1
|
Read WJ, Laver RJ, Lau CC, Moritz C, Zozaya SM. Repeated Mitochondrial Capture With Limited Genomic Introgression in a Lizard Group. Mol Ecol 2025; 34:e17766. [PMID: 40241380 PMCID: PMC12051731 DOI: 10.1111/mec.17766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
Mitochondrial introgression is common among animals and is often first identified through mitonuclear discordance-discrepancies between evolutionary relationships inferred from mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA). Over recent decades, genomic data have also revealed extensive nuclear introgression in many animal groups, with implications for genetic and phenotypic diversity. However, the extent to which mtDNA introgression corresponds to nuDNA introgression varies. Here, we investigated historical and recent introgression in the Gehyra nana-occidentalis clade, a complex group of Australian geckos with documented cases of mitonuclear discordance suggestive of repeated mtDNA introgression. We hypothesised that mitonuclear discordance in this clade reflects mtDNA introgression with substantial nuclear introgression. Despite evidence of repeated mtDNA introgression, however, we found little to no evidence of historical nuDNA introgression using exon capture and genome-wide single nucleotide polymorphism (SNP) data. We also found no evidence of gene flow at modern contact zones and detected only a single early generation hybrid. Unsurprisingly, given these results, we found no evidence of transgressive, intermediate, or more variable morphological phenotypes in taxa with introgressed mtDNA. These findings suggest that hybridisation in this system has, at least in some cases, resulted in repeated mitochondrial introgression with little or no nuclear introgression. This pattern aligns with other studies showing limited nuDNA introgression in taxa with mitonuclear discordance, highlighting a potentially broader trend in animal radiations.
Collapse
Affiliation(s)
- Wesley J. Read
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Rebecca J. Laver
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityActonAustralian Capital TerritoryAustralia
- The University of the Sunshine Coast, Moreton Bay CampusPetrieQueenslandAustralia
| | - Ching Ching Lau
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Craig Moritz
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Stephen M. Zozaya
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| |
Collapse
|
2
|
Ongaro L, Huerta-Sanchez E. A history of multiple Denisovan introgression events in modern humans. Nat Genet 2024; 56:2612-2622. [PMID: 39501127 DOI: 10.1038/s41588-024-01960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/25/2024] [Indexed: 12/12/2024]
Abstract
The identification of a new hominin group in the Altai mountains called Denisovans was one of the most exciting discoveries in human evolution in the last decade. Unlike Neanderthal remains, the Denisovan fossil record consists of only a finger bone, jawbone, teeth and skull fragments. Leveraging the surviving Denisovan segments in modern human genomes has uncovered evidence of at least three introgression events from distinct Denisovan populations into modern humans in the past. Each of them presents different levels of relatedness to the sequenced Altai Denisovan, indicating a complex relationship between these sister lineages. Here we review the evidence suggesting that several Denisovan populations, who likely had an extensive geographical range, were adapted to distinct environments and introgressed into modern humans multiple times. We further discuss how archaic variants have been affected by demographic history, negative and positive selection and close by proposing possible new lines of future research.
Collapse
Affiliation(s)
- Linda Ongaro
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Emilia Huerta-Sanchez
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
- Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA.
| |
Collapse
|
3
|
Marie-Orleach L, Glémin S, Brandrud MK, Brysting AK, Gizaw A, Gustafsson ALS, Rieseberg LH, Brochmann C, Birkeland S. How Does Selfing Affect the Pace and Process of Speciation? Cold Spring Harb Perspect Biol 2024; 16:a041426. [PMID: 38503508 PMCID: PMC11529850 DOI: 10.1101/cshperspect.a041426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Surprisingly little attention has been given to the impact of selfing on speciation, even though selfing reduces gene flow between populations and affects other key population genetics parameters. Here we review recent theoretical work and compile empirical data from crossing experiments and genomic and phylogenetic studies to assess the effect of mating systems on the speciation process. In accordance with theoretical predictions, we find that accumulation of hybrid incompatibilities seems to be accelerated in selfers, but there is so far limited empirical support for a predicted bias toward underdominant loci. Phylogenetic evidence is scarce and contradictory, including studies suggesting that selfing either promotes or hampers speciation rate. Further studies are therefore required, which in addition to measures of reproductive barrier strength and selfing rate should routinely include estimates of demographic history and genetic divergence as a proxy for divergence time.
Collapse
Affiliation(s)
- Lucas Marie-Orleach
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- CNRS, Université de Rennes, ECOBIO-UMR 6553, Campus de Beaulieu, Rennes 35042, France
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours 37200, France
| | - Sylvain Glémin
- CNRS, Université de Rennes, ECOBIO-UMR 6553, Campus de Beaulieu, Rennes 35042, France
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Evolutionsbiologiskt Centrum EBC, Uppsala, Sweden
| | | | - Anne K Brysting
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Abel Gizaw
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| | | | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | | - Siri Birkeland
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
4
|
Kato S, Arakaki S, Nagano AJ, Kikuchi K, Hirase S. Genomic landscape of introgression from the ghost lineage in a gobiid fish uncovers the generality of forces shaping hybrid genomes. Mol Ecol 2024; 33:e17216. [PMID: 38047388 DOI: 10.1111/mec.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Extinct lineages can leave legacies in the genomes of extant lineages through ancient introgressive hybridization. The patterns of genomic survival of these extinct lineages provide insight into the role of extinct lineages in current biodiversity. However, our understanding on the genomic landscape of introgression from extinct lineages remains limited due to challenges associated with locating the traces of unsampled 'ghost' extinct lineages without ancient genomes. Herein, we conducted population genomic analyses on the East China Sea (ECS) lineage of Chaenogobius annularis, which was suspected to have originated from ghost introgression, with the aim of elucidating its genomic origins and characterizing its landscape of introgression. By combining phylogeographic analysis and demographic modelling, we demonstrated that the ECS lineage originated from ancient hybridization with an extinct ghost lineage. Forward simulations based on the estimated demography indicated that the statistic γ of the HyDe analysis can be used to distinguish the differences in local introgression rates in our data. Consistent with introgression between extant organisms, we found reduced introgression from extinct lineage in regions with low recombination rates and with functional importance, thereby suggesting a role of linked selection that has eliminated the extinct lineage in shaping the hybrid genome. Moreover, we identified enrichment of repetitive elements in regions associated with ghost introgression, which was hitherto little known but was also observed in the re-analysis of published data on introgression between extant organisms. Overall, our findings underscore the unexpected similarities in the characteristics of introgression landscapes across different taxa, even in cases of ghost introgression.
Collapse
Affiliation(s)
- Shuya Kato
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, Japan
| | - Seiji Arakaki
- Amakusa Marine Biological Laboratory, Kyushu University, Amakusa, Kumamoto, Japan
| | - Atsushi J Nagano
- Department of Life Sciences, Faculty of Agriculture, Ryukoku University, Ōtsu, Shiga, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, Japan
| | - Shotaro Hirase
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
5
|
Chen XY, Zhou BF, Shi Y, Liu H, Liang YY, Ingvarsson PK, Wang B. Evolution of the Correlated Genomic Variation Landscape Across a Divergence Continuum in the Genus Castanopsis. Mol Biol Evol 2024; 41:msae191. [PMID: 39248185 PMCID: PMC11421576 DOI: 10.1093/molbev/msae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
The heterogeneous landscape of genomic variation has been well documented in population genomic studies. However, disentangling the intricate interplay of evolutionary forces influencing the genetic variation landscape over time remains challenging. In this study, we assembled a chromosome-level genome for Castanopsis eyrei and sequenced the whole genomes of 276 individuals from 12 Castanopsis species, spanning a broad divergence continuum. We found highly correlated genomic variation landscapes across these species. Furthermore, variations in genetic diversity and differentiation along the genome were strongly associated with recombination rates and gene density. These results suggest that long-term linked selection and conserved genomic features have contributed to the formation of a common genomic variation landscape. By examining how correlations between population summary statistics change throughout the species divergence continuum, we determined that background selection alone does not fully explain the observed patterns of genomic variation; the effects of recurrent selective sweeps must be considered. We further revealed that extensive gene flow has significantly influenced patterns of genomic variation in Castanopsis species. The estimated admixture proportion correlated positively with recombination rate and negatively with gene density, supporting a scenario of selection against gene flow. Additionally, putative introgression regions exhibited strong signals of positive selection, an enrichment of functional genes, and reduced genetic burdens, indicating that adaptive introgression has played a role in shaping the genomes of hybridizing species. This study provides insights into how different evolutionary forces have interacted in driving the evolution of the genomic variation landscape.
Collapse
Affiliation(s)
- Xue-Yan Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Biao-Feng Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yi-Ye Liang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Baosheng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
6
|
Vernasco BJ, Long KM, Braun MJ, Brawn JD. Genetic and telomeric variability: Insights from a tropical avian hybrid zone. Mol Ecol 2024; 33:e17491. [PMID: 39192633 DOI: 10.1111/mec.17491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024]
Abstract
Telomere lengths and telomere dynamics can correlate with lifespan, behaviour and individual quality. Such relationships have spurred interest in understanding variation in telomere lengths and their dynamics within and between populations. Many studies have identified how environmental processes can influence telomere dynamics, but the role of genetic variation is much less well characterized. To provide a novel perspective on how telomeric variation relates to genetic variability, we longitudinally sampled individuals across a narrow hybrid zone (n = 127 samples), wherein two Manacus species characterized by contrasting genome-wide heterozygosity interbreed. We measured individual (n = 66) and population (n = 3) differences in genome-wide heterozygosity and, among hybrids, amount of genetic admixture using RADseq-generated SNPs. We tested for population differences in telomere lengths and telomere dynamics. We then examined how telomere lengths and telomere dynamics covaried with genome-wide heterozygosity within populations. Hybrid individuals exhibited longer telomeres, on average, than individuals sampled in the adjacent parental populations. No population differences in telomere dynamics were observed. Within the parental population characterized by relatively low heterozygosity, higher genome-wide heterozygosity was associated with shorter telomeres and higher rates of telomere shortening-a pattern that was less apparent in the other populations. All of these relationships were independent of sex, despite the contrasting life histories of male and female manakins. Our study highlights how population comparisons can reveal interrelationships between genetic variation and telomeres, and how naturally occurring hybridization and genome-wide heterozygosity can relate to telomere lengths and telomere dynamics.
Collapse
Affiliation(s)
- Ben J Vernasco
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Kira M Long
- Program in Ecology, Evolution and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael J Braun
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biology and Biology Graduate Program, University of Maryland, College Park, Maryland, USA
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
Di C, Lohmueller KE. Revisiting Dominance in Population Genetics. Genome Biol Evol 2024; 16:evae147. [PMID: 39114967 PMCID: PMC11306932 DOI: 10.1093/gbe/evae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 08/11/2024] Open
Abstract
Dominance refers to the effect of a heterozygous genotype relative to that of the two homozygous genotypes. The degree of dominance of mutations for fitness can have a profound impact on how deleterious and beneficial mutations change in frequency over time as well as on the patterns of linked neutral genetic variation surrounding such selected alleles. Since dominance is such a fundamental concept, it has received immense attention throughout the history of population genetics. Early work from Fisher, Wright, and Haldane focused on understanding the conceptual basis for why dominance exists. More recent work has attempted to test these theories and conceptual models by estimating dominance effects of mutations. However, estimating dominance coefficients has been notoriously challenging and has only been done in a few species in a limited number of studies. In this review, we first describe some of the early theoretical and conceptual models for understanding the mechanisms for the existence of dominance. Second, we discuss several approaches used to estimate dominance coefficients and summarize estimates of dominance coefficients. We note trends that have been observed across species, types of mutations, and functional categories of genes. By comparing estimates of dominance coefficients for different types of genes, we test several hypotheses for the existence of dominance. Lastly, we discuss how dominance influences the dynamics of beneficial and deleterious mutations in populations and how the degree of dominance of deleterious mutations influences the impact of inbreeding on fitness.
