1
|
Nievergelt AP. Genome editing in the green alga Chlamydomonas: past, present practice and future prospects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70140. [PMID: 40186543 PMCID: PMC11971955 DOI: 10.1111/tpj.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
The green alga Chlamydomonas is an important and versatile model organism for research topics ranging from photosynthesis and metabolism, cilia, and basal bodies to cellular communication and the cellular cycle and is of significant interest for green bioengineering processes. The genome in this unicellular green alga is contained in 17 haploid chromosomes and codes for 16 883 protein coding genes. Functional genomics, as well as biotechnological applications, rely on the ability to remove, add, and change these genes in a controlled and efficient manner. In this review, the history of gene editing in Chlamydomonas is put in the context of the wider developments in genetics to demonstrate how many of the key developments to engineer these algae follow the global trends and the availability of technology. Building on this background, an overview of the state of the art in Chlamydomonas engineering is given, focusing primarily on the practical aspects while giving examples of recent applications. Commonly encountered Chlamydomonas-specific challenges, recent developments, and community resources are presented, and finally, a comprehensive discussion on the emergence and evolution of CRISPR/Cas-based precision gene editing is given. An outline of possible future paths for gene editing based on current global trends in genetic engineering and tools for gene editing is presented.
Collapse
Affiliation(s)
- Adrian P. Nievergelt
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 108Dresden01307Germany
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 1Potsdam14476Germany
| |
Collapse
|
2
|
Aschern M, Braad J, Milito A, Alzuria D, Yang JS. A novel MoClo-mediated intron insertion system facilitates enhanced transgene expression in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2025; 16:1544873. [PMID: 40123955 PMCID: PMC11925875 DOI: 10.3389/fpls.2025.1544873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/10/2025] [Indexed: 03/25/2025]
Abstract
The Chlamydomonas Modular Cloning (MoClo) toolkit allows for straightforward and flexible construction of genetic modules for gene expression in the microalgal model species, fostering developments in algal biotechnology. Efficiently expressing transgenes from the nuclear genome of C. reinhardtii requires the proper insertion of introns throughout the respective gene, as it can substantially enhance the gene expression. To facilitate synthetic biology approaches in this microalga, we developed a novel strategy for intron insertion into synthetic DNA fragments. Our method aligns with current MoClo standards, and its feasibility is demonstrated by assembling genes of various lengths and successfully expressing them in C. reinhardtii. Examples include enhanced NanoLuc expression with increased intron numbers, a fungal luciferase enabling bioluminescence in C. reinhardtii, and a fungal tryptophan decarboxylase.
Collapse
Affiliation(s)
- Moritz Aschern
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Doctoral Program of Biotechnology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Jochem Braad
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Alfonsina Milito
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - David Alzuria
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Doctoral Program of Biotechnology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Jae-Seong Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
3
|
Emelin P, Abdul-Mawla S, Willmund F. Golden Gate Cloning for the Standardized Assembly of Gene Elements with Modular Cloning in Chlamydomonas. Methods Mol Biol 2025; 2850:451-465. [PMID: 39363087 DOI: 10.1007/978-1-0716-4220-7_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Modern synthetic biology requires fast and efficient cloning strategies for the assembly of new transcription units or entire pathways. Modular Cloning (MoClo) is a standardized synthetic biology workflow, which has tremendously simplified the assembly of genetic elements for transgene expression. MoClo is based on Golden Gate Assembly and allows to combine genetic elements of a library through a hierarchical syntax-driven pipeline. Here we describe the assembly of a genetic cassette for transgene expression in the single-celled model alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Peter Emelin
- Molecular Plant Sciences, Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Sarah Abdul-Mawla
- Molecular Plant Sciences, Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Felix Willmund
- Molecular Plant Sciences, Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
4
|
Lv M, Fu J, Li C, Li J. Intron RPS25Ai, a Novel DNA Element, Has Global Effects on Synthetic Pathway Engineering by Empowering Protein Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28378-28389. [PMID: 39660479 DOI: 10.1021/acs.jafc.4c11278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Classical genetic components in synthetic biology encompass essential elements of promoters, transcription factors, protein-coding genes, and terminators while both academic and industrial needs require novel engineering tools. Our study explores the potential of introns as versatile, novel biological DNA elements. Using intron RPS25Ai from Saccharomyces cerevisiae, the expression of mCherry was enhanced by 18.4-fold, demonstrating spatiotemporal regulatory patterns at both transcriptional and translational levels. A molecular mechanism study shows that this distinctive fine-tuning control relies on correct splicing events and extends to post-transcriptional processes. Intron RPS25Ai was applied to a heterologous metabolic pathway in engineered yeast, increasing β-carotene production by 4.29-fold. RPS25Ai functioned as a multilevel regulatory genetic element, enabling the increase in the expression of crtYB both at the pre-mRNA (99%) and mature RNA level (64%), with a splicing efficiency of 82%. Furthermore, the intron-engineered strain achieved a genome-scale regulation, upregulating 67% of "intron-containing" genes, with an average expression increase of 27%, compared with the upregulation of only 37% of "no-intron" genes. In addition, RPS25Ai induced a comprehensive rearrangement of ribosomal components, with the expression of 89% of ribosomal genes being upregulated, further empowering protein synthesis in the β-carotene-producing yeast cell factory.
