1
|
Izzo M, Battistini J, Golini E, Voellenkle C, Provenzano C, Orsini T, Strimpakos G, Scavizzi F, Raspa M, Baci D, Frolova S, Tastsoglou S, Zaccagnini G, Garcia‐Manteiga JM, Gourdon G, Mandillo S, Cardinali B, Martelli F, Falcone G. Muscle-specific gene editing improves molecular and phenotypic defects in a mouse model of myotonic dystrophy type 1. Clin Transl Med 2025; 15:e70227. [PMID: 39956955 PMCID: PMC11830570 DOI: 10.1002/ctm2.70227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) is a genetic multisystemic disease, characterised by pleiotropic symptoms that exhibit notable variability in severity, nature and age of onset. The genetic cause of DM1 is the expansion of unstable CTG-repeats in the 3' untranslated region (UTR) of the DMPK gene, resulting in the accumulation of toxic CUG-transcripts that sequester RNA-binding proteins and form nuclear foci in DM1 affected tissues and, consequently, alter various cellular processes. Therapeutic gene editing for treatment of monogenic diseases is a powerful technology that could in principle remove definitively the disease-causing genetic defect. The precision and efficiency of the molecular mechanisms are still under investigation in view of a possible use in clinical practice. METHODS Here, we describe the application of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) strategy to remove the CTG-expansion in the DMPK gene in a mouse model carrying the human transgene from a DM1 patient. To optimise the editing efficiency in vivo, we identified new tools that allowed to improve the expression levels and the activity of the CRISPR/Cas9 machinery. Newly designed guide RNA pairs were tested in DM1-patient derived cells before in vivo application. Edited cells were analysed to assess the occurrence of off-target and the accuracy of on-target genomic events. Gene editing-dependent and -independent mechanisms leading to decreased accumulation of the mutated DMPK transcripts were also evaluated. RESULTS AND CONCLUSION Systemic delivery of CRISPR/Cas9 components in DM1 mice, through myotropic adeno-associated viral vectors, led to significant improvement of molecular alterations in the heart and skeletal muscle. Importantly, a persistent increase of body weight, improvement of muscle strength and body composition parameters were observed in treated animals. Accurate evaluation of CRISPR/Cas9-mediated-phenotypic recovery in vivo is a crucial preclinical step for the development of a gene therapy for DM1 patients. KEY POINTS In vivo application of a therapeutic gene editing strategy for permanent deletion of the pathogenetic CTG-repeat amplification in the DMPK gene that causes myotonic dystrophy type 1. Following treatment, diseased mice show a significant improvement of both molecular and phenotypic defects.
Collapse
Affiliation(s)
- Mariapaola Izzo
- Institute of Biochemistry and Cell BiologyCNRRomeItaly
- Present address:
Department of Molecular MedicineSapienza University of RomeRomeItaly
| | | | - Elisabetta Golini
- Institute of Biochemistry and Cell BiologyCNRRomeItaly
- CNR‐EMMA INFRAFRONTIER‐IMPCRomeItaly
| | | | | | - Tiziana Orsini
- Institute of Biochemistry and Cell BiologyCNRRomeItaly
- CNR‐EMMA INFRAFRONTIER‐IMPCRomeItaly
| | | | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell BiologyCNRRomeItaly
- CNR‐EMMA INFRAFRONTIER‐IMPCRomeItaly
| | - Marcello Raspa
- Institute of Biochemistry and Cell BiologyCNRRomeItaly
- CNR‐EMMA INFRAFRONTIER‐IMPCRomeItaly
| | - Denisa Baci
- Molecular Cardiology LaboratoryIRCCS Policlinico San DonatoMilanItaly
| | - Svetlana Frolova
- Molecular Cardiology LaboratoryIRCCS Policlinico San DonatoMilanItaly
| | - Spyros Tastsoglou
- Molecular Cardiology LaboratoryIRCCS Policlinico San DonatoMilanItaly
| | | | | | - Genevieve Gourdon
- Sorbonne UniversitéInserm, Institut de MyologieCentre de Recherche en MyologieParisFrance
| | - Silvia Mandillo
- Institute of Biochemistry and Cell BiologyCNRRomeItaly
- CNR‐EMMA INFRAFRONTIER‐IMPCRomeItaly
| | | | - Fabio Martelli
- Molecular Cardiology LaboratoryIRCCS Policlinico San DonatoMilanItaly
| | | |
Collapse
|
2
|
Shi W, Jin E, Fang L, Sun Y, Fan Z, Zhu J, Liang C, Zhang YP, Zhang YQ, Wang GD, Zhao W. VDGE: a data repository of variation database for gene-edited animals across multiple species. Nucleic Acids Res 2025; 53:D1250-D1260. [PMID: 39470732 PMCID: PMC11701559 DOI: 10.1093/nar/gkae956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024] Open
Abstract
Gene-edited animals are crucial for addressing fundamental questions in biology and medicine and hold promise for practical applications. In light of the rapid advancement of gene editing technologies over the past decade, a dramatically increased number of gene-edited animals have been generated. Genome editing at off-target sites can, however, introduce genomic variations, potentially leading to unintended functional consequences in these animals. So, there is an urgent need to systematically collect and collate these variations in gene-edited animals to aid data mining and integrative in-depth analyses. However, existing databases are currently insufficient to meet this need. Here, we present the Variation Database of Gene-Edited animals (VDGE, https://ngdc.cncb.ac.cn/vdge), the first open-access repository to present genomic variations and annotations in gene-edited animals, with a particular focus on larger animals such as monkeys. At present, VDGE houses 151 on-target mutations from 210 samples, and 115,710 variations identified from 107 gene-edited and wild-type animal trios through unified and standardized analysis and concurrently provides comprehensive annotation details for each variation, thus facilitating the assessment of their functional consequences and promoting mechanistic studies and practical applications for gene-edited animals.
Collapse
Affiliation(s)
- Wenwen Shi
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Enhui Jin
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Lu Fang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yanling Sun
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Cambridge Street, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Cambridge Street, Houston, TX 77030, USA
| | - Zhuojing Fan
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Junwei Zhu
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Chengzhi Liang
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Ya-Ping Zhang
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Panlong District, Kunming 650201, China
| | - Yong Q Zhang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- School of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan 430062, China
| | - Guo-Dong Wang
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Panlong District, Kunming 650201, China
| | - Wenming Zhao
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| |
Collapse
|
3
|
Goralogia GS, Andreatta IM, Conrad V, Xiong Q, Vining KJ, Strauss SH. Rare but diverse off-target and somatic mutations found in field and greenhouse grown trees expressing CRISPR/Cas9. Front Bioeng Biotechnol 2024; 12:1412927. [PMID: 38974658 PMCID: PMC11224489 DOI: 10.3389/fbioe.2024.1412927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction: CRISPR gene editing, while highly efficient in creating desired mutations, also has the potential to cause off-target mutations. This risk is especially high in clonally propagated plants, where editing reagents may remain in the genome for long periods of time or in perpetuity. We studied a diverse population of Populus and Eucalyptus trees that had CRISPR/Cas9-containing transgenes that targeted one or two types of floral development genes, homologs of LEAFY and AGAMOUS. Methods: Using a targeted sequence approach, we studied approximately 20,000 genomic sites with degenerate sequence homology of up to five base pairs relative to guide RNA (gRNA) target sites. We analyzed those sites in 96 individual tree samples that represented 37 independent insertion events containing one or multiples of six unique gRNAs. Results: We found low rates of off-target mutations, with rates of 1.2 × 10-9 in poplar and 3.1 × 10-10 in eucalypts, respectively, comparable to that expected due to sexual reproduction. The rates of mutation were highly idiosyncratic among sites and not predicted by sequence similarity to the target sites; a subset of two gRNAs showed off-target editing of four unique genomic sites with up to five mismatches relative to the true target sites, reaching fixation in some gene insertion events and clonal ramets. The location of off-target mutations relative to the PAM site were essentially identical to that seen with on-target CRISPR mutations. Discussion: The low rates observed support many other studies in plants that suggest that the rates of off-target mutagenesis from CRISPR/Cas9 transgenes are negligible; our study extends this conclusion to trees and other long-lived plants where CRISPR/Cas9 transgenes were present in the genome for approximately four years.
Collapse
Affiliation(s)
- Greg S. Goralogia
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Isabella M. Andreatta
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Victoria Conrad
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Qin Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Kelly J. Vining
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
4
|
Yang L, Chen L, Zheng Y, Deng L, Bai R, Zhang T, Wang Z, Li S. Discovery and characterization of sgRNA-sequence-independent DNA cleavage from CRISPR/Cas9 in mouse embryos. Genomics 2024; 116:110836. [PMID: 38537809 DOI: 10.1016/j.ygeno.2024.110836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The CRISPR/Cas9 system can induce off-target effects in programmed gene editing, but there have been few reports on cleavage detection and their affection in embryo development. To study these events, sgRNAs with different off-target rates were designed and compared after micro-injected into mouse zygotes, and γH2AX was used for DNA cleavage sites analysis by immunostaining and CUT&Tag. Although the low off-target sgRNA were usually selected for production gene editing animals, γH2AX immunofluorescence indicated that there was a relative DSB peak at 15 h after Cas9 system injection, and the number of γH2AX foci at the peak was significantly higher in the low off-target sgRNA-injected group than in the control group. Further, the result of CUT&Tag sequencing analysis showed more double-strand breaks (DSBs) related sequences were detected in low off-target sgRNA-injected group than control and the distribution of DSB related sequences had no chromosome specificity. Gene Ontology (GO) annotation analysis of the DSB related sequences showed that these sequences were mainly concentrated at genes associated with some important biological processes, molecular functions, and cell components. In a conclusion, there are many sgRNA-sequence-independent DSBs in early mouse embryos when the Cas9 system is used for gene editing and the DSB related sequence could be detected and characterized in the genome. These results and method should also be considered in using or optimizing the Cas9 system.
Collapse
Affiliation(s)
- Liyun Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lijiao Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Yang Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Li Deng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Raoxian Bai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Ting Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
5
|
Xiao Z, Ying W, Xing Z, Zhihui L, Qiuyu Z, Caijiao H, Changlong L, Shi H, Deng L, Zhenwen C, Jianquan N, Xueyun H, Xiaoyan D. Unexpected mutations occurred in CRISPR/Cas9 edited Drosophila analyzed by deeply whole genomic sequencing. Heliyon 2024; 10:e29061. [PMID: 38596060 PMCID: PMC11002691 DOI: 10.1016/j.heliyon.2024.e29061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
CRISPR/Cas9 possesses the most promising prospects as a gene-editing tool in post-genomic researches. It becomes an epoch-marking technique for the features of speed and convenience of genomic modification. However, it is still unclear whether CRISPR/Cas9 gene editing can cause irreversible damage to the genome. In this study, we successfully knocked out the WHITE gene in Drosophila, which governs eye color, utilizing CRISPR/Cas9 technology. Subsequently, we conducted high-throughput sequencing to assess the impact of this editing process on the stability of the entire genomic profile. The results revealed the presence of numerous unexpected mutations in the Drosophila genome, including 630 SNVs (Single Nucleotide Variants), 525 Indels (Insertion and Deletion) and 425 MSIs (microsatellite instability). Although the KO (knockout) specifically occurred on chromosome X, the majority of mutations were observed on chromosome 3, indicating that this effect is genome-wide and associated with the spatial structure between chromosomes, rather than being solely limited to the location of the KO gene. It is worth noting that most of the mutations occurred in the intergenic and intron regions, without exerting any significant on the function or healthy of the animal. In addition, the mutations downstream of the knockout gene well beyond the upstream. This study has found that gene editing can lead to unexpected mutations in the genome, but most of these mutations are harmless. This research has deepened our understanding of CRISPR/Cas9 and broadened its application prospects.
