1
|
Compton A, Sharma A, Hempel M, Aryan A, Biedler JK, Potters MB, Chandrasegaran K, Vinauger C, Tu Z. Differential elimination of marked sex chromosomes enables production of nontransgenic male mosquitoes in a single strain. Proc Natl Acad Sci U S A 2025; 122:e2412149122. [PMID: 40339129 PMCID: PMC12087967 DOI: 10.1073/pnas.2412149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/25/2025] [Indexed: 05/10/2025] Open
Abstract
Diverse genetic strategies are being pursued to control mosquito-borne infectious diseases. These strategies often rely on the release of nonbiting males to either reduce the target mosquito population or render them resistant to pathogens. Male-only releases are important as any contaminating females can bite and potentially transmit pathogens. Despite significant efforts, it remains a major bottleneck to reliably and efficiently separate males from females, especially when nontransgenic males are preferred. In the yellow fever mosquito Aedes aegypti, sex is determined by a pair of homomorphic sex chromosomes, with the dominant male-determining locus (the M locus) and its counterpart (the m locus) embedded in an M-bearing and an m-bearing chromosome 1, respectively. We utilized both naturally occurring and engineered sex-linked recessive lethal alleles (RLAs) to create sex separation strains for Ae. aegypti on the basis of differential elimination of marked sex chromosomes (DeMark). DeMark strains are self-sustaining and produce nontransgenic males that are readily separated from individuals carrying RLA- and transgene-marked m chromosomes. For example, the marked m chromosome in the heterozygous mother in some strains was only inherited by her female progeny due to RLA-mediated incompatibility with the M-bearing chromosome in the father, producing nontransgenic males and transgenic females, generation after generation. We further explore strategies to conditionally eliminate females that contain marked sex chromosomes. We also discuss DeMark designs that are applicable for efficient sex separation in organisms with well-differentiated X and Y chromosomes, such as the Anopheles mosquitoes.
Collapse
Affiliation(s)
- Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Atashi Sharma
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Melanie Hempel
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Azadeh Aryan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - James K. Biedler
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Mark B. Potters
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | | | - Clément Vinauger
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
2
|
Budelli G, Ferreiro MJ, Bolatto C. Taking flight, the use of Drosophila melanogaster for neuroscience research in Uruguay. Neuroscience 2025; 573:104-119. [PMID: 40058485 DOI: 10.1016/j.neuroscience.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
The Sociedad de Neurociencias del Uruguay is celebrating its 30th anniversary, sustained by more than a century of neuroscience research in the country. During this time, different approaches and experimental organisms have been incorporated to study diverse aspects of neurobiology. One of these experimental animals, successfully used in a variety of biological fields, is the fruit fly Drosophila melanogaster. Although Drosophila has been a model organism for neuroscience research worldwide for many decades, its use in Uruguay for that purpose is relatively new and just taking flight. In this special issue article, we will describe some of the research lines that are currently using Drosophila for neuroscience studies, questioning a wide range of issues including thermoreception, neurodegenerative diseases such as Parkinson's, screening of bioactive compounds with a neuroprotective effect, and gene/protein function during development of the nervous system. The consolidation of these research lines has been achieved due to unique features of D. melanogaster as an experimental model. We will review the advantages of using Drosophila to study neurobiology and describe some of its useful genetic tools. Advantages such as having powerful genetics, highly conserved disease pathways, a complete connectome, very low comparative costs, easy maintenance, and the support of a collaborative community allowing access to a vast toolkit, all make D. melanogaster an ideal model organism for neuroscientists in countries with low levels of investment in research and development. This review focuses on the strengths and description of useful techniques to study neurobiology using Drosophila, from the perspective of a Latin-American experience.
Collapse
Affiliation(s)
- Gonzalo Budelli
- Unidad Académica de Biofísica, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay.
| | - María José Ferreiro
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura (MEC), Montevideo, Uruguay
| | - Carmen Bolatto
- Unidad Académica de Histología y Embriología, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay; Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura (MEC), Montevideo, Uruguay
| |
Collapse
|
3
|
Yuan Y, Yu L, Zhuang X, Wen D, He J, Hong J, Xie J, Ling S, Du X, Chen W, Wang X. Drosophila models used to simulate human ATP1A1 gene mutations that cause Charcot-Marie-Tooth type 2 disease and refractory seizures. Neural Regen Res 2025; 20:265-276. [PMID: 38767491 PMCID: PMC11246156 DOI: 10.4103/1673-5374.391302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/21/2023] [Accepted: 11/06/2023] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00034/figure1/v/2024-05-14T021156Z/r/image-tiff Certain amino acids changes in the human Na+/K+-ATPase pump, ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1), cause Charcot-Marie-Tooth disease type 2 (CMT2) disease and refractory seizures. To develop in vivo models to study the role of Na+/K+-ATPase in these diseases, we modified the Drosophila gene homolog, Atpα, to mimic the human ATP1A1 gene mutations that cause CMT2. Mutations located within the helical linker region of human ATP1A1 (I592T, A597T, P600T, and D601F) were simultaneously introduced into endogenous DrosophilaAtpα by CRISPR/Cas9-mediated genome editing, generating the AtpαTTTF model. In addition, the same strategy was used to generate the corresponding single point mutations in flies (AtpαI571T, AtpαA576T, AtpαP579T, and AtpαD580F). Moreover, a deletion mutation (Atpαmut) that causes premature termination of translation was generated as a positive control. Of these alleles, we found two that could be maintained as homozygotes (AtpαI571T and AtpαP579T). Three alleles (AtpαA576T, AtpαP579 and AtpαD580F) can form heterozygotes with the Atpαmut allele. We found that the Atpα allele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila. Flies heterozygous for AtpαTTTF mutations have motor performance defects, a reduced lifespan, seizures, and an abnormal neuronal morphology. These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.
