1
|
Tse-Kang S, Wani KA, Pukkila-Worley R. Patterns of pathogenesis in innate immunity: insights from C. elegans. Nat Rev Immunol 2025:10.1038/s41577-025-01167-0. [PMID: 40247006 DOI: 10.1038/s41577-025-01167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
The cells in barrier tissues can distinguish pathogenic from commensal bacteria and target inflammatory responses only in the context of infection. As such, these cells must be able to identify pathogen infection specifically and not just the presence of an infectious organism, because many innocuous bacteria express the ligands that activate innate immunity in other contexts. Unravelling the mechanisms that underly this specificity, however, is challenging. Free-living nematodes, such as Caenorhabditis elegans, are faced with a similar dilemma, as they live in microorganism-rich habitats and eat bacteria as their source of nutrition. Nematodes lost canonical mechanisms of pattern recognition during their evolution and have instead evolved mechanisms to identify specific ligands or symptoms in the host that indicate active infection with an infectious microorganism. Here we review how C. elegans surveys for these patterns of pathogenesis to activate innate immune defences. Collectively, this work demonstrates that using C. elegans as an experimental platform to study host-pathogen interactions at barrier surfaces reveals primordial and fundamentally important principles of innate immune sensing in the animal branch of the tree of life.
Collapse
Affiliation(s)
- Samantha Tse-Kang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Yang C, Yao L, Chen D, Chen C, Li W, Tong H, Cheng Z, Yan Y, Lin L, Zhang J, Shi A. Endosomal catabolism of phosphatidylinositol 4,5-bisphosphate is fundamental in building resilience against pathogens. Protein Cell 2025; 16:161-187. [PMID: 39087719 PMCID: PMC11891140 DOI: 10.1093/procel/pwae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Endosomes are characterized by the presence of various phosphoinositides that are essential for defining the membrane properties. However, the interplay between endosomal phosphoinositides metabolism and innate immunity is yet to be fully understood. Here, our findings highlight the evolutionary continuity of RAB-10/Rab10's involvement in regulating innate immunity. Upon infection of Caenorhabditis elegans with Pseudomonas aeruginosa, an increase in RAB-10 activity was observed in the intestine. Conversely, when RAB-10 was absent, the intestinal diacylglycerols (DAGs) decreased, and the animal's response to the pathogen was impaired. Further research revealed that UNC-16/JIP3 acts as an RAB-10 effector, facilitating the recruitment of phospholipase EGL-8 to endosomes. This leads to a decrease in endosomal phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and an elevation of DAGs, as well as the activation of the PMK-1/p38 MAPK innate immune pathway. It is noteworthy that the dimerization of UNC-16 is a prerequisite for its interaction with RAB-10(GTP) and the recruitment of EGL-8. Moreover, we ascertained that the rise in RAB-10 activity, due to infection, was attributed to the augmented expression of LET-413/Erbin, and the nuclear receptor NHR-25/NR5A1/2 was determined to be indispensable for this increase. Hence, this study illuminates the significance of endosomal PI(4,5)P2 catabolism in boosting innate immunity and outlines an NHR-25-mediated mechanism for pathogen detection in intestinal epithelia.
Collapse
Affiliation(s)
- Chao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Longfeng Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Changling Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hua Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zihang Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
VanDerMolen KR, Newman MA, Breen PC, Gao Y, Huff LA, Dowen RH. Non-cell-autonomous regulation of mTORC2 by Hedgehog signaling maintains lipid homeostasis. Cell Rep 2025; 44:115191. [PMID: 39786994 PMCID: PMC11834565 DOI: 10.1016/j.celrep.2024.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Organisms allocate energetic resources between essential cellular processes to maintain homeostasis and, in turn, maximize fitness. The nutritional regulators of energy homeostasis have been studied in detail; however, how developmental signals might impinge on these pathways to govern metabolism is poorly understood. Here, we identify a non-canonical role for Hedgehog (Hh), a classic regulator of development, in maintaining intestinal lipid homeostasis in Caenorhabditis elegans. We demonstrate, using C. elegans and mouse hepatocytes, that Hh metabolic regulation does not occur through the canonical Hh transcription factor TRA-1/GLI, but rather via non-canonical signaling that engages mammalian target of rapamycin complex 2 (mTORC2). Hh mutants display impaired lipid homeostasis, decreased growth, and upregulation of autophagy factors, mimicking loss of mTORC2. Additionally, we find that Hh inhibits p38 MAPK signaling in parallel to mTORC2 activation to modulate lipid homeostasis. Our findings reveal a non-canonical role for Hh signaling in lipid metabolism via regulation of core homeostatic pathways.
Collapse
Affiliation(s)
- Kylie R VanDerMolen
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martin A Newman
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter C Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yunjing Gao
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura A Huff
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert H Dowen
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Tse-Kang SY, Wani KA, Peterson ND, Page A, Humphries F, Pukkila-Worley R. Intestinal immunity in C. elegans is activated by pathogen effector-triggered aggregation of the guard protein TIR-1 on lysosome-related organelles. Immunity 2024; 57:2280-2295.e6. [PMID: 39299238 PMCID: PMC11464196 DOI: 10.1016/j.immuni.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
Toll/interleukin-1/resistance (TIR)-domain proteins with enzymatic activity are essential for immunity in plants, animals, and bacteria. However, it is not known how these proteins function in pathogen sensing in animals. We discovered that the lone enzymatic TIR-domain protein in the nematode C. elegans (TIR-1, homolog of mammalian sterile alpha and TIR motif-containing 1 [SARM1]) was strategically expressed on the membranes of a specific intracellular compartment called lysosome-related organelles. The positioning of TIR-1 on lysosome-related organelles enables intestinal epithelial cells in the nematode C. elegans to survey for pathogen effector-triggered host damage. A virulence effector secreted by the bacterial pathogen Pseudomonas aeruginosa alkalinized and condensed lysosome-related organelles. This pathogen-induced morphological change in lysosome-related organelles triggered TIR-1 multimerization, which engaged its intrinsic NAD+ hydrolase (NADase) activity to activate the p38 innate immune pathway and protect the host against microbial intoxication. Thus, TIR-1 is a guard protein in an effector-triggered immune response, which enables intestinal epithelial cells to survey for pathogen-induced host damage.
Collapse
Affiliation(s)
- Samantha Y Tse-Kang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Nicholas D Peterson
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Amanda Page
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
5
|
Tse-Kang SY, Pukkila-Worley R. Lysosome-related organelle integrity suppresses TIR-1 aggregation to restrain toxic propagation of p38 innate immunity. Cell Rep 2024; 43:114674. [PMID: 39299237 PMCID: PMC11492801 DOI: 10.1016/j.celrep.2024.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
Innate immunity in bacteria, plants, and animals requires the specialized subset of Toll/interleukin-1/resistance gene (TIR) domain proteins that are nicotinamide adenine dinucleotide (NAD+) hydrolases. Aggregation of these TIR proteins engages their enzymatic activity, but it is unknown how this protein multimerization is regulated. Here, we discover that TIR oligomerization is controlled to prevent immune toxicity. We find that p38 propagates its own activation in a positive feedback loop, which promotes the aggregation of the lone enzymatic TIR protein in the nematode C. elegans (TIR-1, homologous to human sterile alpha and TIR motif-containing 1 [SARM1]). We perform a forward genetic screen to determine how the p38 positive feedback loop is regulated. We discover that the integrity of the specific lysosomal subcompartment that expresses TIR-1 is actively maintained to limit inappropriate TIR-1 aggregation on the membranes of these organelles, which restrains toxic propagation of p38 innate immunity. Thus, innate immunity in C. elegans intestinal epithelial cells is regulated by specific control of TIR-1 multimerization.
