1
|
Collu R, Zarate YA, Xia W, Fish JL. Individuals with SATB2-associated syndrome have impaired vitamin and energy metabolism pathways. Metab Brain Dis 2024; 40:3. [PMID: 39541055 DOI: 10.1007/s11011-024-01465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Special AT-rich sequence-binding protein 2 (SATB2) is a master regulator of gene expression. Mutations of the SATB2 gene results in the SATB2-associated syndrome (SAS), a genetic disorder characterized by neurodevelopmental disabilities and autism-related phenotype. The importance of plasma as an indicator of SAS phenotypes is unknown. We aim to investigate if pathogenic variants in SATB2 are associated with alteration to relevant pathways in the plasma of SAS patients and identify key differentially regulated proteins which may serve as biomarkers to improve diagnostic and future pharmacological approaches. We used well-validated proteomic technologies to determine the proteomic profile of plasma from SAS patients compared to healthy control subjects. Bioinformatical analysis was performed to identify significant proteins and functionally enriched pathways. We identified differentially expressed proteins in the plasma of SAS patients that are significantly involved in metabolism-related pathways. Energy metabolism, glucose metabolism and vitamin metabolism pathways are significantly enriched in SAS patients as compared to healthy controls. Our study linked SATB2 mutations to the impairment of plasma proteins involved in different metabolic pathways in SAS patients.
Collapse
Affiliation(s)
- Roberto Collu
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA.
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Yuri A Zarate
- Division of Genetics and Metabolism, University of Kentucky, Lexington, KY, USA
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA.
| |
Collapse
|
2
|
Zhang QX, Wu SS, Wang PJ, Zhang R, Valenzuela RK, Shang SS, Wan T, Ma J. Schizophrenia-Like Deficits and Impaired Glutamate/Gamma-aminobutyric acid Homeostasis in Zfp804a Conditional Knockout Mice. Schizophr Bull 2024; 50:1411-1426. [PMID: 38988003 PMCID: PMC11548938 DOI: 10.1093/schbul/sbae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
BACKGROUND AND HYPOTHESIS Zinc finger protein 804A (ZNF804A) was the first genome-wide associated susceptibility gene for schizophrenia (SCZ) and played an essential role in the pathophysiology of SCZ by influencing neurodevelopment regulation, neurite outgrowth, synaptic plasticity, and RNA translational control; however, the exact molecular mechanism remains unclear. STUDY DESIGN A nervous-system-specific Zfp804a (ZNF804A murine gene) conditional knockout (cKO) mouse model was generated using clustered regularly interspaced short palindromic repeat/Cas9 technology and the Cre/loxP method. RESULTS Multiple and complex SCZ-like behaviors, such as anxiety, depression, and impaired cognition, were observed in Zfp804a cKO mice. Molecular biological methods and targeted metabolomics assay validated that Zfp804a cKO mice displayed altered SATB2 (a cortical superficial neuron marker) expression in the cortex; aberrant NeuN, cleaved caspase 3, and DLG4 (markers of mature neurons, apoptosis, and postsynapse, respectively) expressions in the hippocampus and a loss of glutamate (Glu)/γ-aminobutyric acid (GABA) homeostasis with abnormal GAD67 (Gad1) expression in the hippocampus. Clozapine partly ameliorated some SCZ-like behaviors, reversed the disequilibrium of the Glu/GABA ratio, and recovered the expression of GAD67 in cKO mice. CONCLUSIONS Zfp804a cKO mice reproducing SCZ-like pathological and behavioral phenotypes were successfully developed. A novel mechanism was determined in which Zfp804a caused Glu/GABA imbalance and reduced GAD67 expression, which was partly recovered by clozapine treatment. These findings underscore the role of altered gene expression in understanding the pathogenesis of SCZ and provide a reliable SCZ model for future therapeutic interventions and biomarker discovery.
Collapse
Affiliation(s)
- Qiao-xia Zhang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shan-shan Wu
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Peng-jie Wang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Rui Zhang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Biochemistry and Molecular Biology, College of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Robert K Valenzuela
- JAX Center for Alzheimer’s and Dementia Research, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Shan-shan Shang
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Ting Wan
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jie Ma
- Department of Electron Microscope, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Wahl N, Espeso-Gil S, Chietera P, Nagel A, Laighneach A, Morris DW, Rajarajan P, Akbarian S, Dechant G, Apostolova G. SATB2 organizes the 3D genome architecture of cognition in cortical neurons. Mol Cell 2024; 84:621-639.e9. [PMID: 38244545 PMCID: PMC10923151 DOI: 10.1016/j.molcel.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024]
Abstract
The DNA-binding protein SATB2 is genetically linked to human intelligence. We studied its influence on the three-dimensional (3D) epigenome by mapping chromatin interactions and accessibility in control versus SATB2-deficient cortical neurons. We find that SATB2 affects the chromatin looping between enhancers and promoters of neuronal-activity-regulated genes, thus influencing their expression. It also alters A/B compartments, topologically associating domains, and frequently interacting regions. Genes linked to SATB2-dependent 3D genome changes are implicated in highly specialized neuronal functions and contribute to cognitive ability and risk for neuropsychiatric and neurodevelopmental disorders. Non-coding DNA regions with a SATB2-dependent structure are enriched for common variants associated with educational attainment, intelligence, and schizophrenia. Our data establish SATB2 as a cell-type-specific 3D genome modulator, which operates both independently and in cooperation with CCCTC-binding factor (CTCF) to set up the chromatin landscape of pyramidal neurons for cognitive processes.