Collapse
Affiliation(s)
- Yao Yuan
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Lingqi Yu
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Xudong Zhuang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujian Province, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Dongjing Wen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Jin He
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jingmei Hong
- Department of Neurology and Institute of Neurology of The First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jiayu Xie
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Shengan Ling
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Xiaoyue Du
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Wenfeng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Xinrui Wang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujian Province, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
4
|
Matsuoka Y, Nakamura T, Watanabe T, Barnett AA, Tomonari S, Ylla G, Whittle CA, Noji S, Mito T, Extavour CG. Establishment of CRISPR/Cas9-based knock-in in a hemimetabolous insect: targeted gene tagging in the cricket Gryllus bimaculatus. Development 2025; 152:dev199746. [PMID: 39514640 PMCID: PMC11829760 DOI: 10.1242/dev.199746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/05/2024] [Indexed: 11/16/2024]
Abstract
Studies of traditional model organisms such as the fruit fly Drosophila melanogaster have contributed immensely to our understanding of the genetic basis of developmental processes. However, the generalizability of these findings cannot be confirmed without functional genetic analyses in additional organisms. Direct genome editing using targeted nucleases has the potential to transform hitherto poorly understood organisms into viable laboratory organisms for functional genetic study. To this end, we present a method to induce targeted genome knockout and knock-in of desired sequences in an insect that serves as an informative contrast to Drosophila, the cricket Gryllus bimaculatus. The efficiency of germline transmission of induced mutations is comparable with that reported for other well-studied laboratory organisms, and knock-ins targeting introns yield viable, fertile animals in which knock-in events are directly detectable by visualization of a fluorescent marker in the expression pattern of the targeted gene. Combined with the recently assembled and annotated genome of this cricket, this knock-in/knockout method increases the viability of G. bimaculatus as a tractable system for functional genetics in a basally branching insect.
Collapse
Affiliation(s)
- Yuji Matsuoka
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | - Taro Nakamura
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Takahito Watanabe
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
- Bio-Innovation Research Center, Tokushima University, 2272-2 Ishii, Ishii-cho, Myozai-gun, Tokushima 779-3233, Japan
| | - Austen A. Barnett
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Sayuri Tomonari
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | - Guillem Ylla
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Carrie A. Whittle
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sumihare Noji
- Tokushima University, 2-14 Shinkura-cho, Tokushima City 770-8501, Japan
| | - Taro Mito
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Molecular and Cellular Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
5
|
Lake CM, Gardner J, Briggs S, Yu Z, McKown G, Hawley RS. The deubiquitinase Usp7 in Drosophila melanogaster is required for synaptonemal complex maintenance. Proc Natl Acad Sci U S A 2024; 121:e2409346121. [PMID: 39190345 PMCID: PMC11388383 DOI: 10.1073/pnas.2409346121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Meiosis is a form of cell division that is essential to sexually reproducing organisms and is therefore highly regulated. Each event of meiosis must occur at the correct developmental stage to ensure that chromosomes are segregated properly during both meiotic divisions. One unique meiosis-specific structure that is tightly regulated in terms of timing of assembly and disassembly is the synaptonemal complex (SC). While the mechanism(s) for assembly and disassembly of the SC are poorly understood in Drosophila melanogaster, posttranslational modifications, including ubiquitination and phosphorylation, are known to play a role. Here, we identify a role for the deubiquitinase Usp7 in the maintenance of the SC in early prophase and show that its function in SC maintenance is independent of the meiotic recombination process. Using two usp7 shRNA constructs that result in different knockdown levels, we have shown that the presence of SC through early/mid-pachytene is critical for normal levels and placement of crossovers.
Collapse
Affiliation(s)
| | | | - Salam Briggs
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Grace McKown
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO64110
- Department of Molecular and Integrative Physiology, University of KansasMedical Center, Kansas City, KS66160
| |
Collapse
|
6
|
Makhijani K, Mar J, Gaziova I, Bhat KM. Posttranscriptional regulation of the T-box gene midline via the 3'UTR in Drosophila is complex and cell- and tissue-dependent. Genetics 2024; 227:iyae087. [PMID: 38805187 DOI: 10.1093/genetics/iyae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
The T-box (Tbx) proteins have a 180-230 amino acid DNA-binding domain, first reported in the Brachyury (T) protein. They are highly conserved among metazoans. They regulate a multitude of cellular functions in development and disease. Here, we report posttranscriptional and translational regulation of midline (mid), a Tbx member in Drosophila. We found that the 3'UTR of mid has mRNA degradation elements and AT-rich sequences. In Schneider S2 cells, mid-mRNA could be detected only when the transgene was without the 3'UTR. Similarly, the 3'UTR linked to the Renilla luciferase reporter significantly reduced the activity of the Luciferase, whereas deleting only the degradation elements from the 3'UTR resulted in reduced activity, but not as much. Overexpression of mid in MP2, an embryonic neuroblast, showed no significant difference in the levels of mid-mRNA between the 2 transgenes, with and without the 3'UTR, indicating the absence of posttranscriptional regulation of mid in MP2. Moreover, while elevated mid-RNA was detected in MP2 in nearly all hemisegments, only a fifth of those hemisegments had elevated levels of the protein. Overexpression of the 2 transgenes resulted in MP2-lineage defects at about the same frequency. These results indicate a translational/posttranslational regulation of mid in MP2. The regulation of ectopically expressed mid in the wing imaginal disc was complex. In the wing disc, where mid is not expressed, the ectopic expression of the transgene lacking the 3'UTR had a higher level of mid-RNA and the protein had a stronger phenotypic effect. These results indicate that the 3'UTR can subject mid-mRNA to degradation in a cell- and tissue-specific manner. We further report a balancer-mediated transgenerational modifier effect on the expression and gain of function effects of the 2 transgenes.
Collapse
Affiliation(s)
- Kalpana Makhijani
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33613, USA
| | - Jordan Mar
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33613, USA
| | - Ivana Gaziova
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA
| | - Krishna Moorthi Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33613, USA
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston, TX 77555, USA
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
7
|
Roy PR, Castillo DM. The neurodevelopmental genes alan shepard and Neuroglian contribute to female mate preference in African Drosophila melanogaster. J Evol Biol 2024; 37:877-890. [PMID: 38900077 PMCID: PMC11292574 DOI: 10.1093/jeb/voae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Mate choice is a key trait that determines fitness for most sexually reproducing organisms, with females often being the choosy sex. Female preference often results in strong selection on male traits that can drive rapid divergence of traits and preferences between lineages, leading to reproductive isolation. Despite this fundamental property of female mate choice, very few loci have been identified that contribute to mate choice and reproductive isolation. We used a combination of population genetics, quantitative complementation tests, and behavioural assays to demonstrate that alan shepard and Neuroglian contribute to female mate choice, and could contribute to partial reproductive isolation between populations of Drosophila melanogaster. Our study is among the first to identify genes that contribute to female mate preference in this historically important system, where female preference is an active premating barrier to reproduction. The identification of loci that are primarily known for their roles in neurodevelopment provides intriguing questions of how female mate preference evolves in populations via changes in sensory system and higher learning brain centres.