Collapse
Affiliation(s)
- Zhu Xiao
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Wu Ying
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Zhang Xing
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Li Zhihui
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Zhang Qiuyu
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Hu Caijiao
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Li Changlong
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Hanping Shi
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Li Deng
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Chen Zhenwen
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Ni Jianquan
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Huo Xueyun
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Du Xiaoyan
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
McCabe CV, Price PD, Codner GF, Allan AJ, Caulder A, Christou S, Loeffler J, Mackenzie M, Malzer E, Mianné J, Nowicki KJ, O’Neill EJ, Pike FJ, Hutchison M, Petit-Demoulière B, Stewart ME, Gates H, Wells S, Sanderson ND, Teboul L. Long-read sequencing for fast and robust identification of correct genome-edited alleles: PCR-based and Cas9 capture methods. PLoS Genet 2024; 20:e1011187. [PMID: 38457464 PMCID: PMC10954187 DOI: 10.1371/journal.pgen.1011187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/20/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Recent developments in CRISPR/Cas9 genome-editing tools have facilitated the introduction of precise alleles, including genetic intervals spanning several kilobases, directly into the embryo. However, the introduction of donor templates, via homology directed repair, can be erroneous or incomplete and these techniques often produce mosaic founder animals. Thus, newly generated alleles must be verified at the sequence level across the targeted locus. Screening for the presence of the desired mutant allele using traditional sequencing methods can be challenging due to the size of the interval to be sequenced, together with the mosaic nature of founders. METHODOLOGY/PRINCIPAL FINDINGS In order to help disentangle the genetic complexity of these animals, we tested the application of Oxford Nanopore Technologies long-read sequencing at the targeted locus and found that the achievable depth of sequencing is sufficient to offset the sequencing error rate associated with the technology used to validate targeted regions of interest. We have assembled an analysis workflow that facilitates interrogating the entire length of a targeted segment in a single read, to confirm that the intended mutant sequence is present in both heterozygous animals and mosaic founders. We used this workflow to compare the output of PCR-based and Cas9 capture-based targeted sequencing for validation of edited alleles. CONCLUSION Targeted long-read sequencing supports in-depth characterisation of all experimental models that aim to produce knock-in or conditional alleles, including those that contain a mix of genome-edited alleles. PCR- or Cas9 capture-based modalities bring different advantages to the analysis.
Collapse
Affiliation(s)
| | - Peter D. Price
- The Mary Lyon Centre, MRC Harwell, Oxfordshire, United Kingdom
| | - Gemma F. Codner
- The Mary Lyon Centre, MRC Harwell, Oxfordshire, United Kingdom
| | | | - Adam Caulder
- The Mary Lyon Centre, MRC Harwell, Oxfordshire, United Kingdom
| | | | - Jorik Loeffler
- The Mary Lyon Centre, MRC Harwell, Oxfordshire, United Kingdom
| | | | - Elke Malzer
- The Mary Lyon Centre, MRC Harwell, Oxfordshire, United Kingdom
| | - Joffrey Mianné
- The Mary Lyon Centre, MRC Harwell, Oxfordshire, United Kingdom
| | | | | | - Fran J. Pike
- The Mary Lyon Centre, MRC Harwell, Oxfordshire, United Kingdom
| | - Marie Hutchison
- The Mary Lyon Centre, MRC Harwell, Oxfordshire, United Kingdom
| | - Benoit Petit-Demoulière
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris (ICS), PHENOMIN, CELPHEDIA, Illkirch, France
| | | | - Hilary Gates
- The Mary Lyon Centre, MRC Harwell, Oxfordshire, United Kingdom
- Mammalian Genetics Unit, MRC Harwell, Oxfordshire, United Kingdom
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell, Oxfordshire, United Kingdom
| | - Nicholas D. Sanderson
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell, Oxfordshire, United Kingdom
| |
Collapse
|
7
|
Burger BT, Beaton BP, Campbell MA, Brett BT, Rohrer MS, Plummer S, Barnes D, Jiang K, Naswa S, Lange J, Ott A, Alger E, Rincon G, Rounsley S, Betthauser J, Mtango NR, Benne JA, Hammerand J, Durfee CJ, Rotolo ML, Cameron P, Lied AM, Irby MJ, Nyer DB, Fuller CK, Gradia S, Kanner SB, Park KE, Waters J, Simpson S, Telugu BP, Salgado BC, Brandariz-Nuñez A, Rowland RRR, Culbertson M, Rice E, Cigan AM. Generation of a Commercial-Scale Founder Population of Porcine Reproductive and Respiratory Syndrome Virus Resistant Pigs Using CRISPR-Cas. CRISPR J 2024; 7:12-28. [PMID: 38353617 DOI: 10.1089/crispr.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Disease resistance genes in livestock provide health benefits to animals and opportunities for farmers to meet the growing demand for affordable, high-quality protein. Previously, researchers used gene editing to modify the porcine CD163 gene and demonstrated resistance to a harmful virus that causes porcine reproductive and respiratory syndrome (PRRS). To maximize potential benefits, this disease resistance trait needs to be present in commercially relevant breeding populations for multiplication and distribution of pigs. Toward this goal, a first-of-its-kind, scaled gene editing program was established to introduce a single modified CD163 allele into four genetically diverse, elite porcine lines. This effort produced healthy pigs that resisted PRRS virus infection as determined by macrophage and animal challenges. This founder population will be used for additional disease and trait testing, multiplication, and commercial distribution upon regulatory approval. Applying CRISPR-Cas to eliminate a viral disease represents a major step toward improving animal health.
Collapse
Affiliation(s)
- Brian T Burger
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | | | | | | | | | - Sarah Plummer
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Dylan Barnes
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Ke Jiang
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Sudhir Naswa
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Jeremy Lange
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Alina Ott
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Elizabeth Alger
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Gonzalo Rincon
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Steven Rounsley
- Genus plc Research and Development, DeForest, Wisconsin, USA
- Current address: Inari Agriculture, West Lafayette, IN, USA
| | - Jeff Betthauser
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Namdori R Mtango
- Genus plc Research and Development, DeForest, Wisconsin, USA
- Current address: Colossal Biosciences, Dallas, TX, USA
| | - Joshua A Benne
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | | | - Codie J Durfee
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Marisa L Rotolo
- PIC, Hendersonville, Tennessee, USA
- Current address: National Pork Board, Des Moines, IA, USA
| | - Peter Cameron
- Caribou Biosciences, Berkeley, California, USA
- Current address: Profluent Bio, Berkeley, CA, USA
| | | | - Matthew J Irby
- Caribou Biosciences, Berkeley, California, USA
- Current address: Prime Medicine, Cambridge, MA, USA
| | - David B Nyer
- Caribou Biosciences, Berkeley, California, USA
- Current address: Clade Therapeutics, Boston, MA, USA
| | | | | | | | - Ki-Eun Park
- RenOVAte Biosciences, Reisterstown, Maryland, USA
| | - Jerel Waters
- RenOVAte Biosciences, Reisterstown, Maryland, USA
| | - Sean Simpson
- RenOVAte Biosciences, Reisterstown, Maryland, USA
| | | | - Brianna C Salgado
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alberto Brandariz-Nuñez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Raymond R R Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Elena Rice
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - A Mark Cigan
- Genus plc Research and Development, DeForest, Wisconsin, USA
- Current address: Cobb-Vantress, Siloam Springs, AR, USA
| |
Collapse
|
8
|
Sun Y, Chen Q, Cheng Y, Wang X, Deng Z, Zhou F, Sun Y. Design and Engineering of Light-Induced Base Editors Facilitating Genome Editing with Enhanced Fidelity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305311. [PMID: 38039441 PMCID: PMC10837352 DOI: 10.1002/advs.202305311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/27/2023] [Indexed: 12/03/2023]
Abstract
Base editors, which enable targeted locus nucleotide conversion in genomic DNA without double-stranded breaks, have been engineered as powerful tools for biotechnological and clinical applications. However, the application of base editors is limited by their off-target effects. Continuously expressed deaminases used for gene editing may lead to unwanted base alterations at unpredictable genomic locations. In the present study, blue-light-activated base editors (BLBEs) are engineered based on the distinct photoswitches magnets that can switch from a monomer to dimerization state in response to blue light. By fusing the N- and C-termini of split DNA deaminases with photoswitches Magnets, efficient A-to-G and C-to-T base editing is achieved in response to blue light in prokaryotic and eukaryotic cells. Furthermore, the results showed that BLBEs can realize precise blue light-induced gene editing across broad genomic loci with low off-target activity at the DNA- and RNA-level. Collectively, these findings suggest that the optogenetic utilization of base editing and optical base editors may provide powerful tools to promote the development of optogenetic genome engineering.
Collapse
Affiliation(s)
- Yangning Sun
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Qi Chen
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Yanbing Cheng
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Xi Wang
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Zixin Deng
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Fuling Zhou
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Yuhui Sun
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| |
Collapse
|
9
|
Li Z, Lan J, Shi X, Lu T, Hu X, Liu X, Chen Y, He Z. Whole-Genome Sequencing Reveals Rare Off-Target Mutations in MC1R-Edited Pigs Generated by Using CRISPR-Cas9 and Somatic Cell Nuclear Transfer. CRISPR J 2024; 7:29-40. [PMID: 38353621 DOI: 10.1089/crispr.2023.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been widely used to create animal models for biomedical and agricultural use owing to its low cost and easy handling. However, the occurrence of erroneous cleavage (off-targeting) may raise certain concerns for the practical application of the CRISPR-Cas9 system. In this study, we created a melanocortin 1 receptor (MC1R)-edited pig model through somatic cell nuclear transfer (SCNT) by using porcine kidney cells modified by the CRISPR-Cas9 system. We then carried out whole-genome sequencing of two MC1R-edited pigs and two cloned wild-type siblings, together with the donor cells, to assess the genome-wide presence of single-nucleotide variants and small insertions and deletions (indels) and found only one candidate off-target indel in both MC1R-edited pigs. In summary, our study indicates that the minimal off-targeting effect induced by CRISPR-Cas9 may not be a major concern in gene-edited pigs created by SCNT.
Collapse
Affiliation(s)
- Zhenyang Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jin Lan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tong Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaoli Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Peterson KA, Khalouei S, Hanafi N, Wood JA, Lanza DG, Lintott LG, Willis BJ, Seavitt JR, Braun RE, Dickinson ME, White JK, Lloyd KCK, Heaney JD, Murray SA, Ramani A, Nutter LMJ. Whole genome analysis for 163 gRNAs in Cas9-edited mice reveals minimal off-target activity. Commun Biol 2023; 6:626. [PMID: 37301944 PMCID: PMC10257658 DOI: 10.1038/s42003-023-04974-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Genome editing with CRISPR-associated (Cas) proteins holds exceptional promise for "correcting" variants causing genetic disease. To realize this promise, off-target genomic changes cannot occur during the editing process. Here, we use whole genome sequencing to compare the genomes of 50 Cas9-edited founder mice to 28 untreated control mice to assess the occurrence of S. pyogenes Cas9-induced off-target mutagenesis. Computational analysis of whole-genome sequencing data detects 26 unique sequence variants at 23 predicted off-target sites for 18/163 guides used. While computationally detected variants are identified in 30% (15/50) of Cas9 gene-edited founder animals, only 38% (10/26) of the variants in 8/15 founders validate by Sanger sequencing. In vitro assays for Cas9 off-target activity identify only two unpredicted off-target sites present in genome sequencing data. In total, only 4.9% (8/163) of guides tested have detectable off-target activity, a rate of 0.2 Cas9 off-target mutations per founder analyzed. In comparison, we observe ~1,100 unique variants in each mouse regardless of genome exposure to Cas9 indicating off-target variants comprise a small fraction of genetic heterogeneity in Cas9-edited mice. These findings will inform future design and use of Cas9-edited animal models as well as provide context for evaluating off-target potential in genetically diverse patient populations.