Collapse
Affiliation(s)
- Chenlu Di
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
8
|
Pfennig A, Lachance J. The evolutionary fate of Neanderthal DNA in 30,780 admixed genomes with recent African-like ancestry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605203. [PMID: 39091830 PMCID: PMC11291122 DOI: 10.1101/2024.07.25.605203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Following introgression, Neanderthal DNA was initially purged from non-African genomes, but the evolutionary fate of remaining introgressed DNA has not been explored yet. To fill this gap, we analyzed 30,780 admixed genomes with African-like ancestry from the All of Us research program, in which Neanderthal alleles encountered novel genetic backgrounds during the last 15 generations. Observed amounts of Neanderthal DNA approximately match expectations based on ancestry proportions, suggesting neutral evolution. Nevertheless, we identified genomic regions that have significantly less or more Neanderthal ancestry than expected and are associated with spermatogenesis, innate immunity, and other biological processes. We also identified three novel introgression desert-like regions in recently admixed genomes, whose genetic features are compatible with hybrid incompatibilities and intrinsic negative selection. Overall, we find that much of the remaining Neanderthal DNA in human genomes is not under strong selection, and complex evolutionary dynamics have shaped introgression landscapes in our species.
Collapse
Affiliation(s)
- Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, 30332, GA, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr, Atlanta, 30332, GA, USA
| |
Collapse
|
9
|
Zhang Y, Stern AJ, Nielsen R. The evolutionary dynamics of local adaptations under genetic rescue is determined by mutational load and polygenicity. J Hered 2024; 115:373-384. [PMID: 38146994 PMCID: PMC11235128 DOI: 10.1093/jhered/esad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023] Open
Abstract
Inbred populations often suffer from increased mutational load and reduced fitness due to lower efficacy of purifying selection in groups with small effective population sizes. Genetic rescue (GR) is a conservation tool that is studied and deployed with the aim of increasing the fitness of such inbred populations by assisted migration of individuals from closely related outbred populations. The success of GR depends on several factors-such as their demographic history and distribution of dominance effects of mutations-that may vary across populations. While we understand the impact of these factors on the dynamics of GR, their impact on local adaptations remains unclear. To this end, we conduct a population genetics simulation study to evaluate the impact of trait complexity (Mendelian vs. polygenic), dominance effects, and demographic history on the efficacy of GR. We find that the impact on local adaptations depends highly on the mutational load at the time of GR, which is in turn shaped dynamically by interactions between demographic history and dominance effects of deleterious variation. Over time local adaptations are generally restored post-GR, though in the short term they are often compromised in the process of purging deleterious variation. We also show that while local adaptations are almost always fully restored, the degree to which ancestral genetic variation affecting the trait is replaced by donor variation can vary drastically and is especially high for complex traits. Our results provide insights on the impact of GR on trait evolution and considerations for the practical implementation of GR.
Collapse
Affiliation(s)
- Yulin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Center for Computational Biology, UC Berkeley, Berkeley, CA, United States
| | - Aaron J Stern
- Center for Computational Biology, UC Berkeley, Berkeley, CA, United States
| | - Rasmus Nielsen
- Department of Integrative Biology, UC Berkeley, Berkeley, CA, United States
- Department of Statistics, UC Berkeley, Berkeley, CA, United States
- Center for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Glasenapp MR, Pogson GH. Selection Shapes the Genomic Landscape of Introgressed Ancestry in a Pair of Sympatric Sea Urchin Species. Genome Biol Evol 2024; 16:evae124. [PMID: 38874390 PMCID: PMC11212366 DOI: 10.1093/gbe/evae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
A growing number of recent studies have demonstrated that introgression is common across the tree of life. However, we still have a limited understanding of the fate and fitness consequence of introgressed variation at the whole-genome scale across diverse taxonomic groups. Here, we implemented a phylogenetic hidden Markov model to identify and characterize introgressed genomic regions in a pair of well-diverged, nonsister sea urchin species: Strongylocentrotus pallidus and Strongylocentrotus droebachiensis. Despite the old age of introgression, a sizable fraction of the genome (1% to 5%) exhibited introgressed ancestry, including numerous genes showing signals of historical positive selection that may represent cases of adaptive introgression. One striking result was the overrepresentation of hyalin genes in the identified introgressed regions despite observing considerable overall evidence of selection against introgression. There was a negative correlation between introgression and chromosome gene density, and two chromosomes were observed with considerably reduced introgression. Relative to the nonintrogressed genome-wide background, introgressed regions had significantly reduced nucleotide divergence (dXY) and overlapped fewer protein-coding genes, coding bases, and genes with a history of positive selection. Additionally, genes residing within introgressed regions showed slower rates of evolution (dN, dS, dN/dS) than random samples of genes without introgressed ancestry. Overall, our findings are consistent with widespread selection against introgressed ancestry across the genome and suggest that slowly evolving, low-divergence genomic regions are more likely to move between species and avoid negative selection following hybridization and introgression.
Collapse
Affiliation(s)
- Matthew R Glasenapp
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA
| | - Grant H Pogson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA
| |
Collapse
|
11
|
Groh JS, Coop G. The temporal and genomic scale of selection following hybridization. Proc Natl Acad Sci U S A 2024; 121:e2309168121. [PMID: 38489387 PMCID: PMC10962946 DOI: 10.1073/pnas.2309168121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024] Open
Abstract
Genomic evidence supports an important role for selection in shaping patterns of introgression along the genome, but frameworks for understanding the evolutionary dynamics within hybrid populations that underlie these patterns have been lacking. Due to the clock-like effect of recombination in hybrids breaking up parental haplotypes, drift and selection produce predictable patterns of ancestry variation at varying spatial genomic scales through time. Here, we develop methods based on the Discrete Wavelet Transform to study the genomic scale of local ancestry variation and its association with recombination rates and show that these methods capture temporal dynamics of drift and genome-wide selection after hybridization. We apply these methods to published datasets from hybrid populations of swordtail fish (Xiphophorus) and baboons (Papio) and to inferred Neanderthal introgression in modern humans. Across systems, upward of 20% of variation in local ancestry at the broadest genomic scales can be attributed to systematic selection against introgressed alleles, consistent with strong selection acting on early-generation hybrids. Signatures of selection at fine genomic scales suggest selection over longer time scales; however, we suggest that our ability to confidently infer selection at fine scales is likely limited by inherent biases in current methods for estimating local ancestry from contiguous segments of genomic similarity. Wavelet approaches will become widely applicable as genomic data from systems with introgression become increasingly available and can help shed light on generalities of the genomic consequences of interspecific hybridization.
Collapse
Affiliation(s)
- Jeffrey S. Groh
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA95616
| | - Graham Coop
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA95616
| |
Collapse
|
12
|
Feng X, Merilä J, Löytynoja A. Secondary Contact, Introgressive Hybridization, and Genome Stabilization in Sticklebacks. Mol Biol Evol 2024; 41:msae031. [PMID: 38366566 PMCID: PMC10903534 DOI: 10.1093/molbev/msae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
Advances in genomic studies have revealed that hybridization in nature is pervasive and raised questions about the dynamics of different genetic and evolutionary factors following the initial hybridization event. While recent research has proposed that the genomic outcomes of hybridization might be predictable to some extent, many uncertainties remain. With comprehensive whole-genome sequence data, we investigated the genetic introgression between 2 divergent lineages of 9-spined sticklebacks (Pungitius pungitius) in the Baltic Sea. We found that the intensity and direction of selection on the introgressed variation has varied across different genomic elements: while functionally important regions displayed reduced rates of introgression, promoter regions showed enrichment. Despite the general trend of negative selection, we identified specific genomic regions that were enriched for introgressed variants, and within these regions, we detected footprints of selection, indicating adaptive introgression. Geographically, we found the selection against the functional changes to be strongest in the vicinity of the secondary contact zone and weaken as a function of distance from the initial contact. Altogether, the results suggest that the stabilization of introgressed variation in the genomes is a complex, multistage process involving both negative and positive selection. In spite of the predominance of negative selection against introgressed variants, we also found evidence for adaptive introgression variants likely associated with adaptation to Baltic Sea environmental conditions.
Collapse
Affiliation(s)
- Xueyun Feng
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Juha Merilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
- Area of Ecology and Biodiversity, The School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
13
|
Lopez Fang L, Peede D, Ortega-Del Vecchyo D, McTavish EJ, Huerta-Sánchez E. Leveraging shared ancestral variation to detect local introgression. PLoS Genet 2024; 20:e1010155. [PMID: 38190420 PMCID: PMC10798638 DOI: 10.1371/journal.pgen.1010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 01/19/2024] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Introgression is a common evolutionary phenomenon that results in shared genetic material across non-sister taxa. Existing statistical methods such as Patterson's D statistic can detect introgression by measuring an excess of shared derived alleles between populations. The D statistic is effective to detect genome-wide patterns of introgression but can give spurious inferences of introgression when applied to local regions. We propose a new statistic, D+, that leverages both shared ancestral and derived alleles to infer local introgressed regions. Incorporating both shared derived and ancestral alleles increases the number of informative sites per region, improving our ability to identify local introgression. We use a coalescent framework to derive the expected value of this statistic as a function of different demographic parameters under an instantaneous admixture model and use coalescent simulations to compute the power and precision of D+. While the power of D and D+ is comparable, D+ has better precision than D. We apply D+ to empirical data from the 1000 Genome Project and Heliconius butterflies to infer local targets of introgression in humans and in butterflies.
Collapse
Affiliation(s)
- Lesly Lopez Fang
- Department of Life & Environmental Sciences, University of California, Merced, Merced, California, United States of America
- Quantitative & Systems Biology Graduate Group, University of California, Merced, Merced, California, United States of America
| | - David Peede
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Biology, Brown University, Providence, Rhode Island, United States of America
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, United States of America
| | - Diego Ortega-Del Vecchyo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Querétaro, México
| | - Emily Jane McTavish
- Department of Life & Environmental Sciences, University of California, Merced, Merced, California, United States of America
- Quantitative & Systems Biology Graduate Group, University of California, Merced, Merced, California, United States of America
| | - Emilia Huerta-Sánchez
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Biology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
14
|
Astore C, Sharma S, Nagpal S, Cutler DJ, Rioux JD, Cho JH, McGovern DPB, Brant SR, Kugathasan S, Jordan IK, Gibson G. The role of admixture in the rare variant contribution to inflammatory bowel disease. Genome Med 2023; 15:97. [PMID: 37968638 PMCID: PMC10647102 DOI: 10.1186/s13073-023-01244-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Identification of rare variants involved in complex, polygenic diseases like Crohn's disease (CD) has accelerated with the introduction of whole exome/genome sequencing association studies. Rare variants can be used in both diagnostic and therapeutic assessments; however, since they are likely to be restricted to specific ancestry groups, their contributions to risk assessment need to be evaluated outside the discovery population. Prior studies implied that the three known rare variants in NOD2 are absent in West African and Asian populations and only contribute in African Americans via admixture. METHODS Whole genome sequencing (WGS) data from 3418 African American individuals, 1774 inflammatory bowel disease (IBD) cases, and 1644 controls were used to assess odds ratios and allele frequencies (AF), as well as haplotype-specific ancestral origins of European-derived CD variants discovered in a large exome-wide association study. Local and global ancestry was performed to assess the contribution of admixture to IBD contrasting European and African American cohorts. RESULTS Twenty-five rare variants associated with CD in European discovery cohorts are typically five-fold lower frequency in African Americans. Correspondingly, where comparisons could be made, the rare variants were found to have a predicted four-fold reduced burden for IBD in African Americans, when compared to European individuals. Almost all of the rare CD European variants were found on European haplotypes in the African American cohort, implying that they contribute to disease risk in African Americans primarily due to recent admixture. In addition, proportion of European ancestry correlates the number of rare CD European variants each African American individual carry, as well as their polygenic risk of disease. Similar findings were observed for 23 mutations affecting 10 other common complex diseases for which the rare variants were discovered in European cohorts. CONCLUSIONS European-derived Crohn's disease rare variants are even more rare in African Americans and contribute to disease risk mainly due to admixture, which needs to be accounted for when performing cross-ancestry genetic assessments.