Collapse
Affiliation(s)
- Samantha Y Tse-Kang
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Du Z, Tong D, Chen X, Wu F, Jiang S, Zhang J, Yang Y, Wang R, Gantuya S, Davaajargal T, Lkhagvatseren S, Batsukh Z, Du A, Ma G. Genome-wide RNA interference of the nhr gene family in barber's pole worm identified members crucial for larval viability in vitro. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105609. [PMID: 38806077 DOI: 10.1016/j.meegid.2024.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Nuclear hormone receptors (NHRs) are emerging target candidates against nematode infection and resistance. However, there is a lack of comprehensive information on NHR-coding genes in parasitic nematodes. In this study, we curated the nhr gene family for 60 major parasitic nematodes from humans and animals. Compared with the free-living model organism Caenorhabditis elegans, a remarkable contraction of the nhr family was revealed in parasitic species, with genetic diversification and conservation unveiled among nematode Clades I (10-13), III (16-42), IV (33-35) and V (25-64). Using an in vitro biosystem, we demonstrated that 40 nhr genes in a blood-feeding nematode Haemonchus contortus (clade V; barber's pole worm) were responsive to host serum and one nhr gene (i.e., nhr-64) was consistently stimulated by anthelmintics (i.e., ivermectin, thiabendazole and levamisole); Using a high-throughput RNA interference platform, we knocked down 43 nhr genes of H. contortus and identified at least two genes that are required for the viability (i.e., nhr-105) and development (i.e., nhr-17) of the infective larvae of this parasitic nematode in vitro. Harnessing this preliminary functional atlas of nhr genes for H. contortus will prime the biological studies of this gene family in nematode genetics, infection, and anthelmintic metabolism within host animals, as well as the promising discovery of novel intervention targets.
Collapse
Affiliation(s)
- Zhendong Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Danni Tong
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Fei Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Shengjun Jiang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Jingju Zhang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Rui Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Sambuu Gantuya
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Tserennyam Davaajargal
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Sukhbaatar Lkhagvatseren
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia.
| | - Zayat Batsukh
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia.
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China; Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
7
|
Hajdú G, Szathmári C, Sőti C. Modeling Host-Pathogen Interactions in C. elegans: Lessons Learned from Pseudomonas aeruginosa Infection. Int J Mol Sci 2024; 25:7034. [PMID: 39000143 PMCID: PMC11241598 DOI: 10.3390/ijms25137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Infections, such as that by the multiresistant opportunistic bacterial pathogen Pseudomonas aeruginosa, may pose a serious health risk, especially on vulnerable patient populations. The nematode Caenorhabditis elegans provides a simple organismal model to investigate both pathogenic mechanisms and the emerging role of innate immunity in host protection. Here, we review the virulence and infection strategies of P. aeruginosa and host defenses of C. elegans. We summarize the recognition mechanisms of patterns of pathogenesis, including novel pathogen-associated molecular patterns and surveillance immunity of translation, mitochondria, and lysosome-related organelles. We also review the regulation of antimicrobial and behavioral defenses by the worm's neuroendocrine system. We focus on how discoveries in this rich field align with well-characterized evolutionary conserved protective pathways, as well as on potential crossovers to human pathogenesis and innate immune responses.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csenge Szathmári
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
8
|
Kingsley SF, Seo Y, Wood A, Wani KA, Gonzalez X, Irazoqui J, Finkel SE, Tissenbaum HA. Glucose-fed microbiota alters C. elegans intestinal epithelium and increases susceptibility to multiple bacterial pathogens. Sci Rep 2024; 14:13177. [PMID: 38849503 PMCID: PMC11161463 DOI: 10.1038/s41598-024-63514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Overconsumption of dietary sugar can lead to many negative health effects including the development of Type 2 diabetes, metabolic syndrome, cardiovascular disease, and neurodegenerative disorders. Recently, the human intestinal microbiota, strongly associated with our overall health, has also been known to be affected by diet. However, mechanistic insight into the importance of the human intestinal microbiota and the effects of chronic sugar ingestion has not been possible largely due to the complexity of the human microbiome which contains hundreds of types of organisms. Here, we use an interspecies C. elegans/E. coli system, where E. coli are subjected to high sugar, then consumed by the bacterivore host C. elegans to become the microbiota. This glucose-fed microbiota results in a significant lifespan reduction accompanied by reduced healthspan (locomotion), reduced stress resistance, and changes in behavior and feeding. Lifespan reduction is also accompanied by two potential major contributors: increased intestinal bacterial density and increased concentration of reactive oxygen species. The glucose-fed microbiota accelerated the age-related development of intestinal cell permeability, intestinal distention, and dysregulation of immune effectors. Ultimately, the changes in the intestinal epithelium due to aging with the glucose-fed microbiota results in increased susceptibility to multiple bacterial pathogens. Taken together, our data reveal that chronic ingestion of sugar, such as a Western diet, has profound health effects on the host due to changes in the microbiota and may contribute to the current increased incidence of ailments including inflammatory bowel diseases as well as multiple age-related diseases.
Collapse
Affiliation(s)
- Samuel F Kingsley
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Yonghak Seo
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Alicia Wood
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Khursheed A Wani
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Xavier Gonzalez
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Javier Irazoqui
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Steven E Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA
| | - Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA.
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
9
|
Pu X, Qi B. Lysosomal dysfunction by inactivation of V-ATPase drives innate immune response in C. elegans. Cell Rep 2024; 43:114138. [PMID: 38678555 DOI: 10.1016/j.celrep.2024.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Pathogens target vacuolar ATPase (V-ATPase) to inhibit lysosomal acidification or lysosomal fusion, causing lysosomal dysfunction. However, it remains unknown whether cells can detect dysfunctional lysosomes and initiate an immune response. In this study, we discover that dysfunction of lysosomes caused by inactivation of V-ATPase enhances innate immunity against bacterial infections. We find that lysosomal V-ATPase interacts with DVE-1, whose nuclear localization serves as a proxy for the induction of mitochondrial unfolded protein response (UPRmt). The inactivation of V-ATPase promotes the nuclear localization of DVE-1, activating UPRmt and inducing downstream immune response genes. Furthermore, pathogen resistance conferred by inactivation of V-ATPase requires dve-1 and its downstream immune effectors. Interestingly, animals grow slower after vha RNAi, suggesting that the vha-RNAi-induced immune response costs the most energy through activation of DVE-1, which trades off with growth. This study reveals how dysfunctional lysosomes can trigger an immune response, emphasizing the importance of conserving energy during immune defense.
Collapse
Affiliation(s)
- Xuepiao Pu
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bin Qi
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
10
|
How CM, Li YS, Huang WY, Wei CC. Early-life exposure to mycotoxin zearalenone exacerbates aberrant immune response, oxidative stress, and mortality of Caenorhabditis elegans under pathogen Bacillus thuringiensis infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116085. [PMID: 38342010 DOI: 10.1016/j.ecoenv.2024.116085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Zearalenone (ZEN) is a prevalent mycotoxin that severely impacts human and animal health. However, the possible interactions between ZEN exposure, pathogen infection, immune system, and reactive oxygen species (ROS) were rarely investigated. We studied the effects of early-life ZEN (50 µM) exposure on the immune response of Caenorhabditis elegans against Bacillus thuringiensis infection and the associated mechanisms. The transcriptomic responses of C. elegans after early-life ZEN exposure were investigated using RNA sequencing and followed by verification using quantitative PCR analysis. We also investigated the immune responses of the worms through B. thuringiensis killing assays and by measuring oxidative stress. The transcriptomics result showed that early-life exposure to ZEN resulted in 44 differentially expressed genes, 7 of which were protein-coding genes with unknown functions. The Gene Ontology analysis suggested that metabolic processes and immune response were among the most significantly enriched biological processes, and the KEGG analysis suggested that lysosomes and metabolic pathways were the most significantly enriched pathways. The ZEN-exposed worms exhibited significantly reduced survival after 24-h B. thuringiensis infection, reaching near 100% mortality compared to 60% of the controls. Using qRT-PCR assay, we found that ZEN further enhanced the expression of immunity genes lys-6, spp-1, and clec-60 after B. thuringiensis infection. A concurrently enhanced ROS accumulation was also observed for ZEN-exposed worms after B. thuringiensis infection, which was 1.2-fold compared with the controls. Moreover, ZEN exposure further enhanced mRNA expression of catalases (ctl-1 and ctl-2) and increased catalase protein activity after B. thuringiensis exposure compared with their non-exposed counterparts, suggesting an elevated oxidative stress. This study suggests that early-life exposure to mycotoxin zearalenone overstimulates immune responses involving spp-17, clec-52, and clec-56, resulting in excessive ROS production, enhanced oxidative stress as indicated by aggravated ctl expression and activity, and a decline in host resistance to pathogenic infection which ultimately leads to increased mortality under B. thuringiensis infection. Our findings provide evidence that could improve our understanding on the potential interactions between mycotoxin zearalenone and pathogens.