Collapse
Affiliation(s)
- Nico Wahl
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck 6020, Austria.
| | - Sergio Espeso-Gil
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck 6020, Austria; Department of Psychiatry, Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paola Chietera
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Amelie Nagel
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Aodán Laighneach
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences, University of Galway, Galway, H91 TK33, Ireland
| | - Derek W Morris
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences, University of Galway, Galway, H91 TK33, Ireland
| | - Prashanth Rajarajan
- Department of Psychiatry, Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Schahram Akbarian
- Department of Psychiatry, Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georg Dechant
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck 6020, Austria.
| | - Galina Apostolova
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
4
|
Koumoundourou A, Rannap M, De Bruyckere E, Nestel S, Reissner C, Egorov AV, Liu P, Missler M, Heimrich B, Draguhn A, Britsch S. Regulation of hippocampal mossy fiber-CA3 synapse function by a Bcl11b/C1ql2/Nrxn3(25b+) pathway. eLife 2024; 12:RP89854. [PMID: 38358390 PMCID: PMC10942602 DOI: 10.7554/elife.89854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The transcription factor Bcl11b has been linked to neurodevelopmental and neuropsychiatric disorders associated with synaptic dysfunction. Bcl11b is highly expressed in dentate gyrus granule neurons and is required for the structural and functional integrity of mossy fiber-CA3 synapses. The underlying molecular mechanisms, however, remained unclear. We show in mice that the synaptic organizer molecule C1ql2 is a direct functional target of Bcl11b that regulates synaptic vesicle recruitment and long-term potentiation at mossy fiber-CA3 synapses in vivo and in vitro. Furthermore, we demonstrate C1ql2 to exert its functions through direct interaction with a specific splice variant of neurexin-3, Nrxn3(25b+). Interruption of C1ql2-Nrxn3(25b+) interaction by expression of a non-binding C1ql2 mutant or by deletion of Nrxn3 in the dentate gyrus granule neurons recapitulates major parts of the Bcl11b as well as C1ql2 mutant phenotype. Together, this study identifies a novel C1ql2-Nrxn3(25b+)-dependent signaling pathway through which Bcl11b controls mossy fiber-CA3 synapse function. Thus, our findings contribute to the mechanistic understanding of neurodevelopmental disorders accompanied by synaptic dysfunction.
Collapse
Affiliation(s)
| | - Märt Rannap
- Institute of Physiology and Pathophysiology, Faculty of Medicine, Heidelberg UniversityHeidelbergGermany
| | | | - Sigrun Nestel
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, University of MünsterMünsterGermany
| | - Alexei V Egorov
- Institute of Physiology and Pathophysiology, Faculty of Medicine, Heidelberg UniversityHeidelbergGermany
| | - Pengtao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
- Centre for Translational Stem Cell BiologyHong KongChina
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University of MünsterMünsterGermany
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Faculty of Medicine, Heidelberg UniversityHeidelbergGermany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm UniversityUlmGermany
| |
Collapse
|
5
|
Karpov DS, Marilovtseva EV, Golimbet VE. [A role of transcription factors in pathogenic processes associated with schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:49-54. [PMID: 39690551 DOI: 10.17116/jnevro202412411149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Schizophrenia is a severe mental illness, the etiology and pathogenesis of which are significantly contributed by hereditary factors. Genome-wide association analysis shows that the majority of genetic variants associated with a high risk of schizophrenia are located in regulatory regions of genes. In this brief review, data on the overall structure of the major regulatory regions of genes are summarized. The main focus is on enhancers, which are regions of the genome that enhance gene activity. The participation of transcription factors interacting with gene regulatory regions in various molecular and cellular processes, the disruption of which is associated with the pathogenesis of schizophrenia, is discussed in detail.
Collapse
Affiliation(s)
- D S Karpov
- Mental Health Research Center, Moscow, Russia
| | | | | |
Collapse
|
6
|
Garrett L, Trümbach D, Spielmann N, Wurst W, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Hölter SM. A rationale for considering heart/brain axis control in neuropsychiatric disease. Mamm Genome 2023; 34:331-350. [PMID: 36538124 PMCID: PMC10290621 DOI: 10.1007/s00335-022-09974-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Neuropsychiatric diseases (NPD) represent a significant global disease burden necessitating innovative approaches to pathogenic understanding, biomarker identification and therapeutic strategy. Emerging evidence implicates heart/brain axis malfunction in NPD etiology, particularly via the autonomic nervous system (ANS) and brain central autonomic network (CAN) interaction. This heart/brain inter-relationship harbors potentially novel NPD diagnosis and treatment avenues. Nevertheless, the lack of multidisciplinary clinical approaches as well as a limited appreciation of molecular underpinnings has stymied progress. Large-scale preclinical multi-systemic functional data can therefore provide supplementary insight into CAN and ANS interaction. We here present an overview of the heart/brain axis in NPD and establish a unique rationale for utilizing a preclinical cardiovascular disease risk gene set to glean insights into heart/brain axis control in NPD. With a top-down approach focusing on genes influencing electrocardiogram ANS function, we combined hierarchical clustering of corresponding regional CAN expression data and functional enrichment analysis to reveal known and novel molecular insights into CAN and NPD. Through 'support vector machine' inquiries for classification and literature validation, we further pinpointed the top 32 genes highly expressed in CAN brain structures altering both heart rate/heart rate variability (HRV) and behavior. Our observations underscore the potential of HRV/hyperactivity behavior as endophenotypes for multimodal disease biomarker identification to index aberrant executive brain functioning with relevance for NPD. This work heralds the potential of large-scale preclinical functional genetic data for understanding CAN/ANS control and introduces a stepwise design leveraging preclinical data to unearth novel heart/brain axis control genes in NPD.
Collapse
Affiliation(s)
- Lillian Garrett
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dietrich Trümbach
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- German Research Center for Environmental Health, Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nadine Spielmann
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Wurst
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Deutsches Institut Für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Helmut Fuchs
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Sabine M Hölter
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany.
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.
- Technische Universität München, Freising-Weihenstephan, Germany.