Collapse
Affiliation(s)
| | - Sam Khalouei
- The Centre for Computational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Personalis, Inc. 1330 O'Brien Drive, Menlo Park, CA, USA
| | - Nour Hanafi
- The Centre for Computational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Joshua A Wood
- Mouse Biology Program, University of California Davis, California, CA, USA
- The Jackson Laboratory, Bar Harbor, Maine, ME, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lauri G Lintott
- The Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Brandon J Willis
- Mouse Biology Program, University of California Davis, California, CA, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Mary E Dickinson
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | | | - K C Kent Lloyd
- Mouse Biology Program, University of California Davis, California, CA, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Arun Ramani
- The Centre for Computational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Invitae, San Francisco, CA, USA
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
11
|
Bu W, Creighton CJ, Heavener KS, Gutierrez C, Dou Y, Ku AT, Zhang Y, Jiang W, Urrutia J, Jiang W, Yue F, Jia L, Ibrahim AA, Zhang B, Huang S, Li Y. Efficient cancer modeling through CRISPR-Cas9/HDR-based somatic precision gene editing in mice. SCIENCE ADVANCES 2023; 9:eade0059. [PMID: 37172086 PMCID: PMC10181191 DOI: 10.1126/sciadv.ade0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/06/2023] [Indexed: 05/14/2023]
Abstract
CRISPR-Cas9 has been used successfully to introduce indels in somatic cells of rodents; however, precise editing of single nucleotides has been hampered by limitations of flexibility and efficiency. Here, we report technological modifications to the CRISPR-Cas9 vector system that now allows homology-directed repair-mediated precise editing of any proto-oncogene in murine somatic tissues to generate tumor models with high flexibility and efficiency. Somatic editing of either Kras or Pik3ca in both normal and hyperplastic mammary glands led to swift tumorigenesis. The resulting tumors shared some histological, transcriptome, and proteome features with tumors induced by lentivirus-mediated expression of the respective oncogenes, but they also exhibited some distinct characteristics, particularly showing less intertumor variation, thus potentially offering more consistent models for cancer studies and therapeutic development. Therefore, this technological advance fills a critical gap between the power of CRISPR technology and high-fidelity mouse models for studying human tumor evolution and preclinical drug testing.
Collapse
Affiliation(s)
- Wen Bu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Chad J. Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kelsey S. Heavener
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Carolina Gutierrez
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Amy T. Ku
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Weiyu Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jazmin Urrutia
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Wen Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fei Yue
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Luyu Jia
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ahmed Atef Ibrahim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shixia Huang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, TX, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Putman R, Ricciardi AS, Carufe KEW, Quijano E, Bahal R, Glazer PM, Saltzman WM. Nanoparticle-mediated genome editing in single-cell embryos via peptide nucleic acids. Bioeng Transl Med 2023; 8:e10458. [PMID: 37206203 PMCID: PMC10189434 DOI: 10.1002/btm2.10458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Through preimplantation genetic diagnosis, genetic diseases can be detected during the early stages of embryogenesis, but effective treatments for many of these disorders are lacking. Gene editing could allow for correction of the underlying mutation during embryogenesis to prevent disease pathogenesis or even provide a cure. Here, we demonstrate that administration of peptide nucleic acids and single-stranded donor DNA oligonucleotides encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles to single-cell embryos allows for editing of an eGFP-beta globin fusion transgene. Blastocysts from treated embryos exhibit high levels of editing (~94%), normal physiological development, normal morphology, and no detected off-target genomic effects. Treated embryos reimplanted to surrogate moms show normal growth without gross developmental abnormalities and with no identified off-target effects. Mice from reimplanted embryos consistently show editing, characterized by mosaicism across multiple organs with some organ biopsies showing up to 100% editing. This proof-of-concept work demonstrates for the first time the use of peptide nucleic acid (PNA)/DNA nanoparticles as a means to achieve embryonic gene editing.
Collapse
Affiliation(s)
- Rachael Putman
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
- Department of Therapeutic RadiologyYale UniversityNew HavenConnecticutUSA
- Duke University School of MedicineDurhamNorth CarolinaUSA
| | - Adele S. Ricciardi
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
- Department of Therapeutic RadiologyYale UniversityNew HavenConnecticutUSA
- Department of SurgeryUniversity of Pennsylvania Health SystemsPhiladelphiaPennsylvaniaUSA
| | - Kelly E. W. Carufe
- Department of Therapeutic RadiologyYale UniversityNew HavenConnecticutUSA
- Department of GeneticsYale UniversityNew HavenConnecticutUSA
| | - Elias Quijano
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
- Department of GeneticsYale UniversityNew HavenConnecticutUSA
| | - Raman Bahal
- Department of Therapeutic RadiologyYale UniversityNew HavenConnecticutUSA
- Department of Pharmaceutical SciencesUniversity of ConnecticutStorrsConnecticutUSA
| | - Peter M. Glazer
- Department of Therapeutic RadiologyYale UniversityNew HavenConnecticutUSA
- Department of GeneticsYale UniversityNew HavenConnecticutUSA
| | - W. Mark Saltzman
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
- Department of Cellular & Molecular PhysiologyYale UniversityNew HavenConnecticutUSA
- Department of Chemical & Environmental EngineeringYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
13
|
Platani M, Sokefun O, Bassil E, Apidianakis Y. Genetic engineering and genome editing in plants, animals and humans: Facts and myths. Gene 2023; 856:147141. [PMID: 36574935 DOI: 10.1016/j.gene.2022.147141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Human history is inextricably linked to the introduction of desirable heritable traits in plants and animals. Selective breeding (SB) predates our historical period and has been practiced since the advent of agriculture and farming more than ten thousand years ago. Since the 1970s, methods of direct plant and animal genome manipulation are constantly being developed. These are collectively described as "genetic engineering" (GE). Plant GE aims to improve nutritional value, insect resistance and weed control. Animal GE has focused on livestock improvement and disease control. GE applications also involve medical improvements intended to treat human disease. The scientific consensus built around marketed products of GE organisms (GEOs) is usually well established, noting significant benefits and low risks. GEOs are exhaustively scrutinized in the EU and many non-EU countries for their effects on human health and the environment, but scrutiny should be equally applied to all previously untested organisms derived directly from nature or through selective breeding. In fact, there is no evidence to suggest that natural or selectively bred plants and animals are in principle safer to humans than GEOs. Natural and selectively bred strains evolve over time via genetic mutations that can be as risky to humans and the environment as the mutations found in GEOs. Thus, previously untested plant and animal strains aimed for marketing should be proven useful or harmful to humans only upon comparative testing, regardless of their origin. Highlighting the scientific consensus declaring significant benefits and rather manageable risks provided by equitably accessed GEOs, can mitigate negative predispositions by policy makers and the public. Accordingly, we provide an overview of the underlying technologies and the scientific consensus to help resolve popular myths about the safety and usefulness of GEOs.
Collapse
Affiliation(s)
- Maria Platani
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Owolabi Sokefun
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Elias Bassil
- Horticultural Sciences Department, University of Florida, Gainesville, USA
| | | |
Collapse
|
14
|
Qiu J, Bosch MA, Stincic TL, Hunker AC, Zweifel LS, Rønnekleiv OK, Kelly MJ. CRISPR/SaCas9 mutagenesis of stromal interaction molecule 1 in proopiomelanocortin neurons increases glutamatergic excitability and protects against diet-induced obesity. Mol Metab 2022; 66:101645. [PMID: 36442744 PMCID: PMC9727646 DOI: 10.1016/j.molmet.2022.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Proopiomelanocortin (POMC) neurons are the key anorexigenic hypothalamic neuron for integrating metabolic cues to generate the appropriate output for maintaining energy homeostasis and express the requisite channels as a perfect synaptic integrator in this role. Similar to the metabolic hormones leptin and insulin, glutamate also excites POMC neurons via group I metabotropic glutamate receptors (mGluR1 and 5, mGluR1/5) that activate Transient Receptor Potential Canonical (TRPC 5) Channels to cause depolarization. A key modulator of TRPC 5 channel activity is stromal interaction molecule 1 (STIM1), which is involved in recruitment of TRPC 5 channels from receptor-operated to store-operated calcium entry following depletion of calcium from the endoplasmic reticulum. METHODS We used a single adeno-associated viral (AAV) vector containing a recombinase-dependent Staphylococcus aureus Cas9 (SaCas) and a single guide RNA (sgRNA) to mutate Stim1 in POMCCre neurons in male mice, verified by qPCR of Stim1 mRNA expression in single POMC neurons. Whole-cell patch clamp experiments were conducted to validate the effects of Stim1 mutagenesis. Body weight and food intake were measured in male mice to assess disruptions in energy balance. RESULTS Reduced Stim1 expression augmented the efficacy of the mGluR1/5 agonist 3, 5-Dihydroxyphenylglycine (DHPG) to depolarize POMC neurons via a Gαq-coupled signaling pathway, which is an essential part of excitatory glutamatergic input in regulating energy homeostasis. The TRPC 5 channel blockers HC070 and Pico145 antagonized the excitatory effects of DHPG. As proof of principle, mutagenesis of Stim1 in POMC neurons reduced food intake, attenuated weight gain, reduced body fat and fat pad mass in mice fed a high fat diet. CONCLUSIONS Using CRISPR technology we have uncovered a critical role of STIM1 in modulating glutamatergic activation of TRPC 5 channels in POMC neurons, which ultimately is important for maintaining energy balance.
Collapse
Affiliation(s)
- Jian Qiu
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA,Corresponding author.Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Martha A. Bosch
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Todd L. Stincic
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Avery C. Hunker
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Larry S. Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA,Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Oline K. Rønnekleiv
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA,Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Martin J. Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA,Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA,Corresponding author.Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
15
|
Tanaka M, Yokoyama K, Hayashi H, Isaki S, Kitatani K, Wang T, Kawata H, Matsuzawa H, Gurumurthy CB, Miura H, Ohtsuka M. CRISPR-KRISPR: a method to identify on-target and random insertion of donor DNAs and their characterization in knock-in mice. Genome Biol 2022; 23:228. [PMID: 36284311 PMCID: PMC9594901 DOI: 10.1186/s13059-022-02779-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/30/2022] [Indexed: 12/26/2022] Open
Abstract
CRISPR tools can generate knockout and knock-in animal models easily, but the models can contain off-target genomic lesions or random insertions of donor DNAs. Simpler methods to identify off-target lesions and random insertions, using tail or earpiece DNA, are unavailable. We develop CRISPR-KRISPR (CRISPR-Knock-ins and Random Inserts Searching PRotocol), a method to identify both off-target lesions and random insertions. CRISPR-KRISPR uses as little as 3.4 μg of genomic DNA; thus, it can be easily incorporated as an additional step to genotype founder animals for further breeding.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan.
| | - Keiko Yokoyama
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Hideki Hayashi
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Sanae Isaki
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Kanae Kitatani
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Ting Wang
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Hisako Kawata
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Hideyuki Matsuzawa
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
- Genome Editing and Education Center Nebraska (GEEC-Nebraska), College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hiromi Miura
- Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Masato Ohtsuka
- Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan.
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
16
|
Yoshiki A, Ballard G, Perez AV. Genetic quality: a complex issue for experimental study reproducibility. Transgenic Res 2022; 31:413-430. [PMID: 35751794 PMCID: PMC9489590 DOI: 10.1007/s11248-022-00314-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Laboratory animal research involving mice, requires consideration of many factors to be controlled. Genetic quality is one factor that is often overlooked but is essential for the generation of reproducible experimental results. Whether experimental research involves inbred mice, spontaneous mutant, or genetically modified strains, exercising genetic quality through careful breeding, good recordkeeping, and prudent quality control steps such as validation of the presence of mutations and verification of the genetic background, will help ensure that experimental results are accurate and that reference controls are representative for the particular experiment. In this review paper, we will discuss various techniques used for the generation of genetically altered mice, and the different aspects to be considered regarding genetic quality, including inbred strains and substrains used, quality check controls during and after genetic manipulation and breeding. We also provide examples for when to use the different techniques and considerations on genetic quality checks. Further, we emphasize on the importance of establishing an in-house genetic quality program.