Collapse
Affiliation(s)
- Chun Ming How
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Yong-Shan Li
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Wei-Yun Huang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei 10055, Taiwan.
| |
Collapse
|
11
|
Tse-Kang S, Wani KA, Peterson ND, Page A, Pukkila-Worley R. Activation of intestinal immunity by pathogen effector-triggered aggregation of lysosomal TIR-1/SARM1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569946. [PMID: 38106043 PMCID: PMC10723332 DOI: 10.1101/2023.12.04.569946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
TIR-domain proteins with enzymatic activity are essential for immunity in plants, animals, and bacteria. However, it is not known how these proteins function in pathogen sensing in animals. We discovered that a TIR-domain protein (TIR-1/SARM1) is strategically expressed on the membranes of a lysosomal sub-compartment, which enables intestinal epithelial cells in the nematode C. elegans to survey for pathogen effector-triggered host damage. We showed that a redox active virulence effector secreted by the bacterial pathogen Pseudomonas aeruginosa alkalinized and condensed a specific subset of lysosomes by inducing intracellular oxidative stress. Concentration of TIR-1/SARM1 on the surface of these organelles triggered its multimerization, which engages its intrinsic NADase activity, to activate the p38 innate immune pathway and protect the host against microbial intoxication. Thus, lysosomal TIR-1/SARM1 is a sensor for oxidative stress induced by pathogenic bacteria to activate metazoan intestinal immunity.
Collapse
|
12
|
Tran TD, Luallen RJ. An organismal understanding of C. elegans innate immune responses, from pathogen recognition to multigenerational resistance. Semin Cell Dev Biol 2024; 154:77-84. [PMID: 36966075 PMCID: PMC10517082 DOI: 10.1016/j.semcdb.2023.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
The nematode Caenorhabditis elegans has been a model for studying infection since the early 2000s and many major discoveries have been made regarding its innate immune responses. C. elegans has been found to utilize some key conserved aspects of immune responses and signaling, but new interesting features of innate immunity have also been discovered in the organism that might have broader implications in higher eukaryotes such as mammals. Some of the distinctive features of C. elegans innate immunity involve the mechanisms this bacterivore uses to detect infection and mount specific immune responses to different pathogens, despite lacking putative orthologs of many important innate immune components, including cellular immunity, the inflammasome, complement, or melanization. Even when orthologs of known immune factors exist, there appears to be an absence of canonical functions, most notably the lack of pattern recognition by its sole Toll-like receptor. Instead, recent research suggests that C. elegans senses infection by specific pathogens through contextual information, including unique products produced by the pathogen or infection-induced disruption of host physiology, similar to the proposed detection of patterns of pathogenesis in mammalian systems. Interestingly, C. elegans can also transfer information of past infection to their progeny, providing robust protection for their offspring in face of persisting pathogens, in part through the RNAi pathway as well as potential new mechanisms that remain to be elucidated. Altogether, some of these strategies employed by C. elegans share key conceptual features with vertebrate adaptive immunity, as the animal can differentiate specific microbial features, as well as propagate a form of immune memory to their offspring.
Collapse
Affiliation(s)
- Tuan D Tran
- Department of Biology San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - Robert J Luallen
- Department of Biology San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| |
Collapse
|
13
|
Lažetić V, Batachari LE, Russell AB, Troemel ER. Similarities in the induction of the intracellular pathogen response in Caenorhabditis elegans and the type I interferon response in mammals. Bioessays 2023; 45:e2300097. [PMID: 37667453 PMCID: PMC10694843 DOI: 10.1002/bies.202300097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Although the type-I interferon (IFN-I) response is considered vertebrate-specific, recent findings about the Intracellular Pathogen Response (IPR) in nematode Caenorhabditis elegans indicate that there are similarities between these two transcriptional immunological programs. The IPR is induced during infection with natural intracellular fungal and viral pathogens of the intestine and promotes resistance against these pathogens. Similarly, the IFN-I response is induced by viruses and other intracellular pathogens and promotes resistance against infection. Whether the IPR and the IFN-I response evolved in a divergent or convergent manner is an unanswered and exciting question, which could be addressed by further studies of immunity against intracellular pathogens in C. elegans and other simple host organisms. Here we highlight similar roles played by RIG-I-like receptors, purine metabolism enzymes, proteotoxic stressors, and transcription factors to induce the IPR and IFN-I response, as well as the similar consequences of these defense programs on organismal development.
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA
| | - Lakshmi E. Batachari
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Alistair B. Russell
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Emily R. Troemel
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
14
|
Nasrallah MA, Peterson ND, Szumel ES, Liu P, Page AL, Tse SY, Wani KA, Tocheny CE, Pukkila-Worley R. Transcriptional suppression of sphingolipid catabolism controls pathogen resistance in C. elegans. PLoS Pathog 2023; 19:e1011730. [PMID: 37906605 PMCID: PMC10637724 DOI: 10.1371/journal.ppat.1011730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 10/01/2023] [Indexed: 11/02/2023] Open
Abstract
Sphingolipids are required for diverse biological functions and are degraded by specific catabolic enzymes. However, the mechanisms that regulate sphingolipid catabolism are not known. Here we characterize a transcriptional axis that regulates sphingolipid breakdown to control resistance against bacterial infection. From an RNAi screen for transcriptional regulators of pathogen resistance in the nematode C. elegans, we identified the nuclear hormone receptor nhr-66, a ligand-gated transcription factor homologous to human hepatocyte nuclear factor 4. Tandem chromatin immunoprecipitation-sequencing and RNA sequencing experiments revealed that NHR-66 is a transcriptional repressor, which directly targets sphingolipid catabolism genes. Transcriptional de-repression of two sphingolipid catabolic enzymes in nhr-66 loss-of-function mutants drives the breakdown of sphingolipids, which enhances host susceptibility to infection with the bacterial pathogen Pseudomonas aeruginosa. These data define transcriptional control of sphingolipid catabolism in the regulation of cellular sphingolipids, a process that is necessary for pathogen resistance.
Collapse
Affiliation(s)
- Mohamad A. Nasrallah
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Nicholas D. Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Elizabeth S. Szumel
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Amanda L. Page
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Samantha Y. Tse
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Khursheed A. Wani
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Claire E. Tocheny
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
15
|
Madhu B, Lakdawala MF, Gumienny TL. The DBL-1/TGF-β signaling pathway tailors behavioral and molecular host responses to a variety of bacteria in Caenorhabditis elegans. eLife 2023; 12:e75831. [PMID: 37750680 PMCID: PMC10567113 DOI: 10.7554/elife.75831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/25/2023] [Indexed: 09/27/2023] Open
Abstract
Generating specific, robust protective responses to different bacteria is vital for animal survival. Here, we address the role of transforming growth factor β (TGF-β) member DBL-1 in regulating signature host defense responses in Caenorhabditis elegans to human opportunistic Gram-negative and Gram-positive pathogens. Canonical DBL-1 signaling is required to suppress avoidance behavior in response to Gram-negative, but not Gram-positive bacteria. We propose that in the absence of DBL-1, animals perceive some bacteria as more harmful. Animals activate DBL-1 pathway activity in response to Gram-negative bacteria and strongly repress it in response to select Gram-positive bacteria, demonstrating bacteria-responsive regulation of DBL-1 signaling. DBL-1 signaling differentially regulates expression of target innate immunity genes depending on the bacterial exposure. These findings highlight a central role for TGF-β in tailoring a suite of bacteria-specific host defenses.