Collapse
Affiliation(s)
- Courtney Astore
- Center for Integrative Genomics and School of Biological Sciences, Georgia Institute of Technology, Krone EBB1 Building, 950 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Shivam Sharma
- Center for Integrative Genomics and School of Biological Sciences, Georgia Institute of Technology, Krone EBB1 Building, 950 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Sini Nagpal
- Center for Integrative Genomics and School of Biological Sciences, Georgia Institute of Technology, Krone EBB1 Building, 950 Atlantic Drive, Atlanta, GA, 30332, USA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - John D Rioux
- Department of Medicine, Université de Montréal and the Montreal Heart Institute Research Center, Montreal, QC, H1Y3N1, Canada
| | - Judy H Cho
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dermot P B McGovern
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, 08554, USA
- Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, 21287, USA
| | - Steven R Brant
- Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Subra Kugathasan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - I King Jordan
- Center for Integrative Genomics and School of Biological Sciences, Georgia Institute of Technology, Krone EBB1 Building, 950 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Greg Gibson
- Center for Integrative Genomics and School of Biological Sciences, Georgia Institute of Technology, Krone EBB1 Building, 950 Atlantic Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
15
|
Fyon F, Berbel‐Filho WM. Influence of the mutation load on the genomic composition of hybrids between outcrossing and self-fertilizing species. Ecol Evol 2023; 13:e10538. [PMID: 37720059 PMCID: PMC10502466 DOI: 10.1002/ece3.10538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023] Open
Abstract
Hybridization is a natural process whereby two diverging evolutionary lineages reproduce and create offspring of mixed ancestry. Differences in mating systems (e.g., self-fertilization and outcrossing) are expected to affect the direction and extent of hybridization and introgression in hybrid zones. Among other factors, selfers and outcrossers are expected to differ in their mutation loads. This has been studied both theoretically and empirically; however, conflicting predictions have been made on the effects mutation loads of parental species with different mating systems can have on the genomic composition of hybrids. Here, we develop a multi-locus, selective model to study how the different mutation load built up in selfers and outcrossers as a result of selective interference and homozygosity impact the long-term genetic composition of hybrid populations. Notably, our results emphasize that genes from the parental population with lesser mutation load get rapidly overrepresented in hybrid genomes, regardless of the hybrids own mating system. When recombination tends to be more important than mutation, outcrossers' genomes tend to be of higher quality and prevail. When recombination rates are low, however, selfers' genomes may reach higher quality than outcrossers' genomes and prevail in the hybrids. Taken together, these results provide concrete insights into one of the multiple factors influencing hybrid genome ancestry and introgression patterns in hybrid zones containing species with different mating systems.
Collapse
Affiliation(s)
- Fréderic Fyon
- Department of BiologyRoyal Holloway University of LondonEghamUK
| | | |
Collapse
|
16
|
Giesen A, Blanckenhorn WU, Schäfer MA, Shimizu KK, Shimizu-Inatsugi R, Misof B, Podsiadlowski L, Niehuis O, Lischer HEL, Aeschbacher S, Kapun M. Geographic Variation in Genomic Signals of Admixture Between Two Closely Related European Sepsid Fly Species. Evol Biol 2023; 50:395-412. [PMID: 37854269 PMCID: PMC10579158 DOI: 10.1007/s11692-023-09612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/28/2023] [Indexed: 10/20/2023]
Abstract
The extent of interspecific gene flow and its consequences for the initiation, maintenance, and breakdown of species barriers in natural systems remain poorly understood. Interspecific gene flow by hybridization may weaken adaptive divergence, but can be overcome by selection against hybrids, which may ultimately promote reinforcement. An informative step towards understanding the role of gene flow during speciation is to describe patterns of past gene flow among extant species. We investigate signals of admixture between allopatric and sympatric populations of the two closely related European dung fly species Sepsis cynipsea and S. neocynipsea (Diptera: Sepsidae). Based on microsatellite genotypes, we first inferred a baseline demographic history using Approximate Bayesian Computation. We then used genomic data from pooled DNA of natural and laboratory populations to test for past interspecific gene flow based on allelic configurations discordant with the inferred population tree (ABBA-BABA test with D-statistic). Comparing the detected signals of gene flow with the contemporary geographic relationship among interspecific pairs of populations (sympatric vs. allopatric), we made two contrasting observations. At one site in the French Cevennes, we detected an excess of past interspecific gene flow, while at two sites in Switzerland we observed lower signals of past microsatellite genotypes gene flow among populations in sympatry compared to allopatric populations. These results suggest that the species boundaries between these two species depend on the past and/or present eco-geographic context in Europe, which indicates that there is no uniform link between contemporary geographic proximity and past interspecific gene flow in natural populations. Supplementary Information The online version contains supplementary material available at 10.1007/s11692-023-09612-5.
Collapse
Affiliation(s)
- Athene Giesen
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin A. Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig, Bonn, Germany
| | | | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University, Freiburg, Germany
| | - Heidi E. L. Lischer
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Simon Aeschbacher
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Kapun
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Division of Cell & Developmental Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| |
Collapse
|
17
|
Sun S, Wang B, Li C, Xu G, Yang J, Hufford MB, Ross-Ibarra J, Wang H, Wang L. Unraveling Prevalence and Effects of Deleterious Mutations in Maize Elite Lines across Decades of Modern Breeding. Mol Biol Evol 2023; 40:msad170. [PMID: 37494285 PMCID: PMC10414807 DOI: 10.1093/molbev/msad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Future breeding is likely to involve the detection and removal of deleterious alleles, which are mutations that negatively affect crop fitness. However, little is known about the prevalence of such mutations and their effects on phenotypic traits in the context of modern crop breeding. To address this, we examined the number and frequency of deleterious mutations in 350 elite maize inbred lines developed over the past few decades in China and the United States. Our findings reveal an accumulation of weakly deleterious mutations and a decrease in strongly deleterious mutations, indicating the dominant effects of genetic drift and purifying selection for the two types of mutations, respectively. We also discovered that slightly deleterious mutations, when at lower frequencies, were more likely to be heterozygous in the developed hybrids. This is consistent with complementation as a potential explanation for heterosis. Subsequently, we found that deleterious mutations accounted for more of the variation in phenotypic traits than nondeleterious mutations with matched minor allele frequencies, especially for traits related to leaf angle and flowering time. Moreover, we detected fewer deleterious mutations in the promoter and gene body regions of differentially expressed genes across breeding eras than in nondifferentially expressed genes. Overall, our results provide a comprehensive assessment of the prevalence and impact of deleterious mutations in modern maize breeding and establish a useful baseline for future maize improvement efforts.
Collapse
Affiliation(s)
- Shichao Sun
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gen Xu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, China
| |
Collapse
|
18
|
Chevy ET, Huerta-Sánchez E, Ramachandran S. Integrating sex-bias into studies of archaic introgression on chromosome X. PLoS Genet 2023; 19:e1010399. [PMID: 37578977 PMCID: PMC10449224 DOI: 10.1371/journal.pgen.1010399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 08/24/2023] [Accepted: 07/10/2023] [Indexed: 08/16/2023] Open
Abstract
Evidence of interbreeding between archaic hominins and humans comes from methods that infer the locations of segments of archaic haplotypes, or 'archaic coverage' using the genomes of people living today. As more estimates of archaic coverage have emerged, it has become clear that most of this coverage is found on the autosomes- very little is retained on chromosome X. Here, we summarize published estimates of archaic coverage on autosomes and chromosome X from extant human samples. We find on average 7 times more archaic coverage on autosomes than chromosome X, and identify broad continental patterns in this ratio: greatest in European samples, and least in South Asian samples. We also perform extensive simulation studies to investigate how the amount of archaic coverage, lengths of coverage, and rates of purging of archaic coverage are affected by sex-bias caused by an unequal sex ratio within the archaic introgressors. Our results generally confirm that, with increasing male sex-bias, less archaic coverage is retained on chromosome X. Ours is the first study to explicitly model such sex-bias and its potential role in creating the dearth of archaic coverage on chromosome X.
Collapse
Affiliation(s)
- Elizabeth T. Chevy
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Emilia Huerta-Sánchez
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, United States of America
| | - Sohini Ramachandran
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, United States of America
- Data Science Initiative, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
19
|
Wong ELY, Filatov DA. The role of recombination landscape in species hybridisation and speciation. FRONTIERS IN PLANT SCIENCE 2023; 14:1223148. [PMID: 37484464 PMCID: PMC10361763 DOI: 10.3389/fpls.2023.1223148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
It is now well recognised that closely related species can hybridize and exchange genetic material, which may promote or oppose adaptation and speciation. In some cases, interspecific hybridisation is very common, making it surprising that species identity is preserved despite active gene exchange. The genomes of most eukaryotic species are highly heterogeneous with regard to gene density, abundance of repetitive DNA, chromatin compactisation etc, which can make certain genomic regions more prone or more resistant to introgression of genetic material from other species. Heterogeneity in local recombination rate underpins many of the observed patterns across the genome (e.g. actively recombining regions are typically gene rich and depleted for repetitive DNA) and it can strongly affect the permeability of genomic regions to interspecific introgression. The larger the region lacking recombination, the higher the chance for the presence of species incompatibility gene(s) in that region, making the entire non- or rarely recombining block impermeable to interspecific introgression. Large plant genomes tend to have highly heterogeneous recombination landscape, with recombination frequently occurring at the ends of the chromosomes and central regions lacking recombination. In this paper we review the relationship between recombination and introgression in plants and argue that large rarely recombining regions likely play a major role in preserving species identity in actively hybridising plant species.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | | |
Collapse
|
20
|
Groh J, Coop G. The temporal and genomic scale of selection following hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542345. [PMID: 37337589 PMCID: PMC10276902 DOI: 10.1101/2023.05.25.542345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Genomic evidence supports an important role for selection in shaping patterns of introgression along the genome, but frameworks for understanding the dynamics underlying these patterns within hybrid populations have been lacking. Here, we develop methods based on the Wavelet Transform to understand the spatial genomic scale of local ancestry variation and its association with recombination rates. We present theory and use simulations to show how wavelet-based decompositions of ancestry variance along the genome and the correlation between ancestry and recombination reflect the joint effects of recombination, genetic drift, and genome-wide selection against introgressed alleles. Due to the clock-like effect of recombination in hybrids breaking up parental haplotypes, drift and selection produce predictable patterns of local ancestry variation at varying spatial genomic scales through time. Using wavelet approaches to identify the genomic scale of variance in ancestry and its correlates, we show that these methods can detect temporally localized effects of drift and selection. We apply these methods to previously published datasets from hybrid populations of swordtail fish (Xiphophorus) and baboons (Papio), and to inferred Neanderthal introgression in modern humans. Across systems, we find that upwards of 20% of the variation in local ancestry at the broadest genomic scales can be attributed to systematic selection against introgressed alleles, consistent with strong selection acting on early-generation hybrids. We also see signals of selection at fine genomic scales and much longer time scales. However, we show that our ability to confidently infer selection at fine scales is likely limited by inherent biases in current methods for estimating local ancestry from genomic similarity. Wavelet approaches will become widely applicable as genomic data from systems with introgression become increasingly available, and can help shed light on generalities of the genomic consequences of interspecific hybridization.
