1
|
Yan L, Quan Z, Sun T, Wang J. Autophagy signaling mediated by non-coding RNAs: Impact on breast cancer progression and treatment. Mol Aspects Med 2025; 103:101365. [PMID: 40305994 DOI: 10.1016/j.mam.2025.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Autophagy, a conserved cellular mechanism which detoxifies and degrades intracellular structures or biomolecules, has been identified as an important factor in the progression of human breast cancer and the development of treatment resistance. Non-coding RNAs (ncRNAs), a broad family of RNA, have the ability to influence various processes, including autophagy, due to their diverse downstream targets. ncRNAs play an important role in suppressing or activating autophagy by targeting autophagy-triggering components such as the ULK1 complex, Beclin1, and ATGs. Recent research has uncovered the intricate regulatory networks that govern autophagy dynamics, with ncRNAs emerging as key participants in this network. miRNAs, lncRNAs, and circRNAs are the three subfamilies of ncRNAs that have the most well-known interactions with autophagy, particularly macroautophagy. The high prevalence of breast cancer necessitates research into finding new biological processes that can help in early detection as well as enhance the effectiveness of treatment. The positive/negative link between autophagy and ncRNAs can be exploited as a supplementary therapy to improve sensitivity to treatment in breast cancer. This review investigates the regulatory roles of ncRNAs, particularly microRNAs (miRNAs), in modifying autophagy pathways in human breast cancer progression and treatment. However, future studies and clinical practice are needed to determine the most relevant microRNAs as biomarkers and also to better understand their role in breast cancer progression or treatment through modifying autophagy.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, No.777 Xitai Road, High-tech Zone, Xi'an, Shaanxi Province, 710100, China; Xi'an Engineering Technology Research Center for Cardiovascular Active Peptide, Xi'an, Shaanxi, 710100, China
| | - Zhuo Quan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, No.777 Xitai Road, High-tech Zone, Xi'an, Shaanxi Province, 710100, China; Xi'an Engineering Technology Research Center for Cardiovascular Active Peptide, Xi'an, Shaanxi, 710100, China
| | - Tiantian Sun
- Department of Oncology, Zibo Central Hospital, Shandong, 255036, China.
| | - Jiaju Wang
- Department of Hematology, Zibo Central Hospital, Shandong, 255036, China.
| |
Collapse
|
2
|
Shi Y, Wang H, Chai M, Ji M, Zhao W, Xu Q, Yan T, Liu Z, Weng X. The analysis of X chromosome activity of porcine embryonic stem Cells: Study based on parthenogenetic embryonic stem cells with LCDM medium. Theriogenology 2025; 244:117479. [PMID: 40367543 DOI: 10.1016/j.theriogenology.2025.117479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025]
Abstract
The derivation of porcine embryonic stem cell (pESC) lines remains a major challenge in this field. To date, the porcine naïve ESCs have yet to be successfully established, and standardized criteria for their characterization and evaluation are still lacking. The regulation of X-chromosome activity integrates information from embryonic development and the dosage of sex chromosomes, which is closely associated with the pluripotent state of embryonic stem cells. In this study, we aimed to establish pESC lines in LCDM medium from porcine blastocyst-stage embryos, and analyzed the features of ESCs from the sight of X chromosome activity. We assessed molecular markers and epigenetic characteristics to confirm pluripotency and X chromosome activity in porcine parthenogenetic ESCs (named as ppLCDM) using XIST RNA-FISH, immunofluorescence staining, single-cell RNA sequencing (scRNA-seq), and other techniques. Results showed that ppLCDM cells expressed most pluripotent markers. The percentage of ppLCDM cells exhibiting H3K27me3 and XIST aggregation signals increased with passage, indicating the progressive establishment of X-chromosome inactivation (XCI). Meanwhile, the pluripotency of most ppLCDM cells gradually declined during extended passaging. However, two distinct patterns of ppLCDM cells were observed from passage 35 (type I cells, P35-I) displayed normal XCI states, while type II cells (P35-II) exhibited X-chromosome erosion-like state, characterized by the loss of aggregation signals, abnormal X-linked gene ratios. Particularly, the pluripotency of ppLCDM cells with an X-chromosome erosion-like state undergoes unusual changes compared to normal cells. These findings indicate that X chromosome activity is closely associated with the pluripotent state of porcine ESCs and that heterogeneity in X chromosome activity arises during passaging. Our research provides crucial insights into X chromosome dynamics in large-animal ESC models and contribute to ongoing efforts to establish stable naïve pESC lines.
Collapse
Affiliation(s)
- Yu Shi
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Hongxing Wang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Mengjia Chai
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Mengru Ji
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Wenqian Zhao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Qianqian Xu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Tingsheng Yan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| | - Xiaogang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| |
Collapse
|
3
|
Fujiwara N, Ueno T, Yamazaki T, Hirose T. Unraveling architectural RNAs: Structural and functional blueprints of membraneless organelles and strategies for genome-scale identification. Biochim Biophys Acta Gen Subj 2025; 1869:130815. [PMID: 40348038 DOI: 10.1016/j.bbagen.2025.130815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Architectural RNAs (arcRNAs) are long noncoding RNAs that serve as structural scaffolds for membraneless organelles (MLOs), facilitating cellular organization and dynamic responses to stimuli. Acting as blueprints for MLO assembly, arcRNAs recruit specific proteins and nucleic acids to establish and maintain the internal structure of MLOs while coordinating their spatial relationships with other organelles. This organized framework enables precise spatiotemporal regulation, allowing for targeted control of transcription, RNA processing, and cellular responses to stress. Notably, arcRNAs exhibit the "semi-extractable" feature, a property derived from their stable binding to cellular structures, making them partially resistant to conventional RNA extraction methods. This unique feature serves as a useful criterion for identifying novel arcRNAs, providing an opportunity to accelerate research in long noncoding RNAs and deepen our understanding of their functional roles in cellular processes.
Collapse
Affiliation(s)
- Naoko Fujiwara
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tsuyoshi Ueno
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan.
| |
Collapse
|
4
|
Navarro-Cobos MJ, Brown CJ. Human XIST: Origin and Divergence of a cis-Acting Silencing RNA. Noncoding RNA 2025; 11:35. [PMID: 40407593 PMCID: PMC12101419 DOI: 10.3390/ncrna11030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/26/2025] [Accepted: 04/30/2025] [Indexed: 05/26/2025] Open
Abstract
Dimorphism of sex chromosomes often leads to a need for dosage compensation. In eutherian mammals, XIST, a long non-coding RNA, is expressed from the X chromosome that will be silenced, triggering X-chromosome inactivation (XCI). XIST originated from the ancestral protein-coding Lnx3 gene with contributions from various mobile elements that contributed to the striking domains of tandem repeats within the first and sixth exons. Modular domains of XIST are now involved in recruiting heterochromatic marks and proteins essential for XCI initiation and maintenance. This review presents a comparative analysis of human XIST with five other eutherian mammals-chimpanzees, cats, pigs, sheep, and mice-examining conservation across exons as well as the tandem repeats. Notably, repeats exhibited higher conservation than exons, underscoring their functional importance. Additionally, a species-specific G repeat, previously described in pigs, was also identified in sheep and cats. These findings provide insights into the domains of XIST, a cis-acting silencer that has been used to proposed to alleviate the impact of a supernumerary chromosome in Down syndrome.
Collapse
Affiliation(s)
| | - Carolyn J. Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
5
|
Packer JM, Giammo SG, Wangler LM, Davis AC, Bray CE, Godbout JP. Diffuse traumatic brain injury induced stimulator of interferons (STING) signaling in microglia drives cortical neuroinflammation, neuronal dysfunction, and impaired cognition. J Neuroinflammation 2025; 22:128. [PMID: 40307881 PMCID: PMC12044788 DOI: 10.1186/s12974-025-03451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
Neuropsychiatric complications including depression and cognitive impairment develop, persist, and worsen in the years after traumatic brain injury (TBI), negatively affecting life and lifespan. Inflammatory responses mediated by microglia are associated with the transition from acute to chronic neuroinflammation after TBI. Moreover, type I interferon (IFN-I) signaling is a key mediator of inflammation during this transition. Thus, the purpose of this study was to determine the degree to which a microglia-specific knockout of the stimulator of interferons (STING) influenced TBI-induced neuroinflammation, neuronal dysfunction, and cognitive impairment. Here, microglial inducible STING knockout (CX₃CR1Cre/ERT2 x STINGfl/fl) mice were created and validated (mSTING-/-). Diffuse brain injury (midline fluid percussion) in male and female mice increased STING expression in microglia, promoted microglial morphological restructuring, and induced robust cortical inflammation and pathology 7 days post injury (dpi). These TBI-associated responses were attenuated in mSTING-/- mice. Increased cortical astrogliosis and rod-shaped microglia induced by TBI were independent of mSTING-/-. 7 dpi, TBI induced 237 differentially expressed genes (DEG) in the cortex of functionally wildtype (STINGfl/fl) associated with STING, NF-κB, and Interferon Alpha signaling and 85% were attenuated by mSTING-/-. Components of neuronal injury including reduced NeuN expression, increased cortical lipofuscin, and increased neurofilament light chain in plasma were increased by TBI and dependent on mSTING. TBI-associated cognitive tasks (novel object recognition/location, NOR/NOL) at 7 dpi were dependent on mSTING. Notably, the TBI-induced cognitive deficits in NOR/NOL and increased cortical inflammation 7 dpi were unaffected in global interferon-α/β receptor 1 knockout (IFNAR1) mice. In the final study, the RNA profile of neurons after TBI in STINGfl/fl and mSTING-/- mice was assessed 7 dpi by single nucleus RNA-sequencing. There was a TBI-dependent suppression of cortical neuronal homeostasis with reductions in CREB signaling, synaptogenesis, and oxytocin signaling and increases in cilium assembly and PTEN signaling. Overall, mSTING-/- prevented 50% of TBI-induced DEGs in cortical neurons. Collectively, ablation of STING in microglia attenuates TBI-induced interferon responses, cortical inflammation, neuronal dysfunction, neuronal pathology, and cognitive impairment.
Collapse
Affiliation(s)
- Jonathan M Packer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10Th Ave, Columbus, OH, USA
| | - Samantha G Giammo
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10Th Ave, Columbus, OH, USA
| | - Lynde M Wangler
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10Th Ave, Columbus, OH, USA
| | - Amara C Davis
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10Th Ave, Columbus, OH, USA
| | - Chelsea E Bray
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10Th Ave, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10Th Ave, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, Columbus, OH, USA.