Collapse
Affiliation(s)
- Bhoomi Madhu
- Department of Biology, Texas Woman’s UniversityDentonUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Mohammed Farhan Lakdawala
- Department of Biology, Texas Woman’s UniversityDentonUnited States
- AbbVie (United States)WorcesterUnited States
| | - Tina L Gumienny
- Department of Biology, Texas Woman’s UniversityDentonUnited States
| |
Collapse
|
16
|
Hajdú G, Somogyvári M, Csermely P, Sőti C. Lysosome-related organelles promote stress and immune responses in C. elegans. Commun Biol 2023; 6:936. [PMID: 37704756 PMCID: PMC10499889 DOI: 10.1038/s42003-023-05246-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Lysosome-related organelles (LROs) play diverse roles and their dysfunction causes immunodeficiency. However, their primordial functions remain unclear. Here, we report that C. elegans LROs (gut granules) promote organismal defenses against various stresses. We find that toxic benzaldehyde exposure induces LRO autofluorescence, stimulates the expression of LRO-specific genes and enhances LRO transport capacity as well as increases tolerance to benzaldehyde, heat and oxidative stresses, while these responses are impaired in glo-1/Rab32 and pgp-2 ABC transporter LRO biogenesis mutants. Benzaldehyde upregulates glo-1- and pgp-2-dependent expression of heat shock, detoxification and antimicrobial effector genes, which requires daf-16/FOXO and/or pmk-1/p38MAPK. Finally, benzaldehyde preconditioning increases resistance against Pseudomonas aeruginosa PA14 in a glo-1- and pgp-2-dependent manner, and PA14 infection leads to the deposition of fluorescent metabolites in LROs and induction of LRO genes. Our study suggests that LROs may play a role in systemic responses to stresses and in pathogen resistance.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Milán Somogyvári
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Péter Csermely
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
17
|
Torzone SK, Park AY, Breen PC, Cohen NR, Dowen RH. Opposing action of the FLR-2 glycoprotein hormone and DRL-1/FLR-4 MAP kinases balance p38-mediated growth and lipid homeostasis in C. elegans. PLoS Biol 2023; 21:e3002320. [PMID: 37773960 PMCID: PMC10566725 DOI: 10.1371/journal.pbio.3002320] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 10/11/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023] Open
Abstract
Animals integrate developmental and nutritional signals before committing crucial resources to growth and reproduction; however, the pathways that perceive and respond to these inputs remain poorly understood. Here, we demonstrate that DRL-1 and FLR-4, which share similarity with mammalian mitogen-activated protein kinases, maintain lipid homeostasis in the C. elegans intestine. DRL-1 and FLR-4 function in a protein complex at the plasma membrane to promote development, as mutations in drl-1 or flr-4 confer slow growth, small body size, and impaired lipid homeostasis. To identify factors that oppose DRL-1/FLR-4, we performed a forward genetic screen for suppressors of the drl-1 mutant phenotypes and identified mutations in flr-2 and fshr-1, which encode the orthologues of follicle stimulating hormone and its putative G protein-coupled receptor, respectively. In the absence of DRL-1/FLR-4, neuronal FLR-2 acts through intestinal FSHR-1 and protein kinase A signaling to restrict growth. Furthermore, we show that opposing signaling through DRL-1 and FLR-2 coordinates TIR-1 oligomerization, which modulates downstream p38/PMK-1 activity, lipid homeostasis, and development. Finally, we identify a surprising noncanonical role for the developmental transcription factor PHA-4/FOXA in the intestine where it restricts growth in response to impaired DRL-1 signaling. Our work uncovers a complex multi-tissue signaling network that converges on p38 signaling to maintain homeostasis during development.
Collapse
Affiliation(s)
- Sarah K. Torzone
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aaron Y. Park
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Peter C. Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Natalie R. Cohen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert H. Dowen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
18
|
Doering KRS, Ermakova G, Taubert S. Nuclear hormone receptor NHR-49 is an essential regulator of stress resilience and healthy aging in Caenorhabditis elegans. Front Physiol 2023; 14:1241591. [PMID: 37645565 PMCID: PMC10461480 DOI: 10.3389/fphys.2023.1241591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
The genome of Caenorhabditis elegans encodes 284 nuclear hormone receptor, which perform diverse functions in development and physiology. One of the best characterized of these is NHR-49, related in sequence and function to mammalian hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor α. Initially identified as regulator of lipid metabolism, including fatty acid catabolism and desaturation, additional important roles for NHR-49 have since emerged. It is an essential contributor to longevity in several genetic and environmental contexts, and also plays vital roles in the resistance to several stresses and innate immune response to infection with various bacterial pathogens. Here, we review how NHR-49 is integrated into pertinent signaling circuits and how it achieves its diverse functions. We also highlight areas for future investigation including identification of regulatory inputs that drive NHR-49 activity and identification of tissue-specific gene regulatory outputs. We anticipate that future work on this protein will provide information that could be useful for developing strategies to age-associated declines in health and age-related human diseases.
Collapse
Affiliation(s)
- Kelsie R. S. Doering
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, The University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Glafira Ermakova
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, The University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, The University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Raj D, Kraish B, Martikainen J, Podraza-Farhanieh A, Kao G, Naredi P. Cisplatin toxicity is counteracted by the activation of the p38/ATF-7 signaling pathway in post-mitotic C. elegans. Nat Commun 2023; 14:2886. [PMID: 37210583 DOI: 10.1038/s41467-023-38568-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
Cisplatin kills proliferating cells via DNA damage but also has profound effects on post-mitotic cells in tumors, kidneys, and neurons. However, the effects of cisplatin on post-mitotic cells are still poorly understood. Among model systems, C. elegans adults are unique in having completely post-mitotic somatic tissues. The p38 MAPK pathway controls ROS detoxification via SKN-1/NRF and immune responses via ATF-7/ATF2. Here, we show that p38 MAPK pathway mutants are sensitive to cisplatin, but while cisplatin exposure increases ROS levels, skn-1 mutants are resistant. Cisplatin exposure leads to phosphorylation of PMK-1/MAPK and ATF-7 and the IRE-1/TRF-1 signaling module functions upstream of the p38 MAPK pathway to activate signaling. We identify the response proteins whose increased abundance depends on IRE-1/p38 MAPK activity as well as cisplatin exposure. Four of these proteins are necessary for protection from cisplatin toxicity, which is characterized by necrotic death. We conclude that the p38 MAPK pathway-driven proteins are crucial for adult cisplatin resilience.
Collapse
Affiliation(s)
- Dorota Raj
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
| | - Bashar Kraish
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
| | - Jari Martikainen
- Bioinformatics and Data Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE413 45, Gothenburg, Sweden
| | - Agnieszka Podraza-Farhanieh
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
| | - Gautam Kao
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden.
| | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden.