Collapse
Affiliation(s)
- Jeffrey Groh
- Department of Evolution and Ecology, and Center for Population Biology, University of California, Davis, CA 95616
| | - Graham Coop
- Department of Evolution and Ecology, and Center for Population Biology, University of California, Davis, CA 95616
| |
Collapse
|
21
|
Robinson J, Kyriazis CC, Yuan SC, Lohmueller KE. Deleterious Variation in Natural Populations and Implications for Conservation Genetics. Annu Rev Anim Biosci 2023; 11:93-114. [PMID: 36332644 PMCID: PMC9933137 DOI: 10.1146/annurev-animal-080522-093311] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deleterious mutations decrease reproductive fitness and are ubiquitous in genomes. Given that many organisms face ongoing threats of extinction, there is interest in elucidating the impact of deleterious variation on extinction risk and optimizing management strategies accounting for such mutations. Quantifying deleterious variation and understanding the effects of population history on deleterious variation are complex endeavors because we do not know the strength of selection acting on each mutation. Further, the effect of demographic history on deleterious mutations depends on the strength of selection against the mutation and the degree of dominance. Here we clarify how deleterious variation can be quantified and studied in natural populations. We then discuss how different demographic factors, such as small population size, nonequilibrium population size changes, inbreeding, and gene flow, affect deleterious variation. Lastly, we provide guidance on studying deleterious variation in nonmodel populations of conservation concern.
Collapse
Affiliation(s)
- Jacqueline Robinson
- Institute for Human Genetics, University of California, San Francisco, California, USA;
| | - Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - Stella C Yuan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , ,
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA; , , .,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
22
|
Zhang X, Kim B, Singh A, Sankararaman S, Durvasula A, Lohmueller KE. MaLAdapt Reveals Novel Targets of Adaptive Introgression From Neanderthals and Denisovans in Worldwide Human Populations. Mol Biol Evol 2023; 40:msad001. [PMID: 36617238 PMCID: PMC9887621 DOI: 10.1093/molbev/msad001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Adaptive introgression (AI) facilitates local adaptation in a wide range of species. Many state-of-the-art methods detect AI with ad-hoc approaches that identify summary statistic outliers or intersect scans for positive selection with scans for introgressed genomic regions. Although widely used, approaches intersecting outliers are vulnerable to a high false-negative rate as the power of different methods varies, especially for complex introgression events. Moreover, population genetic processes unrelated to AI, such as background selection or heterosis, may create similar genomic signals to AI, compromising the reliability of methods that rely on neutral null distributions. In recent years, machine learning (ML) methods have been increasingly applied to population genetic questions. Here, we present a ML-based method called MaLAdapt for identifying AI loci from genome-wide sequencing data. Using an Extra-Trees Classifier algorithm, our method combines information from a large number of biologically meaningful summary statistics to capture a powerful composite signature of AI across the genome. In contrast to existing methods, MaLAdapt is especially well-powered to detect AI with mild beneficial effects, including selection on standing archaic variation, and is robust to non-AI selective sweeps, heterosis from deleterious mutations, and demographic misspecification. Furthermore, MaLAdapt outperforms existing methods for detecting AI based on the analysis of simulated data and the validation of empirical signals through visual inspection of haplotype patterns. We apply MaLAdapt to the 1000 Genomes Project human genomic data and discover novel AI candidate regions in non-African populations, including genes that are enriched in functionally important biological pathways regulating metabolism and immune responses.
Collapse
Affiliation(s)
- Xinjun Zhang
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA
| | - Bernard Kim
- Department of Biology, Stanford University, Palo Alto, CA
| | - Armaan Singh
- Department of Computer Science, UCLA, Los Angeles, CA
| | - Sriram Sankararaman
- Department of Computer Science, UCLA, Los Angeles, CA
- Department of Computational Medicine, UCLA, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Arun Durvasula
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| |
Collapse
|
23
|
Nouhaud P, Martin SH, Portinha B, Sousa VC, Kulmuni J. Rapid and predictable genome evolution across three hybrid ant populations. PLoS Biol 2022; 20:e3001914. [PMID: 36538502 PMCID: PMC9767332 DOI: 10.1371/journal.pbio.3001914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hybridization is frequent in the wild but it is unclear when admixture events lead to predictable outcomes and if so, at what timescale. We show that selection led to correlated sorting of genetic variation rapidly after admixture in 3 hybrid Formica aquilonia × F. polyctena ant populations. Removal of ancestry from the species with the lowest effective population size happened in all populations, consistent with purging of deleterious load. This process was modulated by recombination rate variation and the density of functional sites. Moreover, haplotypes with signatures of positive selection in either species were more likely to fix in hybrids. These mechanisms led to mosaic genomes with comparable ancestry proportions. Our work demonstrates predictable evolution over short timescales after admixture in nature.
Collapse
Affiliation(s)
- Pierre Nouhaud
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Simon H. Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Beatriz Portinha
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- cE3c, Centre for Ecology, Evolution and Environmental Changes, Department of Animal Biology, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Vitor C. Sousa
- cE3c, Centre for Ecology, Evolution and Environmental Changes, Department of Animal Biology, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Jonna Kulmuni
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| |
Collapse
|
24
|
Thorpe HA, Tourrette E, Yahara K, Vale FF, Liu S, Oleastro M, Alarcon T, Perets TT, Latifi-Navid S, Yamaoka Y, Martinez-Gonzalez B, Karayiannis I, Karamitros T, Sgouras DN, Elamin W, Pascoe B, Sheppard SK, Ronkainen J, Aro P, Engstrand L, Agreus L, Suerbaum S, Thorell K, Falush D. Repeated out-of-Africa expansions of Helicobacter pylori driven by replacement of deleterious mutations. Nat Commun 2022; 13:6842. [PMID: 36369175 PMCID: PMC9652371 DOI: 10.1038/s41467-022-34475-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori lives in the human stomach and has a population structure resembling that of its host. However, H. pylori from Europe and the Middle East trace substantially more ancestry from modern African populations than the humans that carry them. Here, we use a collection of Afro-Eurasian H. pylori genomes to show that this African ancestry is due to at least three distinct admixture events. H. pylori from East Asia, which have undergone little admixture, have accumulated many more non-synonymous mutations than African strains. European and Middle Eastern bacteria have elevated African ancestry at the sites of these mutations, implying selection to remove them during admixture. Simulations show that population fitness can be restored after bottlenecks by migration and subsequent admixture of small numbers of bacteria from non-bottlenecked populations. We conclude that recent spread of African DNA has been driven by deleterious mutations accumulated during the original out-of-Africa bottleneck.
Collapse
Affiliation(s)
- Harry A Thorpe
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Elise Tourrette
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Filipa F Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Siqi Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Teresa Alarcon
- Department of Microbiology, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Tsachi-Tsadok Perets
- Gastroenterology Laboratory, Rabin Medical Center, Petah Tikva, Israel
- Department of Digital Medical Technologies, Holon Institute of Technology, Holon, Israel
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Department of Medicine-Gastroenterology, Baylor College of Medicine, Houston, TX, USA
| | | | - Ioannis Karayiannis
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | | | | | - Wael Elamin
- G42 Healthcare, Abu Dhabi, UAE
- Elrazi University, Khartoum, Sudan
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, UK
| | - Samuel K Sheppard
- Ineos Oxford Institute, Department of Biology, University of Oxford, Oxford, UK
| | - Jukka Ronkainen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Primary Health Care Center, Tornio, Finland
| | | | - Lars Engstrand
- Center for Translational Microbiome Research, Department for Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Agreus
- Division of Family Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Suerbaum
- Department of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
- DZIF German Center for Infection Research, Hannover-Braunschweig and Munich Partner Sites, Munich, Germany
| | - Kaisa Thorell
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daniel Falush
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
25
|
Wang N, Song X, Ye J, Zhang S, Cao Z, Zhu C, Hu J, Zhou Y, Huang Y, Cao S, Liu Z, Wu X, Chai L, Guo W, Xu Q, Gaut BS, Koltunow AMG, Zhou Y, Deng X. Structural variation and parallel evolution of apomixis in citrus during domestication and diversification. Natl Sci Rev 2022; 9:nwac114. [PMID: 36415319 PMCID: PMC9671666 DOI: 10.1093/nsr/nwac114] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 09/02/2023] Open
Abstract
Apomixis, or asexual seed formation, is prevalent in Citrinae via a mechanism termed nucellar or adventitious embryony. Here, multiple embryos of a maternal genotype form directly from nucellar cells in the ovule and can outcompete the developing zygotic embryo as they utilize the sexually derived endosperm for growth. Whilst nucellar embryony enables the propagation of clonal plants of maternal genetic constitution, it is also a barrier to effective breeding through hybridization. To address the genetics and evolution of apomixis in Citrinae, a chromosome-level genome of the Hongkong kumquat (Fortunella hindsii) was assembled following a genome-wide variation map including structural variants (SVs) based on 234 Citrinae accessions. This map revealed that hybrid citrus cultivars shelter genome-wide deleterious mutations and SVs into heterozygous states free from recessive selection, which may explain the capability of nucellar embryony in most cultivars during Citrinae diversification. Analyses revealed that parallel evolution may explain the repeated origin of apomixis in different genera of Citrinae. Within Fortunella, we found that apomixis of some varieties originated via introgression. In apomictic Fortunella, the locus associated with apomixis contains the FhRWP gene, encoding an RWP-RK domain-containing protein previously shown to be required for nucellar embryogenesis in Citrus. We found the heterozygous SV in the FhRWP and CitRWP promoters from apomictic Citrus and Fortunella, due to either two or three miniature inverted transposon element (MITE) insertions. A transcription factor, FhARID, encoding an AT-rich interaction domain-containing protein binds to the MITEs in the promoter of apomictic varieties, which facilitates induction of nucellar embryogenesis. This study provides evolutionary genomic and molecular insights into apomixis in Citrinae and has potential ramifications for citrus breeding.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xietian Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Siqi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Cao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Chenqiao Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbing Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yin Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Huang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Shuo Cao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zhongjie Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiaomeng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Wenwu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Anna M G Koltunow
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Yongfeng Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
26
|
Johnston EC, Cunning R, Burgess SC. Cophylogeny and specificity between cryptic coral species (Pocillopora spp.) at Mo'orea and their symbionts (Symbiodiniaceae). Mol Ecol 2022; 31:5368-5385. [PMID: 35960256 PMCID: PMC9805206 DOI: 10.1111/mec.16654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 01/09/2023]
Abstract
The congruence between phylogenies of tightly associated groups of organisms (cophylogeny) reflects evolutionary links between ecologically important interactions. However, despite being a classic example of an obligate symbiosis, tests of cophylogeny between scleractinian corals and their photosynthetic algal symbionts have been hampered in the past because both corals and algae contain genetically unresolved and morphologically cryptic species. Here, we studied co-occurring, cryptic Pocillopora species from Mo'orea, French Polynesia, that differ in their relative abundance across depth. We constructed new phylogenies of the host Pocillopora (using complete mitochondrial genomes, genomic loci, and thousands of single nucleotide polymorphisms) and their Symbiodiniaceae symbionts (using ITS2 and psbAncr markers) and tested for cophylogeny. The analysis supported the presence of five Pocillopora species on the fore reef at Mo'orea that mostly hosted either Cladocopium latusorum or C. pacificum. Only Pocillopora species hosting C. latusorum also hosted taxa from Symbiodinium and Durusdinium. In general, the Cladocopium phylogeny mirrored the Pocillopora phylogeny. Within Cladocopium species, lineages also differed in their associations with Pocillopora haplotypes, except those showing evidence of nuclear introgression, and with depth in the two most common Pocillopora species. We also found evidence for a new Pocillopora species (haplotype 10), that has so far only been sampled from French Polynesia, that warrants formal identification. The linked phylogenies of these Pocillopora and Cladocopium species and lineages suggest that symbiont speciation is driven by niche diversification in the host, but there is still evidence for symbiont flexibility in some cases.