- Helmholtz Center Munich, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
7
|
Synaptic plasticity in Schizophrenia pathophysiology. IBRO Neurosci Rep 2023. [DOI: 10.1016/j.ibneur.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
8
|
Wang J, Weatheritt R, Voineagu I. Alu-minating the Mechanisms Underlying Primate Cortex Evolution. Biol Psychiatry 2022; 92:760-771. [PMID: 35981906 DOI: 10.1016/j.biopsych.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
The higher-order cognitive functions observed in primates correlate with the evolutionary enhancement of cortical volume and folding, which in turn are driven by the primate-specific expansion of cellular diversity in the developing cortex. Underlying these changes is the diversification of molecular features including the creation of human and/or primate-specific genes, the activation of specific molecular pathways, and the interplay of diverse layers of gene regulation. We review and discuss evidence for connections between Alu elements and primate brain evolution, the evolutionary milestones of which are known to coincide along primate lineages. Alus are repetitive elements that contribute extensively to the acquisition of novel genes and the expansion of diverse gene regulatory layers, including enhancers, alternative splicing, RNA editing, and microRNA pathways. By reviewing the impact of Alus on molecular features linked to cortical expansions or gyrification or implications in cognitive deficits, we suggest that future research focusing on the role of Alu-derived molecular events in the context of brain development may greatly advance our understanding of higher-order cognitive functions and neurologic disorders.
Collapse
Affiliation(s)
- Juli Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Robert Weatheritt
- St Vincent Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, EMBL Australia, Sydney, New South Wales, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
9
|
Wang Z, Su L, Wu T, Sun L, Sun Z, Wang Y, Li P, Cui G. Inhibition of MicroRNA-182/183 Cluster Ameliorates Schizophrenia by Activating the Axon Guidance Pathway and Upregulating DCC. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9411276. [PMID: 36406766 PMCID: PMC9671740 DOI: 10.1155/2022/9411276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/14/2022] [Indexed: 09/21/2023]
Abstract
Schizophrenia (SZ) is a complex disorder caused by a variety of genetic and environmental factors. Mounting evidence suggests the involvement of microRNAs (miRNAs) in the pathology of SZ. Accordingly, the current study set out to investigate the possible implication of the miR-182/183 cluster, as well as its associated mechanism in the progression of SZ. Firstly, rat models of SZ were established by intraperitoneal injection of MK-801. Moreover, rat primary hippocampal neurons were exposed to MK-801 to simulate injury of hippocampal neurons. The expression of miR-182/183 or its putative target gene DCC was manipulated to examine their effects on SZ in vitro and in vivo. It was found that miR-182 and miR-183 were both highly expressed in peripheral blood of SZ patients and hippocampal tissues of SZ rats. In addition, the miR-182/183 cluster could target DDC and downregulate the expression of DDC. On the other hand, inhibition of the miR-182/183 cluster ameliorated SZ, as evidenced by elevated serum levels of NGF and BDNF, along with reductions in spontaneous activity, serum GFAP levels, and hippocampal neuronal apoptosis. Additionally, DCC was found to activate the axon guiding pathway and influence synaptic activity in hippocampal neurons. Collectively, our findings highlighted that inhibition of the miR-182/183 cluster could potentially attenuate SZ through DCC-dependent activation of the axon guidance pathway. Furthermore, inhibition of the miR-182/183 cluster may represent a potential target for the SZ treatment.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Academic Research, Qiqihar Medical University, Qiqihar 161000, China
| | - Lin Su
- Jiangxi Provincial Key Laboratory of Preventive Medicine School of Public Health, Nanchang University, Nanchang 330006, China
| | - Tong Wu
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| | - Lei Sun
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| | - Zhenghai Sun
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| | - Yuchen Wang
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| | - Ping Li
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| | - Guangcheng Cui
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| |
Collapse
|
10
|
Zhang K, Liao P, Wen J, Hu Z. Synaptic plasticity in schizophrenia pathophysiology. IBRO Neurosci Rep 2022; 13:478-487. [PMID: 36590092 PMCID: PMC9795311 DOI: 10.1016/j.ibneur.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric syndrome with psychotic behavioral abnormalities and marked cognitive deficits. It is widely accepted that genetic and environmental factors contribute to the onset of schizophrenia. However, the etiology and pathology of the disease remain largely unexplored. Recently, the synaptopathology and the dysregulated synaptic plasticity and function have emerging as intriguing and prominent biological mechanisms of schizophrenia pathogenesis. Synaptic plasticity is the ability of neurons to change the strength of their connections in response to internal or external stimuli, which is essential for brain development and function, learning and memory, and vast majority of behavior responses relevant to psychiatric diseases including schizophrenia. Here, we reviewed molecular and cellular mechanisms of the multiple forms synaptic plasticity, and the functional regulations of schizophrenia-risk factors including disease susceptible genes and environmental alterations on synaptic plasticity and animal behavior. Recent genome-wide association studies have provided fruitful findings of hundreds of risk gene variances associated with schizophrenia, thus further clarifying the role of these disease-risk genes in synaptic transmission and plasticity will be beneficial to advance our understanding of schizophrenia pathology, as well as the molecular mechanism of synaptic plasticity.
Collapse
Affiliation(s)
- Kexuan Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China
| | - Panlin Liao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Jin Wen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhonghua Hu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, PR China,Correspondence to: Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, PR China.
| |
Collapse
|
11
|
Molecular Findings Guiding the Modulation of the Endocannabinoid System as a Potential Target to Treat Schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:89-103. [DOI: 10.1007/978-3-030-97182-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Zhang Q, Zhang Y, Zhang J, Zhang D, Li M, Yan H, Zhang H, Song L, Wang J, Hou Z, Yang Y, Zou X. p66α Suppresses Breast Cancer Cell Growth and Migration by Acting as Co-Activator of p53. Cells 2021; 10:3593. [PMID: 34944103 PMCID: PMC8700327 DOI: 10.3390/cells10123593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 01/31/2023] Open
Abstract
p66α is a GATA zinc finger domain-containing transcription factor that has been shown to be essential for gene silencing by participating in the NuRD complex. Several studies have suggested that p66α is a risk gene for a wide spectrum of diseases such as diabetes, schizophrenia, and breast cancer; however, its biological role has not been defined. Here, we report that p66α functions as a tumor suppressor to inhibit breast cancer cell growth and migration, evidenced by the fact that the depletion of p66α results in accelerated tumor growth and migration of breast cancer cells. Mechanistically, immunoprecipitation assays identify p66α as a p53-interacting protein that binds the DNA-binding domain of p53 molecule predominantly via its CR2 domain. Depletion of p66α in multiple breast cells results in decreased expression of p53 target genes, while over-expression of p66α results in increased expression of these target genes. Moreover, p66α promotes the transactivity of p53 by enhancing p53 binding at target promoters. Together, these findings demonstrate that p66α is a tumor suppressor by functioning as a co-activator of p53.