- Department of Surgery, Sahlgrenska University Hospital, SE413 45, Gothenburg, Sweden.
| |
Collapse
|
20
|
Peterson ND, Tse SY, Huang QJ, Wani KA, Schiffer CA, Pukkila-Worley R. Non-canonical pattern recognition of a pathogen-derived metabolite by a nuclear hormone receptor identifies virulent bacteria in C. elegans. Immunity 2023; 56:768-782.e9. [PMID: 36804958 PMCID: PMC10101930 DOI: 10.1016/j.immuni.2023.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/27/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
Distinguishing infectious pathogens from harmless microorganisms is essential for animal health. The mechanisms used to identify infectious microbes are not fully understood, particularly in metazoan hosts that eat bacteria as their food source. Here, we characterized a non-canonical pattern-recognition system in Caenorhabditis elegans (C. elegans) that assesses the relative threat of virulent Pseudomonas aeruginosa (P. aeruginosa) to activate innate immunity. We discovered that the innate immune response in C. elegans was triggered by phenazine-1-carboxamide (PCN), a toxic metabolite produced by pathogenic strains of P. aeruginosa. We identified the nuclear hormone receptor NHR-86/HNF4 as the PCN sensor in C. elegans and validated that PCN bound to the ligand-binding domain of NHR-86/HNF4. Activation of NHR-86/HNF4 by PCN directly engaged a transcriptional program in intestinal epithelial cells that protected against P. aeruginosa. Thus, a bacterial metabolite is a pattern of pathogenesis surveilled by nematodes to identify a pathogen in its bacterial diet.
Collapse
Affiliation(s)
- Nicholas D Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Samantha Y Tse
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Qiuyu Judy Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Khursheed A Wani
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
21
|
Miles J, Townend S, Milonaitytė D, Smith W, Hodge F, Westhead DR, van Oosten-Hawle P. Transcellular chaperone signaling is an intercellular stress-response distinct from the HSF-1-mediated heat shock response. PLoS Biol 2023; 21:e3001605. [PMID: 36780563 PMCID: PMC9956597 DOI: 10.1371/journal.pbio.3001605] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 02/24/2023] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
Organismal proteostasis is maintained by intercellular signaling processes including cell nonautonomous stress responses such as transcellular chaperone signaling (TCS). When TCS is activated upon tissue-specific knockdown of hsp-90 in the Caenorhabditis elegans intestine, heat-inducible hsp-70 is induced in muscle cells at the permissive temperature resulting in increased heat stress resistance and lifespan extension. However, our understanding of the molecular mechanism and signaling factors mediating transcellular activation of hsp-70 expression from one tissue to another is still in its infancy. Here, we conducted a combinatorial approach using transcriptome RNA-Seq profiling and a forward genetic mutagenesis screen to elucidate how stress signaling from the intestine to the muscle is regulated. We find that the TCS-mediated "gut-to-muscle" induction of hsp-70 expression is suppressed by HSF-1 and instead relies on transcellular-X-cross-tissue (txt) genes. We identify a key role for the PDZ-domain guanylate cyclase txt-1 and the homeobox transcription factor ceh-58 as signaling hubs in the stress receiving muscle cells to initiate hsp-70 expression and facilitate TCS-mediated heat stress resistance and lifespan extension. Our results provide a new view on cell-nonautonomous regulation of "inter-tissue" stress responses in an organism that highlight a key role for the gut. Our data suggest that the HSF-1-mediated heat shock response is switched off upon TCS activation, in favor of an intercellular stress-signaling route to safeguard survival.
Collapse
Affiliation(s)
- Jay Miles
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sarah Townend
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Dovilė Milonaitytė
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - William Smith
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Francesca Hodge
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David R. Westhead
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Patricija van Oosten-Hawle
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Poupet C, Rifa É, Theil S, Bonnet M, Veisseire P, Cardin G, Guéret É, Rialle S, Chassard C, Nivoliez A, Bornes S. In vivo investigation of Lcr35 ® anti-candidiasis properties in Caenorhabditis elegans reveals the involvement of highly conserved immune pathways. Front Microbiol 2022; 13:1062113. [PMID: 36620055 PMCID: PMC9816150 DOI: 10.3389/fmicb.2022.1062113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Lactic acid bacteria, including the microorganisms formerly designated as Lactobacillus, are the major representatives of Live Biotherapeutic Microorganisms (LBM) when used for therapeutic purposes. However, in most cases, the mechanisms of action remain unknown. The antifungal potential of LBM has already been demonstrated using preclinical models (cell cultures, laboratory animals). Understanding their mechanisms of action is strategic for the development of new therapeutics for humans. Here, Caenorhabditis elegans was used as an in vivo model to analyze pro-longevity, anti-aging and anti-candidiasis effects of the LBM Lacticaseibacillus rhamnosus (formerly Lactobacillus rhamnosus) Lcr35®. A high-throughput transcriptomic analysis revealed a specific response of C. elegans depending on whether it is in the presence of the LBM L. rhamnosus Lcr35® (structural response), the yeast Candida albicans (metabolic response) or both (structural and metabolic responses) in a preventive and a curative conditions. Studies on C. elegans mutants demonstrated that the p38 MAPK (sek-1, skn-1) and the insulin-like (daf-2, daf-16) signaling pathways were involved in the extended lifespan provided by L. rhamnosus Lcr35® strain whereas the JNK pathway was not involved (jnk-1). In addition, the anti C. albicans effect of the bacterium requires the daf-16 and sek-1 genes while it is independent of daf-2 and skn-1. Moreover, the anti-aging effect of Lcr35®, linked to the extension of longevity, is not due to protection against oxidative stress (H2O2). Taken together, these results formally show the involvement of the p38 MAP kinase and insulin-like signaling pathways for the longevity extension and anti-Candida albicans properties of Lcr35® with, however, differences in the genes involved. Overall, these findings provide new insight for understanding the mechanisms of action of a probiotic strain with antimicrobial potential.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France,*Correspondence: Cyril Poupet,
| | - Étienne Rifa
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Sébastien Theil
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Philippe Veisseire
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Guillaume Cardin
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Élise Guéret
- MGX, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| |
Collapse
|
23
|
The Caenorhabditis elegans ARIP-4 DNA helicase couples mitochondrial surveillance to immune, detoxification, and antiviral pathways. Proc Natl Acad Sci U S A 2022; 119:e2215966119. [PMID: 36445965 PMCID: PMC9894117 DOI: 10.1073/pnas.2215966119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Surveillance of Caenorhabditis elegans mitochondrial status is coupled to defense responses such as drug detoxification, immunity, antiviral RNA interference (RNAi), and regulation of life span. A cytochrome p540 detoxification gene, cyp-14A4, is specifically activated by mitochondrial dysfunction. The nuclear hormone receptor NHR-45 and the transcriptional Mediator component MDT-15/MED15 are required for the transcriptional activation of cyp-14A4 by mitochondrial mutations, gene inactivations, or toxins. A genetic screen for mutations that fail to activate this cytochrome p450 gene upon drug or mutation-induced mitochondrial dysfunction identified a DNA helicase ARIP-4 that functions in concert with the NHR-45 transcriptional regulatory cascade. In response to mitochondrial dysfunction, ARIP-4 and NHR-45 protein interaction is enhanced, and they relocalize from the nuclear periphery to the interior of intestinal nuclei. NHR-45/ARIP-4 also regulates the transcriptional activation of the eol-1 gene that encodes a decapping enzyme required for enhanced RNAi and transgene silencing of mitochondrial mutants. In the absence of arip-4, animals were more susceptible to the mitochondrial inhibitor antimycin. Thus, ARIP-4 serves as a transcriptional coactivator of NHR-45 to promote this defense response. A null mutation in arip-4 extends the life span and health span of both wild type and a mitochondrial mutant, suggesting that the activation of detoxification pathways is deleterious to health when the mitochondrial dysfunction is caused by mutation that cannot be cytochrome p450-detoxified. Thus, arip-4 acts in a pathway that couples mitochondrial surveillance to the activation of downstream immunity, detoxification, and RNAi responses.