Collapse
Affiliation(s)
- Erika C. Johnston
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Ross Cunning
- Daniel P. Haerther Center for Conservation and ResearchJohn G. Shedd AquariumChicagoIllinoisUSA
| | - Scott C. Burgess
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
27
|
Rougemont Q, Perrier C, Besnard AL, Lebel I, Abdallah Y, Feunteun E, Réveillac E, Lasne E, Acou A, Nachón DJ, Cobo F, Evanno G, Baglinière JL, Launey S. Population genetics reveals divergent lineages and ongoing hybridization in a declining migratory fish species complex. Heredity (Edinb) 2022; 129:137-151. [PMID: 35665777 PMCID: PMC9338086 DOI: 10.1038/s41437-022-00547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022] Open
Abstract
Deciphering the effects of historical and recent demographic processes responsible for the spatial patterns of genetic diversity and structure is a key objective in evolutionary and conservation biology. Using population genetic analyses, we investigated the demographic history, the contemporary genetic diversity and structure, and the occurrence of hybridization and introgression of two species of anadromous fish with contrasting life history strategies and which have undergone recent demographic declines, the allis shad (Alosa alosa) and the twaite shad (Alosa fallax). We genotyped 706 individuals from 20 rivers and 5 sites at sea in Southern Europe at thirteen microsatellite markers. Genetic structure between populations was lower for the nearly semelparous species A. alosa, which disperses greater distances compared to the iteroparous species, A. fallax. Individuals caught at sea were assigned at the river level for A. fallax and at the region level for A. alosa. Using an approximate Bayesian computation framework, we inferred that the most likely long term historical divergence scenario between both species and lineages involved historical separation followed by secondary contact accompanied by strong population size decline. Accordingly, we found evidence for contemporary hybridization and bidirectional introgression due to gene flow between both species and lineages. Moreover, our results support the existence of at least one distinct species in the Mediterrannean sea: A. agone in Golfe du Lion area, and another divergent lineage in Corsica. Overall, our results shed light on the interplay between historical and recent demographic processes and life history strategies in shaping population genetic diversity and structure of closely related species. The recent demographic decline of these species' populations and their hybridization should be carefully considered while implementing conservation programs.
Collapse
Affiliation(s)
- Quentin Rougemont
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France.
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| | - Charles Perrier
- UMR CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Anne-Laure Besnard
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Isabelle Lebel
- Migrateurs Rhône Méditerranée, Arles, France
- Fédération Nationale de la Pêche en France et de la protection du milieu aquatique (FNPF), Paris, France
| | - Yann Abdallah
- Migrateurs Rhône Méditerranée, Arles, France
- SCIMABIO, Thonon-les-Bains, France
| | - Eric Feunteun
- UMS OFB-CNRS-MNHN PatriNat, Station marine du Museum National d'Histoire Naturelle, Dinard, France
| | - Elodie Réveillac
- UMS OFB-CNRS-MNHN PatriNat, Station marine du Museum National d'Histoire Naturelle, Dinard, France
- LIENSs, Univ La Rochelle CNRS, La Rochelle, France
| | - Emilien Lasne
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
- UMS OFB-CNRS-MNHN PatriNat, Station marine du Museum National d'Histoire Naturelle, Dinard, France
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Anthony Acou
- LIENSs, Univ La Rochelle CNRS, La Rochelle, France
- Management of Diadromous Fish in their Environment OFB-INRAE-Institut Agro-UPPA, Rennes, France
| | - David José Nachón
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Cobo
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Guillaume Evanno
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Jean-Luc Baglinière
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Sophie Launey
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| |
Collapse
|
28
|
Wang MS, Murray GGR, Mann D, Groves P, Vershinina AO, Supple MA, Kapp JD, Corbett-Detig R, Crump SE, Stirling I, Laidre KL, Kunz M, Dalén L, Green RE, Shapiro B. A polar bear paleogenome reveals extensive ancient gene flow from polar bears into brown bears. Nat Ecol Evol 2022; 6:936-944. [PMID: 35711062 DOI: 10.1038/s41559-022-01753-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/30/2022] [Indexed: 11/09/2022]
Abstract
Polar bears (Ursus maritimus) and brown bears (Ursus arctos) are sister species possessing distinct physiological and behavioural adaptations that evolved over the last 500,000 years. However, comparative and population genomics analyses have revealed that several extant and extinct brown bear populations have relatively recent polar bear ancestry, probably as the result of geographically localized instances of gene flow from polar bears into brown bears. Here, we generate and analyse an approximate 20X paleogenome from an approximately 100,000-year-old polar bear that reveals a massive prehistoric admixture event, which is evident in the genomes of all living brown bears. This ancient admixture event was not visible from genomic data derived from living polar bears. Like more recent events, this massive admixture event mainly involved unidirectional gene flow from polar bears into brown bears and occurred as climate changes caused overlap in the ranges of the two species. These findings highlight the complex reticulate paths that evolution can take within a regime of radically shifting climate.
Collapse
Affiliation(s)
- Ming-Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Gemma G R Murray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Daniel Mann
- Department of Geosciences, University of Alaska, Fairbanks, AK, USA.,Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Pamela Groves
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Alisa O Vershinina
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Megan A Supple
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Joshua D Kapp
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Sarah E Crump
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Ian Stirling
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Wildlife Research Division, Environment and Climate Change Canada Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Kristin L Laidre
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Michael Kunz
- University of Alaska Museum of the North, Fairbanks, AK, USA
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Beth Shapiro
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA. .,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
29
|
Duranton M, Pool JE. Interactions between natural selection and recombination shape the genomic landscape of introgression. Mol Biol Evol 2022; 39:6603329. [PMID: 35666817 PMCID: PMC9317171 DOI: 10.1093/molbev/msac122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hybridization between lineages that have not reached complete reproductive isolation appears more and more like a common phenomenon. Indeed, speciation genomics studies have now extensively shown that many species' genomes have hybrid ancestry. However, genomic patterns of introgression are often heterogeneous across the genome. In many organisms, a positive correlation between introgression levels and recombination rate has been observed. It is usually explained by the purging of deleterious introgressed material due to incompatibilities. However, the opposite relationship was observed in a North American population of Drosophila melanogaster with admixed European and African ancestry. In order to explore how directional and epistatic selection can impact the relationship between introgression and recombination, we performed forward simulations of whole D. melanogaster genomes reflecting the North American population's history. Our results revealed that the simplest models of positive selection often yield negative correlations between introgression and recombination such as the one observed in D. melanogaster. We also confirmed that incompatibilities tend to produce positive introgression-recombination correlations. And yet, we identify parameter space under each model where the predicted correlation is reversed. These findings deepen our understanding of the evolutionary forces that may shape patterns of ancestry across genomes, and they strengthen the foundation for future studies aimed at estimating genome-wide parameters of selection in admixed populations.
Collapse
Affiliation(s)
- Maud Duranton
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
30
|
Richards EJ, Martin CH. We get by with a little help from our friends: shared adaptive variation provides a bridge to novel ecological specialists during adaptive radiation. Proc Biol Sci 2022; 289:20220613. [PMID: 35611537 PMCID: PMC9130792 DOI: 10.1098/rspb.2022.0613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Adaptive radiations involve astounding bursts of phenotypic, ecological and species diversity. However, the microevolutionary processes that underlie the origins of these bursts are still poorly understood. We report the discovery of an intermediate C. sp. 'wide-mouth' scale-eating ecomorph in a sympatric radiation of Cyprinodon pupfishes, illuminating the transition from a widespread algae-eating generalist to a novel microendemic scale-eating specialist. We first show that this ecomorph occurs in sympatry with generalist C. variegatus and scale-eating specialist C. desquamator on San Salvador Island, Bahamas, but is genetically differentiated, morphologically distinct and often consumes scales. We then compared the timing of selective sweeps on shared and unique adaptive variants in trophic specialists to characterize their adaptive walk. Shared adaptive regions swept first in both the specialist desquamator and the intermediate 'wide-mouth' ecomorph, followed by unique sweeps of introgressed variation in 'wide-mouth' and de novo variation in desquamator. The two scale-eating populations additionally shared 9% of their hard selective sweeps with the molluscivore C. brontotheroides, despite no single common ancestor among specialists. Our work provides a new microevolutionary framework for investigating how major ecological transitions occur and illustrates how both shared and unique genetic variation can provide a bridge for multiple species to access novel ecological niches.
Collapse
Affiliation(s)
- Emilie J. Richards
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Christopher H. Martin
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
31
|
Genetic load: genomic estimates and applications in non-model animals. Nat Rev Genet 2022; 23:492-503. [PMID: 35136196 DOI: 10.1038/s41576-022-00448-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Genetic variation, which is generated by mutation, recombination and gene flow, can reduce the mean fitness of a population, both now and in the future. This 'genetic load' has been estimated in a wide range of animal taxa using various approaches. Advances in genome sequencing and computational techniques now enable us to estimate the genetic load in populations and individuals without direct fitness estimates. Here, we review the classic and contemporary literature of genetic load. We describe approaches to quantify the genetic load in whole-genome sequence data based on evolutionary conservation and annotations. We show that splitting the load into its two components - the realized load (or expressed load) and the masked load (or inbreeding load) - can improve our understanding of the population genetics of deleterious mutations.