- 231 IBMR Building, The Ohio State University, 460 Medical Center Dr., Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Wen S, Santander J, Barria D, Salazar LA, Sandoval C, Arias C, Iturriaga V. Epigenetic Biomarkers in Temporomandibular Joint Osteoarthritis: An Emerging Target in Treatment. Int J Mol Sci 2025; 26:3668. [PMID: 40332184 PMCID: PMC12027526 DOI: 10.3390/ijms26083668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Osteoarthritis (OA) of the temporomandibular joint (TMJ) is a progressive disease characterized by the progressive destruction of the internal surfaces of the joint. Certain epigenetic biomarkers have been detected in TMJ-OA. We summarized the available evidence on the epigenetic biomarkers in TMJ-OA. There is an increase in the expression of non-coding RNAs related to the degradation of the extracellular matrix, chondrocyte apoptosis, and proinflammatory cytokines, while there is a decrease in the expression of those related to COL2A1, as well as the osteogenic and chondrogenic differentiation of mesenchymal stem cells. Certain methylated genes and histone modifications in TMJ-OA were also identified. In the early stage, DNA methylation was significantly decreased; that is, the expression of inflammation-related genes such as TNF and genes associated with extracellular matrix degradation, such as Adamts, were increased. While in the late stage, there was an increase in the expression of genes associated with the TGF-β and MAPK signaling pathway and angiogenesis-related genes. Although research on the role of epigenetic markers in TMJ-OA is still ongoing, the results here contribute to improving the basis for the identification of accurate diagnostic and prognostic markers and the development of new therapeutic molecules for the prevention and management of TMJ-OA. It also represents a significant advancement in elucidating its pathogenesis.
Collapse
Affiliation(s)
- Schilin Wen
- Grupo de Investigación de Pregrado en Odontología, Universidad Autónoma de Chile, Temuco 4811230, Chile; (S.W.); (J.S.); (D.B.)
- Sleep & Pain Research Group, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javiera Santander
- Grupo de Investigación de Pregrado en Odontología, Universidad Autónoma de Chile, Temuco 4811230, Chile; (S.W.); (J.S.); (D.B.)
| | - Daniel Barria
- Grupo de Investigación de Pregrado en Odontología, Universidad Autónoma de Chile, Temuco 4811230, Chile; (S.W.); (J.S.); (D.B.)
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Consuelo Arias
- Escuela de Medicina, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago 8580745, Chile;
| | - Verónica Iturriaga
- Sleep & Pain Research Group, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
- Department of Integral Adult Care Dentistry, Temporomandibular Disorder and Orofacial Pain Program, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
7
|
Farajzadeh M, Fathi M, Jalali P, Mahmoudsalehi Kheshti A, Khodayari S, Hojjat-Farsangi M, Jadidi F. Long noncoding RNAs in acute myeloid leukemia: biomarkers, prognostic indicators, and treatment potential. Cancer Cell Int 2025; 25:131. [PMID: 40188050 PMCID: PMC11972515 DOI: 10.1186/s12935-025-03763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) have been recognized as significant modulators of gene expression and are essential for various biological functions, even though they don't appear to have the ability to encode proteins. Originally considered dark matter, lncRNAs have been recognized as being dysregulated and contributing to the onset, progression, and resistance to treatment of acute myeloid leukemia (AML). AML is a prevalent type of leukemia characterized by the disruption of myeloid cell differentiation, leading to an increased number of immature myeloid progenitor cells. Currently, the need for novel biomarkers and treatment targets to enhance therapeutic alternatives has led to a focus on lncRNAs as possible indicators for prognostic, therapeutic, and diagnostic systems in various human cancers, including AML. Recent research has recognized a limited set of lncRNAs as possible prognostic biomarkers or diagnoses in AML. This review evaluates the key research that highlights the significance of lncRNAs in AML and discusses their roles and impacts on the disease. Furthermore, we intend to underscore the importance of lncRNAs as new and trustworthy markers for the diagnosis, prediction, drug resistance, and targets for treatment in AML.
Collapse
Affiliation(s)
- Maryam Farajzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences,, Tehran, Iran
| | | | - Shahla Khodayari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Ciccone MD, Messina CD. Translating weighted probabilistic bits to synthetic genetic circuits. THE PLANT GENOME 2025; 18:e20525. [PMID: 39425499 PMCID: PMC11726414 DOI: 10.1002/tpg2.20525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
Synthetic genetic circuits in plants could be the next technological horizon in plant breeding, showcasing potential for precise patterned control over expression. Nevertheless, uncertainty in metabolic environments prevents robust scaling of traditional genetic circuits for agricultural use, and studies show that a deterministic system is at odds with biological randomness. We analyze the necessary requirements for assuring Boolean logic gate sequences can function in unpredictable intracellular conditions, followed by interpreted pathways by which a mathematical representation of probabilistic circuits can be translated to biological implementation. This pathway is utilized through translation of a probabilistic circuit model presented by Pervaiz that works through a series of bits; each composed of a weighted matrix that reads inputs from the environment and a random number generator that takes the matrix as bias and outputs a positive or negative signal. The weighted matrix can be biologically represented as the regulatory elements that affect transcription near promotors, allowing for an electrical bit to biological bit translation that can be refined through tuning using invertible logic prediction of the input to output relationship of a genetic response. Failsafe mechanisms should be introduced, possibly through the use of self-eliminating CRISPR-Cas9, dosage compensation, or cybernetic modeling (where CRISPR is clustered regularly interspaced short palindromic repeats and Cas9 is clustered regularly interspaced short palindromic repeat-associated protein 9). These safety measures are needed for all biological circuits, and their implementation is needed alongside work with this specific model. With applied responses to external factors, these circuits could allow fine-tuning of organism adaptation to stress while providing a framework for faster complex expression design in the field.
Collapse
Affiliation(s)
- Matthew D. Ciccone
- Department of Horticultural SciencesUniversity of FloridaGainesvilleFloridaUSA
- Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonNew JerseyUSA
| | - Carlos D. Messina
- Department of Horticultural SciencesUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
9
|
Packer JM, Giammo SG, Wangler LM, Davis AC, Bray CE, Godbout JP. Diffuse Traumatic Brain Injury Induced Stimulator of Interferons (STING) Signaling in Microglia Drives Cortical Neuroinflammation, Neuronal Dysfunction, and Impaired Cognition. RESEARCH SQUARE 2025:rs.3.rs-5960640. [PMID: 40034431 PMCID: PMC11875282 DOI: 10.21203/rs.3.rs-5960640/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Neuropsychiatric complications including depression and cognitive impairment develop, persist, and worsen in the years after traumatic brain injury (TBI), negatively affecting life and lifespan. Inflammatory responses mediated by microglia are associated with the transition from acute to chronic neuroinflammation after TBI. Moreover, type I interferon (IFN-I) signaling is a key mediator of inflammation during this transition. Thus, the purpose of this study was to determine the degree to which a microglia-specific knockout of the stimulator of interferons (STING) influenced TBI-induced neuroinflammation, neuronal dysfunction, and cognitive impairment. Here, microglial inducible STING knockout (CX3CR1Cre/ERT2 × STINGfl/fl) mice were created and validated (mSTING-/-). Diffuse brain injury (midline fluid percussion) in male and female mice increased STING expression in microglia, promoted microglial morphological restructuring, and induced robust cortical inflammation and pathology 7 days post injury (dpi). These TBI-associated responses were attenuated in mSTING-/- mice. Increased cortical astrogliosis and rod-shaped microglia induced by TBI were independent of mSTING-/-. 7 dpi, TBI induced 237 differentially expressed genes (DEG) in the cortex of functionally wildtype (STING+/+) associated with STING, NF-κB, and Interferon Alpha signaling and 85% were attenuated by mSTING-/-. Components of neuronal injury including reduced NeuN expression, increased cortical lipofuscin, and increased neurofilament light chain in plasma were increased by TBI and dependent on mSTING. TBI-associated cognitive tasks (novel object recognition/location, NOR/NOL) at 7 dpi were dependent on mSTING. Notably, the TBI-induced cognitive deflcits in NOR/NOL and increased cortical inflammation 7 dpi were unaffected in global interferon-α/β receptor 1 knockout (IFNAR1) mice. In the final study, the RNA profile of neurons after TBI in STING+/+ and mSTING-/- mice was assessed 7 dpi by single nucleus RNA-sequencing. There was a TBI-dependent suppression of cortical neuronal homeostasis with reductions in CREB signaling, synaptogenesis, and oxytocin signaling and increases in cilium assembly and PTEN signaling. Overall, mSTING-/- prevented 50% of TBI-induced DEGs in cortical neurons. Collectively, ablation of STING in microglia attenuates TBI-induced IFN-dependent responses, cortical inflammation, neuronal dysfunction, neuronal pathology, and cognitive impairment.
Collapse
|
10
|
Navarro-Cobos MJ, Brown CJ. Recruitment of chromatin remodelers by XIST B-repeat region is variably dependent on HNRNPK. Hum Mol Genet 2025; 34:229-238. [PMID: 39588742 PMCID: PMC11792242 DOI: 10.1093/hmg/ddae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024] Open
Abstract
X-chromosome inactivation is triggered by the long non-coding RNA XIST, whose structure is characterized by tandem repeats that modularly recruit different proteins and chromatin remodelers. Previously, we reported that the addition of the mouse PID region to a transgene with human repeat regions A, F and E (miniXIST; 5.1 kb) enabled binding of HNRNPK and also enabled the induction of silencing and recruitment of H3K27me3, UbH2A and H4K20me1, but only partially. As the 680 bp PID region enabled so many features of inactivation, we hypothesized that augmenting the PID with more mouse or human sequences rich in CCC motifs would allow us to design a short transgene which was as effective as Full XIST. Three new transgenes using the A, F and E human domains as a backbone were tested for ability to induce silencing and heterochromatic mark recruitment. The all human-derived BhB-BhB transgene (4.9 kb) was as good as our previous miniXIST, suggesting that these domains are the human equivalent of the mouse PID region. A PID-PID transgene (5.8 kb) was not statistically different from Full XIST and could be potentially used for chromosome therapy. Adding BhB to PID (BhB-PID, 5.4 kb) had an intermediate efficacy compared to the other two transgenes, suggesting that the most important component for silencing and heterochromatic mark recruitment is the number of CCC motifs, not the species of origin. Finally, we created a heterozygous HNRNPK deletion and observed a disproportionate impact on HNRNPK and UbH2A recruitment to XIST, reflecting complex roles for the PID and HNRNPK in X-chromosome inactivation.
Collapse
Affiliation(s)
- Maria Jose Navarro-Cobos
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
11
|
Kennicott K, Liang Y. The human-specific noncoding RNA RP11-424G14.1 functions at the intersection of sexually dimorphic pathways in inflammation, senescence, and metabolism. FASEB Bioadv 2025; 7:e1479. [PMID: 39917395 PMCID: PMC11795277 DOI: 10.1096/fba.2024-00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 02/09/2025] Open
Abstract
Sexual dimorphism is a fundamental characteristic of various physiological and pathological processes in humans, including immune responses, senescence, and metabolism. Most studies on the sex bias have focused on sex hormones or female-biased genes, whereas male-biased genetic factors remain understudied. Here, we show that the Y-linked noncoding RNA, RP11-424G14.1, is expressed in human male keratinocytes. Microarray study suggests the NF-κB pathway as the top biological pathway affected by RP11-424G14.1 knockdown, consistent with known sex differences in inflammation. Additionally, IGFBP3 is identified as the top gene supported by RP11-424G14.1 in male keratinocytes. Conversely, in female keratinocytes, IGFBP3 is the top gene repressed by the X-linked long noncoding RNA XIST, suggesting a central role of IGFBP3 in mediating sexual dimorphism. Knockdown of RP11-424G14.1 or IGFBP3 in male keratinocytes inhibits cellular senescence, consistent with increased longevity in females. IGFBP3 expression is dependent on insulin, and metabolomics analysis suggests that RP11-424G14.1 and IGFBP3 regulate acrylcarnitine metabolism. Our study identifies the role of the RP11-424G14.1-IGFBP3 pathway in coordinating sex differences in immunity, senescence, and metabolism. With RP11-424G14.1 being a human-specific genetic element, our study suggests the evolving feature of sexual dimorphisms in biological processes.