Collapse
|
24
|
Sang L, Dong R, Liu R, Hao Q, Bai W, Sun J. Caenorhabditis elegans NHR-14/HNF4α regulates DNA damage-induced apoptosis through cooperating with cep-1/p53. Cell Commun Signal 2022; 20:135. [PMID: 36050770 PMCID: PMC9438139 DOI: 10.1186/s12964-022-00920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Nuclear hormone receptors are involved in transcriptional regulation and many important cellular processes including development and metabolism. However, its role in DNA damage-induced apoptosis remains elusive. Methods Synchronized young adult animals were irradiated with different doses of gamma-Ray, and then put back to culture at 20 °C. Germline cell apoptosis was scored at different time point. Results Deletion of nhr-14 led to decreased DNA damage-induced germline apoptosis, but not the physiological programmed cell death. We also demonstrate that nhr-14 functions downstream of the DNA damage checkpoint pathway. Moreover, we show that nhr-14 regulates egl-1 and ced-13 transcription upon DNA damage. Mechanistically, NHR-14 forms a complex with CEP-1/p53 and binds directly to the egl-1 promoter to promote egl-1 transcription.. Conclusions Our results indicate that NHR-14/HNF4α cooperates with CEP-1/p53 to regulate DNA damage-induced apoptosis. Graphic abstract ![]()
Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00920-5.
Collapse
Affiliation(s)
- Lei Sang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Rui Dong
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Rui Liu
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qinggang Hao
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Weiyu Bai
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Jianwei Sun
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
25
|
Diacylglycerol, PKC and MAPK signaling initiate tubeworm metamorphosis in response to bacteria. Dev Biol 2022; 487:99-109. [DOI: 10.1016/j.ydbio.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
|
26
|
Karengera A, Sterken MG, Kammenga JE, Riksen JAG, Dinkla IJT, Murk AJ. Differential expression of genes in C. elegans reveals transcriptional responses to indirect-acting xenobiotic compounds and insensitivity to 2,3,7,8-tetrachlorodibenzodioxin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113344. [PMID: 35219257 DOI: 10.1016/j.ecoenv.2022.113344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 05/14/2023]
Abstract
Caenorhabditis elegans is a well-established model organism for toxicity testing of chemical substances. We recently demonstrated its potential for bioanalysis of the toxic potency of chemical contaminants in water. While many detoxification genes are homologues to those in mammalians, C. elegans is reported to be deficient in cytochrome CYP1-like P450 metabolism and that its aryl hydrocarbon receptor (AhR) homolog encoded by ahr-1 purportedly does not interact with dioxins or any other known xenobiotic ligand. This suggests that C. elegans is insensitive for compounds that require bioactivation (indirectly acting compounds) and for dioxins or dioxin-like compounds. This study analysed genome-wide gene expression of the nematode in response to 30 μM of aflatoxin B1 (AFB1), benzo(a)pyrene (B(a)P), Aroclor 1254 (PCB1254), and 10 μM of 2,3,7,8-tetrachlorodibenzodioxin (TCDD). After 24 h of exposure in the early L4 larval stage, microarray analysis revealed 182, 86, and 321 differentially expressed genes in the nematodes treated with 30 μM of AFB1, B(a)P, and PCB1254, respectively. Among these genes, many encode xenobiotic-metabolizing enzymes, and their transcription levels were among the highest-ranked fold-changed genes. Interestingly, only one gene (F59B1.8) was upregulated in the nematodes exposed to 10 μM TCDD. Genes related to metabolic processes and catalytic activity were the most induced by exposure to 30 μM of AFB1, B(a)P, and PCB1254. Despite the genotoxic nature of AFB1 and B(a)P, no differential expression was found in the genes encoding DNA repair and cell cycle checkpoint proteins. Analysis of concentration-response curves was performed to determine the Lowest Observed Transcriptomic Effect Levels (LOTEL) of AFB1, B(a)P, and PCB1254. The obtained LOTEL values showed that gene expression changes in C. elegans are more sensitive to toxicants than reproductive effects. Overall, transcriptional responses of metabolic enzymes suggest that the nematode does metabolize AFB1, B(a)P, and PCB1254. Our findings also support the assumption that the transcription factor AhR homolog in C. elegans does not bind typical xenobiotic ligands, rendering the nematode transcriptionally insensitive to TCDD effects.
Collapse
Affiliation(s)
- Antoine Karengera
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, De Elst 1, 6708 WD Wageningen, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Mark G Sterken
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost A G Riksen
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Inez J T Dinkla
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Albertinka J Murk
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, De Elst 1, 6708 WD Wageningen, The Netherlands.
| |
Collapse
|
27
|
Tjahjono E, Revtovich AV, Kirienko NV. Box C/D small nucleolar ribonucleoproteins regulate mitochondrial surveillance and innate immunity. PLoS Genet 2022; 18:e1010103. [PMID: 35275914 PMCID: PMC8942280 DOI: 10.1371/journal.pgen.1010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/23/2022] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Monitoring mitochondrial function is crucial for organismal survival. This task is performed by mitochondrial surveillance or quality control pathways, which are activated by signals originating from mitochondria and relayed to the nucleus (retrograde response) to start transcription of protective genes. In Caenorhabditis elegans, several systems are known to play this role, including the UPRmt, MAPKmt, and the ESRE pathways. These pathways are highly conserved and their loss compromises survival following mitochondrial stress. In this study, we found a novel interaction between the box C/D snoRNA core proteins (snoRNPs) and mitochondrial surveillance and innate immune pathways. We showed that box C/D, but not box H/ACA, snoRNPs are required for the full function of UPRmt and ESRE upon stress. The loss of box C/D snoRNPs reduced mitochondrial mass, mitochondrial membrane potential, and oxygen consumption rate, indicating overall degradation of mitochondrial function. Concomitantly, the loss of C/D snoRNPs increased immune response and reduced host intestinal colonization by infectious bacteria, improving host resistance to pathogenesis. Our data may indicate a model wherein box C/D snoRNP machinery regulates a "switch" of the cell's activity between mitochondrial surveillance and innate immune activation. Understanding this mechanism is likely to be important for understanding multifactorial processes, including responses to infection and aging.
Collapse
Affiliation(s)
- Elissa Tjahjono
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Alexey V. Revtovich
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Natalia V. Kirienko
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
28
|
Peterson ND, Icso JD, Salisbury JE, Rodríguez T, Thompson PR, Pukkila-Worley R. Pathogen infection and cholesterol deficiency activate the C. elegans p38 immune pathway through a TIR-1/SARM1 phase transition. eLife 2022; 11:e74206. [PMID: 35098926 PMCID: PMC8923663 DOI: 10.7554/elife.74206] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Intracellular signaling regulators can be concentrated into membrane-free, higher ordered protein assemblies to initiate protective responses during stress - a process known as phase transition. Here, we show that a phase transition of the Caenorhabditis elegans Toll/interleukin-1 receptor domain protein (TIR-1), an NAD+ glycohydrolase homologous to mammalian sterile alpha and TIR motif-containing 1 (SARM1), underlies p38 PMK-1 immune pathway activation in C. elegans intestinal epithelial cells. Through visualization of fluorescently labeled TIR-1/SARM1 protein, we demonstrate that physiologic stresses, both pathogen and non-pathogen, induce multimerization of TIR-1/SARM1 into visible puncta within intestinal epithelial cells. In vitro enzyme kinetic analyses revealed that, like mammalian SARM1, the NAD+ glycohydrolase activity of C. elegans TIR-1 is dramatically potentiated by protein oligomerization and a phase transition. Accordingly, C. elegans with genetic mutations that specifically block either multimerization or the NAD+ glycohydrolase activity of TIR-1/SARM1 fail to induce p38 PMK phosphorylation, are unable to increase immune effector expression, and are dramatically susceptible to bacterial infection. Finally, we demonstrate that a loss-of-function mutation in nhr-8, which alters cholesterol metabolism and is used to study conditions of sterol deficiency, causes TIR-1/SARM1 to oligomerize into puncta in intestinal epithelial cells. Cholesterol scarcity increases p38 PMK-1 phosphorylation, primes immune effector induction in a manner that requires TIR-1/SARM1 oligomerization and its intrinsic NAD+ glycohydrolase activity, and reduces pathogen accumulation in the intestine during a subsequent infection. These data reveal a new adaptive response that allows a metazoan host to anticipate pathogen threats during cholesterol deprivation, a time of relative susceptibility to infection. Thus, a phase transition of TIR-1/SARM1 as a prerequisite for its NAD+ glycohydrolase activity is strongly conserved across millions of years of evolution and is essential for diverse physiological processes in multiple cell types.