Collapse
|
32
|
Liu S, Zhang L, Sang Y, Lai Q, Zhang X, Jia C, Long Z, Wu J, Ma T, Mao K, Street NR, Ingvarsson PK, Liu J, Wang J. Demographic history and natural selection shape patterns of deleterious mutation load and barriers to introgression across Populus genome. Mol Biol Evol 2022; 39:6505222. [PMID: 35022759 PMCID: PMC8826634 DOI: 10.1093/molbev/msac008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hybridization and resulting introgression are important processes shaping the tree of life and appear to be far more common than previously thought. However, how the genome evolution was shaped by various genetic and evolutionary forces after hybridization remains unresolved. Here we used whole-genome resequencing data of 227 individuals from multiple widespread Populus species to characterize their contemporary patterns of hybridization and to quantify genomic signatures of past introgression. We observe a high frequency of contemporary hybridization and confirm that multiple previously ambiguous species are in fact F1 hybrids. Seven species were identified, which experienced different demographic histories that resulted in strikingly varied efficacy of selection and burdens of deleterious mutations. Frequent past introgression has been found to be a pervasive feature throughout the speciation of these Populus species. The retained introgressed regions, more generally, tend to contain reduced genetic load and to be located in regions of high recombination. We also find that in pairs of species with substantial differences in effective population size, introgressed regions are inferred to have undergone selective sweeps at greater than expected frequencies in the species with lower effective population size, suggesting that introgression likely have higher potential to provide beneficial variation for species with small populations. Our results, therefore, illustrate that demography and recombination have interplayed with both positive and negative selection in determining the genomic evolution after hybridization.
Collapse
Affiliation(s)
- Shuyu Liu
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Lei Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yupeng Sang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Qiang Lai
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xinxin Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Changfu Jia
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Zhiqin Long
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jiali Wu
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Tao Ma
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Kangshan Mao
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Pär K Ingvarsson
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jianquan Liu
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science & State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Suvorov A, Kim BY, Wang J, Armstrong EE, Peede D, D'Agostino ERR, Price DK, Waddell P, Lang M, Courtier-Orgogozo V, David JR, Petrov D, Matute DR, Schrider DR, Comeault AA. Widespread introgression across a phylogeny of 155 Drosophila genomes. Curr Biol 2022; 32:111-123.e5. [PMID: 34788634 PMCID: PMC8752469 DOI: 10.1016/j.cub.2021.10.052] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
Genome-scale sequence data have invigorated the study of hybridization and introgression, particularly in animals. However, outside of a few notable cases, we lack systematic tests for introgression at a larger phylogenetic scale across entire clades. Here, we leverage 155 genome assemblies from 149 species to generate a fossil-calibrated phylogeny and conduct multilocus tests for introgression across 9 monophyletic radiations within the genus Drosophila. Using complementary phylogenomic approaches, we identify widespread introgression across the evolutionary history of Drosophila. Mapping gene-tree discordance onto the phylogeny revealed that both ancient and recent introgression has occurred across most of the 9 clades that we examined. Our results provide the first evidence of introgression occurring across the evolutionary history of Drosophila and highlight the need to continue to study the evolutionary consequences of hybridization and introgression in this genus and across the tree of life.
Collapse
Affiliation(s)
- Anton Suvorov
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jeremy Wang
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - David Peede
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Donald K Price
- School of Life Sciences, University of Nevada, Las Vegas, NV 89119, USA
| | - Peter Waddell
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Michael Lang
- CNRS, Institut Jacques Monod, Université de Paris, Paris 75013, France
| | | | - Jean R David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE) CNRS, IRD, Univ. Paris-sud, Université Paris-Saclay, Gif sur Yvette 91190, France; Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris 75005, France
| | - Dmitri Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel R Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Aaron A Comeault
- Molecular Ecology & Evolution Group, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2DGA, UK.
| |
Collapse
|
34
|
Langdon QK, Powell DL, Kim B, Banerjee SM, Payne C, Dodge TO, Moran B, Fascinetto-Zago P, Schumer M. Predictability and parallelism in the contemporary evolution of hybrid genomes. PLoS Genet 2022; 18:e1009914. [PMID: 35085234 PMCID: PMC8794199 DOI: 10.1371/journal.pgen.1009914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
Hybridization between species is widespread across the tree of life. As a result, many species, including our own, harbor regions of their genome derived from hybridization. Despite the recognition that this process is widespread, we understand little about how the genome stabilizes following hybridization, and whether the mechanisms driving this stabilization tend to be shared across species. Here, we dissect the drivers of variation in local ancestry across the genome in replicated hybridization events between two species pairs of swordtail fish: Xiphophorus birchmanni × X. cortezi and X. birchmanni × X. malinche. We find unexpectedly high levels of repeatability in local ancestry across the two types of hybrid populations. This repeatability is attributable in part to the fact that the recombination landscape and locations of functionally important elements play a major role in driving variation in local ancestry in both types of hybrid populations. Beyond these broad scale patterns, we identify dozens of regions of the genome where minor parent ancestry is unusually low or high across species pairs. Analysis of these regions points to shared sites under selection across species pairs, and in some cases, shared mechanisms of selection. We show that one such region is a previously unknown hybrid incompatibility that is shared across X. birchmanni × X. cortezi and X. birchmanni × X. malinche hybrid populations.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Daniel L. Powell
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Bernard Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Shreya M. Banerjee
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Cheyenne Payne
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Tristram O. Dodge
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Ben Moran
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Paola Fascinetto-Zago
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institutes, Chevy Chase, Maryland, United States of America
| |
Collapse
|
35
|
Abstract
Alleles that introgress between species can influence the evolutionary and ecological fate of species exposed to novel environments. Hybrid offspring of different species are often unfit, and yet it has long been argued that introgression can be a potent force in evolution, especially in plants. Over the last two decades, genomic data have increasingly provided evidence that introgression is a critically important source of genetic variation and that this additional variation can be useful in adaptive evolution of both animals and plants. Here, we review factors that influence the probability that foreign genetic variants provide long-term benefits (so-called adaptive introgression) and discuss their potential benefits. We find that introgression plays an important role in adaptive evolution, particularly when a species is far from its fitness optimum, such as when they expand their range or are subject to changing environments.
Collapse
Affiliation(s)
- Nathaniel B Edelman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Current affiliation: Yale Institute for Biospheric Studies and Yale School of the Environment, Yale University, New Haven, Connecticut 06511, USA;
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
36
|
Against the Odds: Hybrid Zones between Mangrove Killifish Species with Different Mating Systems. Genes (Basel) 2021; 12:genes12101486. [PMID: 34680881 PMCID: PMC8535463 DOI: 10.3390/genes12101486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Different mating systems are expected to affect the extent and direction of hybridization. Due to the different levels of sexual conflict, the weak inbreeder/strong outbreeder (WISO) hypothesis predicts that gametes from self-incompatible (SI) species should outcompete gametes from self-compatible (SC) ones. However, other factors such as timing of selfing and unilateral incompatibilities may also play a role on the direction of hybridization. In addition, differential mating opportunities provided by different mating systems are also expected to affect the direction of introgression in hybrid zones involving outcrossers and selfers. Here, we explored these hypotheses with a unique case of recent hybridization between two mangrove killifish species with different mating systems, Kryptolebias ocellatus (obligately outcrossing) and K. hermaphroditus (predominantly self-fertilizing) in two hybrid zones in southeast Brazil. Hybridization rates were relatively high (~20%), representing the first example of natural hybridization between species with different mating systems in vertebrates. All F1 individuals were sired by the selfing species. Backcrossing was small, but mostly asymmetrical with the SI parental species, suggesting pattern commonly observed in plant hybrid zones with different mating systems. Our findings shed light on how contrasting mating systems may affect the direction and extent of gene flow between sympatric species, ultimately affecting the evolution and maintenance of hybrid zones.
Collapse
|
37
|
Gower G, Picazo PI, Fumagalli M, Racimo F. Detecting adaptive introgression in human evolution using convolutional neural networks. eLife 2021; 10:64669. [PMID: 34032215 PMCID: PMC8192126 DOI: 10.7554/elife.64669] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/24/2021] [Indexed: 01/10/2023] Open
Abstract
Studies in a variety of species have shown evidence for positively selected variants introduced into a population via introgression from another, distantly related population—a process known as adaptive introgression. However, there are few explicit frameworks for jointly modelling introgression and positive selection, in order to detect these variants using genomic sequence data. Here, we develop an approach based on convolutional neural networks (CNNs). CNNs do not require the specification of an analytical model of allele frequency dynamics and have outperformed alternative methods for classification and parameter estimation tasks in various areas of population genetics. Thus, they are potentially well suited to the identification of adaptive introgression. Using simulations, we trained CNNs on genotype matrices derived from genomes sampled from the donor population, the recipient population and a related non-introgressed population, in order to distinguish regions of the genome evolving under adaptive introgression from those evolving neutrally or experiencing selective sweeps. Our CNN architecture exhibits 95% accuracy on simulated data, even when the genomes are unphased, and accuracy decreases only moderately in the presence of heterosis. As a proof of concept, we applied our trained CNNs to human genomic datasets—both phased and unphased—to detect candidates for adaptive introgression that shaped our evolutionary history.
Collapse
Affiliation(s)
- Graham Gower
- Lundbeck GeoGenetics Centre, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Iáñez Picazo
- Lundbeck GeoGenetics Centre, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Fumagalli
- Department of Life Sciences, Silwood Park Campus, Imperial College London, London, United Kingdom
| | - Fernando Racimo
- Lundbeck GeoGenetics Centre, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Svedberg J, Shchur V, Reinman S, Nielsen R, Corbett-Detig R. Inferring Adaptive Introgression Using Hidden Markov Models. Mol Biol Evol 2021; 38:2152-2165. [PMID: 33502512 PMCID: PMC8097282 DOI: 10.1093/molbev/msab014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Adaptive introgression-the flow of adaptive genetic variation between species or populations-has attracted significant interest in recent years and it has been implicated in a number of cases of adaptation, from pesticide resistance and immunity, to local adaptation. Despite this, methods for identification of adaptive introgression from population genomic data are lacking. Here, we present Ancestry_HMM-S, a hidden Markov model-based method for identifying genes undergoing adaptive introgression and quantifying the strength of selection acting on them. Through extensive validation, we show that this method performs well on moderately sized data sets for realistic population and selection parameters. We apply Ancestry_HMM-S to a data set of an admixed Drosophila melanogaster population from South Africa and we identify 17 loci which show signatures of adaptive introgression, four of which have previously been shown to confer resistance to insecticides. Ancestry_HMM-S provides a powerful method for inferring adaptive introgression in data sets that are typically collected when studying admixed populations. This method will enable powerful insights into the genetic consequences of admixture across diverse populations. Ancestry_HMM-S can be downloaded from https://github.com/jesvedberg/Ancestry_HMM-S/.