Collapse
Affiliation(s)
- Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, 3050074, Japan.
| | - Gregory Ballard
- Comparative Medicine and Quality, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
17
|
Schusterbauer V, Fischer JE, Gangl S, Schenzle L, Rinnofner C, Geier M, Sailer C, Glieder A, Thallinger GG. Whole Genome Sequencing Analysis of Effects of CRISPR/Cas9 in Komagataella phaffii: A Budding Yeast in Distress. J Fungi (Basel) 2022; 8:jof8100992. [PMID: 36294556 PMCID: PMC9605565 DOI: 10.3390/jof8100992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The industrially important non-conventional yeast Komagataella phaffii suffers from low rates of homologous recombination, making site specific genetic engineering tedious. Therefore, genome editing using CRISPR/Cas represents a simple and efficient alternative. To characterize on- and off-target mutations caused by CRISPR/Cas9 followed by non-homologous end joining repair, we chose a diverse set of CRISPR/Cas targets and conducted whole genome sequencing on 146 CRISPR/Cas9 engineered single colonies. We compared the outcomes of single target CRISPR transformations to double target experiments. Furthermore, we examined the extent of possible large deletions by targeting a large genomic region, which is likely to be non-essential. The analysis of on-target mutations showed an unexpectedly high number of large deletions and chromosomal rearrangements at the CRISPR target loci. We also observed an increase of on-target structural variants in double target experiments as compared to single target experiments. Targeting of two loci within a putatively non-essential region led to a truncation of chromosome 3 at the target locus in multiple cases, causing the deletion of 20 genes and several ribosomal DNA repeats. The identified de novo off-target mutations were rare and randomly distributed, with no apparent connection to unspecific CRISPR/Cas9 off-target binding sites.
Collapse
Affiliation(s)
- Veronika Schusterbauer
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
- Institute of Biomedical Imaging, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
| | | | - Sarah Gangl
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | - Lisa Schenzle
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | | | - Martina Geier
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | - Christian Sailer
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
| | - Anton Glieder
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | - Gerhard G. Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
- OMICS Center Graz, BioTechMed Graz, Stiftingtalstraße 24, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-873-5343
| |
Collapse
|
18
|
GM-CSF disruption in CART cells modulates T cell activation and enhances CART cell anti-tumor activity. Leukemia 2022; 36:1635-1645. [PMID: 35440691 PMCID: PMC9234947 DOI: 10.1038/s41375-022-01572-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 01/12/2023]
Abstract
Inhibitory myeloid cells and their cytokines play critical roles in limiting chimeric antigen receptor T (CART) cell therapy by contributing to the development of toxicities and resistance following infusion. We have previously shown that neutralization of granulocyte-macrophage colony-stimulating factor (GM-CSF) prevents these toxicities and enhances CART cell functions by inhibiting myeloid cell activation. In this report, we study the direct impact of GM-CSF disruption during the production of CD19-directed CART cells on their effector functions, independent of GM-CSF modulation of myeloid cells. In this study, we show that antigen-specific activation of GM-CSFKO CART19 cells consistently displayed reduced early activation, enhanced proliferation, and improved anti-tumor activity in a xenograft model for relapsed B cell malignancies. Activated CART19 cells significantly upregulate GM-CSF receptors. However, the interaction between GM-CSF and its upregulated receptors on CART cells was not the predominant mechanism of this activation phenotype. GM-CSFKO CART19 cell had reduced BH3 interacting-domain death agonist (Bid), suggesting an interaction between GM-CSF and intrinsic apoptosis pathways. In conclusion, our study demonstrates that CRISPR/Cas9-mediated GM-CSF knockout in CART cells directly ameliorates CART cell early activation and enhances anti-tumor activity in preclinical models.
Collapse
|
19
|
Shojaei Baghini S, Gardanova ZR, Abadi SAH, Zaman BA, İlhan A, Shomali N, Adili A, Moghaddar R, Yaseri AF. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool. Cell Mol Biol Lett 2022; 27:35. [PMID: 35508982 PMCID: PMC9066929 DOI: 10.1186/s11658-022-00336-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
The progress of genetic engineering in the 1970s brought about a paradigm shift in genome editing technology. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a flexible means to target and modify particular DNA sequences in the genome. Several applications of CRISPR/Cas9 are presently being studied in cancer biology and oncology to provide vigorous site-specific gene editing to enhance its biological and clinical uses. CRISPR's flexibility and ease of use have enabled the prompt achievement of almost any preferred alteration with greater efficiency and lower cost than preceding modalities. Also, CRISPR/Cas9 technology has recently been applied to improve the safety and efficacy of chimeric antigen receptor (CAR)-T cell therapies and defeat tumor cell resistance to conventional treatments such as chemotherapy and radiotherapy. The current review summarizes the application of CRISPR/Cas9 in cancer therapy. We also discuss the present obstacles and contemplate future possibilities in this context.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., 117997 Moscow, Russia
| | - Saeme Azizi Hassan Abadi
- Department of Nursery and Midwifery, Faculty of Laboratory Science, Islamic Azad University of Chalous, Mazandaran, Iran
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | - Ahmet İlhan
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, USA
| | - Roozbeh Moghaddar
- Department of Pediatric Hematology and Oncology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
20
|
Xu X, Zhang X, Peng X, Liu C, Li W, Liu M. Comparison of the efficiency and precision of Base editor and CRISPR/Cas9 for inducing defined point mutation(S395F) in ovine embryos. Reprod Domest Anim 2022; 57:829-838. [DOI: 10.1111/rda.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Xin Xu
- College of Life Science and Technology Xinjiang University Urumqi 830046 Xinjiang China
| | - Xuemei Zhang
- Institute of animal biotechnology Xinjiang Academy of Animal Science Urumqi 830026 Xinjiang China
| | - Xinrong Peng
- Institute of animal biotechnology Xinjiang Academy of Animal Science Urumqi 830026 Xinjiang China
| | - Chunjie Liu
- College of Animal Science Tarim University Alar 843300 Xinjiang China
| | - Wenrong Li
- Institute of animal biotechnology Xinjiang Academy of Animal Science Urumqi 830026 Xinjiang China
| | - Mingjun Liu
- Institute of animal biotechnology Xinjiang Academy of Animal Science Urumqi 830026 Xinjiang China
| |
Collapse
|
21
|
Maniego J, Pesko B, Habershon-Butcher J, Hincks P, Taylor P, Tozaki T, Ohnuma A, Stewart G, Proudman C, Ryder E. Use of mitochondrial sequencing to detect gene doping in horses via gene editing and somatic cell nuclear transfer. Drug Test Anal 2022; 14:1429-1437. [PMID: 35362263 DOI: 10.1002/dta.3267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Gene editing and subsequent cloning techniques offer great potential not only in genetic disease correction in domestic animals, but also in livestock production by enhancement of desirable traits. The existence of the technology, however, leaves it open to potential misuse in performance-led sports such as horseracing and other equestrian events. Recent advances in equine gene editing, regarding the generation of gene-edited embryos using CRISPR/Cas9 technology and somatic cell nuclear transfer, has highlighted the need to develop tools to detect potential prohibited use of the technology. One possible method involves the characterisation of the mitochondrial genome (which is not routinely preserved during cloning) and comparing it to the sequence of the registered dam. We present here our approach to whole-mitochondrial sequencing using tiled long-range PCR and next-generation sequencing. To determine whether the background mutation rate in the mitochondrial genome could potentially confound results, we sequenced ten sets of dam and foal duos. We found variation between duos but none within duos, indicating that this method is feasible for future screening systems. Analysis of WGS data from over one hundred Thoroughbred horses revealed wide variation in the mitochondria sequence within the breed, further displaying the utility of this approach.
Collapse
Affiliation(s)
- Jillian Maniego
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Bogusia Pesko
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | | | - Pamela Hincks
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Polly Taylor
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Japan
| | - Aoi Ohnuma
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Japan
| | - Graham Stewart
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Christopher Proudman
- School of Veterinary Medicine, Daphne Jackson Road, University of Surrey, Guildford, UK
| | - Edward Ryder
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| |
Collapse
|
22
|
Lewis MA, Ingham NJ, Chen J, Pearson S, Di Domenico F, Rekhi S, Allen R, Drake M, Willaert A, Rook V, Pass J, Keane T, Adams DJ, Tucker AS, White JK, Steel KP. Identification and characterisation of spontaneous mutations causing deafness from a targeted knockout programme. BMC Biol 2022; 20:67. [PMID: 35296311 PMCID: PMC8928630 DOI: 10.1186/s12915-022-01257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background Mice carrying targeted mutations are important for investigating gene function and the role of genes in disease, but off-target mutagenic effects associated with the processes of generating targeted alleles, for instance using Crispr, and culturing embryonic stem cells, offer opportunities for spontaneous mutations to arise. Identifying spontaneous mutations relies on the detection of phenotypes segregating independently of targeted alleles, and having a broad estimate of the level of mutations generated by intensive breeding programmes is difficult given that many phenotypes are easy to miss if not specifically looked for. Here we present data from a large, targeted knockout programme in which mice were analysed through a phenotyping pipeline. Such spontaneous mutations segregating within mutant lines may confound phenotypic analyses, highlighting the importance of record-keeping and maintaining correct pedigrees. Results Twenty-five lines out of 1311 displayed different deafness phenotypes that did not segregate with the targeted allele. We observed a variety of phenotypes by Auditory Brainstem Response (ABR) and behavioural assessment and isolated eight lines showing early-onset severe progressive hearing loss, later-onset progressive hearing loss, low frequency hearing loss, or complete deafness, with vestibular dysfunction. The causative mutations identified include deletions, insertions, and point mutations, some of which involve new genes not previously associated with deafness while others are new alleles of genes known to underlie hearing loss. Two of the latter show a phenotype much reduced in severity compared to other mutant alleles of the same gene. We investigated the ES cells from which these lines were derived and determined that only one of the 8 mutations could have arisen in the ES cell, and in that case, only after targeting. Instead, most of the non-segregating mutations appear to have occurred during breeding of mutant mice. In one case, the mutation arose within the wildtype colony used for expanding mutant lines. Conclusions Our data show that spontaneous mutations with observable effects on phenotype are a common side effect of intensive breeding programmes, including those underlying targeted mutation programmes. Such spontaneous mutations segregating within mutant lines may confound phenotypic analyses, highlighting the importance of record-keeping and maintaining correct pedigrees. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01257-8.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England. .,Wellcome Sanger Institute, Hinxton, CB10 1SA, England.
| | - Neil J Ingham
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England.,Wellcome Sanger Institute, Hinxton, CB10 1SA, England
| | - Jing Chen
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England.,Wellcome Sanger Institute, Hinxton, CB10 1SA, England
| | | | - Francesca Di Domenico
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England
| | - Sohinder Rekhi
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England
| | - Rochelle Allen
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England
| | - Matthew Drake
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England
| | - Annelore Willaert
- Research Group of Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Victoria Rook
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England
| | - Johanna Pass
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England.,Wellcome Sanger Institute, Hinxton, CB10 1SA, England
| | - Thomas Keane
- Wellcome Sanger Institute, Hinxton, CB10 1SA, England
| | - David J Adams
- Wellcome Sanger Institute, Hinxton, CB10 1SA, England
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, England
| | | | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England.,Wellcome Sanger Institute, Hinxton, CB10 1SA, England
| |
Collapse
|
23
|
Cardinali B, Provenzano C, Izzo M, Voellenkle C, Battistini J, Strimpakos G, Golini E, Mandillo S, Scavizzi F, Raspa M, Perfetti A, Baci D, Lazarevic D, Garcia-Manteiga JM, Gourdon G, Martelli F, Falcone G. Time-controlled and muscle-specific CRISPR/Cas9-mediated deletion of CTG-repeat expansion in the DMPK gene. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:184-199. [PMID: 34976437 PMCID: PMC8693309 DOI: 10.1016/j.omtn.2021.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022]
Abstract
CRISPR/Cas9-mediated therapeutic gene editing is a promising technology for durable treatment of incurable monogenic diseases such as myotonic dystrophies. Gene-editing approaches have been recently applied to in vitro and in vivo models of myotonic dystrophy type 1 (DM1) to delete the pathogenic CTG-repeat expansion located in the 3′ untranslated region of the DMPK gene. In DM1-patient-derived cells removal of the expanded repeats induced beneficial effects on major hallmarks of the disease with reduction in DMPK transcript-containing ribonuclear foci and reversal of aberrant splicing patterns. Here, we set out to excise the triplet expansion in a time-restricted and cell-specific fashion to minimize the potential occurrence of unintended events in off-target genomic loci and select for the target cell type. To this aim, we employed either a ubiquitous promoter-driven or a muscle-specific promoter-driven Cas9 nuclease and tetracycline repressor-based guide RNAs. A dual-vector approach was used to deliver the CRISPR/Cas9 components into DM1 patient-derived cells and in skeletal muscle of a DM1 mouse model. In this way, we obtained efficient and inducible gene editing both in proliferating cells and differentiated post-mitotic myocytes in vitro as well as in skeletal muscle tissue in vivo.