Collapse
Affiliation(s)
- Kameron Kennicott
- Department of Physiology and Pharmacology and ToxicologyMichigan State UniversityEast LansingMichiganUSA
| | - Yun Liang
- Department of Physiology and Pharmacology and ToxicologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
12
|
Wei C, Kesner B, Weissbein U, Wasserzug-Pash P, Das P, Lee JT. Dosage compensation of transposable elements in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628797. [PMID: 39763768 PMCID: PMC11702583 DOI: 10.1101/2024.12.16.628797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In mammals, X-linked dosage compensation involves two processes: X-chromosome inactivation (XCI) to balance X chromosome dosage between males and females, and hyperactivation of the remaining X chromosome (Xa-hyperactivation) to achieve X-autosome balance in both sexes. Studies of both processes have largely focused on coding genes and have not accounted for transposable elements (TEs) which comprise 50% of the X-chromosome, despite TEs being suspected to have numerous epigenetic functions. This oversight is due in part to the technical challenge of capturing repeat RNAs, bioinformatically aligning them, and determining allelic origin. To overcome these challenges, here we develop a new bioinformatic pipeline tailored to repetitive elements with capability for allelic discrimination. We then apply the pipeline to our recent So-Smart-Seq analysis of single embryos to comprehensively interrogate whether X-linked TEs are subject to either XCI or Xa-hyperactivation. With regards to XCI, we observe significant differences in TE silencing in parentally driven "imprinted" XCI versus zygotically driven "random" XCI. Chromosomal positioning and genetic background impact TE silencing. We also find that SINEs may influence 3D organization during XCI. In contrast, TEs do not undergo Xa-hyperactivation. Thus, while coding genes are subject to both forms of dosage compensation, TEs participate only in Xi silencing. Evolutionary and functional implications are discussed.
Collapse
Affiliation(s)
- Chunyao Wei
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Uri Weissbein
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Peera Wasserzug-Pash
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Priyojit Das
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jeannie T. Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Predescu DN, Mokhlesi B, Predescu SA. X-inactive-specific transcript: a long noncoding RNA with a complex role in sex differences in human disease. Biol Sex Differ 2024; 15:101. [PMID: 39639337 PMCID: PMC11619133 DOI: 10.1186/s13293-024-00681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
In humans, the X and Y chromosomes determine the biological sex, XX specifying for females and XY for males. The long noncoding RNA X-inactive specific transcript (lncRNA XIST) plays a crucial role in the process of X chromosome inactivation (XCI) in cells of the female, a process that ensures the balanced expression of X-linked genes between sexes. Initially, it was believed that XIST can be expressed only from the inactive X chromosome (Xi) and is considered a typically female-specific transcript. However, accumulating evidence suggests that XIST can be detected in male cells as well, and it participates in the development of cancers and other human diseases by regulating gene expression at epigenetic, chromatin remodeling, transcriptional, and translational levels. XIST is abnormally expressed in many sexually dimorphic diseases, including autoimmune and neurological diseases, pulmonary arterial hypertension (PAH), and some types of cancers. However, the underlying mechanisms are not fully understood. Escape from XCI and skewed XCI also contributes to sex-biased diseases and their severity. Interestingly, in humans, similar to experimental animal models of human disease, the males with the XIST gene activated display the sex-biased disease condition at a rate close to females, and significantly greater than males who had not been genetically modified. For instance, the men with supernumerary X chromosomes, such as men with Klinefelter syndrome (47, XXY), are predisposed toward autoimmunity similar to females (46, XX), and have increased risk for strongly female biased diseases, compared to 46, XY males. Interestingly, chromosome X content has been linked to a longer life span, and the presence of two chromosome X contributes to increased longevity regardless of the hormonal status. In this review, we summarize recent knowledge about XIST structure/function correlation and involvement in human disease with focus on XIST abnormal expression in males. Many human diseases show differences between males and females in penetrance, presentation, progression, and survival. In humans, the X and Y sex chromosomes determine the biological sex, XX specifying for females and XY for males. This numeric imbalance, two X chromosomes in females and only one in males, known as sex chromosome dosage inequality, is corrected in the first days of embryonic development by inactivating one of the X chromosomes in females. While this "dosage compensation" should in theory solve the difference in the number of genes between sexes, the expressed doses of X genes are incompletely compensated by X chromosome inactivation in females. In this review we try to highlight how abnormal expression and function of XIST, a gene on the X chromosome responsible for this inactivation process, may explain the sex differences in human health and disease. A better understanding of the molecular mechanisms of XIST participation in the male-female differences in disease is highly relevant since it would allow for improving the personalization of diagnosis and sex-specific treatment of patients.
Collapse
Affiliation(s)
- Dan N Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Babak Mokhlesi
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Sanda A Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
14
|
Jurkowska RZ. Role of epigenetic mechanisms in the pathogenesis of chronic respiratory diseases and response to inhaled exposures: From basic concepts to clinical applications. Pharmacol Ther 2024; 264:108732. [PMID: 39426605 DOI: 10.1016/j.pharmthera.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic modifications are chemical groups in our DNA (and chromatin) that determine which genes are active and which are shut off. Importantly, they integrate environmental signals to direct cellular function. Upon chronic environmental exposures, the epigenetic signature of lung cells gets altered, triggering aberrant gene expression programs that can lead to the development of chronic lung diseases. In addition to driving disease, epigenetic marks can serve as attractive lung disease biomarkers, due to early onset, disease specificity, and stability, warranting the need for more epigenetic research in the lung field. Despite substantial progress in mapping epigenetic alterations (mostly DNA methylation) in chronic lung diseases, the molecular mechanisms leading to their establishment are largely unknown. This review is meant as a guide for clinicians and lung researchers interested in epigenetic regulation with a focus on DNA methylation. It provides a short introduction to the main epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNA) and the machinery responsible for their establishment and removal. It presents examples of epigenetic dysregulation across a spectrum of chronic lung diseases and discusses the current state of epigenetic therapies. Finally, it introduces the concept of epigenetic editing, an exciting novel approach to dissecting the functional role of epigenetic modifications. The promise of this emerging technology for the functional study of epigenetic mechanisms in cells and its potential future use in the clinic is further discussed.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
15
|
Fosseprez O, Cuvier O. Uncovering the functions and mechanisms of regulatory elements-associated non-coding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195059. [PMID: 39226990 DOI: 10.1016/j.bbagrm.2024.195059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Over the past decade, regulatory non-coding RNAs (ncRNAs) produced by RNA Pol II have been revealed as meaningful players in various essential cellular functions. In particular, thousands of ncRNAs are produced at transcriptional regulatory elements such as enhancers and promoters, where they may exert multiple functions to regulate proper development, cellular programming, transcription or genomic stability. Here, we review the mechanisms involving these regulatory element-associated ncRNAs, and particularly enhancer RNAs (eRNAs) and PROMoter uPstream Transcripts (PROMPTs). We contextualize the mechanisms described to the processing and degradation of these short lived RNAs. We summarize recent findings explaining how ncRNAs operate locally at promoters and enhancers, or further away, either shortly after their production by RNA Pol II, or through post-transcriptional stabilization. Such discoveries lead to a converging model accounting for how ncRNAs influence cellular fate, by acting on transcription and chromatin structure, which may further involve factors participating to 3D nuclear organization.
Collapse
Affiliation(s)
- Olivier Fosseprez
- Chromatin Dynamics and Cell Proliferation team; Center of Integrative Biology (CBI), Molecular Cellular and Developmental Biology Unit (MCD/UMR5077) Center of Integrative Biology (CBI-CNRS), Université de Toulouse (UPS), F-31000, France.
| | - Olivier Cuvier
- Chromatin Dynamics and Cell Proliferation team; Center of Integrative Biology (CBI), Molecular Cellular and Developmental Biology Unit (MCD/UMR5077) Center of Integrative Biology (CBI-CNRS), Université de Toulouse (UPS), F-31000, France.
| |
Collapse
|
16
|
Huang T, Fakurazi S, Cheah PS, Ling KH. Chromosomal and cellular therapeutic approaches for Down syndrome: A research update. Biochem Biophys Res Commun 2024; 735:150664. [PMID: 39260337 DOI: 10.1016/j.bbrc.2024.150664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
In individuals with Down syndrome (DS), an additional HSA21 chromosome copy leads to the overexpression of a myriad of HSA21 genes, disrupting the transcription of the entire genome. This dysregulation in transcription and post-transcriptional modifications contributes to abnormal phenotypes across nearly all tissues and organs in DS individuals. The array of severe clinical symptoms associated with trisomy 21 poses a considerable challenge in the quest for a cure for DS. Fortunately, a wealth of research suggests that chromosome therapy, hinging on cutting-edge genome editing technologies, can potentially eliminate the extra copy of the human chromosome 21. Genome editing tools have demonstrated their efficacy in restoring trisomy to a normal diploid state in vitro DS cell models. Furthermore, we delve into the noteworthy findings in cellular therapy for DS, with recent studies showcasing the increasing feasibility of strategies involving stem cells and CAR T-cells to address corresponding clinical phenotypes.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing(TM)), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing(TM)), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
17
|
de Mello DC, Menezes JM, de Oliveira ATF, Cristovão MM, Kimura ET, Fuziwara CS. Modulating gene expression as a strategy to investigate thyroid cancer biology. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240073. [PMID: 39876973 PMCID: PMC11771757 DOI: 10.20945/2359-4292-2024-0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/22/2024] [Indexed: 01/31/2025]
Abstract
Modulating the expression of a coding or noncoding gene is a key tool in scientific research. This strategy has evolved methodologically due to advances in cloning approaches, modeling/algorithms in short hairpin RNA (shRNA) design for knockdown efficiency, and biochemical modifications in RNA synthesis, among other developments. Overall, these modifications have improved the ways to either reduce or induce the expression of a given gene with efficiency and facility for implementation in the lab. Allied with that, the existence of various human cell line models for cancer covering different histotypes and biological behaviors, especially for thyroid cancer, has helped improve the understanding of cancer biology. In this review, we cover the most frequently used current techniques for gene modulation in the thyroid cancer field, such as RNA interference (RNAi), short hairpin RNA (shRNA), and gene editing with CRISPR/Cas9 for inhibiting a target gene, and strategies to overexpress a gene, such as plasmid cloning and CRISPRa. Exploring the possibilities for gene modulation allows the improvement of the scientific quality of the studies and the integration of clinicians and basic scientists, leading to better development of translational research.