Collapse
Affiliation(s)
- Jesper Svedberg
- Department of Biomolecular Engineering, Genomics Institute, UC Santa Cruz, Santa Cruz, CA, USA
| | - Vladimir Shchur
- National Research University Higher School of Economics, Moscow, Russian Federation
| | - Solomon Reinman
- Department of Biomolecular Engineering, Genomics Institute, UC Santa Cruz, Santa Cruz, CA, USA
| | - Rasmus Nielsen
- National Research University Higher School of Economics, Moscow, Russian Federation
- Department of Integrative Biology and Department of Statistics, UC Berkeley, Berkeley, CA, USA
- Center for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, Genomics Institute, UC Santa Cruz, Santa Cruz, CA, USA
- National Research University Higher School of Economics, Moscow, Russian Federation
| |
Collapse
|
39
|
Leitwein M, Cayuela H, Bernatchez L. Associative Overdominance and Negative Epistasis Shape Genome-Wide Ancestry Landscape in Supplemented Fish Populations. Genes (Basel) 2021; 12:genes12040524. [PMID: 33916757 PMCID: PMC8065892 DOI: 10.3390/genes12040524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
The interplay between recombination rate, genetic drift and selection modulates variation in genome-wide ancestry. Understanding the selective processes at play is of prime importance toward predicting potential beneficial or negative effects of supplementation with domestic strains (i.e., human-introduced strains). In a system of lacustrine populations supplemented with a single domestic strain, we documented how population genetic diversity and stocking intensity produced lake-specific patterns of domestic ancestry by taking the species’ local recombination rate into consideration. We used 552 Brook Charr (Salvelinus fontinalis) from 22 small lacustrine populations, genotyped at ~32,400 mapped SNPs. We observed highly variable patterns of domestic ancestry between each of the 22 populations without any consistency in introgression patterns of the domestic ancestry. Our results suggest that such lake-specific ancestry patterns were mainly due to variable associative overdominance (AOD) effects among populations (i.e., potential positive effects due to the masking of possible deleterious alleles in low recombining regions). Signatures of AOD effects were also emphasized by highly variable patterns of genetic diversity among and within lakes, potentially driven by predominant genetic drift in those small isolated populations. Local negative effects such as negative epistasis (i.e., potential genetic incompatibilities between the native and the introduced population) potentially reflecting precursory signs of outbreeding depression were also observed at a chromosomal scale. Consequently, in order to improve conservation practices and management strategies, it became necessary to assess the consequences of supplementation at the population level by taking into account both genetic diversity and stocking intensity when available.
Collapse
|
40
|
Andersen MJ, McCullough JM, Gyllenhaal EF, Mapel XM, Haryoko T, Jønsson KA, Joseph L. Complex histories of gene flow and a mitochondrial capture event in a nonsister pair of birds. Mol Ecol 2021; 30:2087-2103. [PMID: 33615597 PMCID: PMC8252742 DOI: 10.1111/mec.15856] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023]
Abstract
Hybridization, introgression, and reciprocal gene flow during speciation, specifically the generation of mitonuclear discordance, are increasingly observed as parts of the speciation process. Genomic approaches provide insight into where, when, and how adaptation operates during and after speciation and can measure historical and modern introgression. Whether adaptive or neutral in origin, hybridization can cause mitonuclear discordance by placing the mitochondrial genome of one species (or population) in the nuclear background of another species. The latter, introgressed species may eventually have its own mtDNA replaced or “captured” by other species across its entire geographical range. Intermediate stages in the capture process should be observable. Two nonsister species of Australasian monarch‐flycatchers, Spectacled Monarch (Symposiachrus trivirgatus) mostly of Australia and Indonesia and Spot‐winged Monarch (S. guttula) of New Guinea, present an opportunity to observe this process. We analysed thousands of single nucleotide polymorphisms (SNPs) derived from ultraconserved elements of all subspecies of both species. Mitochondrial DNA sequences of Australian populations of S. trivirgatus form two paraphyletic clades, one being sister to and presumably introgressed by S. guttula despite little nuclear signal of introgression. Population genetic analyses (e.g., tests for modern and historical gene flow and selection) support at least one historical gene flow event between S. guttula and Australian S. trivirgatus. We also uncovered introgression from the Maluku Islands subspecies of S. trivirgatus into an island population of S. guttula, resulting in apparent nuclear paraphyly. We find that neutral demographic processes, not adaptive introgression, are the most likely cause of these complex population histories. We suggest that a Pleistocene extinction of S. guttula from mainland Australia resulted from range expansion by S. trivirgatus.
Collapse
Affiliation(s)
- Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jenna M McCullough
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ethan F Gyllenhaal
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Xena M Mapel
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA.,Animal Genomics, ETH Zürich, Lindau, Switzerland
| | - Tri Haryoko
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Knud A Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen Ø, Denmark
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Research Collections, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
41
|
Teixeira JC, Huber CD. The inflated significance of neutral genetic diversity in conservation genetics. Proc Natl Acad Sci U S A 2021; 118:e2015096118. [PMID: 33608481 PMCID: PMC7958437 DOI: 10.1073/pnas.2015096118] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The current rate of species extinction is rapidly approaching unprecedented highs, and life on Earth presently faces a sixth mass extinction event driven by anthropogenic activity, climate change, and ecological collapse. The field of conservation genetics aims at preserving species by using their levels of genetic diversity, usually measured as neutral genome-wide diversity, as a barometer for evaluating population health and extinction risk. A fundamental assumption is that higher levels of genetic diversity lead to an increase in fitness and long-term survival of a species. Here, we argue against the perceived importance of neutral genetic diversity for the conservation of wild populations and species. We demonstrate that no simple general relationship exists between neutral genetic diversity and the risk of species extinction. Instead, a better understanding of the properties of functional genetic diversity, demographic history, and ecological relationships is necessary for developing and implementing effective conservation genetic strategies.
Collapse
Affiliation(s)
- João C Teixeira
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005 SA, Australia;
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, 5005 SA, Australia
| | - Christian D Huber
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005 SA, Australia;
| |
Collapse
|
42
|
Hoffmann AA, Miller AD, Weeks AR. Genetic mixing for population management: From genetic rescue to provenancing. Evol Appl 2021; 14:634-652. [PMID: 33767740 PMCID: PMC7980264 DOI: 10.1111/eva.13154] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Animal and plant species around the world are being challenged by the deleterious effects of inbreeding, loss of genetic diversity, and maladaptation due to widespread habitat destruction and rapid climate change. In many cases, interventions will likely be needed to safeguard populations and species and to maintain functioning ecosystems. Strategies aimed at initiating, reinstating, or enhancing patterns of gene flow via the deliberate movement of genotypes around the environment are generating growing interest with broad applications in conservation and environmental management. These diverse strategies go by various names ranging from genetic or evolutionary rescue to provenancing and genetic resurrection. Our aim here is to provide some clarification around terminology and to how these strategies are connected and linked to underlying genetic processes. We draw on case studies from the literature and outline mechanisms that underlie how the various strategies aim to increase species fitness and impact the wider community. We argue that understanding mechanisms leading to species decline and community impact is a key to successful implementation of these strategies. We emphasize the need to consider the nature of source and recipient populations, as well as associated risks and trade-offs for the various strategies. This overview highlights where strategies are likely to have potential at population, species, and ecosystem scales, but also where they should probably not be attempted depending on the overall aims of the intervention. We advocate an approach where short- and long-term strategies are integrated into a decision framework that also considers nongenetic aspects of management.
Collapse
Affiliation(s)
- Ary A. Hoffmann
- School of BioSciencesBio21 InstituteThe University of MelbourneParkvilleVic.Australia
| | - Adam D. Miller
- School of Life and Environmental SciencesCentre for Integrative EcologyDeakin UniversityWarrnamboolVic.Australia
- Deakin Genomics CentreDeakin UniversityGeelongVic.Australia
| | - Andrew R. Weeks
- School of BioSciencesBio21 InstituteThe University of MelbourneParkvilleVic.Australia
- cesar Pty LtdParkvilleVic.Australia
| |
Collapse
|
43
|
Abstract
Throughout human history, large-scale migrations have facilitated the formation of populations with ancestry from multiple previously separated populations. This process leads to subsequent shuffling of genetic ancestry through recombination, producing variation in ancestry between populations, among individuals in a population, and along the genome within an individual. Recent methodological and empirical developments have elucidated the genomic signatures of this admixture process, bringing previously understudied admixed populations to the forefront of population and medical genetics. Under this theme, we present a collection of recent PLOS Genetics publications that exemplify recent progress in human genetic admixture studies, and we discuss potential areas for future work.
Collapse
Affiliation(s)
- Katharine L. Korunes
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
| | - Amy Goldberg
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
44
|
Menon M, Bagley JC, Page GFM, Whipple AV, Schoettle AW, Still CJ, Wehenkel C, Waring KM, Flores-Renteria L, Cushman SA, Eckert AJ. Adaptive evolution in a conifer hybrid zone is driven by a mosaic of recently introgressed and background genetic variants. Commun Biol 2021; 4:160. [PMID: 33547394 PMCID: PMC7864969 DOI: 10.1038/s42003-020-01632-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023] Open
Abstract
Extant conifer species may be susceptible to rapid environmental change owing to their long generation times, but could also be resilient due to high levels of standing genetic diversity. Hybridisation between closely related species can increase genetic diversity and generate novel allelic combinations capable of fuelling adaptive evolution. Our study unravelled the genetic architecture of adaptive evolution in a conifer hybrid zone formed between Pinus strobiformis and P. flexilis. Using a multifaceted approach emphasising the spatial and environmental patterns of linkage disequilibrium and ancestry enrichment, we identified recently introgressed and background genetic variants to be driving adaptive evolution along different environmental gradients. Specifically, recently introgressed variants from P. flexilis were favoured along freeze-related environmental gradients, while background variants were favoured along water availability-related gradients. We posit that such mosaics of allelic variants within conifer hybrid zones will confer upon them greater resilience to ongoing and future environmental change and can be a key resource for conservation efforts.
Collapse
Affiliation(s)
- Mitra Menon
- grid.27860.3b0000 0004 1936 9684Department of Evolution and Ecology, University of California, Davis, CA USA
| | - Justin C. Bagley
- grid.257992.20000 0001 0019 1845Department of Biology, Jacksonville State University, Jacksonville, AL USA
| | - Gerald F. M. Page
- grid.4391.f0000 0001 2112 1969Forest Ecosystems and Society, Oregon State University, Corvallis, OR USA
| | - Amy V. Whipple
- grid.261120.60000 0004 1936 8040Department of Biological Sciences and Merriam Powel Center for Environmental Research, Northern Arizona University, Flagstaff, AZ USA
| | - Anna W. Schoettle
- grid.497401.f0000 0001 2286 5230Rocky Mountain Research Station, USDA Forest Service, Fort Collins, CO USA
| | - Christopher J. Still
- grid.4391.f0000 0001 2112 1969Forest Ecosystems and Society, Oregon State University, Corvallis, OR USA
| | - Christian Wehenkel
- grid.412198.70000 0000 8724 8383Instituto de Silvicultura e Industria de la Madera, Universidad Juarez del Estado de Durango, Durango, Mexico
| | - Kristen M. Waring
- grid.261120.60000 0004 1936 8040School of Forestry, Northern Arizona University, Flagstaff, AZ USA
| | - Lluvia Flores-Renteria
- grid.263081.e0000 0001 0790 1491Department of Biology, San Diego State University, San Diego, CA USA
| | - Samuel A. Cushman
- grid.472551.00000 0004 0404 3120Rocky Mountain Research Station, USDA Forest Service, Flagstaff, AZ USA
| | - Andrew J. Eckert
- grid.224260.00000 0004 0458 8737Department of Biology, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
45
|
Konczal M, Przesmycka KJ, Mohammed RS, Hahn C, Cable J, Radwan J. Expansion of frozen hybrids in the guppy ectoparasite, Gyrodactylus turnbulli. Mol Ecol 2021; 30:1005-1016. [PMID: 33345416 PMCID: PMC7986700 DOI: 10.1111/mec.15781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022]
Abstract
Hybridization is one of the major factors contributing to the emergence of highly successful parasites. Hybrid vigour can play an important role in this process, but subsequent rounds of recombination in the hybrid population may dilute its effects. Increased fitness of hybrids can, however, be frozen by asexual reproduction. Here, we identify invasion of a 'frozen hybrid' genotype in natural populations of Gyrodactylus turnbulli, a facultatively sexual ectoparasitic flatworm that causes significant damage to its fish host. We resequenced genomes of these parasites infecting guppies from six Trinidad and Tobago populations, and found surprisingly high discrepancy in genome-wide nucleotide diversity between islands. The elevated heterozygosity on Tobago is maintained by predominantly clonal reproduction of hybrids formed from two diverged genomes. Hybridization has been followed by spread of the hybrids across the island, implying a selective advantage compared with native genotypes. Our results thus highlight that a single outcrossing event may be independently sufficient to cause pathogen expansion.