Collapse
Affiliation(s)
- Paula R Roy
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Dean M Castillo
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
8
|
Tepper K, Edwards O, Sunna A, Paulsen IT, Maselko M. Diverting organic waste from landfills via insect biomanufacturing using engineered black soldier flies (Hermetia illucens). Commun Biol 2024; 7:862. [PMID: 39048665 PMCID: PMC11269589 DOI: 10.1038/s42003-024-06516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
A major roadblock towards the realisation of a circular economy are the lack of high-value products that can be generated from waste. Black soldier flies (BSF; Hermetia illucens) are gaining traction for their ability to rapidly consume large quantities of organic wastes. However, these are primarily used to produce a small variety of products, such as animal feed ingredients and fertiliser. Using synthetic biology, BSF could be developed into a novel sustainable biomanufacturing platform to valorise a broader variety of organic waste feedstocks into enhanced animal feeds, a large variety of high-value biomolecules including industrial enzymes and lipids, and improved fertiliser.
Collapse
Affiliation(s)
- Kate Tepper
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- EntoZyme PTY LTD, Sydney, NSW, Australia
| | | | - Anwar Sunna
- School of Natural Sciences, Mascquarie University, Sydney, NSW, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- School of Natural Sciences, Mascquarie University, Sydney, NSW, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Maciej Maselko
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia.
- EntoZyme PTY LTD, Sydney, NSW, Australia.
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Lau NC, Macias VM. Transposon and Transgene Tribulations in Mosquitoes: A Perspective of piRNA Proportions. DNA 2024; 4:104-128. [PMID: 39076684 PMCID: PMC11286205 DOI: 10.3390/dna4020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mosquitoes, like Drosophila, are dipterans, the order of "true flies" characterized by a single set of two wings. Drosophila are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in Drosophila but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of Drosophila and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in Drosophila. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in Drosophila, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.
Collapse
Affiliation(s)
- Nelson C. Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Genome Science Institute and National Emerging Infectious Disease Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vanessa M. Macias
- Department of Biology, University of North Texas, Denton, TX 76205, USA
- Advanced Environmental Research Institute, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
10
|
Yadav AK, Asokan R, Yamamoto A, Patil AA, Scott MJ. Expansion of the genetic toolbox for manipulation of the global crop pest Drosophila suzukii: Isolation and assessment of eye colour mutant strains. INSECT MOLECULAR BIOLOGY 2024; 33:91-100. [PMID: 37819050 DOI: 10.1111/imb.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), commonly called spotted wing Drosophila, is an important agricultural pest recognised worldwide. D. suzukii is a pest of soft-skinned fruits as females can lay eggs in ripening fruit before harvest. While strains for genetic biocontrol of D. suzukii have been made, the development of transgenic D. suzukii strains and their further screening remain a challenge partly due to the lack of phenotypically trackable genetic-markers, such as those widely used with the model genetic organism D. melanogaster. Here, we have used CRISPR/Cas9 to introduce heritable mutations in the eye colour genes white, cinnabar and sepia, which are located on the X, second and third chromosomes, respectively. Strains were obtained, which were homozygous for a single mutation. Genotyping of the established strains showed insertion and/or deletions (indels) at the targeted sites. A strain homozygous for mutations in cinnabar and sepia showed a pale-yellow eye colour at eclosion but darkened to a sepia colour after a week. The fecundity and fertility of some of the cinnabar and sepia strains were comparable with the wild type. Although white mutant males were previously reported to be sterile, we found that sterility is not fully penetrant and we have been able to maintain white-eyed strains for over a year. The cinnabar, sepia and white mutant strains developed in this study should facilitate future genetic studies in D. suzukii and the development of strains for genetic control of this pest.
Collapse
Affiliation(s)
- Amarish K Yadav
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - Akihiko Yamamoto
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Anandrao A Patil
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Pignataro E, Pini F, Barbanente A, Arnesano F, Palazzo A, Marsano RM. Flying toward a plastic-free world: Can Drosophila serve as a model organism to develop new strategies of plastic waste management? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169942. [PMID: 38199375 DOI: 10.1016/j.scitotenv.2024.169942] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The last century was dominated by the widespread use of plastics, both in terms of invention and increased usage. The environmental challenge we currently face is not just about reducing plastic usage but finding new ways to manage plastic waste. Recycling is growing but remains a small part of the solution. There is increasing focus on studying organisms and processes that can break down plastics, offering a modern approach to addressing the environmental crisis. Here, we provide an overview of the organisms associated with plastics biodegradation, and we explore the potential of harnessing and integrating their genetic and biochemical features into a single organism, such as Drosophila melanogaster. The remarkable genetic engineering and microbiota manipulation tools available for this organism suggest that multiple features could be amalgamated and modeled in the fruit fly. We outline feasible genetic engineering and gut microbiome engraftment strategies to develop a new class of plastic-degrading organisms and discuss of both the potential benefits and the limitations of developing such engineered Drosophila melanogaster strains.
Collapse
Affiliation(s)
- Eugenia Pignataro
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - Francesco Pini
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - Alessandra Barbanente
- Department of Chemistry, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy.
| | - Fabio Arnesano
- Department of Chemistry, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy.
| | - Antonio Palazzo
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - René Massimiliano Marsano
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
12
|
Cortez CT, Murphy RO, Owens IM, Beckmann JF. Use of Drosophila Transgenics to Identify Functions for Symbiont Effectors. Methods Mol Biol 2024; 2739:301-320. [PMID: 38006559 DOI: 10.1007/978-1-0716-3553-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Wolbachia, one of the most successful and studied insect symbionts, and Drosophila, one of the most understood model insects, can be exploited as complementary tools to unravel mechanisms of insect symbiosis. Although Wolbachia itself cannot be grown axenically as clonal isolates or genetically manipulated by standard methods, its reproductive phenotypes, including cytoplasmic incompatibility (CI), have been elucidated using well-developed molecular tools and precise transgenic manipulations available for Drosophila melanogaster. Current research only scratches the surface of how Drosophila can provide a tool for understanding Wolbachia's evolutionary success and the molecular roles of its genetic elements. Here, we briefly outline basic methodologies inherent to transgenic Drosophila systems that have already contributed significant advances in understanding CI, but may be unfamiliar to those who lack experience in Drosophila genetics. In the future, these approaches will continue providing significant insights into Wolbachia that undoubtedly will be extended to other insect symbionts and their biological capabilities.