Collapse
Affiliation(s)
- Nicholas D Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Janneke D Icso
- Program in Chemical Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - J Elizabeth Salisbury
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Tomás Rodríguez
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Paul R Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
29
|
Wallace SW, Lizzappi MC, Magemizoğlu E, Hur H, Liang Y, Shaham S. Nuclear hormone receptors promote gut and glia detoxifying enzyme induction and protect C. elegans from the mold P. brevicompactum. Cell Rep 2021; 37:110166. [PMID: 34965433 PMCID: PMC8733895 DOI: 10.1016/j.celrep.2021.110166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 11/03/2022] Open
Abstract
Animals encounter microorganisms in their habitats, adapting physiology and behavior accordingly. The nematode Caenorhabditis elegans is found in microbe-rich environments; however, its responses to fungi are not extensively studied. Here, we describe interactions of C. elegans and Penicillium brevicompactum, an ecologically relevant mold. Transcriptome studies reveal that co-culture upregulates stress response genes, including xenobiotic-metabolizing enzymes (XMEs), in C. elegans intestine and AMsh glial cells. The nuclear hormone receptors (NHRs) NHR-45 and NHR-156 are induction regulators, and mutants that cannot induce XMEs in the intestine when exposed to P. brevicompactum experience mitochondrial stress and exhibit developmental defects. Different C. elegans wild isolates harbor sequence polymorphisms in nhr-156, resulting in phenotypic diversity in AMsh glia responses to microbe exposure. We propose that P. brevicompactum mitochondria-targeting mycotoxins are deactivated by intestinal detoxification, allowing tolerance to moldy environments. Our studies support the idea that C. elegans NHRs may be regulated by environmental cues.
Collapse
Affiliation(s)
- Sean W Wallace
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Malcolm C Lizzappi
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Elif Magemizoğlu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Hong Hur
- CCTS Research Bioinformatics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yupu Liang
- CCTS Research Bioinformatics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
30
|
Abstract
A variety of effector proteins contribute to host defense in Caenorhabditis elegans. However, beyond lytic enzymes and antimicrobial peptides and proteins, little is known about the exact function of these infection-related effectors. This study set out to identify pathogen-dependent cytokine-like molecules, focusing on C-type lectin domain-containing proteins (CLECs). In total, 38 CLECs that are differentially regulated in response to bacterial infections have been previously identified by microarray and transcriptome sequencing (RNA-seq) analyses in C. elegans. We successfully cloned 18 of these 38 CLECs and chose to focus on CLEC-47 because, among these 18 cloned CLECs, it was the smallest protein and was recombinantly expressed at the highest levels in prokaryotic cells examined by SDS-PAGE. Quantitative real-time PCR (qRT-PCR/qPCR) showed that the expression of clec-47 was induced by a variety of Gram-positive bacterial pathogens, including Enterococcus faecium, Staphylococcus aureus, and Cutibacterium acnes, but was suppressed by the Gram-negative bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa. By expressing CLEC-47 in HEK 293 cells, we showed that CLEC-47 is released into the culture media, which the Golgi apparatus inhibitors (brefeldin A [BFA] and GolgiStop) could block. Purified recombinant CLEC-47 (maltose binding protein [MBP]–CLEC-47–His) did not display antimicrobial activity against ESKAPE pathogen isolates but bound directly to murine macrophage J774A.1 cells. Recombinant CLEC-47 attracted and recruited J774A.1 cells in a chemotaxis assay. In addition, qPCR studies and enzyme-linked immunosorbent assays (ELISAs) showed that CLEC-47 activates J774A.1 cells in a dose- and time-dependent manner to express the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, and Macrophage Inflammatory Protein 2 (MIP-2). Moreover, C. elegans, fed with CLEC-47-expressing Escherichia coli, demonstrated enhanced expression of several antimicrobial proteins (CNC-1, CNC-2, CPR-1, and CPR-2) as well as the detoxification protein MTL-1. These data suggest that CLEC-47 functions as a novel cytokine-like signaling molecule and exemplify how the study of infection-related effectors in C. elegans can help elucidate the evolution of immune responses.
Collapse
|
31
|
Wu C, Karakuzu O, Garsin DA. Tribbles pseudokinase NIPI-3 regulates intestinal immunity in Caenorhabditis elegans by controlling SKN-1/Nrf activity. Cell Rep 2021; 36:109529. [PMID: 34407394 DOI: 10.1016/j.celrep.2021.109529] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022] Open
Abstract
In Caenorhabditis elegans, ROS generated in response to intestinal infection induces SKN-1, a protective transcription factor homologous to nuclear factor erythroid 2-related factor 1 or 2 (NRF1/2) in mammals. Many factors regulate SKN-1, including the p38 mitogen-activated protein kinase (MAPK) cascade that activates SKN-1 by phosphorylation. In this work, another positive regulator of SKN-1 is identified: NIPI-3, a Tribbles pseudokinase. NIPI-3 has been reported to protect against intestinal infection by negatively regulating the CCAT enhancer binding protein (C/EBP) bZIP transcription factor CEBP-1. Here we demonstrate that CEBP-1 positively regulates the vhp-1 transcript, which encodes a phosphatase that dephosphorylates the p38 MAPK called PMK-1. The increased levels of VHP-1 caused by CEBP-1 transcriptional enhancement result in less PMK-1 phosphorylation, affecting SKN-1 activity and intestinal resistance to the pathogen. The data support a model in which NIPI-3's negative regulation of CEBP-1 decreases VHP-1 phosphatase activity, allowing increased stimulation of SKN-1 activity by the p38 MAPK phosphorylation cascade in the intestine.
Collapse
Affiliation(s)
- Chenggang Wu
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ozgur Karakuzu
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Danielle A Garsin
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Meng J, Fu L, Liu K, Tian C, Wu Z, Jung Y, Ferreira RB, Carroll KS, Blackwell TK, Yang J. Global profiling of distinct cysteine redox forms reveals wide-ranging redox regulation in C. elegans. Nat Commun 2021; 12:1415. [PMID: 33658510 PMCID: PMC7930113 DOI: 10.1038/s41467-021-21686-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Post-translational changes in the redox state of cysteine residues can rapidly and reversibly alter protein functions, thereby modulating biological processes. The nematode C. elegans is an ideal model organism for studying cysteine-mediated redox signaling at a network level. Here we present a comprehensive, quantitative, and site-specific profile of the intrinsic reactivity of the cysteinome in wild-type C. elegans. We also describe a global characterization of the C. elegans redoxome in which we measured changes in three major cysteine redox forms after H2O2 treatment. Our data revealed redox-sensitive events in translation, growth signaling, and stress response pathways, and identified redox-regulated cysteines that are important for signaling through the p38 MAP kinase (MAPK) pathway. Our in-depth proteomic dataset provides a molecular basis for understanding redox signaling in vivo, and will serve as a valuable and rich resource for the field of redox biology. Reversible cysteine oxidative modifications have emerged as important mechanisms that alter protein function. Here the authors globally assess the cysteine reactivity and an array of cysteine oxidative modifications in C. elegans, providing insights into redox signaling at the organismal level.