Collapse
Affiliation(s)
- Mateusz Konczal
- Faculty of BiologyEvolutionary Biology GroupAdam Mickiewicz UniversityPoznańPoland
| | | | - Ryan S. Mohammed
- Department of Life SciencesFaculty of Science and TechnologyThe University of the West Indies Zoology Museum, UWISt. AugustineTrinidad and Tobago
- School of BiosciencesCardiff UniversityCardiffUK
| | | | - Jo Cable
- School of BiosciencesCardiff UniversityCardiffUK
| | - Jacek Radwan
- Faculty of BiologyEvolutionary Biology GroupAdam Mickiewicz UniversityPoznańPoland
| |
Collapse
|
46
|
Hamid I, Korunes KL, Beleza S, Goldberg A. Rapid adaptation to malaria facilitated by admixture in the human population of Cabo Verde. eLife 2021; 10:e63177. [PMID: 33393457 PMCID: PMC7815310 DOI: 10.7554/elife.63177] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Humans have undergone large migrations over the past hundreds to thousands of years, exposing ourselves to new environments and selective pressures. Yet, evidence of ongoing or recent selection in humans is difficult to detect. Many of these migrations also resulted in gene flow between previously separated populations. These recently admixed populations provide unique opportunities to study rapid evolution in humans. Developing methods based on distributions of local ancestry, we demonstrate that this sort of genetic exchange has facilitated detectable adaptation to a malaria parasite in the admixed population of Cabo Verde within the last ~20 generations. We estimate that the selection coefficient is approximately 0.08, one of the highest inferred in humans. Notably, we show that this strong selection at a single locus has likely affected patterns of ancestry genome-wide, potentially biasing demographic inference. Our study provides evidence of adaptation in a human population on historical timescales.
Collapse
Affiliation(s)
- Iman Hamid
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| | | | - Sandra Beleza
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Amy Goldberg
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| |
Collapse
|
47
|
Ostevik KL, Rifkin JL, Xia H, Rausher MD. Morning glory species co-occurrence is associated with asymmetrically decreased and cascading reproductive isolation. Evol Lett 2020; 5:75-85. [PMID: 33552537 PMCID: PMC7857285 DOI: 10.1002/evl3.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/04/2020] [Accepted: 10/19/2020] [Indexed: 01/25/2023] Open
Abstract
Hybridization between species can affect the strength of the reproductive barriers that separate those species. Two extensions of this effect are (1) the expectation that asymmetric hybridization or gene flow will have asymmetric effects on reproductive barrier strength and (2) the expectation that local hybridization will affect only local reproductive barrier strength and could therefore alter within‐species compatibility. We tested these hypotheses in a pair of morning glory species that exhibit asymmetric gene flow from highly selfing Ipomoea lacunosa into mixed‐mating Ipomoea cordatotriloba in regions where they co‐occur. Because of the direction of this gene flow, we predicted that reproductive barrier strength would be more strongly affected in I. cordatotriloba than I. lacunosa. We also predicted that changes to reproductive barriers in sympatric I. cordatotriloba populations would affect compatibility with allopatric populations of that species. We tested these predictions by measuring the strength of a reproductive barrier to seed set across the species’ ranges. Consistent with our first prediction, we found that sympatric and allopatric I. lacunosa produce the same number of seeds in crosses with I. cordatotriloba, whereas crosses between sympatric I. cordatotriloba and I. lacunosa are more successful than crosses between allopatric I. cordatotriloba and I. lacunosa. This difference in compatibility appears to reflect an asymmetric decrease in the strength of the barrier to seed set in sympatric I. cordatotriloba, which could be caused by I. lacunosa alleles that have introgressed into I. cordatotriloba. We further demonstrated that changes to sympatric I. cordatotriloba have decreased its ability to produce seeds with allopatric populations of the same species, in line with our second prediction. Thus, in a manner analogous to cascade reinforcement, we suggest that introgression associated with hybridization not only influences between‐species isolation but can also contribute to isolation within a species.
Collapse
Affiliation(s)
- Kate L Ostevik
- Department of Biology Duke University Durham North Carolina 27708
| | - Joanna L Rifkin
- Department of Ecology and Evolutionary Biology University of Toronto Toronto ON M5S 3B2 Canada
| | - Hanhan Xia
- College of Horticulture and Landscape Architecture Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Mark D Rausher
- Department of Biology Duke University Durham North Carolina 27708
| |
Collapse
|
48
|
Simon A, Fraïsse C, El Ayari T, Liautard-Haag C, Strelkov P, Welch JJ, Bierne N. How do species barriers decay? Concordance and local introgression in mosaic hybrid zones of mussels. J Evol Biol 2020; 34:208-223. [PMID: 33045123 DOI: 10.1111/jeb.13709] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022]
Abstract
The Mytilus complex of marine mussel species forms a mosaic of hybrid zones, found across temperate regions of the globe. This allows us to study 'replicated' instances of secondary contact between closely related species. Previous work on this complex has shown that local introgression is both widespread and highly heterogeneous, and has identified SNPs that are outliers of differentiation between lineages. Here, we developed an ancestry-informative panel of such SNPs. We then compared their frequencies in newly sampled populations, including samples from within the hybrid zones, and parental populations at different distances from the contact. Results show that close to the hybrid zones, some outlier loci are near to fixation for the heterospecific allele, suggesting enhanced local introgression, or the local sweep of a shared ancestral allele. Conversely, genomic cline analyses, treating local parental populations as the reference, reveal a globally high concordance among loci, albeit with a few signals of asymmetric introgression. Enhanced local introgression at specific loci is consistent with the early transfer of adaptive variants after contact, possibly including asymmetric bi-stable variants (Dobzhansky-Muller incompatibilities), or haplotypes loaded with fewer deleterious mutations. Having escaped one barrier, however, these variants can be trapped or delayed at the next barrier, confining the introgression locally. These results shed light on the decay of species barriers during phases of contact.
Collapse
Affiliation(s)
- Alexis Simon
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Christelle Fraïsse
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.,Institute of Science and Technology Austria, Klosterneuburg, Austria, Austria
| | - Tahani El Ayari
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Petr Strelkov
- St. Petersburg State University, St. Petersburg, Russia.,Laboratory of Monitoring and Conservation of Natural Arctic Ecosystems, Murmansk Arctic State University, Murmansk, Russia
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
49
|
Viard F, Riginos C, Bierne N. Anthropogenic hybridization at sea: three evolutionary questions relevant to invasive species management. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190547. [PMID: 32654643 PMCID: PMC7423285 DOI: 10.1098/rstb.2019.0547] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Species introductions promote secondary contacts between taxa with long histories of allopatric divergence. Anthropogenic contact zones thus offer valuable contrasts to speciation studies in natural systems where past spatial isolations may have been brief or intermittent. Investigations of anthropogenic hybridization are rare for marine animals, which have high fecundity and high dispersal ability, characteristics that contrast to most terrestrial animals. Genomic studies indicate that gene flow can still occur after millions of years of divergence, as illustrated by invasive mussels and tunicates. In this context, we highlight three issues: (i) the effects of high propagule pressure and demographic asymmetries on introgression directionality, (ii) the role of hybridization in preventing introduced species spread, and (iii) the importance of postzygotic barriers in maintaining reproductive isolation. Anthropogenic contact zones offer evolutionary biologists unprecedented large scale hybridization experiments. In addition to breaking the highly effective reproductive isolating barrier of spatial segregation, they allow researchers to explore unusual demographic contexts with strong asymmetries. The outcomes are diverse, from introgression swamping to strong barriers to gene flow, and lead to local containment or widespread invasion. These outcomes should not be neglected in management policies of marine invasive species. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Frédérique Viard
- AD2M, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Cynthia Riginos
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
50
|
Rougemont Q, Moore JS, Leroy T, Normandeau E, Rondeau EB, Withler RE, Van Doornik DM, Crane PA, Naish KA, Garza JC, Beacham TD, Koop BF, Bernatchez L. Demographic history shaped geographical patterns of deleterious mutation load in a broadly distributed Pacific Salmon. PLoS Genet 2020; 16:e1008348. [PMID: 32845885 PMCID: PMC7478589 DOI: 10.1371/journal.pgen.1008348] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/08/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
A thorough reconstruction of historical processes is essential for a comprehensive understanding of the mechanisms shaping patterns of genetic diversity. Indeed, past and current conditions influencing effective population size have important evolutionary implications for the efficacy of selection, increased accumulation of deleterious mutations, and loss of adaptive potential. Here, we gather extensive genome-wide data that represent the extant diversity of the Coho salmon (Oncorhynchus kisutch) to address two objectives. We demonstrate that a single glacial refugium is the source of most of the present-day genetic diversity, with detectable inputs from a putative secondary micro-refugium. We found statistical support for a scenario whereby ancestral populations located south of the ice sheets expanded recently, swamping out most of the diversity from other putative micro-refugia. Demographic inferences revealed that genetic diversity was also affected by linked selection in large parts of the genome. Moreover, we demonstrate that the recent demographic history of this species generated regional differences in the load of deleterious mutations among populations, a finding that mirrors recent results from human populations and provides increased support for models of expansion load. We propose that insights from these historical inferences should be better integrated in conservation planning of wild organisms, which currently focuses largely on neutral genetic diversity and local adaptation, with the role of potentially maladaptive variation being generally ignored. Reconstruction of a species’ past demographic history from genetic data can highlight historical factors that have shaped the distribution of genetic diversity along its genome and its geographic range. Here, we combine genotyping-by-sequencing with demographic modelling to address these issues in the Coho salmon, a Pacific salmon of conservation concern in some parts of its range, notably in the south. Our demographic reconstructions reveal a linear decrease in genetic diversity toward the north of the species range, supporting the hypothesis of a northern route of postglacial recolonization from a single major southern refugium. As predicted by theory, we also observed a higher proportion of deleterious mutations in the most distant populations from this refugium. Beyond this general pattern, among-site variation in the proportion of deleterious mutations is consistent with different local trends in effective population sizes. Our results highlight the potential importance of understanding historical factors that have shaped geographic patterns of the distribution of deleterious mutations in order to implement effective management programs for the conservation of wild populations. Such fundamental knowledge of human historical demography is now having major impacts on health sciences, and we argue it is time to integrate such approaches in conservation science as well.
Collapse
Affiliation(s)
- Quentin Rougemont
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
- * E-mail:
| | - Jean-Sébastien Moore
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Thibault Leroy
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Department of Botany & Biodiversity Research, University of Vienna, Vienna, Austria
| | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Eric B. Rondeau
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Ruth E. Withler
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Donald M. Van Doornik
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, Manchester Research Station, Port Orchard, Washington, United States of America
| | - Penelope A. Crane
- Conservation Genetics Laboratory, U.S. Fish and Wildlife Service, Anchorage, Alaska, United States of America
| | - Kerry A. Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| | - John Carlos Garza
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service and Institute of Marine Sciences, University of California–Santa Cruz, Santa Cruz, California, United States of America
| | - Terry D. Beacham
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Ben F. Koop
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|