Collapse
Affiliation(s)
- Beatrice Cardinali
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Claudia Provenzano
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Mariapaola Izzo
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Jonathan Battistini
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Elisabetta Golini
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Silvia Mandillo
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| | - Alessandra Perfetti
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Denisa Baci
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | | | - Geneviève Gourdon
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Germana Falcone
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
24
|
Höijer I, Emmanouilidou A, Östlund R, van Schendel R, Bozorgpana S, Tijsterman M, Feuk L, Gyllensten U, den Hoed M, Ameur A. CRISPR-Cas9 induces large structural variants at on-target and off-target sites in vivo that segregate across generations. Nat Commun 2022; 13:627. [PMID: 35110541 PMCID: PMC8810904 DOI: 10.1038/s41467-022-28244-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
CRISPR-Cas9 genome editing has potential to cure diseases without current treatments, but therapies must be safe. Here we show that CRISPR-Cas9 editing can introduce unintended mutations in vivo, which are passed on to the next generation. By editing fertilized zebrafish eggs using four guide RNAs selected for off-target activity in vitro, followed by long-read sequencing of DNA from >1100 larvae, juvenile and adult fish across two generations, we find that structural variants (SVs), i.e., insertions and deletions ≥50 bp, represent 6% of editing outcomes in founder larvae. These SVs occur both at on-target and off-target sites. Our results also illustrate that adult founder zebrafish are mosaic in their germ cells, and that 26% of their offspring carries an off-target mutation and 9% an SV. Hence, pre-testing for off-target activity and SVs using patient material is advisable in clinical applications, to reduce the risk of unanticipated effects with potentially large implications.
Collapse
Affiliation(s)
- Ida Höijer
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Anastasia Emmanouilidou
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- The Beijer laboratory and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rebecka Östlund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Selma Bozorgpana
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Lars Feuk
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ulf Gyllensten
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marcel den Hoed
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- The Beijer laboratory and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
25
|
Roy RK, Debashree I, Srivastava S, Rishi N, Srivastava A. CRISPR/ Cas9 Off-targets: Computational Analysis of Causes, Prediction,
Detection, and Overcoming Strategies. Curr Bioinform 2022. [DOI: 10.2174/1574893616666210708150439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
CRISPR/Cas9 technology is a highly flexible RNA-guided endonuclease (RGEN)
based gene-editing tool that has transformed the field of genomics, gene therapy, and genome/
epigenome imaging. Its wide range of applications provides immense scope for understanding
as well as manipulating genetic/epigenetic elements. However, the RGEN is prone to
off-target mutagenesis that leads to deleterious effects. This review details the molecular and cellular
mechanisms underlying the off-target activity, various available detection tools and prediction
methodology ranging from sequencing to machine learning approaches, and the strategies to
overcome/minimise off-targets. A coherent and concise method increasing target precision would
prove indispensable to concrete manipulation and interpretation of genome editing results that
can revolutionise therapeutics, including clarity in genome regulatory mechanisms during development.
Collapse
Affiliation(s)
- Roshan Kumar Roy
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313, India
| | - Ipsita Debashree
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313, India
| | - Sonal Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313,India
| | - Narayan Rishi
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313,India
| | - Ashish Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201313,India
| |
Collapse
|
26
|
Uribe-Salazar JM, Kaya G, Sekar A, Weyenberg K, Ingamells C, Dennis MY. Evaluation of CRISPR gene-editing tools in zebrafish. BMC Genomics 2022; 23:12. [PMID: 34986794 PMCID: PMC8734261 DOI: 10.1186/s12864-021-08238-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/04/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Zebrafish have practical features that make them a useful model for higher-throughput tests of gene function using CRISPR/Cas9 editing to create 'knockout' models. In particular, the use of G0 mosaic mutants has potential to increase throughput of functional studies significantly but may suffer from transient effects of introducing Cas9 via microinjection. Further, a large number of computational and empirical tools exist to design CRISPR assays but often produce varied predictions across methods leaving uncertainty in choosing an optimal approach for zebrafish studies. METHODS To systematically assess accuracy of tool predictions of on- and off-target gene editing, we subjected zebrafish embryos to CRISPR/Cas9 with 50 different guide RNAs (gRNAs) targeting 14 genes. We also investigate potential confounders of G0-based CRISPR screens by assaying control embryos for spurious mutations and altered gene expression. RESULTS We compared our experimental in vivo editing efficiencies in mosaic G0 embryos with those predicted by eight commonly used gRNA design tools and found large discrepancies between methods. Assessing off-target mutations (predicted in silico and in vitro) found that the majority of tested loci had low in vivo frequencies (< 1%). To characterize if commonly used 'mock' CRISPR controls (larvae injected with Cas9 enzyme or mRNA with no gRNA) exhibited spurious molecular features that might exacerbate studies of G0 mosaic CRISPR knockout fish, we generated an RNA-seq dataset of various control larvae at 5 days post fertilization. While we found no evidence of spontaneous somatic mutations of injected larvae, we did identify several hundred differentially-expressed genes with high variability between injection types. Network analyses of shared differentially-expressed genes in the 'mock' injected larvae implicated a number of key regulators of common metabolic pathways, and gene-ontology analysis revealed connections with response to wounding and cytoskeleton organization, highlighting a potentially lasting effect from the microinjection process that requires further investigation. CONCLUSION Overall, our results provide a valuable resource for the zebrafish community for the design and execution of CRISPR/Cas9 experiments.
Collapse
Affiliation(s)
- José M Uribe-Salazar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, USA
| | - Gulhan Kaya
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Aadithya Sekar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | - KaeChandra Weyenberg
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Cole Ingamells
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Megan Y Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA.
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
27
|
Abstract
CRISPR-based genome editing holds promise for genome engineering and other applications in diverse organisms. Defining and improving the genome-wide and transcriptome-wide specificities of these editing tools are essential for realizing their full potential in basic research and biomedical therapeutics. This review provides an overview of CRISPR-based DNA- and RNA-editing technologies, methods to quantify their specificities, and key solutions to reduce off-target effects for research and improve therapeutic applications. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hainan Zhang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Tong Li
- Shanghai Center for Brain Science and Brain-Inspired Technology, Science and Technology Commission of Shanghai Municipality, Shanghai 200031, China
| | - Yidi Sun
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Hui Yang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| |
Collapse
|
28
|
In Vivo Silencing/Overexpression of lncRNAs by CRISPR/Cas System. Methods Mol Biol 2021. [PMID: 34160809 DOI: 10.1007/978-1-0716-1581-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) are implicated in several biological processes and it has been observed that their expression is altered in several diseases. The generation of animal models where selective silencing or overexpression of lncRNAs can be attained is crucial for their biological characterization, since it offers the opportunity to analyze their function at the tissue specific or organismal level. CRISPR/Cas technology is a newly developed tool that allows to easily manipulate the mouse genome, in turn allowing to discover lncRNAs functions in an in vivo context. Here, we provide an overview of how CRISPR/Cas technology can be used to generate transgenic mouse models in which lncRNAs can be studied.
Collapse
|
29
|
Cervera ST, Rodríguez-Martín C, Fernández-Tabanera E, Melero-Fernández de Mera RM, Morin M, Fernández-Peñalver S, Iranzo-Martínez M, Amhih-Cardenas J, García-García L, González-González L, Moreno-Pelayo MA, Alonso J. Therapeutic Potential of EWSR1-FLI1 Inactivation by CRISPR/Cas9 in Ewing Sarcoma. Cancers (Basel) 2021; 13:cancers13153783. [PMID: 34359682 PMCID: PMC8345183 DOI: 10.3390/cancers13153783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Ewing sarcoma is an aggressive tumor with still unacceptable survival rates, particularly in patients with metastatic disease and for which it is necessary to develop new and innovative therapies. These tumors are characterized by the presence of chromosomal translocations that give rise to chimeric transcription factors (i.e., EWSR1–FLI1) that govern the oncogenic process. In this article, we describe an efficient strategy to permanently inactivate the EWSR1–FLI1 oncogene characteristic of Ewing sarcoma using CRISPR/Cas9 gene editing technology. Although the application of gene therapy in cancer still has many limitations, for example, the strategy for delivery, studies like ours show that gene therapy can be a promising alternative, particularly for those tumors that are highly dependent on a particular oncogene as is the case in Ewing sarcoma. Abstract Ewing sarcoma is an aggressive bone cancer affecting children and young adults. The main molecular hallmark of Ewing sarcoma are chromosomal translocations that produce chimeric oncogenic transcription factors, the most frequent of which is the aberrant transcription factor EWSR1–FLI1. Because this is the principal oncogenic driver of Ewing sarcoma, its inactivation should be the best therapeutic strategy to block tumor growth. In this study, we genetically inactivated EWSR1–FLI1 using CRISPR-Cas9 technology in order to cause permanent gene inactivation. We found that gene editing at the exon 9 of FLI1 was able to block cell proliferation drastically and induce senescence massively in the well-studied Ewing sarcoma cell line A673. In comparison with an extensively used cellular model of EWSR1–FLI1 knockdown (A673/TR/shEF), genetic inactivation was more effective, particularly in its capability to block cell proliferation. In summary, genetic inactivation of EWSR1–FLI1 in A673 Ewing sarcoma cells blocks cell proliferation and induces a senescence phenotype that could be exploited therapeutically. Although efficient and specific in vivo CRISPR-Cas9 editing still presents many challenges today, our data suggest that complete inactivation of EWSR1–FLI1 at the cell level should be considered a therapeutic approach to develop in the future.
