows the necessity to perform the genetic study of POI worldwide including STAG3. This could lead to appropriate genetic counseling and long term follow-up since these patients may develop ovarian tumors.
Collapse
|
30
|
Xu D, Yao M, Wang Y, Yuan L, Hoeck JD, Yu J, Liu L, Yeap YYC, Zhang W, Zhang F, Feng Y, Ma T, Wang Y, Ng DCH, Niu X, Su B, Behrens A, Xu Z. MEKK3 coordinates with FBW7 to regulate WDR62 stability and neurogenesis. PLoS Biol 2018; 16:e2006613. [PMID: 30566428 PMCID: PMC6347294 DOI: 10.1371/journal.pbio.2006613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/25/2019] [Accepted: 11/27/2018] [Indexed: 01/22/2023] Open
Abstract
Mutations of WD repeat domain 62 (WDR62) lead to autosomal recessive primary microcephaly (MCPH), and down-regulation of WDR62 expression causes the loss of neural progenitor cells (NPCs). However, how WDR62 is regulated and hence controls neurogenesis and brain size remains elusive. Here, we demonstrate that mitogen-activated protein kinase kinase kinase 3 (MEKK3) forms a complex with WDR62 to promote c-Jun N-terminal kinase (JNK) signaling synergistically in the control of neurogenesis. The deletion of Mekk3, Wdr62, or Jnk1 resulted in phenocopied defects, including premature NPC differentiation. We further showed that WDR62 protein is positively regulated by MEKK3 and JNK1 in the developing brain and that the defects of wdr62 deficiency can be rescued by the transgenic expression of JNK1. Meanwhile, WDR62 is also negatively regulated by T1053 phosphorylation, leading to the recruitment of F-box and WD repeat domain-containing protein 7 (FBW7) and proteasomal degradation. Our findings demonstrate that the coordinated reciprocal and bidirectional regulation among MEKK3, FBW7, WDR62, and JNK1, is required for fine-tuned JNK signaling for the control of balanced NPC self-renewal and differentiation during cortical development. Microcephaly is a neural developmental disorder characterized by significantly reduced brain size and variable intellectual disability. WD repeat domain 62 (WDR62) was identified as the second most common gene for autosomal recessive primary microcephaly (MCPH) in human. Here, we studied the underlying regulatory mechanism of WDR62 and the impact on generation of new neurons. We show that mitogen-activated protein kinase kinase kinase 3 (Mekk3), Wdr62, and c-Jun N-terminal kinase 1 (Jnk1) knockout (KO) mice have defects in the generation and maturation of neurons. We demonstrate that WDR62 stability is positively regulated by a mitogen-activated protein kinase kinase kinase (MAPKKK), MEKK3, but negatively regulated by the E3 ligase, F-box and WD repeat domain-containing protein 7 (FBW7). These positive and negative factors calibrate the strength of the activity of the JNK signaling pathway, which controls self-renewal and differentiation of neural progenitor cells (NPCs) during brain development. This finding improves our understanding of the molecular pathogenesis of MCPH.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Minghui Yao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ling Yuan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | | | - Jingwen Yu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Liang Liu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yvonne Y. C. Yeap
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Australia
| | - Weiya Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Feng Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yinghang Feng
- Sino-Danish College, University of Chinese Academy of Science, Beijing, China
| | - Tiantian Ma
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yujie Wang
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Dominic C. H. Ng
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Australia
| | - Xiaoyin Niu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, Guy’s Campus, London, United Kingdom
- * E-mail: (ZX); (AB)
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Science, Beijing, China
- Parkinson’s Disease Center, Beijing Institute for Brain Disorders, Beijing, China
- * E-mail: (ZX); (AB)
| |
Collapse
|