Collapse
Affiliation(s)
- Carai T Cortez
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Richard O Murphy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Isabella M Owens
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - John F Beckmann
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA.
| |
Collapse
|
13
|
Bush ZD, Naftaly AFS, Dinwiddie D, Albers C, Hillers KJ, Libuda DE. Comprehensive detection of structural variation and transposable element differences between wild type laboratory lineages of C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523974. [PMID: 37961628 PMCID: PMC10634987 DOI: 10.1101/2023.01.13.523974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Genomic structural variations (SVs) and transposable elements (TEs) can be significant contributors to genome evolution, altered gene expression, and risk of genetic diseases. Recent advancements in long-read sequencing have greatly improved the quality of de novo genome assemblies and enhanced the detection of sequence variants at the scale of hundreds or thousands of bases. Comparisons between two diverged wild isolates of Caenorhabditis elegans, the Bristol and Hawaiian strains, have been widely utilized in the analysis of small genetic variations. Genetic drift, including SVs and rearrangements of repeated sequences such as TEs, can occur over time from long-term maintenance of wild type isolates within the laboratory. To comprehensively detect both large and small structural variations as well as TEs due to genetic drift, we generated de novo genome assemblies and annotations for each strain from our lab collection using both long- and short-read sequencing and compared our assemblies and annotations with that of other lab wild type strains. Within our lab assemblies, we annotate over 3.1Mb of sequence divergence between the Bristol and Hawaiian isolates: 337,584 SNPs, 94,503 small insertion-deletions (<50bp), and 4,334 structural variations (>50bp). Further, we define the location and movement of specific DNA TEs between N2 Bristol and CB4856 Hawaiian wild type isolates. Specifically, we find the N2 Bristol genome has 20.6% more TEs from the Tc1/mariner family than the CB4856 Hawaiian genome. Moreover, we identified Zator elements as the most abundant and mobile TE family in the genome. Using specific TE sequences with unique SNPs, we also identify 38 TEs that moved intrachromosomally and 9 TEs that moved interchromosomally between the N2 Bristol and CB4856 Hawaiian genomes. By comparing the de novo genome assembly of our lab collection Bristol isolate to the VC2010 Bristol assembly, we also reveal that lab lineages display over 2 Mb of total variation: 1,162 SNPs, 1,528 indels, and 897 SVs with 95% of the variation due to SVs. Overall, our work demonstrates the unique contribution of SVs and TEs to variation and genetic drift between wild type laboratory strains assumed to be isogenic despite growing evidence of genetic drift and phenotypic variation.
Collapse
Affiliation(s)
- Zachary D. Bush
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Blvd Eugene, OR 97403, USA
| | - Alice F. S. Naftaly
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Blvd Eugene, OR 97403, USA
| | - Devin Dinwiddie
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Blvd Eugene, OR 97403, USA
| | - Cora Albers
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Blvd Eugene, OR 97403, USA
| | - Kenneth J. Hillers
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - Diana E. Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1229 Franklin Blvd Eugene, OR 97403, USA
| |
Collapse
|
14
|
Ichida H, Murata H, Hatakeyama S, Yamada A, Ohta A. Near-complete de novo assembly of Tricholoma bakamatsutake chromosomes revealed the structural divergence and differentiation of Tricholoma genomes. G3 (BETHESDA, MD.) 2023; 13:jkad198. [PMID: 37659058 PMCID: PMC10627285 DOI: 10.1093/g3journal/jkad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023]
Abstract
Tricholoma bakamatsutake, which is an edible ectomycorrhizal fungus associated with Fagaceae trees, may have diverged before the other species in Tricholoma section Caligata. We generated a highly contiguous whole-genome sequence for T. bakamatsutake SF-Tf05 isolated in an Oak (Quercus salicina) forest in Japan. The assembly of high-fidelity long reads, with a median read length of 12.3 kb, resulted in 13 chromosome-sized contigs comprising 142,068,211 bases with an average guanine and cytosine (GC) content of 43.94%. The 13 chromosomes were predicted to encode 11,060 genes. A contig (122,566 bases) presumably containing the whole circular mitochondrial genome was also recovered. The chromosome-wide comparison of T. bakamatsutake and Tricholoma matsutake (TMA_r1.0) indicated that the basic number of chromosomes (13) was conserved, but the structures of the corresponding chromosomes diverged, with multiple inversions and translocations. Gene conservation and cluster analyses revealed at least 3 phylogenetic clades in Tricholoma section Caligata. Specifically, all T. bakamatsutake strains belonged to the "bakamatsutake" clade, which is most proximal to the "caligatum" clade consisting of Tricholoma caligatum and Tricholoma fulvocastaneum. The constructed highly contiguous nearly telomere-to-telomere genome sequence of a T. bakamatsutake isolate will serve as a fundamental resource for future research on the evolution and differentiation of Tricholoma species.
Collapse
Affiliation(s)
- Hiroyuki Ichida
- Ion Beam Breeding Group, RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan
| | - Hitoshi Murata
- Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, Tsukuba, Ibaraki 305-8687, Japan
| | - Shin Hatakeyama
- Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Akiyoshi Yamada
- Faculty of Agriculture, Shinshu University, Minami-minowa, Nagano 399-4598, Japan
| | - Akira Ohta
- Kansai Research Center, FFPRI, Kyoto, Kyoto 612-0855, Japan
| |
Collapse
|
15
|
Strobl F, Ratke J, Krämer F, Utta A, Becker S, Stelzer EHK. Next generation marker-based vector concepts for rapid and unambiguous identification of single and double homozygous transgenic organisms. Biol Open 2023; 12:bio060015. [PMID: 37855381 PMCID: PMC10602009 DOI: 10.1242/bio.060015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 10/20/2023] Open
Abstract
For diploid model organisms, the actual transgenesis processes require subsequent periods of transgene management, which are challenging in emerging model organisms due to the lack of suitable methodology. We used the red flour beetle Tribolium castaneum, a stored-grain pest, to perform a comprehensive functional evaluation of our AClashOfStrings (ACOS) and the combined AGameOfClones/AClashOfStrings (AGOC/ACOS) vector concepts, which use four clearly distinguishable markers to provide full visual control over up to two independent transgenes. We achieved comprehensive statistical validation of our approach by systematically creating seventeen novel single and double homozygous sublines intended for fluorescence live imaging, including several sublines in which the microtubule cytoskeleton is labeled. During the mating procedures, we genotyped more than 20,000 individuals in less than 80 working hours, which corresponds to about 10 to 15 s per individual. We also confirm the functionality of our combined concept in two double transgene special cases, i.e. integration of both transgenes in close proximity on the same chromosome and integration of one transgene on the X allosome. Finally, we discuss our vector concepts regarding performance, genotyping accuracy, throughput, resource saving potential, fluorescent protein choice, modularity, adaptation to other diploid model organisms and expansion capability.