Collapse
Affiliation(s)
- Saint T. Cervera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), 28029 Madrid, Spain
| | - Carlos Rodríguez-Martín
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), 28029 Madrid, Spain
| | - Enrique Fernández-Tabanera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), 28029 Madrid, Spain
| | - Raquel M. Melero-Fernández de Mera
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), 28029 Madrid, Spain
| | - Matias Morin
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar km 9.100, 28034 Madrid, Spain; (M.M.); (S.F.-P.); (M.A.M.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/0048; CIBERER-ISCIII), 28029 Madrid, Spain
| | - Sergio Fernández-Peñalver
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar km 9.100, 28034 Madrid, Spain; (M.M.); (S.F.-P.); (M.A.M.-P.)
| | - Maria Iranzo-Martínez
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
| | - Jorge Amhih-Cardenas
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
| | - Laura García-García
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
| | - Laura González-González
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
| | - Miguel Angel Moreno-Pelayo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar km 9.100, 28034 Madrid, Spain; (M.M.); (S.F.-P.); (M.A.M.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/0048; CIBERER-ISCIII), 28029 Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (S.T.C.); (C.R.-M.); (E.F.-T.); (R.M.M.-F.d.M.); (M.I.-M.); (J.A.-C.); (L.G.-G.); (L.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
30
|
Schmidt MJ, Gupta A, Bednarski C, Gehrig-Giannini S, Richter F, Pitzler C, Gamalinda M, Galonska C, Takeuchi R, Wang K, Reiss C, Dehne K, Lukason MJ, Noma A, Park-Windhol C, Allocca M, Kantardzhieva A, Sane S, Kosakowska K, Cafferty B, Tebbe J, Spencer SJ, Munzer S, Cheng CJ, Scaria A, Scharenberg AM, Cohnen A, Coco WM. Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases. Nat Commun 2021; 12:4219. [PMID: 34244505 PMCID: PMC8271026 DOI: 10.1038/s41467-021-24454-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pyogenes (Spy) Cas9 has potential as a component of gene therapeutics for incurable diseases. One of its limitations is its large size, which impedes its formulation and delivery in therapeutic applications. Smaller Cas9s are an alternative, but lack robust activity or specificity and frequently recognize longer PAMs. Here, we investigated four uncharacterized, smaller Cas9s and found three employing a "GG" dinucleotide PAM similar to SpyCas9. Protein engineering generated synthetic RNA-guided nucleases (sRGNs) with editing efficiencies and specificities exceeding even SpyCas9 in vitro and in human cell lines on disease-relevant targets. sRGN mRNA lipid nanoparticles displayed manufacturing advantages and high in vivo editing efficiency in the mouse liver. Finally, sRGNs, but not SpyCas9, could be packaged into all-in-one AAV particles with a gRNA and effected robust in vivo editing of non-human primate (NHP) retina photoreceptors. Human gene therapy efforts are expected to benefit from these improved alternatives to existing CRISPR nucleases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kui Wang
- Casebia Therapeutics LLC, Cambridge, MA, USA
| | | | | | | | - Akiko Noma
- Casebia Therapeutics LLC, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gleeson D, Sethi D, Platte R, Burvill J, Barrett D, Akhtar S, Bruntraeger M, Bottomley J, Mouse Genetics Project S, Bussell J, Ryder E. High-throughput genotyping of high-homology mutant mouse strains by next-generation sequencing. Methods 2021; 191:78-86. [PMID: 33096238 PMCID: PMC8205115 DOI: 10.1016/j.ymeth.2020.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/25/2020] [Accepted: 10/18/2020] [Indexed: 11/05/2022] Open
Abstract
Genotyping of knockout alleles in mice is commonly performed by end-point PCR or gene-specific/universal cassette qPCR. Both have advantages and limitations in terms of assay design and interpretation of results. As an alternative method for high-throughput genotyping, we investigated next generation sequencing (NGS) of PCR amplicons, with a focus on CRISPR-mediated exon deletions where antibiotic selection markers are not present. By multiplexing the wild type and mutant-specific PCR reactions, the genotype can be called by the relative sequence counts of each product. The system is highly scalable and can be applied to a variety of different allele types, including those produced by the International Mouse Phenotyping Consortium and associated projects. One potential challenge with any assay design is locating unique areas of the genome, especially when working with gene families or regions of high homology. These can result in misleading or ambiguous genotypes for either qPCR or end-point assays. Here, we show that genotyping by NGS can negate these issues by simple, automated filtering of undesired sequences. Analysis and genotype calls can also be fully automated, using FASTQ or FASTA input files and an in-house Perl script and SQL database.
Collapse
Affiliation(s)
- Diane Gleeson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Debarati Sethi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Radka Platte
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jonathan Burvill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Daniel Barrett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Shaheen Akhtar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Michaela Bruntraeger
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Joanna Bottomley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | - James Bussell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Edward Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
32
|
Abstract
The emergence of an array of genome-editing tools in recent years has facilitated the introduction of genetic modifications directly into the embryo, increasing the ease, efficiency and catalogue of alleles accessible to researchers across a range of species. Bypassing the requirement for a selection cassette and resulting in a broad range of outcomes besides the desired allele, genome editing has altered the allele validation process both temporally and technically. Whereas traditional gene targeting relies upon selection and allows allele validation at the embryonic stem cell modification stage, screening for the presence of the intended allele now occurs in the (frequently mosaic) founder animals. Final confirmation of the edited allele can only take place at the subsequent G1 generation and the validation strategy must differentiate the desired allele from a range of unintended outcomes. Here we present some of the challenges posed by gene editing, strategies for validation and considerations for animal colony management.
Collapse
Affiliation(s)
| | - Gemma F Codner
- The Mary Lyon Centre, Medical Research Council Harwell Institute, UK
| | - Lydia Teboul
- The Mary Lyon Centre, Medical Research Council Harwell Institute, UK
| |
Collapse
|
33
|
Sledzinski P, Dabrowska M, Nowaczyk M, Olejniczak M. Paving the way towards precise and safe CRISPR genome editing. Biotechnol Adv 2021; 49:107737. [PMID: 33785374 DOI: 10.1016/j.biotechadv.2021.107737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
As the possibilities of CRISPR-Cas9 technology have been revealed, we have entered a new era of research aimed at increasing its specificity and safety. This stage of technology development is necessary not only for its wider application in the clinic but also in basic research to better control the process of genome editing. Research during the past eight years has identified some factors influencing editing outcomes and led to the development of highly specific endonucleases, modified guide RNAs and computational tools supporting experiments. More recently, large-scale experiments revealed a previously overlooked feature: Cas9 can generate reproducible mutation patterns. As a result, it has become apparent that Cas9-induced double-strand break (DSB) repair is nonrandom and can be predicted to some extent. Here, we review the present state of knowledge regarding the specificity and safety of CRISPR-Cas9 technology to define gRNA, protein and target-related problems and solutions. These issues include sequence-specific off-target effects, immune responses, genetic variation and chromatin accessibility. We present new insights into the role of DNA repair in genome editing and define factors influencing editing outcomes. In addition, we propose practical guidelines for increasing the specificity of editing and discuss novel perspectives in improvement of this technology.
Collapse
Affiliation(s)
- Pawel Sledzinski
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Magdalena Dabrowska
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Mateusz Nowaczyk
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland
| | - Marta Olejniczak
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego 12/14, 61-704, Poland.
| |
Collapse
|
34
|
Epstein LR, Lee SS, Miller MF, Lombardi HA. CRISPR, animals, and FDA oversight: Building a path to success. Proc Natl Acad Sci U S A 2021; 118:e2004831117. [PMID: 34050010 PMCID: PMC8179205 DOI: 10.1073/pnas.2004831117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Technological advances, such as genome editing and specifically CRISPR, offer exciting promise for the creation of products that address public health concerns, such as disease transmission and a sustainable food supply and enable production of human therapeutics, such as organs and tissues for xenotransplantation or recombinant human proteins to treat disease. The Food and Drug Administration recognizes the need for such innovative solutions and plays a key role in bringing safe and effective animal biotechnology products to the marketplace. In this article, we (the Food and Drug Administration/Center for Veterinary Medicine) describe the current state of the science, including advances in technology as well as scientific limitations and considerations for how researchers and commercial developers working to create intentional genomic alterations in animals can work within these limitations. We also describe our risk-based approach and how it strikes a balance between our regulatory responsibilities and the need to get innovative products to market efficiently. We continue to seek input from our stakeholders and hope to use this feedback to improve the transparency, predictability, and efficiency of our process. We think that working together, using appropriate science- and risk-based oversight, is the foundation to a successful path forward.
Collapse
Affiliation(s)
- Laura R Epstein
- Office of the Director, Center for Veterinary Medicine, US Food and Drug Administration, Rockville, MD 20855
| | - Stella S Lee
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, US Food and Drug Administration, Rockville, MD 20855
| | - Mayumi F Miller
- Office of Research, Center for Veterinary Medicine, US Food and Drug Administration, Laurel, MD 20708
| | - Heather A Lombardi
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, US Food and Drug Administration, Rockville, MD 20855;
| |
Collapse
|
35
|
Miura K, Ogura A, Kobatake K, Honda H, Kaminuma O. Progress of genome editing technology and developmental biology useful for radiation research. JOURNAL OF RADIATION RESEARCH 2021; 62:i53-i63. [PMID: 33978171 PMCID: PMC8114227 DOI: 10.1093/jrr/rraa127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/26/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Following the development of genome editing technology, it has become more feasible to create genetically modified animals such as knockout (KO), knock-in, and point-mutated animals. The genome-edited animals are useful to investigate the roles of various functional genes in many fields of biological science including radiation research. Nevertheless, some researchers may experience difficulty in generating genome-edited animals, probably due to the requirement for equipment and techniques for embryo manipulation and handling. Furthermore, after obtaining F0 generation, genome-edited animals generally need to be expanded and maintained for analyzing the target gene function. To investigate genes essential for normal birth and growth, the generation of conditional KO (cKO) animals in which a tissue- or stage-specific gene mutation can be introduced is often required. Here, we describe the basic principle and application of genome editing technology including zinc-finger nuclease, transcription-activator-like effector nuclease, and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR associated protein (Cas) systems. Recently advanced developmental biology methods have enabled application of the technology, especially CRISPR/Cas, to zygotes, leading to the prompt production of genome-edited animals. For pre-implantation embryos, genome editing via oviductal nucleic acid delivery has been developed as an embryo manipulation- or handling-free method. Examining the gene function at F0 generation is becoming possible by employing triple-target CRISPR technology. This technology, in combination with a blastocyst complementation method enables investigation of even birth- and growth-responsible genes without establishing cKO strains. We hope that this review is helpful for understanding and expanding genome editing-related technology and for progressing radiation research.
Collapse
Affiliation(s)
- Kento Miura
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsuo Ogura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
- RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kohei Kobatake
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
- Department of Urology, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Osamu Kaminuma
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
36
|
Sabit H, Abdel-Ghany S, Tombuloglu H, Cevik E, Alqosaibi A, Almulhim F, Al-Muhanaa A. New insights on CRISPR/Cas9-based therapy for breast Cancer. Genes Environ 2021; 43:15. [PMID: 33926574 PMCID: PMC8082964 DOI: 10.1186/s41021-021-00188-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 has revolutionized genome-editing techniques in various biological fields including human cancer research. Cancer is a multi-step process that encompasses the accumulation of mutations that result in the hallmark of the malignant state. The goal of cancer research is to identify these mutations and correlate them with the underlying tumorigenic process. Using CRISPR/Cas9 tool, specific mutations responsible for cancer initiation and/or progression could be corrected at least in animal models as a first step towards translational applications. In the present article, we review various novel strategies that employed CRISPR/Cas9 to treat breast cancer in both in vitro and in vivo systems.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, P. O. Box: 1982, Dammam, 31441, Saudi Arabia.
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Huseyin Tombuloglu
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, P. O. Box: 1982, Dammam, 31441, Saudi Arabia
| | - Emre Cevik
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, P. O. Box: 1982, Dammam, 31441, Saudi Arabia
| | - Amany Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P. O. 4 Box, Dammam, 1982, Saudi Arabia
| | - Fatma Almulhim
- Breast Imaging Division, KFHU, Imam Abdulrahman Bin Faisal University, P. O. 4 Box, Dammam, 1982, Saudi Arabia
| | - Afnan Al-Muhanaa
- Breast Imaging Division, KFHU, Imam Abdulrahman Bin Faisal University, P. O. 4 Box, Dammam, 1982, Saudi Arabia
| |
Collapse
|
37
|
Hunker AC, Soden ME, Krayushkina D, Heymann G, Awatramani R, Zweifel LS. Conditional Single Vector CRISPR/SaCas9 Viruses for Efficient Mutagenesis in the Adult Mouse Nervous System. Cell Rep 2021; 30:4303-4316.e6. [PMID: 32209486 PMCID: PMC7212805 DOI: 10.1016/j.celrep.2020.02.092] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 01/27/2020] [Accepted: 02/25/2020] [Indexed: 11/22/2022] Open
Abstract
Mice engineered for conditional, cell type-specific gene inactivation have dominated the field of mouse genetics because of the high efficiency of Cre-loxP-mediated recombination. Recent advances in CRISPR/Cas9 technologies have provided alternatives for rapid gene mutagenesis for loss-of-function (LOF) analysis. Whether these strategies can be streamlined for rapid genetic analysis with the efficiencies comparable with those of conventional genetic approaches has yet to be established. We show that a single adeno-associated viral (AAV) vector containing a recombinase-dependent Staphylococcus aureus Cas9 (SaCas9) and a single guide RNA (sgRNA) are as efficient as conventional conditional gene knockout and can be adapted for use in either Cre- or Flp-driver mouse lines. The efficacy of this approach is demonstrated for the analysis of GABAergic, glutamatergic, and monoaminergic neurotransmission. Using this strategy, we reveal insight into the role of GABAergic regulation of midbrain GABA-producing neurons in psychomotor activation. Hunker et al. generate single adeno-associated viral vectors for conditional gene mutagenesis in the adult mouse nervous system with efficiencies equivalent to those of conventional gene inactivation strategies. On the basis of this efficacy, they provide a resource of Cre- and Flp-dependent constructs for targeting catecholamine, glutamate, and GABA neurotransmission.