Collapse
Affiliation(s)
- Qun Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yihong Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Jie Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Dan Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Mengying Li
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Han Yan
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Hui Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Liwei Song
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai 200025, China;
- Naruiboen Biomedical Technology Corporation Limited, Linyi 277700, China
| | - Jiamin Wang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhaoyuan Hou
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yunhai Yang
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai 200025, China;
| | - Xiuqun Zou
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
13
|
Neha S, Dholaniya PS. The Prevailing Role of Topoisomerase 2 Beta and its Associated Genes in Neurons. Mol Neurobiol 2021; 58:6443-6459. [PMID: 34546528 DOI: 10.1007/s12035-021-02561-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
Topoisomerase 2 beta (TOP2β) is an enzyme that alters the topological states of DNA by making a transient double-strand break during the transcription process. The direct interaction of TOP2β with DNA strand results in transcriptional regulation of certain genes and some studies have suggested that a particular set of genes are regulated by TOP2β, which have a prominent role in various stages of neuron from development to degeneration. In this review, we discuss the role of TOP2β in various phases of the neuron's life. Based on the existing reports, we have compiled the list of genes, which are directly regulated by the enzyme, from different studies and performed their functional classification. We discuss the role of these genes in neurogenesis, neuron migration, fate determination, differentiation and maturation, generation of neural circuits, and senescence.
Collapse
Affiliation(s)
- Neha S
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
14
|
Zhu YY, Sun GL, Yang ZL. SATB2-associated syndrome caused by a novel SATB2 mutation in a Chinese boy: A case report and literature review. World J Clin Cases 2021; 9:6081-6090. [PMID: 34368330 PMCID: PMC8316932 DOI: 10.12998/wjcc.v9.i21.6081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Special AT-rich sequence binding protein 2 (SATB2)-associated syndrome (SAS; OMIM 612313) is an autosomal dominant disorder. Alterations in the SATB2 gene have been identified as causative.
CASE SUMMARY We report a case of a 13-year-old Chinese boy with lifelong global developmental delay, speech and language delay, and intellectual disabilities. He had short stature and irregular dentition, but no other abnormal clinical findings. A de novo heterozygous nonsense point mutation was detected by genetic analysis in exon 6 of SATB2, c.687C>A (p.Y229X) (NCBI reference sequence: NM_001172509.2), and neither of his parents had the mutation. This mutation is the first reported and was evaluated as pathogenic according to the guidelines from the American College of Medical Genetics and Genomics. SAS was diagnosed, and special education performed. Our report of a SAS case in China caused by a SATB2 mutation expanded the genotype options for the disease. The heterogeneous manifestations can be induced by complicated pathogenic involvements and functions of SATB2 from reviewed literatures: (1) SATB2 haploinsufficiency; (2) the interference of truncated SATB2 protein to wild-type SATB2; and (3) different numerous genes regulated by SATB2 in brain and skeletal development in different developmental stages.
CONCLUSION Global developmental delays are usually the initial presentations, and the diagnosis was challenging before other presentations occurred. Regular follow-up and genetic analysis can help to diagnose SAS early. Verification for genes affected by SATB2 mutations for heterogeneous manifestations may help to clarify the possible pathogenesis of SAS in the future.
Collapse
Affiliation(s)
- Yan-Yan Zhu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Gui-Lian Sun
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Zhi-Liang Yang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
15
|
Feurle P, Abentung A, Cera I, Wahl N, Ablinger C, Bucher M, Stefan E, Sprenger S, Teis D, Fischer A, Laighneach A, Whitton L, Morris DW, Apostolova G, Dechant G. SATB2-LEMD2 interaction links nuclear shape plasticity to regulation of cognition-related genes. EMBO J 2021; 40:e103701. [PMID: 33319920 PMCID: PMC7849313 DOI: 10.15252/embj.2019103701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 01/22/2023] Open
Abstract
SATB2 is a schizophrenia risk gene and is genetically associated with human intelligence. How it affects cognition at molecular level is currently unknown. Here, we show that interactions between SATB2, a chromosomal scaffolding protein, and the inner nuclear membrane protein LEMD2 orchestrate the response of pyramidal neurons to neuronal activation. Exposure to novel environment in vivo causes changes in nuclear shape of CA1 hippocampal neurons via a SATB2-dependent mechanism. The activity-driven plasticity of the nuclear envelope requires not only SATB2, but also its protein interactor LEMD2 and the ESCRT-III/VPS4 membrane-remodeling complex. Furthermore, LEMD2 depletion in cortical neurons, similar to SATB2 ablation, affects neuronal activity-dependent regulation of multiple rapid and delayed primary response genes. In human genetic data, LEMD2-regulated genes are enriched for de novo mutations reported in intellectual disability and schizophrenia and are, like SATB2-regulated genes, enriched for common variants associated with schizophrenia and cognitive function. Hence, interactions between SATB2 and the inner nuclear membrane protein LEMD2 influence gene expression programs in pyramidal neurons that are linked to cognitive ability and psychiatric disorder etiology.