Collapse
Affiliation(s)
- Frederic Strobl
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Julia Ratke
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Franziska Krämer
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Ana Utta
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Sigrun Becker
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Ernst H. K. Stelzer
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
16
|
Laursen WJ, Busby R, Sarkissian T, Chang EC, Garrity PA. DMKPs provide a generalizable strategy for studying genes required for reproduction or viability in nontraditional model organisms. Genetics 2023; 224:iyad057. [PMID: 37036394 PMCID: PMC10213491 DOI: 10.1093/genetics/iyad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/21/2023] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
The advent of CRISPR/Cas9-mediated genome editing has expanded the range of animals amenable to targeted genetic analysis. This has accelerated research in animals not traditionally studied using molecular genetics. However, studying genes essential for reproduction or survival in such animals remains challenging, as they lack the tools that aid genetic analysis in traditional genetic model organisms. We recently introduced the use of distinguishably marked knock-in pairs (DMKPs) as a strategy for rapid and reliable genotyping in such species. Here we show that DMKPs also facilitate the maintenance and study of mutations that cannot be maintained in a homozygous state, a group which includes recessive lethal and sterile mutations. Using DMKPs, we disrupt the zero population growth locus in Drosophila melanogaster and in the dengue vector mosquito Aedes aegypti. In both species, DMKPs enable the maintenance of zero population growth mutant strains and the reliable recovery of zero population growth mutant animals. Male and female gonad development is disrupted in fly and mosquito zero population growth mutants, rendering both sexes sterile. In Ae. aegypti, zero population growth mutant males remain capable of inducing a mating refractory period in wild-type females and of competing with wild-type males for mates, properties compatible with zero population growth serving as a target in mosquito population suppression strategies. DMKP is readily generalizable to other species amenable to CRISPR/Cas9-mediated gene targeting, and should facilitate the study of sterile and lethal mutations in multiple organisms not traditionally studied using molecular genetics.
Collapse
Affiliation(s)
- Willem J Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Rachel Busby
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Tatevik Sarkissian
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Elaine C Chang
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Paul A Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
17
|
Li H, Berent E, Hadjipanteli S, Galey M, Muhammad-Lahbabi N, Miller DE, Crown KN. Heterozygous inversion breakpoints suppress meiotic crossovers by altering recombination repair outcomes. PLoS Genet 2023; 19:e1010702. [PMID: 37053290 PMCID: PMC10128924 DOI: 10.1371/journal.pgen.1010702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/25/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023] Open
Abstract
Heterozygous chromosome inversions suppress meiotic crossover (CO) formation within an inversion, potentially because they lead to gross chromosome rearrangements that produce inviable gametes. Interestingly, COs are also severely reduced in regions nearby but outside of inversion breakpoints even though COs in these regions do not result in rearrangements. Our mechanistic understanding of why COs are suppressed outside of inversion breakpoints is limited by a lack of data on the frequency of noncrossover gene conversions (NCOGCs) in these regions. To address this critical gap, we mapped the location and frequency of rare CO and NCOGC events that occurred outside of the dl-49 chrX inversion in D. melanogaster. We created full-sibling wildtype and inversion stocks and recovered COs and NCOGCs in the syntenic regions of both stocks, allowing us to directly compare rates and distributions of recombination events. We show that COs outside of the proximal inversion breakpoint are distributed in a distance-dependent manner, with strongest suppression near the inversion breakpoint. We find that NCOGCs occur evenly throughout the chromosome and, importantly, are not suppressed near inversion breakpoints. We propose a model in which COs are suppressed by inversion breakpoints in a distance-dependent manner through mechanisms that influence DNA double-strand break repair outcome but not double-strand break formation. We suggest that subtle changes in the synaptonemal complex and chromosome pairing might lead to unstable interhomolog interactions during recombination that permits NCOGC formation but not CO formation.
Collapse
Affiliation(s)
- Haosheng Li
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Erica Berent
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Savannah Hadjipanteli
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Miranda Galey
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Nigel Muhammad-Lahbabi
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, United States of America
| | - K Nicole Crown
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
18
|
Laursen WJ, Budelli G, Tang R, Chang EC, Busby R, Shankar S, Gerber R, Greppi C, Albuquerque R, Garrity PA. Humidity sensors that alert mosquitoes to nearby hosts and egg-laying sites. Neuron 2023; 111:874-887.e8. [PMID: 36640768 PMCID: PMC10023463 DOI: 10.1016/j.neuron.2022.12.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
To reproduce and to transmit disease, female mosquitoes must obtain blood meals and locate appropriate sites for egg laying (oviposition). While distinct sensory cues drive each behavior, humidity contributes to both. Here, we identify the mosquito's humidity sensors (hygrosensors). Using generalizable approaches designed to simplify genetic analysis in non-traditional model organisms, we demonstrate that the ionotropic receptor Ir93a mediates mosquito hygrosensation as well as thermosensation. We further show that Ir93a-dependent sensors drive human host proximity detection and blood-feeding behavior, consistent with the overlapping short-range heat and humidity gradients these targets generate. After blood feeding, gravid females require Ir93a to seek high humidity associated with preferred egg-laying sites. Reliance on Ir93a-dependent sensors to promote blood feeding and locate potential oviposition sites is shared between the malaria vector Anopheles gambiae and arbovirus vector Aedes aegypti. These Ir93a-dependent systems represent potential targets for efforts to control these human disease vectors.