Collapse
Affiliation(s)
- Avery C Hunker
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Marta E Soden
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Dasha Krayushkina
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Gabriel Heymann
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
38
|
Gao P, Lyu Q, Ghanam AR, Lazzarotto CR, Newby GA, Zhang W, Choi M, Slivano OJ, Holden K, Walker JA, Kadina AP, Munroe RJ, Abratte CM, Schimenti JC, Liu DR, Tsai SQ, Long X, Miano JM. Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression. Genome Biol 2021; 22:83. [PMID: 33722289 PMCID: PMC7962346 DOI: 10.1186/s13059-021-02304-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Most single nucleotide variants (SNVs) occur in noncoding sequence where millions of transcription factor binding sites (TFBS) reside. Here, a comparative analysis of CRISPR-mediated homology-directed repair (HDR) versus the recently reported prime editing 2 (PE2) system was carried out in mice over a TFBS called a CArG box in the Tspan2 promoter. RESULTS Quantitative RT-PCR showed loss of Tspan2 mRNA in aorta and bladder, but not heart or brain, of mice homozygous for an HDR-mediated three base pair substitution in the Tspan2 CArG box. Using the same protospacer, mice homozygous for a PE2-mediated single-base substitution in the Tspan2 CArG box displayed similar cell-specific loss of Tspan2 mRNA; expression of an overlapping long noncoding RNA was also nearly abolished in aorta and bladder. Immuno-RNA fluorescence in situ hybridization validated loss of Tspan2 in vascular smooth muscle cells of HDR and PE2 CArG box mutant mice. Targeted sequencing demonstrated variable frequencies of on-target editing in all PE2 and HDR founders. However, whereas no on-target indels were detected in any of the PE2 founders, all HDR founders showed varying levels of on-target indels. Off-target analysis by targeted sequencing revealed mutations in many HDR founders, but none in PE2 founders. CONCLUSIONS PE2 directs high-fidelity editing of a single base in a TFBS leading to cell-specific loss in expression of an mRNA/long noncoding RNA gene pair. The PE2 platform expands the genome editing toolbox for modeling and correcting relevant noncoding SNVs in the mouse.
Collapse
Affiliation(s)
- Pan Gao
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Qing Lyu
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Amr R. Ghanam
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Cicera R. Lazzarotto
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38195 USA
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138 USA
| | - Wei Zhang
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Mihyun Choi
- Department of Physiology, Albany Medical College, Albany, NY 12208 USA
| | - Orazio J. Slivano
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Kevin Holden
- Synthego Corporation, Redwood City, CA 94025 USA
| | | | | | - Rob J. Munroe
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853 USA
| | | | - John C. Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853 USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138 USA
| | - Shengdar Q. Tsai
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38195 USA
| | - Xiaochun Long
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| | - Joseph M. Miano
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912 USA
| |
Collapse
|
39
|
Plasil SL, Seth A, Homanics GE. CRISPR Turbo Accelerated KnockOut (CRISPy TAKO) for Rapid in vivo Screening of Gene Function. Front Genome Ed 2021; 2. [PMID: 33604589 PMCID: PMC7889042 DOI: 10.3389/fgeed.2020.598522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of CRISPR/Cas9 technology has vastly sped up the process of mammalian genome editing by introducing a bacterial system that can be exploited for reverse genetics-based research. However, generating homozygous functional knockout (KO) animals using traditional CRISPR/Cas9-mediated techniques requires three generations of animals. A founder animal with a desired mutation is crossed to produce heterozygous F1 offspring which are subsequently interbred to generate homozygous F2 KO animals. This study describes an adaptation of the CRISPR/Cas9-mediated method to develop a cohort of homozygous gene-targeted KO animals in one generation. A well-characterized ethanol-responsive gene, MyD88, was chosen as a candidate gene for generation of KO mice as proof-of-concept. Previous studies have reported changes in ethanol-related behavioral outcomes in MyD88 KO mice. One-cell mouse embryos were simultaneously electroporated with four gRNAs targeting a critical Exon of MyD88 along with Cas9 protein. DNA and RNA analysis of founder mice revealed a complex mix of genetic alterations, all of which were predicted to ablate MyD88 gene function. Behavioral testing confirmed the hypothesis that successful one-generation KO of MyD88 would reproduce the decreased ethanol-induced sedative/hypnotic effects and increased ethanol consumption in males that were observed in previous studies. This study additionally compared responses of Mock treatment control mice generated through electroporation to controls purchased from a vendor. No substantial behavioral changes were noted between control cohorts. Overall, the CRISPR/Cas9 KO protocol reported here, which we call CRISPR Turbo Accelerated KnockOut (CRISPy TAKO), will be useful for reverse genetic in vivo screens of gene function in whole animals.
Collapse
Affiliation(s)
- Sonja L Plasil
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amit Seth
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
40
|
Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Mol Ther 2021; 29:571-586. [PMID: 33238136 PMCID: PMC7854284 DOI: 10.1016/j.ymthe.2020.09.028] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/12/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
At present, the idea of genome modification has revolutionized the modern therapeutic research era. Genome modification studies have traveled a long way from gene modifications in primary cells to genetic modifications in animals. The targeted genetic modification may result in the modulation (i.e., either upregulation or downregulation) of the predefined gene expression. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) is a promising genome-editing tool that has therapeutic potential against incurable genetic disorders by modifying their DNA sequences. In comparison with other genome-editing techniques, CRISPR-Cas9 is simple, efficient, and very specific. This enabled CRISPR-Cas9 genome-editing technology to enter into clinical trials against cancer. Besides therapeutic potential, the CRISPR-Cas9 tool can also be applied to generate genetically inhibited animal models for drug discovery and development. This comprehensive review paper discusses the origin of CRISPR-Cas9 systems and their therapeutic potential against various genetic disorders, including cancer, allergy, immunological disorders, Duchenne muscular dystrophy, cardiovascular disorders, neurological disorders, liver-related disorders, cystic fibrosis, blood-related disorders, eye-related disorders, and viral infection. Finally, we discuss the different challenges, safety concerns, and strategies that can be applied to overcome the obstacles during CRISPR-Cas9-mediated therapeutic approaches.
Collapse
Affiliation(s)
- Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea; Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India.
| |
Collapse
|
41
|
An unbiased method for evaluating the genome-wide specificity of base editors in rice. Nat Protoc 2020; 16:431-457. [PMID: 33349703 DOI: 10.1038/s41596-020-00423-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022]
Abstract
Base editors can achieve targeted genomic base conversion. However, the off-target issue is one of the major concerns in their application. Whole-genome sequencing (WGS) at the individual level can provide direct information on genome-wide specificity, but it is difficult to distinguish true off-target single-nucleotide variants (SNVs) induced by base editors from background variation. Here we describe an unbiased WGS method for evaluating the specificity of base editors in rice. In this protocol, we describe the experimental design and provide details of vector construction, rice transformation and tissue culture, as well as a comprehensive WGS data analysis pipeline for overcoming two related core problems in various plant species: high background mutation rates and the heterogeneity of examined populations. Using this protocol, researchers can straightforwardly and accurately assess the genome-wide specificity of base editors and other genome editing tools in 12-15 weeks.
Collapse
|
42
|
Genome-Wide Analysis of Off-Target CRISPR/Cas9 Activity in Single-Cell-Derived Human Hematopoietic Stem and Progenitor Cell Clones. Genes (Basel) 2020; 11:genes11121501. [PMID: 33322084 PMCID: PMC7762975 DOI: 10.3390/genes11121501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/28/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)-mediated genome editing holds remarkable promise for the treatment of human genetic diseases. However, the possibility of off-target Cas9 activity remains a concern. To address this issue using clinically relevant target cells, we electroporated Cas9 ribonucleoprotein (RNP) complexes (independently targeted to two different genomic loci, the CXCR4 locus on chromosome 2 and the AAVS1 locus on chromosome 19) into human mobilized peripheral blood-derived hematopoietic stem and progenitor cells (HSPCs) and assessed the acquisition of somatic mutations in an unbiased, genome-wide manner via whole genome sequencing (WGS) of single-cell-derived HSPC clones. Bioinformatic analysis identified >20,000 total somatic variants (indels, single nucleotide variants, and structural variants) distributed among Cas9-treated and non-Cas9-treated control HSPC clones. Statistical analysis revealed no significant difference in the number of novel non-targeted indels among the samples. Moreover, data analysis showed no evidence of Cas9-mediated indel formation at 623 predicted off-target sites. The median number of novel single nucleotide variants was slightly elevated in Cas9 RNP-recipient sample groups compared to baseline, but did not reach statistical significance. Structural variants were rare and demonstrated no clear causal connection to Cas9-mediated gene editing procedures. We find that the collective somatic mutational burden observed within Cas9 RNP-edited human HSPC clones is indistinguishable from naturally occurring levels of background genetic heterogeneity.
Collapse
|
43
|
Höijer I, Johansson J, Gudmundsson S, Chin CS, Bunikis I, Häggqvist S, Emmanouilidou A, Wilbe M, den Hoed M, Bondeson ML, Feuk L, Gyllensten U, Ameur A. Amplification-free long-read sequencing reveals unforeseen CRISPR-Cas9 off-target activity. Genome Biol 2020; 21:290. [PMID: 33261648 PMCID: PMC7706270 DOI: 10.1186/s13059-020-02206-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND One ongoing concern about CRISPR-Cas9 genome editing is that unspecific guide RNA (gRNA) binding may induce off-target mutations. However, accurate prediction of CRISPR-Cas9 off-target activity is challenging. Here, we present SMRT-OTS and Nano-OTS, two novel, amplification-free, long-read sequencing protocols for detection of gRNA-driven digestion of genomic DNA by Cas9 in vitro. RESULTS The methods are assessed using the human cell line HEK293, re-sequenced at 18x coverage using highly accurate HiFi SMRT reads. SMRT-OTS and Nano-OTS are first applied to three different gRNAs targeting HEK293 genomic DNA, resulting in a set of 55 high-confidence gRNA cleavage sites identified by both methods. Twenty-five of these sites are not reported by off-target prediction software, either because they contain four or more single nucleotide mismatches or insertion/deletion mismatches, as compared with the human reference. Additional experiments reveal that 85% of Cas9 cleavage sites are also found by other in vitro-based methods and that on- and off-target sites are detectable in gene bodies where short-reads fail to uniquely align. Even though SMRT-OTS and Nano-OTS identify several sites with previously validated off-target editing activity in cells, our own CRISPR-Cas9 editing experiments in human fibroblasts do not give rise to detectable off-target mutations at the in vitro-predicted sites. However, indel and structural variation events are enriched at the on-target sites. CONCLUSIONS Amplification-free long-read sequencing reveals Cas9 cleavage sites in vitro that would have been difficult to predict using computational tools, including in dark genomic regions inaccessible by short-read sequencing.