Collapse
Affiliation(s)
- Diego Claro de Mello
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Joice Moraes Menezes
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Antonio Tarelo Freitas de Oliveira
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marcella Maringolo Cristovão
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Edna Teruko Kimura
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Cesar Seigi Fuziwara
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
18
|
López-Royo T, Moreno-Martínez L, Moreno-García L, Calvo AC, Manzano R, Osta R. Sex differences on constitutive long non-coding RNA expression: Modulatory effect of estradiol and testosterone in muscle cells. Andrology 2024; 12:1887-1896. [PMID: 38469955 DOI: 10.1111/andr.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Despite the growing awareness of sexual dimorphism between males and females under pathological and physiological conditions, sex bias in biomedical research in animal models and patients is still present nowadays. The main objective of this work was to investigate sex differences in constitutive long non-coding RNA expression in spinal cord and skeletal muscle from wild-type mice. MATERIALS AND METHODS To assess the influence of gender on long non-coding RNAs, we extracted RNA from tissues of male and female mice and analyzed the expression on nine long non-coding RNAs, selected for being among the most commonly studied or exerting an important role in muscle, at 50, 60, and 120 days of age. RESULTS AND DISCUSSION We observed age- and tissue-dependent significant sex differences, being more prominent in skeletal muscle. We also studied the effect of sex steroid hormones on long non-coding RNA expression in vitro, noticing a modulation of long non-coding RNA levels upon estradiol and dihydrotestosterone treatment in muscle. CONCLUSIONS Taken together, results obtained evidenced sex differences on constitutive long non-coding RNA expression and suggested an influence of steroid hormones complementary to other possible factors. These findings emphasize the importance of including both sexes in experimental design to minimize any potential sex bias.
Collapse
Affiliation(s)
- Tresa López-Royo
- Department of Anatomy, Embryology and Animal Genetics, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Zaragoza, Spain
| | - Laura Moreno-Martínez
- Department of Anatomy, Embryology and Animal Genetics, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Zaragoza, Spain
| | - Leticia Moreno-García
- Department of Anatomy, Embryology and Animal Genetics, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Zaragoza, Spain
| | - Ana Cristina Calvo
- Department of Anatomy, Embryology and Animal Genetics, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Zaragoza, Spain
| | - Raquel Manzano
- Department of Anatomy, Embryology and Animal Genetics, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Zaragoza, Spain
| | - Rosario Osta
- Department of Anatomy, Embryology and Animal Genetics, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
19
|
Ghosh A, Rogers KL, Gallant SC, Kim YH, Rager JE, Gilmour MI, Randell SH, Jaspers I. Effects of simulated smoke condensate generated from combustion of selected military burn pit contents on human airway epithelial cells. Part Fibre Toxicol 2024; 21:41. [PMID: 39380034 PMCID: PMC11460082 DOI: 10.1186/s12989-024-00604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Exposure to military burn pit smoke during deployment is associated with different respiratory and non-respiratory diseases. However, information linking smoke exposure to human pulmonary health is lacking. This study examined the effects of simulated burn pit smoke condensates on human airway epithelial cells (HAECs) from twelve donors (smokers/non-smokers, biological female/male) cultured at an air-liquid interface and exposed to condensates from three simulated burn pit waste materials (cardboard, plywood, and plastic) incinerated at two combustion conditions: smoldering and flaming. Cellular gene expression was analyzed using bulk RNA sequencing, and basolateral media cytokine levels were assessed using multiplex immunoassay. RESULTS Flaming smoke condensates caused more significant differentially expressed genes (DEGs) with plywood flaming smoke being the most potent in altering gene expression and modulating cytokine release. Cardboard and plywood flaming condensates primarily activated detoxification pathways, whereas plastic flaming affected genes related to anti-microbial and inflammatory responses. Correlation analysis between smoke condensate chemicals and gene expression to understand the underlying mechanism revealed crucial role of oxygenated polycyclic aromatic hydrocarbons (PAHs) and aluminum, molybdenum, and silicon elements; IL6 expression was positively correlated with most PAHs. Stratification of data based on HAEC donor demographics suggests that these affect gene expression changes. Enrichment analysis indicated similarity with several deployment-related presumptive and reported diseases, including asthma, emphysema, and cancer of different organs. CONCLUSIONS This study highlights that simulated burn pit smoke exposure of HAECs causes gene expression changes indicative of deployment-related diseases with more pronounced effects seen in smokers and females. Future studies are needed to further characterize how sex and smoking status affect deployment-related diseases.
Collapse
Affiliation(s)
- Arunava Ghosh
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, School of Medicine, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Keith L Rogers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599-7310, USA
| | - Samuel C Gallant
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Julia E Rager
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, School of Medicine, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599-7310, USA
- Department of Environmental Sciences and Engineering (ESE), Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, School of Medicine, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA.
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599-7310, USA.
- Department of Environmental Sciences and Engineering (ESE), Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
20
|
Donahue KL, Watkoske HR, Kadiyala P, Du W, Brown K, Scales MK, Elhossiny AM, Espinoza CE, Lasse Opsahl EL, Griffith BD, Wen Y, Sun L, Velez-Delgado A, Renollet NM, Morales J, Nedzesky NM, Baliira RK, Menjivar RE, Medina-Cabrera PI, Rao A, Allen B, Shi J, Frankel TL, Carpenter ES, Bednar F, Zhang Y, Pasca di Magliano M. Oncogenic KRAS-Dependent Stromal Interleukin-33 Directs the Pancreatic Microenvironment to Promote Tumor Growth. Cancer Discov 2024; 14:1964-1989. [PMID: 38958646 PMCID: PMC11450371 DOI: 10.1158/2159-8290.cd-24-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Pancreatic cancer is characterized by an extensive fibroinflammatory microenvironment. During carcinogenesis, normal stromal cells are converted to cytokine-high cancer-associated fibroblasts (CAF). The mechanisms underlying this conversion, including the regulation and function of fibroblast-derived cytokines, are poorly understood. Thus, efforts to therapeutically target CAFs have so far failed. Herein, we show that signals from epithelial cells expressing oncogenic KRAS-a hallmark pancreatic cancer mutation-activate fibroblast autocrine signaling, which drives the expression of the cytokine IL33. Stromal IL33 expression remains high and dependent on epithelial KRAS throughout carcinogenesis; in turn, environmental stress induces interleukin-33 (IL33) secretion. Using compartment-specific IL33 knockout mice, we observed that lack of stromal IL33 leads to profound reprogramming of multiple components of the pancreatic tumor microenvironment, including CAFs, myeloid cells, and lymphocytes. Notably, loss of stromal IL33 leads to an increase in CD8+ T-cell infiltration and activation and, ultimately, reduced tumor growth. Significance: This study provides new insights into the mechanisms underlying the programming of CAFs and shows that during this process, expression of the cytokine IL33 is induced. CAF-derived IL33 has pleiotropic effects on the tumor microenvironment, supporting its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Hannah R. Watkoske
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Padma Kadiyala
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan.
| | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Ahmed M. Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| | | | | | | | - Yukang Wen
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Lei Sun
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nur M. Renollet
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Jacqueline Morales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nicholas M. Nedzesky
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | | | - Rosa E. Menjivar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan.
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Cancer Data Science Resource, University of Michigan, Ann Arbor, Michigan.
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan.
| | - Benjamin Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Jiaqi Shi
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology and Clinical Labs, University of Michigan, Ann Arbor, Michigan.
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Eileen S. Carpenter
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Filip Bednar
- Cancer Biology Program, University of Michigan, Ann Arbor, Michigan.
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
21
|
Bammidi LS, Gayen S. Multifaceted role of CTCF in X-chromosome inactivation. Chromosoma 2024; 133:217-231. [PMID: 39433641 DOI: 10.1007/s00412-024-00826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Therian female mammals compensate for the dosage of X-linked gene expression by inactivating one of the X-chromosomes. X-inactivation is facilitated by the master regulator Xist long non-coding RNA, which coats the inactive-X and facilitates heterochromatinization through recruiting different chromatin modifiers and changing the X-chromosome 3D conformation. However, many mechanistic aspects behind the X-inactivation process remain poorly understood. Among the many contributing players, CTCF has emerged as one of the key players in orchestrating various aspects related to X-chromosome inactivation by interacting with several other protein and RNA partners. In general, CTCF is a well-known architectural protein, which plays an important role in chromatin organization and transcriptional regulation. Here, we provide significant insight into the role of CTCF in orchestrating X-chromosome inactivation and highlight future perspectives.
Collapse
Affiliation(s)
- Lakshmi Sowjanya Bammidi
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Srimonta Gayen
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
22
|
Zhang R, Qiu C, Filippova G, Li G, Shendure J, Vert JP, Deng X, Disteche C, Noble WS. Multi-condition and multi-modal temporal profile inference during mouse embryonic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583179. [PMID: 38496477 PMCID: PMC10942306 DOI: 10.1101/2024.03.03.583179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The emergence of single-cell time-series datasets enables modeling of changes in various types of cellular profiles over time. However, due to the disruptive nature of single-cell measurements, it is impossible to capture the full temporal trajectory of a particular cell. Furthermore, single-cell profiles can be collected at mismatched time points across different conditions (e.g., sex, batch, disease) and data modalities (e.g., scRNA-seq, scATAC-seq), which makes modeling challenging. Here we propose a joint modeling framework, Sunbear, for integrating multi-condition and multi-modal single-cell profiles across time. Sunbear can be used to impute single-cell temporal profile changes, align multi-dataset and multi-modal profiles across time, and extrapolate single-cell profiles in a missing modality. We applied Sunbear to reveal sex-biased transcription during mouse embryonic development and predict dynamic relationships between epigenetic priming and transcription for cells in which multi-modal profiles are unavailable. Sunbear thus enables the projection of single-cell time-series snapshots to multi-modal and multi-condition views of cellular trajectories.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Genome Sciences, University of Washington
- eScience Institute, University of Washington
| | | | | | - Gang Li
- Department of Genome Sciences, University of Washington
- eScience Institute, University of Washington
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, University of Washington
- Howard Hughes Medical Institute
- Allen Center for Cell Lineage Tracing
| | | | - Xinxian Deng
- Department of Pathology, University of Washington
| | | | - William Stafford Noble
- Department of Genome Sciences, University of Washington
- Paul G. Allen School of Computer Science and Engineering, University of Washington
| |
Collapse
|
23
|
Saftić Martinović L, Mladenić T, Lovrić D, Ostojić S, Dević Pavlić S. Decoding the Epigenetics of Infertility: Mechanisms, Environmental Influences, and Therapeutic Strategies. EPIGENOMES 2024; 8:34. [PMID: 39311136 PMCID: PMC11417785 DOI: 10.3390/epigenomes8030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Infertility is a complex condition caused by a combination of genetic, environmental, and lifestyle factors. Recent advances in epigenetics have highlighted the importance of epigenetic changes in fertility regulation. This review aims to provide a comprehensive overview of the epigenetic mechanisms involved in infertility, with a focus on DNA methylation, histone modification, and non-coding RNAs. We investigate the specific epigenetic events that occur during gametogenesis, with a focus on spermatogenesis and oogenesis as distinct processes. Furthermore, we investigate how environmental factors such as diet, stress, and toxin exposure can influence these epigenetic changes, potentially leading to infertility. The second part of the review explores epigenetic changes as therapeutic targets for infertility. Emerging therapies that modulate epigenetic marks present promising opportunities for fertility restoration, particularly in spermatogenesis. By summarizing current research findings, this review emphasizes the importance of understanding epigenetic contributions to infertility. Our discussion aims to lay the groundwork for future research directions and clinical applications in reproductive health.