Collapse
Affiliation(s)
- Willem J Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Gonzalo Budelli
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Ruocong Tang
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Elaine C Chang
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Rachel Busby
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Shruti Shankar
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Rachel Gerber
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Chloe Greppi
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Rebecca Albuquerque
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Paul A Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
19
|
Maniates KA, Singson A. Where are all the egg genes? Front Cell Dev Biol 2023; 11:1107312. [PMID: 36819103 PMCID: PMC9936096 DOI: 10.3389/fcell.2023.1107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Complementary forward and reverse genetic approaches in several model systems have resulted in a recent burst of fertilization gene discovery. The number of genetically validated gamete surface molecules have more than doubled in the last few years. All the genetically validated sperm fertilization genes encode transmembrane or secreted molecules. Curiously, the discovery of genes that encode oocyte molecules have fallen behind that of sperm genes. This review discusses potential experimental biases and inherent biological reasons that could slow egg fertilization gene discovery. Finally, we shed light on current strategies to identify genes that may result in further identification of egg fertilization genes.
Collapse
Affiliation(s)
- Katherine A. Maniates
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | | |
Collapse
|
20
|
Scholl A, Ndoja I, Dhakal N, Morante D, Ivan A, Newman D, Mossington T, Clemans C, Surapaneni S, Powers M, Jiang L. The Osiris family genes function as novel regulators of the tube maturation process in the Drosophila trachea. PLoS Genet 2023; 19:e1010571. [PMID: 36689473 PMCID: PMC9870157 DOI: 10.1371/journal.pgen.1010571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023] Open
Abstract
Drosophila trachea is a premier model to study tube morphogenesis. After the formation of continuous tubes, tube maturation follows. Tracheal tube maturation starts with an apical secretion pulse that deposits extracellular matrix components to form a chitin-based apical luminal matrix (aECM). This aECM is then cleared and followed by the maturation of taenidial folds. Finally, air fills the tubes. Meanwhile, the cellular junctions are maintained to ensure tube integrity. Previous research has identified several key components (ER, Golgi, several endosomes) of protein trafficking pathways that regulate the secretion and clearance of aECM, and the maintenance of cellular junctions. The Osiris (Osi) gene family is located at the Triplo-lethal (Tpl) locus on chromosome 3R 83D4-E3 and exhibits dosage sensitivity. Here, we show that three Osi genes (Osi9, Osi15, Osi19), function redundantly to regulate adherens junction (AJ) maintenance, luminal clearance, taenidial fold formation, tube morphology, and air filling during tube maturation. The localization of Osi proteins in endosomes (Rab7-containing late endosomes, Rab11-containing recycling endosomes, Lamp-containing lysosomes) and the reduction of these endosomes in Osi mutants suggest the possible role of Osi genes in tube maturation through endosome-mediated trafficking. We analyzed tube maturation in zygotic rab11 and rab7 mutants, respectively, to determine whether endosome-mediated trafficking is required. Interestingly, similar tube maturation defects were observed in rab11 but not in rab7 mutants, suggesting the involvement of Rab11-mediated trafficking, but not Rab7-mediated trafficking, in this process. To investigate whether Osi genes regulate tube maturation primarily through the maintenance of Rab11-containing endosomes, we overexpressed rab11 in Osi mutant trachea. Surprisingly, no obvious rescue was observed. Thus, increasing endosome numbers is not sufficient to rescue tube maturation defects in Osi mutants. These results suggest that Osi genes regulate other aspects of endosome-mediated trafficking, or regulate an unknown mechanism that converges or acts in parallel with Rab11-mediated trafficking during tube maturation.
Collapse
Affiliation(s)
- Aaron Scholl
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Istri Ndoja
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Niraj Dhakal
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Doria Morante
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Abigail Ivan
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Darren Newman
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Thomas Mossington
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Christian Clemans
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Sruthi Surapaneni
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Michael Powers
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| |
Collapse
|
21
|
Saccone G. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103873. [PMID: 36400424 DOI: 10.1016/j.ibmb.2022.103873] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The genetics of the sex determination regulatory cascade in Drosophila melanogaster has a fascinating history, interlinked with the foundation of the Genetics discipline itself. The discovery that alternative splicing rather than differential transcription is the molecular mechanism underlying the upstream control of sex differences in the Drosophila model system was surprising. This notion is now fully integrated into the scientific canon, appearing in many genetics textbooks and online education resources. In the last three decades, it was a key reference point for starting evolutionary studies in other insect species by using homology-based approaches. This review will introduce a very brief history of Drosophila genetics. It will describe the genetic and molecular approaches applied for the identifying and cloning key genes involved in sex determination in Drosophila and in many other insect species. These comparative analyses led to supporting the idea that sex-determining pathways have evolved mainly by recruiting different upstream signals/genes while maintaining widely conserved intermediate and downstream regulatory genes. The review also provides examples of the link between technological advances and research achievements, to stimulate reflections on how science is produced. It aims to hopefully strengthen the related historical and conceptual knowledge of general readers of other disciplines and of younger geneticists, often focused on the latest technical-molecular approaches.
Collapse
Affiliation(s)
- Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
| |
Collapse
|
22
|
Kolesnikova TD, Klenov MS, Nokhova AR, Lavrov SA, Pokholkova GV, Schubert V, Maltseva SV, Cook KR, Dixon MJ, Zhimulev IF. A Spontaneous Inversion of the X Chromosome Heterochromatin Provides a Tool for Studying the Structure and Activity of the Nucleolus in Drosophila melanogaster. Cells 2022; 11:cells11233872. [PMID: 36497131 PMCID: PMC9736023 DOI: 10.3390/cells11233872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The pericentromeric heterochromatin is largely composed of repetitive sequences, making it difficult to analyze with standard molecular biological methods. At the same time, it carries many functional elements with poorly understood mechanisms of action. The search for new experimental models for the analysis of heterochromatin is an urgent task. In this work, we used the Rif1 mutation, which suppresses the underreplication of all types of repeated sequences, to analyze heterochromatin regions in polytene chromosomes of Drosophila melanogaster. In the Rif1 background, we discovered and described in detail a new inversion, In(1)19EHet, which arose on a chromosome already carrying the In(1)sc8 inversion and transferred a large part of X chromosome heterochromatin, including the nucleolar organizer to a new euchromatic environment. Using nanopore sequencing and FISH, we have identified the eu- and heterochromatin breakpoints of In(1)19EHet. The combination of the new inversion and the Rif1 mutation provides a promising tool for studies of X chromosome heterochromatin structure, nucleolar organization, and the nucleolar dominance phenomenon. In particular, we found that, with the complete polytenization of rDNA repeats, the nucleolus consists of a cloud-like structure corresponding to the classical nucleolus of polytene chromosomes, as well as an unusual intrachromosomal structure containing alternating transcriptionally active and inactive regions.