Collapse
Affiliation(s)
- Patrick Feurle
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Andreas Abentung
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Isabella Cera
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Nico Wahl
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Cornelia Ablinger
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Michael Bucher
- Institute of Biochemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Simon Sprenger
- Institute for Cell BiologyMedical University of InnsbruckInnsbruckAustria
| | - David Teis
- Institute for Cell BiologyMedical University of InnsbruckInnsbruckAustria
| | - Andre Fischer
- Department of Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GoettingenGermany
- Department of Psychiatry and PsychotherapyUniversity Medical CenterGoettingenGermany
| | - Aodán Laighneach
- Neuroimaging, Cognition & Genomics (NICOG) CentreSchool of Psychology and Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Laura Whitton
- Neuroimaging, Cognition & Genomics (NICOG) CentreSchool of Psychology and Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Derek W Morris
- Neuroimaging, Cognition & Genomics (NICOG) CentreSchool of Psychology and Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Galina Apostolova
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Georg Dechant
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
16
|
Lv N, Wang Y, Zhao M, Dong L, Wei H. The Role of PAX2 in Neurodevelopment and Disease. Neuropsychiatr Dis Treat 2021; 17:3559-3567. [PMID: 34908837 PMCID: PMC8665868 DOI: 10.2147/ndt.s332747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/27/2021] [Indexed: 12/23/2022] Open
Abstract
In developmental biology, transcription factors are involved in regulating the process of neural development, controlling the differentiation of nerve cells, and affecting the normal functioning of neural circuits. Transcription factors regulate the expression of multiple genes at the same time and have become a key gene category that is recognized to be disrupted in neurodevelopmental disorders such as autism spectrum disorders. This paper briefly introduces the expression and role of PAX2 in neurodevelopment and discusses the neurodevelopmental disorders associated with Pax2 mutations and its possible mechanism. Firstly, mutations in the human Pax2 gene are associated with abnormalities in multiple systems which can result in neurodevelopmental disorders such as intellectual disability, epilepsy and autism spectrum disorders. Secondly, the structure of Pax2 gene and PAX2 protein, as well as the function of Pax2 gene in neural development, was discussed. Finally, a diagram of the PAX2 protein regulatory network was made and a possible molecular mechanism of Pax2 mutations leading to neurodevelopmental disorders from the perspectives of developmental process and protein function was proposed.
Collapse
Affiliation(s)
- Na Lv
- Department of Physiology, Basic Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ying Wang
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Min Zhao
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Lina Dong
- Central Laboratory, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
17
|
Gu Q, Liu H, Ma J, Yuan J, Li X, Qiao L. A Narrative Review of Circular RNAs in Brain Development and Diseases of Preterm Infants. Front Pediatr 2021; 9:706012. [PMID: 34621711 PMCID: PMC8490812 DOI: 10.3389/fped.2021.706012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
Circular RNAs (circRNAs) generated by back-splicing are the vital class of non-coding RNAs (ncRNAs). Circular RNAs are highly abundant and stable in eukaryotes, and many of them are evolutionarily conserved. They are blessed with higher expression in mammalian brains and could take part in the regulation of physiological and pathophysiological processes. In addition, premature birth is important in neurodevelopmental diseases. Brain damage in preterm infants may represent the main cause of long-term neurodevelopmental disorders in surviving babies. Until recently, more and more researches have been evidenced that circRNAs are involved in the pathogenesis of encephalopathy of premature. We aim at explaining neuroinflammation promoting the brain damage. In this review, we summarize the current findings of circRNAs properties, expression, and functions, as well as their significances in the neurodevelopmental impairments, white matter damage (WMD) and hypoxic-ischemic encephalopathy (HIE). So we think that circRNAs have a direct impact on neurodevelopment and brain injury, and will be a powerful tool in the repair of the injured immature brain. Even though their exact roles and mechanisms of gene regulation remain elusive, circRNAs have potential applications as diagnostic biomarkers for brain damage and the target for neuroprotective intervention.
Collapse
Affiliation(s)
- Qianying Gu
- School of Medicine, Southeast University, Nanjing, China.,Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Heng Liu
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jingjing Ma
- School of Medicine, Southeast University, Nanjing, China.,Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jiaming Yuan
- Department of Pediatrics, Tianchang People's Hospital, Anhui, China
| | - Xinger Li
- Department of Biobank, Zhongda Hospital, Southeast University, Nanjing, China
| | - Lixing Qiao
- School of Medicine, Southeast University, Nanjing, China.,Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Paraíso-Luna J, Aguareles J, Martín R, Ayo-Martín AC, Simón-Sánchez S, García-Rincón D, Costas-Insua C, García-Taboada E, de Salas-Quiroga A, Díaz-Alonso J, Liste I, Sánchez-Prieto J, Cappello S, Guzmán M, Galve-Roperh I. Endocannabinoid signalling in stem cells and cerebral organoids drives differentiation to deep layer projection neurons via CB 1 receptors. Development 2020; 147:226034. [PMID: 33168583 DOI: 10.1242/dev.192161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
The endocannabinoid (eCB) system, via the cannabinoid CB1 receptor, regulates neurodevelopment by controlling neural progenitor proliferation and neurogenesis. CB1 receptor signalling in vivo drives corticofugal deep layer projection neuron development through the regulation of BCL11B and SATB2 transcription factors. Here, we investigated the role of eCB signalling in mouse pluripotent embryonic stem cell-derived neuronal differentiation. Characterization of the eCB system revealed increased expression of eCB-metabolizing enzymes, eCB ligands and CB1 receptors during neuronal differentiation. CB1 receptor knockdown inhibited neuronal differentiation of deep layer neurons and increased upper layer neuron generation, and this phenotype was rescued by CB1 re-expression. Pharmacological regulation with CB1 receptor agonists or elevation of eCB tone with a monoacylglycerol lipase inhibitor promoted neuronal differentiation of deep layer neurons at the expense of upper layer neurons. Patch-clamp analyses revealed that enhancing cannabinoid signalling facilitated neuronal differentiation and functionality. Noteworthy, incubation with CB1 receptor agonists during human iPSC-derived cerebral organoid formation also promoted the expansion of BCL11B+ neurons. These findings unveil a cell-autonomous role of eCB signalling that, via the CB1 receptor, promotes mouse and human deep layer cortical neuron development.