Collapse
Affiliation(s)
- Lara Saftić Martinović
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (L.S.M.); (T.M.); (S.O.)
| | - Tea Mladenić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (L.S.M.); (T.M.); (S.O.)
| | - Dora Lovrić
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia;
| | - Saša Ostojić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (L.S.M.); (T.M.); (S.O.)
| | - Sanja Dević Pavlić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (L.S.M.); (T.M.); (S.O.)
| |
Collapse
|
24
|
Pavlinek A, Adhya D, Tsompanidis A, Warrier V, Vernon AC, Lancaster M, Mill J, Srivastava DP, Baron-Cohen S. Using Organoids to Model Sex Differences in the Human Brain. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100343. [PMID: 39092139 PMCID: PMC11292257 DOI: 10.1016/j.bpsgos.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 08/04/2024] Open
Abstract
Sex differences are widespread during neurodevelopment and play a role in neuropsychiatric conditions such as autism, which is more prevalent in males than females. In humans, males have been shown to have larger brain volumes than females with development of the hippocampus and amygdala showing prominent sex differences. Mechanistically, sex steroids and sex chromosomes drive these differences in brain development, which seem to peak during prenatal and pubertal stages. Animal models have played a crucial role in understanding sex differences, but the study of human sex differences requires an experimental model that can recapitulate complex genetic traits. To fill this gap, human induced pluripotent stem cell-derived brain organoids are now being used to study how complex genetic traits influence prenatal brain development. For example, brain organoids from individuals with autism and individuals with X chromosome-linked Rett syndrome and fragile X syndrome have revealed prenatal differences in cell proliferation, a measure of brain volume differences, and excitatory-inhibitory imbalances. Brain organoids have also revealed increased neurogenesis of excitatory neurons due to androgens. However, despite growing interest in using brain organoids, several key challenges remain that affect its validity as a model system. In this review, we discuss how sex steroids and the sex chromosomes each contribute to sex differences in brain development. Then, we examine the role of X chromosome inactivation as a factor that drives sex differences. Finally, we discuss the combined challenges of modeling X chromosome inactivation and limitations of brain organoids that need to be taken into consideration when studying sex differences.
Collapse
Affiliation(s)
- Adam Pavlinek
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Dwaipayan Adhya
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Alex Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | | | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Camilleri-Robles C, Amador R, Tiebe M, Teleman A, Serras F, Guigó R, Corominas M. Long non-coding RNAs involved in Drosophila development and regeneration. NAR Genom Bioinform 2024; 6:lqae091. [PMID: 39157585 PMCID: PMC11327875 DOI: 10.1093/nargab/lqae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
The discovery of functional long non-coding RNAs (lncRNAs) changed their initial concept as transcriptional noise. LncRNAs have been identified as regulators of multiple biological processes, including chromatin structure, gene expression, splicing, mRNA degradation, and translation. However, functional studies of lncRNAs are hindered by the usual lack of phenotypes upon deletion or inhibition. Here, we used Drosophila imaginal discs as a model system to identify lncRNAs involved in development and regeneration. We examined a subset of lncRNAs expressed in the wing, leg, and eye disc development. Additionally, we analyzed transcriptomic data from regenerating wing discs to profile the expression pattern of lncRNAs during tissue repair. We focused on the lncRNA CR40469, which is upregulated during regeneration. We generated CR40469 mutant flies that developed normally but showed impaired wing regeneration upon cell death induction. The ability of these mutants to regenerate was restored by the ectopic expression of CR40469. Furthermore, we found that the lncRNA CR34335 has a high degree of sequence similarity with CR40469 and can partially compensate for its function during regeneration in the absence of CR40469. Our findings point to a potential role of the lncRNA CR40469 in trans during the response to damage in the wing imaginal disc.
Collapse
Affiliation(s)
- Carlos Camilleri-Robles
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Raziel Amador
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Marcel Tiebe
- German Cancer Research Center (DKFZ) Heidelberg, Division B140, 69120 Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ) Heidelberg, Division B140, 69120 Heidelberg, Germany
| | - Florenci Serras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
26
|
Cavalleri E, Cabri A, Soto-Gomez M, Bonfitto S, Perlasca P, Gliozzo J, Callahan TJ, Reese J, Robinson PN, Casiraghi E, Valentini G, Mesiti M. An ontology-based knowledge graph for representing interactions involving RNA molecules. Sci Data 2024; 11:906. [PMID: 39174566 PMCID: PMC11341713 DOI: 10.1038/s41597-024-03673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
The "RNA world" represents a novel frontier for the study of fundamental biological processes and human diseases and is paving the way for the development of new drugs tailored to each patient's biomolecular characteristics. Although scientific data about coding and non-coding RNA molecules are constantly produced and available from public repositories, they are scattered across different databases and a centralized, uniform, and semantically consistent representation of the "RNA world" is still lacking. We propose RNA-KG, a knowledge graph (KG) encompassing biological knowledge about RNAs gathered from more than 60 public databases, integrating functional relationships with genes, proteins, and chemicals and ontologically grounded biomedical concepts. To develop RNA-KG, we first identified, pre-processed, and characterized each data source; next, we built a meta-graph that provides an ontological description of the KG by representing all the bio-molecular entities and medical concepts of interest in this domain, as well as the types of interactions connecting them. Finally, we leveraged an instance-based semantically abstracted knowledge model to specify the ontological alignment according to which RNA-KG was generated. RNA-KG can be downloaded in different formats and also queried by a SPARQL endpoint. A thorough topological analysis of the resulting heterogeneous graph provides further insights into the characteristics of the "RNA world". RNA-KG can be both directly explored and visualized, and/or analyzed by applying computational methods to infer bio-medical knowledge from its heterogeneous nodes and edges. The resource can be easily updated with new experimental data, and specific views of the overall KG can be extracted according to the bio-medical problem to be studied.
Collapse
Affiliation(s)
- Emanuele Cavalleri
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
| | - Alberto Cabri
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
| | - Mauricio Soto-Gomez
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
| | - Sara Bonfitto
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
| | - Paolo Perlasca
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
| | - Jessica Gliozzo
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
| | - Tiffany J Callahan
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Justin Reese
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter N Robinson
- Berlin Institute of Health - Charité, Universitätsmedizin, Berlin, 13353, Germany
- ELLIS, European Laboratory for Learning and Intelligent Systems, Munich, Germany
| | - Elena Casiraghi
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- ELLIS, European Laboratory for Learning and Intelligent Systems, Munich, Germany
| | - Giorgio Valentini
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
- ELLIS, European Laboratory for Learning and Intelligent Systems, Munich, Germany
| | - Marco Mesiti
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
27
|
Caballero-Huertas M, Salazar-Moscoso M, Ribas L. Sex is a Crucial Factor in the Immune Response: An Ichthyological Perspective. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2024:1-21. [DOI: 10.1080/23308249.2024.2390965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Marta Caballero-Huertas
- CIRAD, UMR ISEM, Montpellier, France
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Marcela Salazar-Moscoso
- Institut de Ciències Del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Laia Ribas
- Institut de Ciències Del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
28
|
Kafida M, Karela M, Giakountis A. RNA-Independent Regulatory Functions of lncRNA in Complex Disease. Cancers (Basel) 2024; 16:2728. [PMID: 39123456 PMCID: PMC11311644 DOI: 10.3390/cancers16152728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
During the metagenomics era, high-throughput sequencing efforts both in mice and humans indicate that non-coding RNAs (ncRNAs) constitute a significant fraction of the transcribed genome. During the past decades, the regulatory role of these non-coding transcripts along with their interactions with other molecules have been extensively characterized. However, the study of long non-coding RNAs (lncRNAs), an ncRNA regulatory class with transcript lengths that exceed 200 nucleotides, revealed that certain non-coding transcripts are transcriptional "by-products", while their loci exert their downstream regulatory functions through RNA-independent mechanisms. Such mechanisms include, but are not limited to, chromatin interactions and complex promoter-enhancer competition schemes that involve the underlying ncRNA locus with or without its nascent transcription, mediating significant or even exclusive roles in the regulation of downstream target genes in mammals. Interestingly, such RNA-independent mechanisms often drive pathological manifestations, including oncogenesis. In this review, we summarize selective examples of lncRNAs that regulate target genes independently of their produced transcripts.
Collapse
Affiliation(s)
| | | | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
29
|
Gupta K, Czerminski JT, Lawrence JB. Trisomy silencing by XIST: translational prospects and challenges. Hum Genet 2024; 143:843-855. [PMID: 38459355 PMCID: PMC11294271 DOI: 10.1007/s00439-024-02651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/25/2024] [Indexed: 03/10/2024]
Abstract
XIST RNA is heavily studied for its role in fundamental epigenetics and X-chromosome inactivation; however, the translational potential of this singular RNA has been much less explored. This article combines elements of a review on XIST biology with our perspective on the translational prospects and challenges of XIST transgenics. We first briefly review aspects of XIST RNA basic biology that are key to its translational relevance, and then discuss recent efforts to develop translational utility of XIST for chromosome dosage disorders, particularly Down syndrome (DS). Remarkably, it was shown in vitro that expression of an XIST transgene inserted into one chromosome 21 can comprehensively silence that chromosome and "dosage compensate" Trisomy 21, the cause of DS. Here we summarize recent findings and discuss potential paths whereby ability to induce "trisomy silencing" can advance translational research for new therapeutic strategies. Despite its common nature, the underlying biology for various aspects of DS, including cell types and pathways impacted (and when), is poorly understood. Recent studies show that an inducible iPSC system to dosage-correct chromosome 21 can provide a powerful approach to unravel the cells and pathways directly impacted, and the developmental timing, information key to design pharmacotherapeutics. In addition, we discuss prospects of a more far-reaching and challenging possibility that XIST itself could be developed into a therapeutic agent, for targeted cellular "chromosome therapy". A few rare case studies of imbalanced X;autosome translocations indicate that natural XIST can rescue an otherwise lethal trisomy. The potential efficacy of XIST transgenes later in development faces substantial biological and technical challenges, although recent findings are encouraging, and technology is rapidly evolving. Hence, it is compelling to consider the transformative possibility that XIST-mediated chromosome therapy may ultimately be developed, for specific pathologies seen in DS, or other duplication disorders.
Collapse
Affiliation(s)
- Khusali Gupta
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Jan T Czerminski
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
- Medical Scientist Training Program, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
30
|
Lee YH, Hass EP, Campodonico W, Lee YK, Lasda E, Shah J, Rinn J, Hwang T. Massively parallel dissection of RNA in RNA-protein interactions in vivo. Nucleic Acids Res 2024; 52:e48. [PMID: 38726866 PMCID: PMC11162807 DOI: 10.1093/nar/gkae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
Many of the biological functions performed by RNA are mediated by RNA-binding proteins (RBPs), and understanding the molecular basis of these interactions is fundamental to biology. Here, we present massively parallel RNA assay combined with immunoprecipitation (MPRNA-IP) for in vivo high-throughput dissection of RNA-protein interactions and describe statistical models for identifying RNA domains and parsing the structural contributions of RNA. By using custom pools of tens of thousands of RNA sequences containing systematically designed truncations and mutations, MPRNA-IP is able to identify RNA domains, sequences, and secondary structures necessary and sufficient for protein binding in a single experiment. We show that this approach is successful for multiple RNAs of interest, including the long noncoding RNA NORAD, bacteriophage MS2 RNA, and human telomerase RNA, and we use it to interrogate the hitherto unknown sequence or structural RNA-binding preferences of the DNA-looping factor CTCF. By integrating systematic mutation analysis with crosslinking immunoprecipitation, MPRNA-IP provides a novel high-throughput way to elucidate RNA-based mechanisms behind RNA-protein interactions in vivo.