Collapse
Affiliation(s)
- Jin Meng
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Innovation Institute of Medical School, Medical College, Qingdao University, Qingdao, China
| | - Keke Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Caiping Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Youngeun Jung
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Renan B Ferreira
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Kate S Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - T Keith Blackwell
- Research Division, Joslin Diabetes Center, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China. .,Innovation Institute of Medical School, Medical College, Qingdao University, Qingdao, China.
| |
Collapse
|
33
|
Hartman JH, Widmayer SJ, Bergemann CM, King DE, Morton KS, Romersi RF, Jameson LE, Leung MCK, Andersen EC, Taubert S, Meyer JN. Xenobiotic metabolism and transport in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:51-94. [PMID: 33616007 PMCID: PMC7958427 DOI: 10.1080/10937404.2021.1884921] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | | | - Dillon E King
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | - Stefan Taubert
- Dept. Of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, the University of British Colombia, Vancouver, BC, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
34
|
Affiliation(s)
- Sarah M. Anderson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
35
|
Poupet C, Chassard C, Nivoliez A, Bornes S. Caenorhabditis elegans, a Host to Investigate the Probiotic Properties of Beneficial Microorganisms. Front Nutr 2020; 7:135. [PMID: 33425969 PMCID: PMC7786404 DOI: 10.3389/fnut.2020.00135] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Caenorhabditis elegans, a non-parasitic nematode emerges as a relevant and powerful candidate as an in vivo model for microorganisms-microorganisms and microorganisms-host interactions studies. Experiments have demonstrated the probiotic potential of bacteria since they can provide to the worm a longer lifespan, an increased resistance to pathogens and to oxidative or heat stresses. Probiotics are used to prevent or treat microbiota dysbiosis and associated pathologies but the molecular mechanisms underlying their capacities are still unknown. Beyond safety and healthy aspects of probiotics, C. elegans represents a powerful way to design large-scale studies to explore transkingdom interactions and to solve questioning about the molecular aspect of these interactions. Future challenges and opportunities would be to validate C. elegans as an in vivo tool for high-throughput screening of microorganisms for their potential probiotic use on human health and to enlarge the panels of microorganisms studied as well as the human diseases investigated.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| |
Collapse
|
36
|
Foster KJ, Cheesman HK, Liu P, Peterson ND, Anderson SM, Pukkila-Worley R. Innate Immunity in the C. elegans Intestine Is Programmed by a Neuronal Regulator of AWC Olfactory Neuron Development. Cell Rep 2020; 31:107478. [PMID: 32268082 PMCID: PMC7215899 DOI: 10.1016/j.celrep.2020.03.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/15/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
Olfactory neurons allow animals to discriminate nutritious food sources from potential pathogens. From a forward genetic screen, we uncovered a surprising requirement for the olfactory neuron gene olrn-1 in the regulation of intestinal epithelial immunity in Caenorhabditis elegans. During nematode development, olrn-1 is required to program the expression of odorant receptors in the AWC olfactory neuron pair. Here, we show that olrn-1 also functions in AWC neurons in the cell non-autonomous suppression of the canonical p38 MAPK PMK-1 immune pathway in the intestine. Low activity of OLRN-1, which activates the p38 MAPK signaling cassette in AWC neurons during larval development, also de-represses the p38 MAPK PMK-1 pathway in the intestine to promote immune effector transcription, increased clearance of an intestinal pathogen, and resistance to bacterial infection. These data reveal an unexpected connection between olfactory receptor development and innate immunity and show that anti-pathogen defenses in the intestine are developmentally programmed.
Collapse
Affiliation(s)
- Kyle J Foster
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hilary K Cheesman
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nicholas D Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Sarah M Anderson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
37
|
Abstract
The microscopic nematode Caenorhabditis elegans has emerged as a powerful system to characterize evolutionarily ancient mechanisms of pathogen sensing, innate immune activation, and protective host responses. Experimentally, C. elegans can be infected with a wide variety of human pathogens, as well as with natural pathogens of worms that were isolated from wild-caught nematodes. Here, we focus on an experimental model of bacterial pathogenesis that utilizes the human opportunistic bacterial pathogen Pseudomonas aeruginosa and present an algorithm that can be used to study mechanisms of immune function in nematodes. An initial comparison of the susceptibility of a C. elegans mutant to P. aeruginosa infection with its normal lifespan permits an understanding of a mutant's effect on pathogen susceptibility in the context of potential pleotropic consequences on general worm fitness. Assessing the behavior of nematodes in the presence of P. aeruginosa can also help determine if a gene of interest modulates pathogen susceptibility by affecting the host's ability to avoid a pathogen. In addition, quantification of the pathogen load in the C. elegans intestine during infection, characterization of immune effector transcription that are regulated by host defense pathways and an initial assessment of tissue specificity of immune gene function can refine hypotheses about the mechanism of action of a gene of interest. Together, these protocols offer one approach to characterize novel host defense mechanisms in a simple metazoan host.
Collapse
Affiliation(s)
- Kyle J Foster
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Deborah L McEwan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
38
|
Anderson SM, Cheesman HK, Peterson ND, Salisbury JE, Soukas AA, Pukkila-Worley R. The fatty acid oleate is required for innate immune activation and pathogen defense in Caenorhabditis elegans. PLoS Pathog 2019; 15:e1007893. [PMID: 31206555 PMCID: PMC6597122 DOI: 10.1371/journal.ppat.1007893] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/27/2019] [Accepted: 06/04/2019] [Indexed: 12/03/2022] Open
Abstract
Fatty acids affect a number of physiological processes, in addition to forming the building blocks of membranes and body fat stores. In this study, we uncover a role for the monounsaturated fatty acid oleate in the innate immune response of the nematode Caenorhabditis elegans. From an RNAi screen for regulators of innate immune defense genes, we identified the two stearoyl-coenzyme A desaturases that synthesize oleate in C. elegans. We show that the synthesis of oleate is necessary for the pathogen-mediated induction of immune defense genes. Accordingly, C. elegans deficient in oleate production are hypersusceptible to infection with diverse human pathogens, which can be rescued by the addition of exogenous oleate. However, oleate is not sufficient to drive protective immune activation. Together, these data add to the known health-promoting effects of monounsaturated fatty acids, and suggest an ancient link between nutrient stores, metabolism, and host susceptibility to bacterial infection. The evolution of multicellular organisms has been shaped by their interactions with pathogenic microorganisms. The microscopic nematode C. elegans eats bacteria for food and has evolved inducible immune defenses toward ingested pathogens that are coordinated within intestinal epithelial cells. C. elegans, therefore, presents a genetic system to characterize the requirements for the activation of innate immune defenses. Here, we show that the monounsaturated fatty acid oleate is necessary for the induction of innate immune defenses and for protection against bacterial pathogens, which defines a new link between metabolism and the regulation of anti-pathogen responses in a metazoan host.
Collapse
Affiliation(s)
- Sarah M. Anderson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Hilary K. Cheesman
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Nicholas D. Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - J. Elizabeth Salisbury
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Alexander A. Soukas
- Center for Human Genomic Medicine and Diabetes Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States of America
- * E-mail:
| |
Collapse
|
39
|
Frankino PA, Moehle EA, Dillin A. Evolutionary Comeuppance: Mitochondrial Stress Awakens the Remnants of Ancient Bacterial Warfare. Cell Metab 2019; 29:1015-1017. [PMID: 31067444 DOI: 10.1016/j.cmet.2019.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mitochondria are organelles descended from an endosymbiosed bacterium, and many bacterial toxins impair mitochondria, likely as an echo of ancient bacterial warfare. However, the signal transduction pathways that translate mitochondrial dysfunction into a transcriptional program for detoxification have not been well understood. In this issue of Cell Metabolism, Mao et al. (2019) provide insight into how mitochondrial perturbations can activate both the mitochondrial unfolded protein response (UPRmito) and detoxification response and, importantly, how these responses differentially affect organismal physiology under normal conditions or with pathogenic challenges.
Collapse
Affiliation(s)
- Phillip A Frankino
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erica A Moehle
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|