Collapse
Affiliation(s)
- Ida Höijer
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Josefin Johansson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sanna Gudmundsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA USA
| | | | - Ignas Bunikis
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Susana Häggqvist
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anastasia Emmanouilidou
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- The Beijer laboratory and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria Wilbe
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marcel den Hoed
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- The Beijer laboratory and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lars Feuk
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ulf Gyllensten
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
44
|
Burgio G, Teboul L. Anticipating and Identifying Collateral Damage in Genome Editing. Trends Genet 2020; 36:905-914. [PMID: 33039248 PMCID: PMC7658041 DOI: 10.1016/j.tig.2020.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Genome editing has powerful applications in research, healthcare, and agriculture. However, the range of possible molecular events resulting from genome editing has been underestimated and the technology remains unpredictable on, and away from, the target locus. This has considerable impact in providing a safe approach for therapeutic genome editing, agriculture, and other applications. This opinion article discusses how to anticipate and detect those editing events by a combination of assays to capture all possible genomic changes. It also discusses strategies for preventing unwanted effects, critical to appraise the benefit or risk associated with the use of the technology. Anticipating and verifying the result of genome editing are essential for the success for all applications.
Collapse
Affiliation(s)
- Gaëtan Burgio
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, ACT 2603, Australia.
| | - Lydia Teboul
- The Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK.
| |
Collapse
|
45
|
CRISPR-mediated knock-in in the mouse embryo using long single stranded DNA donors synthesised by biotinylated PCR. Methods 2020; 191:3-14. [PMID: 33172594 DOI: 10.1016/j.ymeth.2020.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/21/2020] [Accepted: 10/18/2020] [Indexed: 12/26/2022] Open
Abstract
Successful gene knock-in by CRISPR-Cas9 in the mouse zygote requires three components; guideRNA, Cas9 protein and a suitable donor template, which usually comprises homology flanked insert sequence. Recently, long single stranded DNA (lssDNA) donors have emerged as a popular choice of DNA donor, outperforming dsDNA templates in terms of knock-in efficiency for gene tagging and generating conditional alleles. The generation of these donors can be achieved through several methods that may introduce errors in the sequence, result in poor yields, and contain dsDNA contamination. We have developed our own cost-effective lssDNA synthesis methodology that results in high purity, sequence verified, low contamination lssDNA donors. We provide a detailed methodology on the design and generation of such donors for gene tagging experiments and generating conditional alleles.
Collapse
|
46
|
de Bellis M, Cibelli A, Mola MG, Pisani F, Barile B, Mastrodonato M, Banitalebi S, Amiry-Moghaddam M, Abbrescia P, Frigeri A, Svelto M, Nicchia GP. Orthogonal arrays of particle assembly are essential for normal aquaporin-4 expression level in the brain. Glia 2020; 69:473-488. [PMID: 32946135 DOI: 10.1002/glia.23909] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/11/2022]
Abstract
Astrocyte endfeet are endowed with aquaporin-4 (AQP4)-based assemblies called orthogonal arrays of particles (OAPs) whose function is still unclear. To investigate the function of OAPs and of AQP4 tetramers, we have generated a novel "OAP-null" mouse model selectively lacking the OAP forming M23-AQP4 isoform. We demonstrated that AQP4 transcript levels were not reduced by using qPCR. Blue native (BN)/SDS-PAGE and Western blot performed on OAP-null brain and primary astrocyte cultures showed the complete depletion of AQP4 assemblies, the selective expression of M1-AQP4-based tetramers, and a substantial reduction in AQP4 total expression level. Fluorescence quenching and super-resolution microscopy experiments showed that AQP4 tetramers were functionally expressed in astrocyte plasma membrane and their dimensions were reduced compared to wild-type assemblies. Finally, as shown by light and electron microscopy, OAP depletion resulted in a massive reduction in AQP4 expression and a loss of perivascular AQP4 staining at astrocyte endfeet, with only sparse labeling throughout the brain areas analyzed. Our study relies on the unique property of AQP4 to form OAPs, using a novel OAP-null mouse model for the first time, to show that (a) AQP4 assembly is essential for normal AQP4 expression level in the brain and (b) most of AQP4 is organized into OAPs under physiological conditions. Therefore, AQP4 tetramers cannot be used by astrocytes as an alternative to OAPs without affecting AQP4 expression levels, which is important in the physiological and pathological conditions in which OAP aggregation/disaggregation dynamics have been implicated.
Collapse
Affiliation(s)
- Manuela de Bellis
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Cibelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Pisani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | | | - Shervin Banitalebi
- Department of Molecular Medicine, Division of Anatomy, University of Oslo, Oslo, Norway
| | | | - Pasqua Abbrescia
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
47
|
Jin S, Fei H, Zhu Z, Luo Y, Liu J, Gao S, Zhang F, Chen YH, Wang Y, Gao C. Rationally Designed APOBEC3B Cytosine Base Editors with Improved Specificity. Mol Cell 2020; 79:728-740.e6. [PMID: 32721385 DOI: 10.1016/j.molcel.2020.07.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/08/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022]
Abstract
Cytosine base editors (CBEs) generate C-to-T nucleotide substitutions in genomic target sites without inducing double-strand breaks. However, CBEs such as BE3 can cause genome-wide off-target changes via sgRNA-independent DNA deamination. By leveraging the orthogonal R-loops generated by SaCas9 nickase to mimic actively transcribed genomic loci that are more susceptible to cytidine deaminase, we set up a high-throughput assay for assessing sgRNA-independent off-target effects of CBEs in rice protoplasts. The reliability of this assay was confirmed by the whole-genome sequencing (WGS) of 10 base editors in regenerated rice plants. The R-loop assay was used to screen a series of rationally designed A3Bctd-BE3 variants for improved specificity. We obtained 2 efficient CBE variants, A3Bctd-VHM-BE3 and A3Bctd-KKR-BE3, and the WGS analysis revealed that these new CBEs eliminated sgRNA-independent DNA off-target edits in rice plants. Moreover, these 2 base editor variants were more precise at their target sites by producing fewer multiple C edits.
Collapse
Affiliation(s)
- Shuai Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyuan Fei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zixu Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinxing Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shenghan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng Zhang
- Department of Plant and Microbial Biology, Center for Plant Precision Genomics, The Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, MN 55108, USA
| | - Yu-Hang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
48
|
Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, Yuan L, Steinmetz LM, Li Y, Yang H. GOTI, a method to identify genome-wide off-target effects of genome editing in mouse embryos. Nat Protoc 2020; 15:3009-3029. [PMID: 32796939 PMCID: PMC8190672 DOI: 10.1038/s41596-020-0361-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 05/21/2020] [Indexed: 12/17/2022]
Abstract
Genome editing holds great potential for correcting pathogenic mutations. We developed a method called GOTI (genome-wide off-target analysis by two-cell embryo injection) to detect off-target mutations by editing one blastomere of two-cell mouse embryos using either CRISPR-Cas9 or base editors. GOTI directly compares edited and non-edited cells without the interference of genetic background and thus could detect potential off-target variants with high sensitivity. Notably, the GOTI method was designed to detect potential off-target variants of any genome editing tools by the combination of experimental and computational approaches, which is critical for accurate evaluation of the safety of genome editing tools. Here we provide a detailed protocol for GOTI, including mice mating, two-cell embryo injection, embryonic day 14.5 embryo digestion, fluorescence-activated cell sorting, whole-genome sequencing and data analysis. To enhance the utility of GOTI, we also include a computational workflow called GOTI-seq (https://github.com/sydaileen/GOTI-seq) for the sequencing data analysis, which can generate the final genome-wide off-target variants from raw sequencing data directly. The protocol typically takes 20 d from the mice mating to sequencing and 7 d for sequencing data analysis.
Collapse
Affiliation(s)
- Erwei Zuo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yidi Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wu Wei
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai, Shanghai, China
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
| | - Tanglong Yuan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenqin Ying
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Sun
- University of California, San Diego, La Jolla, CA, USA
| | - Liyun Yuan
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai, Shanghai, China
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Yixue Li
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai, Shanghai, China.
- Department of Life Sciences, Shanghai Tech University, Shanghai, China.
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China.
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science & Technology, Shanghai, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
49
|
Newman A, Starrs L, Burgio G. Cas9 Cuts and Consequences; Detecting, Predicting, and Mitigating CRISPR/Cas9 On- and Off-Target Damage: Techniques for Detecting, Predicting, and Mitigating the On- and off-target Effects of Cas9 Editing. Bioessays 2020; 42:e2000047. [PMID: 32643177 DOI: 10.1002/bies.202000047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Large deletions and genomic re-arrangements are increasingly recognized as common products of double-strand break repair at Clustered Regularly Interspaced, Short Palindromic Repeats - CRISPR associated protein 9 (CRISPR/Cas9) on-target sites. Together with well-known off-target editing products from Cas9 target misrecognition, these are important limitations, that need to be addressed. Rigorous assessment of Cas9-editing is necessary to ensure validity of observed phenotypes in Cas9-edited cell-lines and model organisms. Here the mechanisms of Cas9 specificity, and strategies to assess and mitigate unwanted effects of Cas9 editing are reviewed; covering guide-RNA design, RNA modifications, Cas9 modifications, control of Cas9 activity; computational prediction for off-targets, and experimental methods for detecting Cas9 cleavage. Although recognition of the prevalence of on- and off-target effects of Cas9 editing has increased in recent years, broader uptake across the gene editing community will be important in determining the specificity of Cas9 across diverse applications and organisms.
Collapse
Affiliation(s)
- Anthony Newman
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| | - Lora Starrs
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| |
Collapse
|
50
|
Blayney J, Foster EM, Jagielowicz M, Kreuzer M, Morotti M, Reglinski K, Xiao JH, Hublitz P. Unexpectedly High Levels of Inverted Re-Insertions Using Paired sgRNAs for Genomic Deletions. Methods Protoc 2020; 3:mps3030053. [PMID: 32751356 PMCID: PMC7565582 DOI: 10.3390/mps3030053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Use of dual sgRNAs is a common CRISPR/Cas9-based strategy for the creation of genetic deletions. The ease of screening combined with a rather high rate of success makes this approach a reliable genome engineering procedure. Recently, a number of studies using CRISPR/Cas9 have revealed unwanted large-scale rearrangements, duplications, inversions or larger-than-expected deletions. Strict quality control measures are required to validate the model system, and this crucially depends on knowing which potential experimental outcomes to expect. Using the dual sgRNA deletion approach, our team discovered high levels of excision, inversion and re-insertion at the site of targeting. We detected those at a variety of genomic loci and in several immortalized cell lines, demonstrating that inverted re-insertions are a common by-product with an overall frequency between 3% and 20%. Our findings imply an inherent danger in the misinterpretation of screening data when using only a single PCR screening. While amplification of the region of interest might classify clones as wild type (WT) based on amplicon size, secondary analyses can discover heterozygous (HET) clones among presumptive WTs, and events deemed as HET clones could potentially be full KO. As such, screening for inverted re-insertions helps in decreasing the number of clones required to obtain a full KO. With this technical note, we want to raise awareness of this phenomenon and suggest implementing a standard secondary PCR while screening for deletions.
Collapse
Affiliation(s)
- Joseph Blayney
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK;
| | - Evangeline M. Foster
- Translational Neuroscience and Dementia Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX3 7JX, UK;
| | - Marta Jagielowicz
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; (M.J.); (K.R.); (J.H.X.)
| | - Mira Kreuzer
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; (M.K.); (M.M.)
| | - Matteo Morotti
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; (M.K.); (M.M.)
- Department of Oncology, University of Lausanne, Ludwig Cancer Research Centre, HiTIDE group, Rue du Bugnon 25A, CH-1005 Lausanne, Switzerland
| | - Katharina Reglinski
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; (M.J.); (K.R.); (J.H.X.)
- Leibniz-Institute of Photonic Technologies & Institute of Applied Optic and Biophysics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - Julie Huiyuan Xiao
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; (M.J.); (K.R.); (J.H.X.)
| | - Philip Hublitz
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK;
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK; (M.J.); (K.R.); (J.H.X.)
- MRC Weatherall Institute of Molecular Medicine, Genome Engineering Facility, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK
- Correspondence: ; Tel.: +44-1865-222339
| |
Collapse
|