Collapse
Affiliation(s)
- Juan Paraíso-Luna
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - José Aguareles
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Ricardo Martín
- Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Ane C Ayo-Martín
- Max Planck Institute of Psychiatry, 80804 Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Samuel Simón-Sánchez
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Daniel García-Rincón
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Carlos Costas-Insua
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Elena García-Taboada
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Adán de Salas-Quiroga
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Javier Díaz-Alonso
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - José Sánchez-Prieto
- Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | | | - Manuel Guzmán
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| | - Ismael Galve-Roperh
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.,Department of Biochemistry and Molecular Biology, Complutense University, Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain
| |
Collapse
|
19
|
A gene expression atlas for different kinds of stress in the mouse brain. Sci Data 2020; 7:437. [PMID: 33328476 PMCID: PMC7744580 DOI: 10.1038/s41597-020-00772-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
Stressful experiences are part of everyday life and animals have evolved physiological and behavioral responses aimed at coping with stress and maintaining homeostasis. However, repeated or intense stress can induce maladaptive reactions leading to behavioral disorders. Adaptations in the brain, mediated by changes in gene expression, have a crucial role in the stress response. Recent years have seen a tremendous increase in studies on the transcriptional effects of stress. The input raw data are freely available from public repositories and represent a wealth of information for further global and integrative retrospective analyses. We downloaded from the Sequence Read Archive 751 samples (SRA-experiments), from 18 independent BioProjects studying the effects of different stressors on the brain transcriptome in mice. We performed a massive bioinformatics re-analysis applying a single, standardized pipeline for computing differential gene expression. This data mining allowed the identification of novel candidate stress-related genes and specific signatures associated with different stress conditions. The large amount of computational results produced was systematized in the interactive “Stress Mice Portal”.
Collapse
|
20
|
miR-187-3p participates in contextual fear memory formation through modulating SATB2 expression in the hippocampus. Neuroreport 2020; 31:909-917. [PMID: 32568775 DOI: 10.1097/wnr.0000000000001484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE When threatened, fear is one of the most important responses that an organism exhibits. The mechanisms involved in forming fear memories include specific neurological structures, neural circuits and detailed molecular interactions. METHODS MicroRNAs (miRNAs, small non-coding RNAs) act as endogenous functional small molecules that participate in or interfere with the formation of new fear memory by inhibiting the expression of mRNA targets. MicroRNA-187 (miR-187) is a newly reported miRNA that is related to cancer, but it has not been investigated regarding fear memory formation. RESULTS In the present study, we observed a transient reduction in the level of miR-187 in the dorsal hippocampus after a classic contextual fear conditioning (CFC) training. Overexpression of miR-187-3p in the DH using miR-187-3p agomir was detrimental in the formation of CFC memory, whereas downregulation of miR-187-3p using antagomir enhanced the formation of CFC memory. Additionally, utilization of bioinformatic methods and luciferase reporter assay revealed that miR-187-3p targets SATB2, and therefore miR-187-3p agomir can decrease the protein level of SATB2. Furthermore, we determined that SATB2 plays a role in the formation of CFC memory by miR-187-3p, which can be mediated by altering SATB2 expression. CONCLUSION Altogether, evidence obtained from both in-vitro and in-vivo experiments indicated that miR-187-3p is involved in CFC memory formation through modulation of SATB2. Our data provides a basis for the potential therapeutic benefits of miR-187-3p/SATB2 in the treatment of anxiety disorders induced from fear memory.
Collapse
|
21
|
Zhang N, Nan A, Chen L, Li X, Jia Y, Qiu M, Dai X, Zhou H, Zhu J, Zhang H, Jiang Y. Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Mol Cancer 2020; 19:101. [PMID: 32493389 PMCID: PMC7268724 DOI: 10.1186/s12943-020-01221-6] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Lung cancer has high morbidity and mortality worldwide with non-small cell lung cancer (NSCLC) accounting for 85% of the cases. Therapies for lung cancer have relatively poor outcomes and further improvements are required. Circular RNAs have been reported to participate in the occurrence and progression of cancer. Information on the functions and mechanism of circRNAs in lung cancer is limited and needs more exploration. METHODS We detected expression of genes and proteins by qPCR and western blot. Function of circSATB2 was investigated using RNA interference and overexpression assays. Location of circSATB2 was assessed by fluorescence in situ hybridization (FISH). Interaction of circSATB2, miR-326 and FSCN1 was confirmed by dual-luciferase reporter assay. RESULTS Data from the investigation showed that circSATB2 was highly expressed in NSCLC cells and tissues. circSATB2 positively regulated fascin homolog 1, actin-bundling protein 1 (FSCN1) expression via miR-326 in lung cancer cells. Furthermore, circSATB2 can be transferred by exosomes and promote the proliferation, migration and invasion of NSCLC cells, as well as induce abnormal proliferation in normal human bronchial epithelial cells. Also, circSATB2 was highly expressed in serumal exosomes from lung cancer patients with high sensitivity and specificity for clinical detection and was related to lung cancer metastasis. CONCLUSIONS circSATB2 participated in the progression of NSCLC and was differentially expressed in lung cancer tissue and serumal exosomes. circSATB2 may be potential biomarker for the diagnosis of NSCLC.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Aruo Nan
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Lijian Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Xin Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Yangyang Jia
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Miaoyun Qiu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Xin Dai
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Hanyu Zhou
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Jialu Zhu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Han Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436 People’s Republic of China
| |
Collapse
|
22
|
Simon R, Wiegreffe C, Britsch S. Bcl11 Transcription Factors Regulate Cortical Development and Function. Front Mol Neurosci 2020; 13:51. [PMID: 32322190 PMCID: PMC7158892 DOI: 10.3389/fnmol.2020.00051] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription factors regulate multiple processes during brain development and in the adult brain, from brain patterning to differentiation and maturation of highly specialized neurons as well as establishing and maintaining the functional neuronal connectivity. The members of the zinc-finger transcription factor family Bcl11 are mainly expressed in the hematopoietic and central nervous systems regulating the expression of numerous genes involved in a wide range of pathways. In the brain Bcl11 proteins are required to regulate progenitor cell proliferation as well as differentiation, migration, and functional integration of neural cells. Mutations of the human Bcl11 genes lead to anomalies in multiple systems including neurodevelopmental impairments like intellectual disabilities and autism spectrum disorders.