Collapse
Affiliation(s)
- Yu Hsuan Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Evan P Hass
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Will Campodonico
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Erika Lasda
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Jaynish S Shah
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - John L Rinn
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Taeyoung Hwang
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Shahraki K, Najafi A, Ilkhani Pak V, Shahraki K, Ghasemi Boroumand P, Sheervalilou R. The Traces of Dysregulated lncRNAs-Associated ceRNA Axes in Retinoblastoma: A Systematic Scope Review. Curr Eye Res 2024; 49:551-564. [PMID: 38299506 DOI: 10.1080/02713683.2024.2306859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE Long non-coding RNAs are an essential component of competing endogenous RNA regulatory axes and play their role by sponging microRNAs and interfering with the regulation of gene expression. Because of the broadness of competing endogenous RNA interaction networks, they may help investigate treatment targets in complicated disorders. METHODS This study performed a systematic scoping review to assess verified loops of competing endogenous RNAs in retinoblastoma, emphasizing the competing endogenous RNAs axis related to long non-coding RNAs. We used a six-stage approach framework and the PRISMA guidelines. A systematic search of seven databases was done to locate suitable papers published before February 2022. Two reviewers worked independently to screen articles and collect data. RESULTS Out of 363 records, fifty-one articles met the inclusion criteria, and sixty-three axes were identified in desired articles. The majority of the research reported several long non-coding RNAs that were experimentally verified to act as competing endogenous RNAs in retinoblastoma: XIST/NEAT1/MALAT1/SNHG16/KCNQ1OT1, respectively. At the same time, around half of the studies investigated unique long non-coding RNAs. CONCLUSIONS Understanding the many features of this regulatory system may aid in elucidating the unknown etiology of Retinoblastoma and providing novel molecular targets for therapeutic and clinical applications.
Collapse
Affiliation(s)
- Kourosh Shahraki
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amin Najafi
- Department of Ophthalmology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vida Ilkhani Pak
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kianoush Shahraki
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Paria Ghasemi Boroumand
- ENT, Head and Neck Research Center and Department, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
32
|
Aharonoff A, Kim J, Washington A, Ercan S. SMC-mediated dosage compensation in C. elegans evolved in the presence of an ancestral nematode mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595224. [PMID: 38826443 PMCID: PMC11142195 DOI: 10.1101/2024.05.21.595224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Mechanisms of X chromosome dosage compensation have been studied extensively in a few model species representing clades of shared sex chromosome ancestry. However, the diversity within each clade as a function of sex chromosome evolution is largely unknown. Here, we anchor ourselves to the nematode Caenorhabditis elegans, for which a well-studied mechanism of dosage compensation occurs through a specialized structural maintenance of chromosomes (SMC) complex, and explore the diversity of dosage compensation in the surrounding phylogeny of nematodes. Through phylogenetic analysis of the C. elegans dosage compensation complex and a survey of its epigenetic signatures, including X-specific topologically associating domains (TADs) and X-enrichment of H4K20me1, we found that the condensin-mediated mechanism evolved recently in the lineage leading to Caenorhabditis through an SMC-4 duplication. Intriguingly, an independent duplication of SMC-4 and the presence of X-specific TADs in Pristionchus pacificus suggest that condensin-mediated dosage compensation arose more than once. mRNA-seq analyses of gene expression in several nematode species indicate that dosage compensation itself is ancestral, as expected from the ancient XO sex determination system. Indicative of the ancestral mechanism, H4K20me1 is enriched on the X chromosomes in Oscheius tipulae, which does not contain X-specific TADs or SMC-4 paralogs. Together, our results indicate that the dosage compensation system in C. elegans is surprisingly new, and condensin may have been co-opted repeatedly in nematodes, suggesting that the process of evolving a chromosome-wide gene regulatory mechanism for dosage compensation is constrained. Significance statement X chromosome dosage compensation mechanisms evolved in response to Y chromosome degeneration during sex chromosome evolution. However, establishment of dosage compensation is not an endpoint. As sex chromosomes change, dosage compensation strategies may have also changed. In this study, we performed phylogenetic and epigenomic analyses surrounding Caenorhabditis elegans and found that the condensin-mediated dosage compensation mechanism in C. elegans is surprisingly new, and has evolved in the presence of an ancestral mechanism. Intriguingly, condensin-based dosage compensation may have evolved more than once in the nematode lineage, the other time in Pristionchus. Together, our work highlights a previously unappreciated diversity of dosage compensation mechanisms within a clade, and suggests constraints in evolving new mechanisms in the presence of an existing one.
Collapse
Affiliation(s)
- Avrami Aharonoff
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Aaliyah Washington
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| |
Collapse
|
33
|
Jo YH. Differential transcriptional profiles of vagal sensory neurons in female and male mice. Front Neurosci 2024; 18:1393196. [PMID: 38808032 PMCID: PMC11131592 DOI: 10.3389/fnins.2024.1393196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Differences in metabolic homeostasis, diabetes, and obesity between males and females are evident in rodents and humans. Vagal sensory neurons in the vagus nerve ganglia innervate a variety of visceral organs and use specialized nerve endings to sense interoceptive signals. This visceral organ-brain axis plays a role in relaying interoceptive signals to higher brain centers, as well as in regulating the vago-vagal reflex. I hypothesized that molecularly distinct populations of vagal sensory neurons would play a role in causing differences in metabolic homeostasis between the sexes. Methods SnRNA-Seq was conducted on dissociated cells from the vagus nerve ganglia using the 10X Genomics Chromium platform. Results Single-nucleus RNA sequencing analysis of vagal sensory neurons from female and male mice revealed differences in the transcriptional profiles of cells in the vagus nerve ganglia. These differences are linked to the expression of sex-specific genes such as Xist, Tsix, and Ddx3y. Among the 13 neuronal clusters, one-fourth of the neurons in male mice were located in the Ddx3y-enriched VN1 and VN8 clusters, which displayed higher enrichment of Trpv1, Piezo2, Htr3a, and Vip genes. In contrast, 70% of the neurons in females were found in Xist-enriched clusters VN4, 6, 7, 10, 11, and 13, which showed enriched genes such as Fgfr1, Lpar1, Cpe, Esr1, Nrg1, Egfr, and Oprm1. Two clusters of satellite cells were identified, one of which contained oligodendrocyte precursor cells in male mice. A small population of cells expressed Ucp1 and Plin1, indicating that they are epineural adipocytes. Discussion Understanding the physiological implications of distinct transcriptomic profiles in vagal sensory neurons on energy balance and metabolic homeostasis would help develop sex-specific treatments for obesity and metabolic dysregulation.
Collapse
Affiliation(s)
- Young-Hwan Jo
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, NY, United States
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
34
|
Farzaneh M, Anbiyaee O, Azizidoost S, Nasrolahi A, Ghaedrahmati F, Kempisty B, Mozdziak P, Khoshnam SE, Najafi S. The Mechanisms of Long Non-coding RNA-XIST in Ischemic Stroke: Insights into Functional Roles and Therapeutic Potential. Mol Neurobiol 2024; 61:2745-2753. [PMID: 37932544 DOI: 10.1007/s12035-023-03740-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Ischemic stroke, which occurs due to the occlusion of cerebral arteries, is a common type of stroke. Recent research has highlighted the important role of long non-coding RNAs (lncRNAs) in the development of cerebrovascular diseases, specifically ischemic stroke. Understanding the functional roles of lncRNAs in ischemic stroke is crucial, given their potential contribution to the disease pathology. One noteworthy lncRNA is X-inactive specific transcript (XIST), which exhibits downregulation during the early stages of ischemic stroke and subsequent upregulation in later stages. XIST exert its influence on the development of ischemic stroke through interactions with multiple miRNAs and transcription factors. These interactions play a significant role in the pathogenesis of the condition. In this review, we have provided a comprehensive summary of the functional roles of XIST in ischemic stroke. By investigating the involvement of XIST in the disease process, we aim to enhance our understanding of the mechanisms underlying ischemic stroke and potentially identify novel therapeutic targets.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Namazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, USA
| | - Paul Mozdziak
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, USA
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Yao Q, He T, Liao JY, Liao R, Wu X, Lin L, Xiao G. Noncoding RNAs in skeletal development and disorders. Biol Res 2024; 57:16. [PMID: 38644509 PMCID: PMC11034114 DOI: 10.1186/s40659-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Protein-encoding genes only constitute less than 2% of total human genomic sequences, and 98% of genetic information was previously referred to as "junk DNA". Meanwhile, non-coding RNAs (ncRNAs) consist of approximately 60% of the transcriptional output of human cells. Thousands of ncRNAs have been identified in recent decades, and their essential roles in the regulation of gene expression in diverse cellular pathways associated with fundamental cell processes, including proliferation, differentiation, apoptosis, and metabolism, have been extensively investigated. Furthermore, the gene regulation networks they form modulate gene expression in normal development and under pathological conditions. In this review, we integrate current information about the classification, biogenesis, and function of ncRNAs and how these ncRNAs support skeletal development through their regulation of critical genes and signaling pathways in vivo. We also summarize the updated knowledge of ncRNAs involved in common skeletal diseases and disorders, including but not limited to osteoporosis, osteoarthritis, rheumatoid arthritis, scoliosis, and intervertebral disc degeneration, by highlighting their roles established from in vivo, in vitro, and ex vivo studies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Rongdong Liao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
36
|
Liang M, Zhang L, Lai L, Li Z. Unraveling the role of Xist in X chromosome inactivation: insights from rabbit model and deletion analysis of exons and repeat A. Cell Mol Life Sci 2024; 81:156. [PMID: 38551746 PMCID: PMC10980640 DOI: 10.1007/s00018-024-05151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 04/01/2024]
Abstract
X chromosome inactivation (XCI) is a process that equalizes the expression of X-linked genes between males and females. It relies on Xist, continuously expressed in somatic cells during XCI maintenance. However, how Xist impacts XCI maintenance and its functional motifs remain unclear. In this study, we conducted a comprehensive analysis of Xist, using rabbits as an ideal non-primate model. Homozygous knockout of exon 1, exon 6, and repeat A in female rabbits resulted in embryonic lethality. However, X∆ReAX females, with intact X chromosome expressing Xist, showed no abnormalities. Interestingly, there were no significant differences between females with homozygous knockout of exons 2-5 and wild-type rabbits, suggesting that exons 2, 3, 4, and 5 are less important for XCI. These findings provide evolutionary insights into Xist function.
Collapse
Affiliation(s)
- Mingming Liang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lichao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Liangxue Lai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, 100039, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences, Guangzhou, 510530, China.
| | - Zhanjun Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
37
|
Hauth A, Panten J, Kneuss E, Picard C, Servant N, Rall I, Pérez-Rico YA, Clerquin L, Servaas N, Villacorta L, Jung F, Luong C, Chang HY, Zaugg JB, Stegle O, Odom DT, Loda A, Heard E. Escape from X inactivation is directly modulated by levels of Xist non-coding RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581559. [PMID: 38559194 PMCID: PMC10979913 DOI: 10.1101/2024.02.22.581559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In placental females, one copy of the two X chromosomes is largely silenced during a narrow developmental time window, in a process mediated by the non-coding RNA Xist1. Here, we demonstrate that Xist can initiate X-chromosome inactivation (XCI) well beyond early embryogenesis. By modifying its endogenous level, we show that Xist has the capacity to actively silence genes that escape XCI both in neuronal progenitor cells (NPCs) and in vivo, in mouse embryos. We also show that Xist plays a direct role in eliminating TAD-like structures associated with clusters of escapee genes on the inactive X chromosome, and that this is dependent on Xist's XCI initiation partner, SPEN2. We further demonstrate that Xist's function in suppressing gene expression of escapees and topological domain formation is reversible for up to seven days post-induction, but that sustained Xist up-regulation leads to progressively irreversible silencing and CpG island DNA methylation of facultative escapees. Thus, the distinctive transcriptional and regulatory topologies of the silenced X chromosome is actively, directly - and reversibly - controlled by Xist RNA throughout life.