Collapse
Affiliation(s)
- Tatyana D. Kolesnikova
- Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| | - Mikhail S. Klenov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - Alina R. Nokhova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey A. Lavrov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | | | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Seeland, Germany
| | - Svetlana V. Maltseva
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Kevin R. Cook
- Bloomington Drosophila Stock Center, Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Michael J. Dixon
- Bloomington Drosophila Stock Center, Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
23
|
Muron S, Kucera S, Oliver B, Benner L. Creation of a new Drosophila melanogaster X chromosome balancer, First Multiple 8 ( FM8 ), using the CRISPR/Cas9 gene-editing system. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000663. [PMID: 36439394 PMCID: PMC9692231 DOI: 10.17912/micropub.biology.000663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/10/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Balancer chromosomes contain multiple inversions that work to suppress crossing over and prevent recovery of most recombinant chromosomes, allowing for alleles to be kept long-term without selection. These balancers are incredible tools, but some alleles within larger inverted segments are still lost to rare double crossover events between the balanced and balancer chromosomes. This study details a new methodology of producing balancer chromosomes using CRISPR/Cas9 gene editing technology to create new inversions within the largest segment of the common X chromosome balancer, FM7c. We were able to create a new X chromosome balancer, FM8, and anticipate that this process can be used to not only create other balancers in Drosophila melanogaster, but other model organisms as well.
Collapse
Affiliation(s)
- Savannah Muron
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steve Kucera
- Department of Biology, The University of Tampa, Tampa, FL, USA
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leif Benner
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
24
|
Rönspies M, Schmidt C, Schindele P, Lieberman-Lazarovich M, Houben A, Puchta H. Massive crossover suppression by CRISPR-Cas-mediated plant chromosome engineering. NATURE PLANTS 2022; 8:1153-1159. [PMID: 36109610 DOI: 10.1038/s41477-022-01238-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/02/2022] [Indexed: 05/06/2023]
Abstract
Recent studies have demonstrated that not only genes but also entire chromosomes can be engineered using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPER-associated protein 9 (Cas9)1-5. A major objective of applying chromosome restructuring in plant breeding is the manipulation of genetic exchange6. Here we show that meiotic recombination can be suppressed in nearly the entire chromosome using chromosome restructuring. We were able to induce a heritable inversion of a >17 Mb-long chromosome fragment that contained the centromere and covered most of chromosome 2 of the Arabidopsis ecotype Col-0. Only the 2 and 0.5 Mb-long telomeric ends remained in their original orientation. In single-nucleotide polymorphism marker analysis of the offspring of crosses with the ecotype Ler-1, we detected a massive reduction of crossovers within the inverted chromosome region, coupled with a shift of crossovers to the telomeric ends. The few genetic exchanges detected within the inversion all originated from double crossovers. This not only indicates that heritable genetic exchange can occur by interstitial chromosome pairing, but also that it is restricted to the production of viable progeny.
Collapse
Affiliation(s)
- Michelle Rönspies
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Carla Schmidt
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Department of Vegetable and Field Crops, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
25
|
Ma M, Moulton MJ, Lu S, Bellen HJ. 'Fly-ing' from rare to common neurodegenerative disease mechanisms. Trends Genet 2022; 38:972-984. [PMID: 35484057 PMCID: PMC9378361 DOI: 10.1016/j.tig.2022.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
Advances in genome sequencing have enabled researchers and clinicians to probe vast numbers of human variants to distinguish pathogenic from benign variants. Model organisms have been crucial in variant assessment and in delineating the molecular mechanisms of some of the diseases caused by these variants. The fruit fly, Drosophila melanogaster, has played a valuable role in this endeavor, taking advantage of its genetic technologies and established biological knowledge. We highlight the utility of the fly in studying the function of genes associated with rare neurological diseases that have led to a better understanding of common disease mechanisms. We emphasize that shared themes emerge among disease mechanisms, including the importance of lipids, in two prominent neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD).
Collapse
Affiliation(s)
- Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Mutations of γCOP Gene Disturb Drosophila melanogaster Innate Immune Response to Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:ijms23126499. [PMID: 35742941 PMCID: PMC9223523 DOI: 10.3390/ijms23126499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Drosophila melanogaster (the fruit fly) is a valuable experimental platform for modeling host–pathogen interactions. It is also commonly used to define innate immunity pathways and to understand the mechanisms of both host tolerance to commensal microbiota and response to pathogenic agents. Herein, we investigate how the host response to bacterial infection is mirrored in the expression of genes of Imd and Toll pathways when D. melanogaster strains with different γCOP genetic backgrounds are infected with Pseudomonas aeruginosa ATCC 27853. Using microarray technology, we have interrogated the whole-body transcriptome of infected versus uninfected fruit fly males with three specific genotypes, namely wild-type Oregon, γCOPS057302/TM6B and γCOP14a/γCOP14a. While the expression of genes pertaining to Imd and Toll is not significantly modulated by P. aeruginosa infection in Oregon males, many of the components of these cascades are up- or downregulated in both infected and uninfected γCOPS057302/TM6B and γCOP14a/γCOP14a males. Thus, our results suggest that a γCOP genetic background modulates the gene expression profiles of Imd and Toll cascades involved in the innate immune response of D. melanogaster, inducing the occurrence of immunological dysfunctions in γCOP mutants.
Collapse
|
27
|
Chen J, Luo J, Gurav AS, Chen Z, Wang Y, Montell C. A DREaMR system to simplify combining mutations with rescue transgenes in Aedes aegypti. Genetics 2021; 219:6368066. [PMID: 34740249 DOI: 10.1093/genetics/iyab146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 11/14/2022] Open
Abstract
In most experimental animals, it is challenging to combine mutations and rescue transgenes and to use bipartite systems to assess gene expression. To circumvent the difficulties in combining multiple genetic elements, we developed the DREaMR (Drug-on, REporter, Mutant, Rescue) system. Using Drosophila white as the initial model, we demonstrated that introduction of a single insertion by CRISPR/Cas9 created a null mutation, a tagged rescue construct, which could be induced with doxycycline, and which allowed assessment of protein expression. To create a DREaMR in an organism in which combining multiple genetic elements is more problematic than in Drosophila, we tested the mosquito, Aedes aegypti-the insect vector for dengue, yellow fever, Zika, and other viral diseases. We generated a DREaMR allele in the kh gene, which permitted us to induce expression of the rescue construct, and detect expression of Kh. Thus, this system avoids the need to perform genetic crosses to introduce an inducible rescue transgene in a mutant background, or to combine driver and reporter lines to examine expression of the targeted protein. We propose that DREaMR provides a system that can be applied to additional mosquito vectors as well as other organisms in which CRISPR/Cas9 is effective.