Collapse
Affiliation(s)
- Ruth Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| | | | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| |
Collapse
|
23
|
Zarate YA, Bosanko KA, Caffrey AR, Bernstein JA, Martin DM, Williams MS, Berry-Kravis EM, Mark PR, Manning MA, Bhambhani V, Vargas M, Seeley AH, Estrada-Veras JI, vanDooren MF, Schwab M, Vanderver A, Melis D, Alsadah A, Sadler L, Van Esch H, Callewaert B, Oostra A, Maclean J, Dentici ML, Orlando V, Lipson M, Sparagana SP, Maarup TJ, Alsters SIM, Brautbar A, Kovitch E, Naidu S, Lees M, Smith DM, Turner L, Raggio V, Spangenberg L, Garcia-Miñaúr S, Roeder ER, Littlejohn RO, Grange D, Pfotenhauer J, Jones MC, Balasubramanian M, Martinez-Monseny A, Blok LS, Gavrilova R, Fish JL. Mutation update for the SATB2 gene. Hum Mutat 2019; 40:1013-1029. [PMID: 31021519 PMCID: PMC11431158 DOI: 10.1002/humu.23771] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
Abstract
SATB2-associated syndrome (SAS) is an autosomal dominant neurodevelopmental disorder caused by alterations in the SATB2 gene. Here we present a review of published pathogenic variants in the SATB2 gene to date and report 38 novel alterations found in 57 additional previously unreported individuals. Overall, we present a compilation of 120 unique variants identified in 155 unrelated families ranging from single nucleotide coding variants to genomic rearrangements distributed throughout the entire coding region of SATB2. Single nucleotide variants predicted to result in the occurrence of a premature stop codon were the most commonly seen (51/120 = 42.5%) followed by missense variants (31/120 = 25.8%). We review the rather limited functional characterization of pathogenic variants and discuss current understanding of the consequences of the different molecular alterations. We present an expansive phenotypic review along with novel genotype-phenotype correlations. Lastly, we discuss current knowledge of animal models and present future prospects. This review should help provide better guidance for the care of individuals diagnosed with SAS.
Collapse
Affiliation(s)
- Yuri A. Zarate
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Katherine A. Bosanko
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Aisling R. Caffrey
- Health Outcomes, College of Pharmacy, Department of Pharmacy Practice, University of Rhode Island, Kingston, Rhode Island
| | - Jonathan A. Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Donna M. Martin
- Departments of Pediatrics and Human Genetics, The University of Michigan, Ann Arbor, Michigan
| | | | - Elizabeth M. Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Paul R. Mark
- Division of Medical Genetics, Spectrum Health, Grand Rapids, Michigan
| | - Melanie A. Manning
- Departments of Pathology and Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Vikas Bhambhani
- Division of Genetics and Genomic Medicine, Children's Hospital and Clinics of Minnesota, Minneapolis, Minnesota
| | - Marcelo Vargas
- Division of Genetics and Genomic Medicine, Children's Hospital and Clinics of Minnesota, Minneapolis, Minnesota
| | | | - Juvianee I. Estrada-Veras
- Murtha Cancer Center Research Program, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Pediatric subspecialty-Medical Genetics Service, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Marieke F. vanDooren
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maria Schwab
- Genetics Division, Joseph Sanzari Children's Hospital, Hackensack University Medical Center, Hackensack, New Jersey
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniela Melis
- Department of Translational Medical Science, Section of Pediatrics, Federico II University, Naples, Italy
| | - Adnan Alsadah
- Center for Personalized Genetic Healthcare, Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Laurie Sadler
- Division of Genetics, Oishei Children's Hospital, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, New York
| | - Hilde Van Esch
- Department of Human Genetics, University Hospitals Leuven, KU, Leuven, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ann Oostra
- Department of Pediatric Neurology, Ghent University Hospital, Ghent, Belgium
| | - Jane Maclean
- Pediatric Neurology, Palo Alto Medical Foundation, San Jose, California
| | - Maria Lisa Dentici
- Medical Genetics, Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Valeria Orlando
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mark Lipson
- Department of Genetics, Kaiser Permanente, Sacramento, California
| | - Steven P. Sparagana
- Department of Neurology, Texas Scottish Rite Hospital for Children, Dallas, Texas
| | | | - Suzanne IM Alsters
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ariel Brautbar
- Department of Genetics, Cook Chldren's Medical Center, Fort Worth, Texas
| | | | - Sakkubai Naidu
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland
| | - Melissa Lees
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, UK
| | | | - Lesley Turner
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| | - Víctor Raggio
- Departamento de Genética, Facultad de Medicina, Montevideo, Uruguay
| | | | - Sixto Garcia-Miñaúr
- Department of Medical Genetics, Hospital Universitario La Paz, Madrid, Spain
| | - Elizabeth R. Roeder
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Rebecca O. Littlejohn
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Dorothy Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medcine, St Louis, Missouri
| | - Jean Pfotenhauer
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marilyn C. Jones
- Division of Genetics, Department of Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, California
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Western Bank, Sheffield, UK
| | - Antonio Martinez-Monseny
- Genetics and Molecular Medicine Department, Rare Disease Pediatric Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Lot Snijders Blok
- Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Ralitza Gavrilova
- Departments of Neurology and Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Jennifer L. Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| |
Collapse
|
24
|
Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Szeszko K, Gowkielewicz M, Lepiarczyk E, Jozwik M, Majewski MK. Placenta Transcriptome Profiling in Intrauterine Growth Restriction (IUGR). Int J Mol Sci 2019; 20:E1510. [PMID: 30917529 PMCID: PMC6471577 DOI: 10.3390/ijms20061510] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 12/14/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a serious pathological complication associated with compromised fetal development during pregnancy. The aim of the study was to broaden knowledge about the transcriptomic complexity of the human placenta by identifying genes potentially involved in IUGR pathophysiology. RNA-Seq data were used to profile protein-coding genes, detect alternative splicing events (AS), single nucleotide variant (SNV) calling, and RNA editing sites prediction in IUGR-affected placental transcriptome. The applied methodology enabled detection of 37,501 transcriptionally active regions and the selection of 28 differentially-expressed genes (DEGs), among them 10 were upregulated and 18 downregulated in IUGR-affected placentas. Functional enrichment annotation indicated that most of the DEGs were implicated in the processes of inflammation and immune disorders related to IUGR and preeclampsia. Additionally, we revealed that some genes (S100A13, GPR126, CTRP1, and TFPI) involved in the alternation of splicing events were mainly implicated in angiogenic-related processes. Significant SNVs were overlapped with 6533 transcripts and assigned to 2386 coding sequence (CDS), 1528 introns, 345 5' untranslated region (UTR), 1260 3'UTR, 918 non-coding RNA (ncRNA), and 10 intergenic regions. Within CDS regions, 543 missense substitutions with functional effects were recognized. Two known mutations (rs4575, synonymous; rs3817, on the downstream region) were detected within the range of AS and DEG candidates: PA28β and PINLYP, respectively. Novel genes that are dysregulated in IUGR were detected in the current research. Investigating genes underlying the IUGR is crucial for identification of mechanisms regulating placental development during a complicated pregnancy.