Collapse
Affiliation(s)
- Antonia Hauth
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Germany
| | - Jasper Panten
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69117, Heidelberg, Germany
| | - Emma Kneuss
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
| | - Christel Picard
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
- Present address: Institute of Molecular Genetics of Montpellier University of Montpellier, CNRS, 34090 Montpellier, France
| | - Nicolas Servant
- Bioinformatics and Computational Systems Biology of Cancer, INSERM U900, Paris 75005, France
| | - Isabell Rall
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
- Present address: Institute of Human Biology (IHB), Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Yuvia A Pérez-Rico
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
| | - Lena Clerquin
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
| | - Nila Servaas
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Laura Villacorta
- European Molecular Biology Laboratory, Genomics Core Facility, 69117 Heidelberg, Germany
| | - Ferris Jung
- European Molecular Biology Laboratory, Genomics Core Facility, 69117 Heidelberg, Germany
| | - Christy Luong
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
- Molecular Medicine Partnership Unit, EMBL-University of Heidelberg, Heidelberg, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Duncan T Odom
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69117, Heidelberg, Germany
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Agnese Loda
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
| | - Edith Heard
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
- Collège de France, Paris 75005, France
| |
Collapse
|
38
|
Nejaddehghan S, Zargar SJ, Oloomi M, Baesi K, Kouhsar M. Inhibition of Mir-21-5p Affects the Expression of LNCRNA X-Inactive Specific Transcript and Induces Apoptosis in MCF-7 Breast Cancer Cells. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:714-725. [PMID: 38919297 PMCID: PMC11194654 DOI: 10.18502/ijph.v53i3.15154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/17/2023] [Indexed: 06/27/2024]
Abstract
Background We aimed to investigate miR-21-5p inhibition effect on lncRNA-XIST expression and apoptosis status of MCF-7 cells. Methods The MCF-7 cells were cultured and transfected by the anti-miR-21-5p oligonucleotide and expression of miR-21-5p, lncRNA-XIST, apoptosis-associated genes (bax and p53) and one miR-21-5p-unrelated lncRNA (BC200) was assessed by RT-qPCR. Furthermore, cell viability checked by MTT assay and apoptosis and cell cycle in transfected cells were detected by flow cytometry. Also, bioinformatics analysis on the transcriptome data confirmed that the lncRNA XIST might have a critical role in breast cancer (BC) cell apoptosis through ceRNAs mechanism and possible regulatory interactions with miR-21-5p. Results Expression of miR-21-5p and lncRNA-XIST was significantly down- and up-regulated respectively (P<0.05). However, there was no significant change in lncRNA-BC200 expression. Also, the expression of bax and p53 upraised significantly (P<0.05). In transfected cells, MTT and flow cytometry assays reported a highly significant decrease and increase in viability and apoptosis respectively. Conclusion Inhibition of miR-21-5p resulted in significant upregulation of lncRNA-XIST and apoptosis-associated genes bax and p53, which led to the induction of apoptosis in MCF-7 cells. Therefore, more investigations may provide a valuable target for studies on molecular therapies for BC.
Collapse
Affiliation(s)
- Samaneh Nejaddehghan
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Seyed Jalal Zargar
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Kazem Baesi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Kouhsar
- Laboratory of Systems Biology and Bioinformatics (IBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
39
|
Tang AA, Afasizheva A, Cano CT, Plath K, Black D, Franco E. Optimization of RNA Pepper Sensors for the Detection of Arbitrary RNA Targets. ACS Synth Biol 2024; 13:498-508. [PMID: 38295291 DOI: 10.1021/acssynbio.3c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The development of fluorescent light-up RNA aptamers (FLAPs) has paved the way for the creation of sensors to track RNA in live cells. A major challenge with FLAP sensors is their brightness and limited signal-to-background ratio both in vivo and in vitro. To address this, we develop sensors using the Pepper aptamer, which exhibits superior brightness and photostability when compared to other FLAPs. The sensors are designed to fold into a low fluorescence conformation and to switch to a high fluorescence conformation through toehold or loop-mediated interactions with their RNA target. Our sensors detect RNA targets as short as 20 nucleotides in length with a wide dynamic range over 300-fold in vitro, and we describe strategies for optimizing the sensor's performance for any given RNA target. To demonstrate the versatility of our design approach, we generated Pepper sensors for a range of specific, biologically relevant RNA sequences. Our design and optimization strategies are portable to other FLAPs and offer a promising foundation for future development of RNA sensors with high specificity and sensitivity for detecting RNA biomarkers with multiple applications.
Collapse
Affiliation(s)
- Anli A Tang
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Anna Afasizheva
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Clara T Cano
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Kathrin Plath
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, Brain Research Institute, Graduate Program in the Biosciences, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Douglas Black
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, Brain Research Institute, Graduate Program in the Biosciences, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
40
|
Zhao Y, Bhatnagar S. Epigenetic Modulations by Microbiome in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1465:55-69. [PMID: 39586993 DOI: 10.1007/978-3-031-66686-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Recent studies have identified a critical role of the diverse and dynamic microbiome in modulating various aspects of host physiology and intrinsic processes. However, the altered microbiome has also become a hallmark of cancer, which could influence the tumor microenvironment. Aberrations in epigenetic regulation of tumor suppressors, apoptotic genes, and oncogenes can accentuate breast cancer onset and progression. Interestingly, recent studies have established that the microbiota modulates the epigenetic mechanisms at global and gene-specific levels. While the mechanistic basis is unclear, the cross-talk between the microbiome and epigenetics influences breast cancer trajectory. Here, we review different epigenetic mechanisms of mammalian gene expression and summarize the host-associated microbiota distributed across the human body and their influence on cancer and other disease-related genes. Understanding this complex relationship between epigenetics and the microbiome holds promise for new insights into effective therapeutic strategies for breast cancer patients.
Collapse
Affiliation(s)
- Yuanji Zhao
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA
| | - Sanchita Bhatnagar
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA.
| |
Collapse
|
41
|
Karimi B, Mokhtari K, Rozbahani H, Peymani M, Nabavi N, Entezari M, Rashidi M, Taheriazam A, Ghaedi K, Hashemi M. Pathological roles of miRNAs and pseudogene-derived lncRNAs in human cancers, and their comparison as prognosis/diagnosis biomarkers. Pathol Res Pract 2024; 253:155014. [PMID: 38128189 DOI: 10.1016/j.prp.2023.155014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
This review examines and compares the diagnostic and prognostic capabilities of miRNAs and lncRNAs derived from pseudogenes in cancer patients. Additionally, it delves into their roles in cancer pathogenesis. Both miRNAs and pseudogene-derived lncRNAs have undergone thorough investigation as remarkably sensitive and specific cancer biomarkers, offering significant potential for cancer detection and monitoring. . Extensive research is essential to gain a complete understanding of the precise roles these non-coding RNAs play in cancer, allowing the development of novel targeted therapies and biomarkers for improved cancer detection and treatment approaches.
Collapse
Affiliation(s)
- Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khatere Mokhtari
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hossein Rozbahani
- Department of Psychology, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Psychology, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
42
|
Struck EC, Belova T, Hsieh PH, Odeberg JO, Kuijjer ML, Dusart PJ, Butler LM. Global Transcriptome Analysis Reveals Distinct Phases of the Endothelial Response to TNF. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:117-129. [PMID: 38019121 PMCID: PMC10733583 DOI: 10.4049/jimmunol.2300419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/19/2023] [Indexed: 11/30/2023]
Abstract
The vascular endothelium acts as a dynamic interface between blood and tissue. TNF-α, a major regulator of inflammation, induces endothelial cell (EC) transcriptional changes, the overall response dynamics of which have not been fully elucidated. In the present study, we conducted an extended time-course analysis of the human EC response to TNF, from 30 min to 72 h. We identified regulated genes and used weighted gene network correlation analysis to decipher coexpression profiles, uncovering two distinct temporal phases: an acute response (between 1 and 4 h) and a later phase (between 12 and 24 h). Sex-based subset analysis revealed that the response was comparable between female and male cells. Several previously uncharacterized genes were strongly regulated during the acute phase, whereas the majority in the later phase were IFN-stimulated genes. A lack of IFN transcription indicated that this IFN-stimulated gene expression was independent of de novo IFN production. We also observed two groups of genes whose transcription was inhibited by TNF: those that resolved toward baseline levels and those that did not. Our study provides insights into the global dynamics of the EC transcriptional response to TNF, highlighting distinct gene expression patterns during the acute and later phases. Data for all coding and noncoding genes is provided on the Web site (http://www.endothelial-response.org/). These findings may be useful in understanding the role of ECs in inflammation and in developing TNF signaling-targeted therapies.
Collapse
Affiliation(s)
- Eike C. Struck
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
| | - Tatiana Belova
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Ping-Han Hsieh
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Jacob O. Odeberg
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology, Stockholm, Sweden
- The University Hospital of North Norway, Tromsø, Norway
- Coagulation Unit, Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Marieke L. Kuijjer
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Philip J. Dusart
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology, Stockholm, Sweden
- Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Lynn M. Butler
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology, Stockholm, Sweden
- Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
43
|
Grams TR, Edwards TG, Bloom DC. A viral lncRNA tethers HSV-1 genomes at the nuclear periphery to establish viral latency. J Virol 2023; 97:e0143823. [PMID: 37991364 PMCID: PMC10734467 DOI: 10.1128/jvi.01438-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latency in neuronal cells. Following a stressor, the virus reactivates from latency, virus is shed at the periphery and recurrent disease can occur. During latency, the viral lncRNA termed the latency-associated transcript (LAT) is known to accumulate to high abundance. The LAT is known to impact many aspects of latency though the molecular events involved are not well understood. Here, we utilized a human neuronal cell line model of HSV latency and reactivation (LUHMES) to identify the molecular-binding partners of the LAT during latency. We found that the LAT binds to both the cellular protein, TMEM43, and HSV-1 genomes in LUHMES cells. Additionally, we find that knockdown of TMEM43 prior to infection results in a decreased ability of HSV-1 to establish latency. This work highlights a potential mechanism for how the LAT facilitates the establishment of HSV-1 latency in human neurons.