Collapse
Affiliation(s)
- Jieyan Chen
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Junjie Luo
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Adishthi S Gurav
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Zijing Chen
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
28
|
Yeung W. Digest: Female-limited X chromosome evolution in Drosophila melanogaster. Evolution 2020; 75:202-203. [PMID: 33169359 DOI: 10.1111/evo.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022]
Abstract
Sexual dimorphism can cause sexual antagonism of phenotypic traits. Lund-Hansen and colleagues (2020) investigated female-limited X chromosome evolution in Drosophila melanogaster using forced matrilineal inheritance. Body size and developmental time evolved toward their female optima, but reproductive fitness and locomotion remained unchanged. These findings imply that some sexually antagonized loci may be distributed across the genome and that some phenotypes may have already reached their female optima in nature.
Collapse
Affiliation(s)
- William Yeung
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
29
|
Miller DE, Kahsai L, Buddika K, Dixon MJ, Kim BY, Calvi BR, Sokol NS, Hawley RS, Cook KR. Identification and Characterization of Breakpoints and Mutations on Drosophila melanogaster Balancer Chromosomes. G3 (BETHESDA, MD.) 2020; 10:4271-4285. [PMID: 32972999 PMCID: PMC7642927 DOI: 10.1534/g3.120.401559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Balancers are rearranged chromosomes used in Drosophila melanogaster to maintain deleterious mutations in stable populations, preserve sets of linked genetic elements and construct complex experimental stocks. Here, we assess the phenotypes associated with breakpoint-induced mutations on commonly used third chromosome balancers and show remarkably few deleterious effects. We demonstrate that a breakpoint in p53 causes loss of radiation-induced apoptosis and a breakpoint in Fucosyltransferase A causes loss of fucosylation in nervous and intestinal tissue-the latter study providing new markers for intestinal cell identity and challenging previous conclusions about the regulation of fucosylation. We also describe thousands of potentially harmful mutations shared among X or third chromosome balancers, or unique to specific balancers, including an Ankyrin2 mutation present on most TM3 balancers, and reiterate the risks of using balancers as experimental controls. We used long-read sequencing to confirm or refine the positions of two inversions with breakpoints lying in repetitive sequences and provide evidence that one of the inversions, In(2L)Cy, arose by ectopic recombination between foldback transposon insertions and the other, In(3R)C, cleanly separates subtelomeric and telomeric sequences and moves the subtelomeric sequences to an internal chromosome position. In addition, our characterization of In(3R)C shows that balancers may be polymorphic for terminal deletions. Finally, we present evidence that extremely distal mutations on balancers can add to the stability of stocks whose purpose is to maintain homologous chromosomes carrying mutations in distal genes. Overall, these studies add to our understanding of the structure, diversity and effectiveness of balancer chromosomes.
Collapse
Affiliation(s)
- Danny E Miller
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, and Seattle Children's Hospital, Seattle, WA 98105
| | - Lily Kahsai
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Michael J Dixon
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - R Scott Hawley
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Kevin R Cook
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
30
|
Miller DE. The Interchromosomal Effect: Different Meanings for Different Organisms. Genetics 2020; 216:621-631. [PMID: 33158985 PMCID: PMC7648586 DOI: 10.1534/genetics.120.303656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022] Open
Abstract
The term interchromosomal effect was originally used to describe a change in the distribution of exchange in the presence of an inversion. First characterized in the 1920s by early Drosophila researchers, it has been observed in multiple organisms. Nearly half a century later, the term began to appear in the human genetics literature to describe the hypothesis that parental chromosome differences, such as translocations or inversions, may increase the frequency of meiotic chromosome nondisjunction. Although it remains unclear if chromosome aberrations truly affect the segregation of structurally normal chromosomes in humans, the use of the term interchromosomal effect in this context persists. This article explores the history of the use of the term interchromosomal effect and discusses how chromosomes with structural aberrations are segregated during meiosis.
Collapse
Affiliation(s)
- Danny E Miller
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA 98105
| |
Collapse
|
31
|
Matthews BJ, Vosshall LB. How to turn an organism into a model organism in 10 'easy' steps. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb218198. [PMID: 32034051 DOI: 10.1242/jeb.218198] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many of the major biological discoveries of the 20th century were made using just six species: Escherichia coli bacteria, Saccharomyces cerevisiae and Schizosaccharomyces pombe yeast, Caenorhabditis elegans nematodes, Drosophila melanogaster flies and Mus musculus mice. Our molecular understanding of the cell division cycle, embryonic development, biological clocks and metabolism were all obtained through genetic analysis using these species. Yet the 'big 6' did not start out as genetic model organisms (hereafter 'model organisms'), so how did they mature into such powerful systems? First, these model organisms are abundant human commensals: they are the bacteria in our gut, the yeast in our beer and bread, the nematodes in our compost pile, the flies in our kitchen and the mice in our walls. Because of this, they are cheaply, easily and rapidly bred in the laboratory and in addition were amenable to genetic analysis. How and why should we add additional species to this roster? We argue that specialist species will reveal new secrets in important areas of biology and that with modern technological innovations like next-generation sequencing and CRISPR-Cas9 genome editing, the time is ripe to move beyond the big 6. In this review, we chart a 10-step path to this goal, using our own experience with the Aedes aegypti mosquito, which we built into a model organism for neurobiology in one decade. Insights into the biology of this deadly disease vector require that we work with the mosquito itself rather than modeling its biology in another species.
Collapse
Affiliation(s)
- Benjamin J Matthews
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA.,Howard Hughes Medical Institute, New York, NY 10065, USA.,Kavli Neural Systems Institute, New York, NY 10065, USA
| |
Collapse
|