Collapse
Affiliation(s)
- Marta Majewska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland.
| | - Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodleglosci Str 44, 10-045 Olsztyn, Poland.
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn-Kortowo, Poland.
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn-Kortowo, Poland.
| | - Karol Szeszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn-Kortowo, Poland.
| | - Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodleglosci Str 44, 10-045 Olsztyn, Poland.
| | - Ewa Lepiarczyk
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland.
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodleglosci Str 44, 10-045 Olsztyn, Poland.
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland.
| |
Collapse
|
25
|
Zhang Q, Huang Y, Zhang L, Ding YQ, Song NN. Loss of Satb2 in the Cortex and Hippocampus Leads to Abnormal Behaviors in Mice. Front Mol Neurosci 2019; 12:33. [PMID: 30809123 PMCID: PMC6380165 DOI: 10.3389/fnmol.2019.00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/25/2019] [Indexed: 01/05/2023] Open
Abstract
Satb2-associated syndrome (SAS) is a genetic disorder that results from the deletion or mutation of one allele within the Satb2 locus. Patients with SAS show behavioral abnormalities, including developmental delay/intellectual disability, hyperactivity, and symptoms of autism. To address the role of Satb2 in SAS-related behaviors and generate an SAS mouse model, Satb2 was deleted in the cortex and hippocampus of Emx1-Cre; Satb2flox/flox [Satb2 conditional knockout (CKO)] mice. Satb2 CKO mice showed hyperactivity, increased impulsivity, abnormal social novelty, and impaired spatial learning and memory. Furthermore, we also found that the development of neurons in cortical layer IV was defective in Satb2 CKO mice, as shown by the loss of layer-specific gene expression and abnormal thalamocortical projections. In summary, the abnormal behaviors revealed in Satb2 CKO mice may reflect the SAS symptoms associated with Satb2 mutation in human patients, possibly due to defective development of cortical neurons in multiple layers including alterations of their inputs/outputs.
Collapse
Affiliation(s)
- Qiong Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.,Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Ning-Ning Song
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Pearl JR, Colantuoni C, Bergey DE, Funk CC, Shannon P, Basu B, Casella AM, Oshone RT, Hood L, Price ND, Ament SA. Genome-Scale Transcriptional Regulatory Network Models of Psychiatric and Neurodegenerative Disorders. Cell Syst 2019; 8:122-135.e7. [DOI: 10.1016/j.cels.2019.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/19/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
|
27
|
Cera I, Whitton L, Donohoe G, Morris DW, Dechant G, Apostolova G. Genes encoding SATB2-interacting proteins in adult cerebral cortex contribute to human cognitive ability. PLoS Genet 2019; 15:e1007890. [PMID: 30726206 PMCID: PMC6364870 DOI: 10.1371/journal.pgen.1007890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022] Open
Abstract
During CNS development, the nuclear protein SATB2 is expressed in superficial cortical layers and determines projection neuron identity. In the adult CNS, SATB2 is expressed in pyramidal neurons of all cortical layers and is a regulator of synaptic plasticity and long-term memory. Common variation in SATB2 locus confers risk of schizophrenia, whereas rare, de novo structural and single nucleotide variants cause severe intellectual disability and absent or limited speech. To characterize differences in SATB2 molecular function in developing vs adult neocortex, we isolated SATB2 protein interactomes at the two ontogenetic stages and identified multiple novel SATB2 interactors. SATB2 interactomes are highly enriched for proteins that stabilize de novo chromatin loops. The comparison between the neonatal and adult SATB2 protein complexes indicates a developmental shift in SATB2 molecular function, from transcriptional repression towards organization of chromosomal superstructure. Accordingly, gene sets regulated by SATB2 in the neocortex of neonatal and adult mice show limited overlap. Genes encoding SATB2 protein interactors were grouped for gene set analysis of human GWAS data. Common variants associated with human cognitive ability are enriched within the genes encoding adult but not neonatal SATB2 interactors. Our data support a shift in the function of SATB2 in cortex over lifetime and indicate that regulation of spatial chromatin architecture by the SATB2 interactome contributes to cognitive function in the general population.
Collapse
Affiliation(s)
- Isabella Cera
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Laura Whitton
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Derek W. Morris
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Georg Dechant
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Galina Apostolova
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|