Collapse
Affiliation(s)
- Tristan R. Grams
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Terri G. Edwards
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - David C. Bloom
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
44
|
Vestergaard AL, Andersen MK, Olesen RV, Bor P, Larsen A. High-Dose Vitamin D Supplementation Significantly Affects the Placental Transcriptome. Nutrients 2023; 15:5032. [PMID: 38140291 PMCID: PMC10745524 DOI: 10.3390/nu15245032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Vitamin D deficiency is a highly prevalent obstetrical concern associated with an increased risk of complications like pre-eclampsia, gestational diabetes, and growth retardation. Vitamin D status in pregnancy is also linked to long-term offspring health, e.g., the risk of obesity, metabolic disease, and neurodevelopmental problems. Despite the suspected role of vitamin D in placental diseases and fetal development, there is limited knowledge on the effect of vitamin D on placental function. Thus, we performed next-generation RNA sequencing, comparing the placental transcriptome from uncomplicated term pregnancies receiving the often-recommended dose of 10 µg vitamin D/day (n = 36) with pregnancies receiving 90 µg/day (n = 34) from late first trimester to delivery. Maternal vitamin D status in the first trimester was also considered. We found that signaling pathways related to cell adhesion, immune function, and neurodevelopment were affected, supporting that increased vitamin D supplementation benefits placental function in established pregnancies without severe vitamin D deficiency, also underlining the importance of vitamin D in brain development. Specific effects of the first trimester vitamin D status and offspring sex were also identified. Further studies are warranted, addressing the optimal vitamin status during pregnancy with a focus on organ-specific vitamin D needs in individual pregnancies.
Collapse
Affiliation(s)
- Anna Louise Vestergaard
- Department of Obstetrics and Gynecology, Randers Regional Hospital, 8930 Randers, Denmark (P.B.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Matilde K. Andersen
- Department of Obstetrics and Gynecology, Randers Regional Hospital, 8930 Randers, Denmark (P.B.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark (A.L.)
| | - Rasmus V. Olesen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark (A.L.)
| | - Pinar Bor
- Department of Obstetrics and Gynecology, Randers Regional Hospital, 8930 Randers, Denmark (P.B.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Obstetrics and Gynecology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark (A.L.)
| |
Collapse
|
45
|
Zhong G, Yang Q, Wang Y, Liang Y, Wang X, Zhao D. Long noncoding RNA X-inactive specific transcript (lncRNA XIST) inhibits hepatic insulin resistance by competitively binding microRNA-182-5p. Immun Inflamm Dis 2023; 11:e969. [PMID: 38018594 PMCID: PMC10629262 DOI: 10.1002/iid3.969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND What is highlighted in this study refers to the role and molecular mechanism of long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) in cells with insulin resistance (IR). METHODS In this study, LX-2 cells were applied to establish IR model in vitro. The expressions of lncRNA XIST, phosphoenolpyruvate carboxykinase (PEPCK,) and glucose-6-phosphatase (G6Pase) were quantified by quantitative reverse transcription polymerase chain reaction. The 2-deoxy-d-glucose-6-phosphate (2-DG6P) level was detected utilizing 2-deoxy-d-glucose (2-DG) uptake measurement kit. Western blot was adopted to measure the protein expressions of insulin-like growth factor-1 receptor (IGF-1R), G6Pase, PEPCK, and phosphatidylinositol 3-kinase (PI3K)/Akt pathway-related genes. StarBase was used to predict the targeting relationship between lncRNA XIST or IGF-1R with miR-182-5p, the results of which were verified by dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation assays. Rescue experiments were conducted to investigate the effect of miR-182-5p on IR cells. Next, low-expressed lncRNA XIST and high-expressed miR-182-5p were observed in IR cells. RESULTS Upregulation of lncRNA XIST increased IGF-1R and 2-DG6P levels, decreased G6Pase and PEPCK expressions, and promoted PI3K/Akt pathway activation in IR cells. LncRNA XIST sponged miR-182-5p which targeted IGF-1R. MiR-182-5p mimic reversed the above effects of lncRNA XIST overexpression on IR cells. CONCLUSIONS In conclusion, lncRNA XIST/miR-182-5p axis alleviates hepatic IR in vitro via IGF-1R/PI3K/Akt signaling pathway, which could be the promising therapeutic target.
Collapse
Affiliation(s)
- Guoqing Zhong
- Hepatology DepartmentFirst People's HospitalNanyangChina
| | - Qingping Yang
- Endocrinology DepartmentFirst People's HospitalNanyangChina
| | - Yihua Wang
- Endocrinology DepartmentFirst People's HospitalNanyangChina
| | - Yuan Liang
- Endocrinology DepartmentFirst People's HospitalNanyangChina
| | - Xiaojing Wang
- Endocrinology DepartmentFirst People's HospitalNanyangChina
| | - Dongli Zhao
- Endocrinology DepartmentFirst People's HospitalNanyangChina
| |
Collapse
|
46
|
Connerty P, Lock RB. The tip of the iceberg-The roles of long noncoding RNAs in acute myeloid leukemia. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1796. [PMID: 37267628 PMCID: PMC10909534 DOI: 10.1002/wrna.1796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Long noncoding RNAs (lncRNAs) are traditionally defined as RNA transcripts longer than 200 nucleotides that have no protein coding potential. LncRNAs have been identified to be dysregulated in various types of cancer, including the deadly hematopoietic cancer-acute myeloid leukemia (AML). Currently, survival rates for AML have reached a plateau necessitating new therapeutic targets and biomarkers to improve treatment options and survival from the disease. Therefore, the identification of lncRNAs as novel biomarkers and therapeutic targets for AML has major benefits. In this review, we assess the key studies which have recently identified lncRNAs as important molecules in AML and summarize the current knowledge of lncRNAs in AML. We delve into examples of the specific roles of lncRNA action in AML such as driving proliferation, differentiation block and therapy resistance as well as their function as tumor suppressors and utility as biomarkers. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Patrick Connerty
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneySydneyNew South WalesAustralia
- School of Clinical MedicineUNSW Medicine & Health, UNSW SydneySydneyNew South WalesAustralia
- University of New South Wales Centre for Childhood Cancer ResearchUNSW SydneySydneyNew South WalesAustralia
| | - Richard B. Lock
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneySydneyNew South WalesAustralia
- School of Clinical MedicineUNSW Medicine & Health, UNSW SydneySydneyNew South WalesAustralia
- University of New South Wales Centre for Childhood Cancer ResearchUNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
47
|
Lin S, Margueron R, Charafe-Jauffret E, Ginestier C. Disruption of lineage integrity as a precursor to breast tumor initiation. Trends Cell Biol 2023; 33:887-897. [PMID: 37061355 DOI: 10.1016/j.tcb.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/17/2023]
Abstract
Increase in lineage infidelity and/or imbalance is frequently observed around the earliest stage of breast tumor initiation. In response to disruption of homeostasis, differentiated cells can partially lose their identity and gain cellular plasticity, a process involving epigenome landscape remodeling. This increase of cellular plasticity may promote the malignant transformation of breast tumors and fuel their heterogeneity. Here, we review recent studies that have yield insights into important regulators of lineage integrity and mechanisms that trigger mammary epithelial lineage derail, and evaluate their impacts on breast tumor development.
Collapse
Affiliation(s)
- Shuheng Lin
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | - Raphaël Margueron
- Institut Curie, PSL Research University, Sorbonne University, Paris, France
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France.
| | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France.
| |
Collapse
|
48
|
Pirbalouti RG, Mohseni MM, Taheri M, Neishabouri SM, Shirvani-Farsani Z. Deregulation of NF-κB associated long non-coding RNAs in bipolar disorder. Metab Brain Dis 2023; 38:2223-2230. [PMID: 37278925 DOI: 10.1007/s11011-023-01246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) are major genetic factors whose disruption lead to many diseases, including nervous system diseases. Bipolar disorder (BD) is a neuro-psychiatric disease with no definitive diagnosis and incomplete treatment. Regarding the role of NF-κB-associated lncRNAs in the neuro-psychiatric disorders, we examined the expression of three lncRNAs, DICER1-AS1, DILC, and CHAST, in BD patients. To assess lncRNA expression in peripheral blood mononuclear cells (PBMCs) of 50 BD patients and 50 healthy individuals, Real-time PCR was used. Additionally, some clinical characteristics of BD patients were investigated via an analysis of ROC curves and correlations. Based on our results, the expression level of CHAST increased significantly in BD patients in comparison with healthy people, in BD men compared with healthy men, as well as in BD women in comparison with control females (p < 0.05). A similar increase in expression was observed for DILC and DICER1-AS1 lncRNAs in female patients compared with healthy women. Whereas compared to healthy men, DILC was decreased in diseased men. Based on the results of the ROC curve, the area under the curve (AUC) for CHAST lncRNA was 0.83 with a P value of 0.0001. So, the expression level of CHAST lncRNA could play a role in the pathobiology of the BD and be considered a good putative biomarker for individuals with bipolar disorder.
Collapse
Affiliation(s)
- Razieh Ghasemi Pirbalouti
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Mahdieh Mehrab Mohseni
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medicals Sciences, Tehran, Iran.
| | - Seyedeh Morvarid Neishabouri
- Department of Psychiatric, Loghman Hakim Hospital, Shahid Beheshti University of Medicals Sciences, Tehran, Iran.
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
49
|
Deviatiiarov R, Nagai H, Ismagulov G, Stupina A, Wada K, Ide S, Toji N, Zhang H, Sukparangsi W, Intarapat S, Gusev O, Sheng G. Dosage compensation of Z sex chromosome genes in avian fibroblast cells. Genome Biol 2023; 24:213. [PMID: 37730643 PMCID: PMC10510239 DOI: 10.1186/s13059-023-03055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
In birds, sex is genetically determined; however, the molecular mechanism is not well-understood. The avian Z sex chromosome (chrZ) lacks whole chromosome inactivation, in contrast to the mammalian chrX. To investigate chrZ dosage compensation and its role in sex specification, we use a highly quantitative method and analyze transcriptional activities of male and female fibroblast cells from seven bird species. Our data indicate that three fourths of chrZ genes are strictly compensated across Aves, similar to mammalian chrX. We also present a complete list of non-compensated chrZ genes and identify Ribosomal Protein S6 (RPS6) as a conserved sex-dimorphic gene in birds.
Collapse
Affiliation(s)
- Ruslan Deviatiiarov
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Life Improvement by Future Technologies Institute, Moscow, Russian Federation
| | - Hiroki Nagai
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Galym Ismagulov
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Anastasia Stupina
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Kazuhiro Wada
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Shinji Ide
- Kumamoto City Zoo and Botanical Garden, Kumamoto, Japan
| | - Noriyuki Toji
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Heng Zhang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, Chonburi, Thailand
| | | | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
- Graduate School of Medicine, Juntendo University, Tokyo, Japan.
- Life Improvement by Future Technologies Institute, Moscow, Russian Federation.
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
50
|
Nakamura-García AK, Espinal-Enríquez J. Pseudogenes in Cancer: State of the Art. Cancers (Basel) 2023; 15:4024. [PMID: 37627052 PMCID: PMC10452131 DOI: 10.3390/cancers15164024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudogenes are duplicates of protein-coding genes that have accumulated multiple detrimental alterations, rendering them unable to produce the protein they encode. Initially disregarded as "junk DNA" due to their perceived lack of functionality, research on their biological roles has been hindered by this assumption. Nevertheless, recent focus has shifted towards these molecules due to their abnormal expression in cancer phenotypes. In this review, our objective is to provide a thorough overview of the current understanding of pseudogene formation, the mechanisms governing their expression, and the roles they may play in promoting tumorigenesis.
Collapse
|