Collapse
Affiliation(s)
- Mengjiao Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiaqi Fu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Luo S, Jiang H, Li Q, Yang S, Yu X, Xu X, Xie Q, Ke X, Zheng Q. The Intra-Articular Delivery of a Low-Dose Adeno-Associated Virus-IL-1 Receptor Antagonist Vector Alleviates the Progress of Arthritis in an Osteoarthritis Rat Model. Pharmaceutics 2024; 16:1518. [PMID: 39771498 PMCID: PMC11728506 DOI: 10.3390/pharmaceutics16121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Interleukin-1 (IL-1) is a pivotal mediator in the pathological progression of osteoarthritis (OA), playing a central role in disease progression. However, the rapid clearance of IL-1 receptor antagonist (IL-1Ra) from the joints may hinder the efficacy of intra-articular IL-1Ra injections in reducing OA-associated pain or cartilage degradation. Methods: Sustaining sufficient levels of IL-1Ra within the joints via adeno-associated virus (AAV)-mediated gene therapy presents a promising therapeutic strategy for OA. In this study, we constructed an IL-1Ra expression cassette employing intron insertion in the coding sequence (CDS) region to enhance protein expression levels. Furthermore, we incorporated precisely targeted liver-specific microRNA (miRNA) sequences to specifically downregulate transgene expression within hepatic tissues, thereby ensuring more targeted and controlled regulation of gene expression. Results: A rat model of OA was employed to compare the efficacy of AAV5 and AAV9 for IL-1Ra delivery at both high and low doses. It was observed that low-dose, but not high-dose, AAV9-IL-1Ra resulted in a significant reduction in joint swelling, accompanied by a decrease in the diameter of the affected area and the preservation of biomarkers associated with trabecular bone integrity. Conclusions: These results highlight the great potential of AAV9-IL-1Ra in osteoarthritis therapy, with the promise of achieving long-term improvement through a single intra-articular injection.
Collapse
Affiliation(s)
- Shuang Luo
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
| | - Hao Jiang
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
| | - Qingwei Li
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
| | - Shiping Yang
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
| | - Xuemei Yu
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
| | - Xiongliang Xu
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
| | - Qing Xie
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
| | - Xiao Ke
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
- Chengdu Kanghong Pharmaceuticals Group Co., Ltd., Chengdu 610037, China
| | - Qiang Zheng
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
- Chengdu Kanghong Pharmaceuticals Group Co., Ltd., Chengdu 610037, China
| |
Collapse
|
6
|
Ye L, Liao T, Deng X, Long H, Liu G, Ke W, Huang K. Establishment of an RNA-based transient expression system in the green alga Chlamydomonas reinhardtii. N Biotechnol 2024; 83:175-187. [PMID: 39153527 DOI: 10.1016/j.nbt.2024.08.501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Chlamydomonas reinhardtii, a unicellular green alga, is a prominent model for green biotechnology and for studying organelles' function and biogenesis, such as chloroplasts and cilia. However, the stable expression of foreign genes from the nuclear genome in C. reinhardtii faces several limitations, including low expression levels and significant differences between clones due to genome position effects, epigenetic silencing, and time-consuming procedures. We developed a robust transient expression system in C. reinhardtii to overcome these limitations. We demonstrated efficient entry of in vitro-transcribed mRNA into wall-less cells and enzymatically dewalled wild-type cells via electroporation. The endogenous or exogenous elements can facilitate efficient transient expression of mRNA in C. reinhardtii, including the 5' UTR of PsaD and the well-characterized Kozak sequence derived from the Chromochloris zofingiensis. In the optimized system, mRNA expression was detectable in 120 h with a peak around 4 h after transformation. Fluorescently tagged proteins were successfully transiently expressed, enabling organelle labeling and real-time determination of protein sub-cellular localization. Remarkably, transiently expressed IFT46 compensated for the ift46-1 mutant phenotype, indicating the correct protein folding and function of IFT46 within the cells. Additionally, we demonstrated the feasibility of our system for studying protein-protein interactions in living cells using bimolecular fluorescence complementation. In summary, the established transient expression system provides a powerful tool for investigating protein localization, function, and interactions in C. reinhardtii within a relatively short timeframe, which will significantly facilitate the study of gene function, genome structure, and green biomanufacturing in C. reinhardtii and potentially in other algae.
Collapse
Affiliation(s)
- Lian Ye
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tancong Liao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Gai Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Wenting Ke
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| |
Collapse
|
7
|
Leprovost S, Plasson C, Balieu J, Walet‐Balieu M, Lerouge P, Bardor M, Mathieu‐Rivet E. Fine-tuning the N-glycosylation of recombinant human erythropoietin using Chlamydomonas reinhardtii mutants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3018-3027. [PMID: 38968612 PMCID: PMC11500980 DOI: 10.1111/pbi.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
Microalgae are considered as attractive expression systems for the production of biologics. As photosynthetic unicellular organisms, they do not require costly and complex media for growing and are able to secrete proteins and perform protein glycosylation. Some biologics have been successfully produced in the green microalgae Chlamydomonas reinhardtii. However, post-translational modifications like glycosylation of these Chlamydomonas-made biologics have poorly been investigated so far. Therefore, in this study, we report on the first structural investigation of glycans linked to human erythropoietin (hEPO) expressed in a wild-type C. reinhardtii strain and mutants impaired in key Golgi glycosyltransferases. The glycoproteomic analysis of recombinant hEPO (rhEPO) expressed in the wild-type strain demonstrated that the three N-glycosylation sites are 100% glycosylated with mature N-glycans containing four to five mannose residues and carrying core xylose, core fucose and O-methyl groups. Moreover, expression in C. reinhardtii insertional mutants defective in xylosyltransferases A and B and fucosyltransferase resulted in drastic decreases of core xylosylation and core fucosylation of glycans N-linked to the rhEPOs, thus demonstrating that this strategy offers perspectives for humanizing the N-glycosylation of the Chlamydomonas-made biologics.
Collapse
Affiliation(s)
- S. Leprovost
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS ChemobiologieRouenFrance
- Institute for Plant Biology and Biotechnology (IBBP), University of MünsterMünsterGermany
| | - C. Plasson
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS ChemobiologieRouenFrance
| | - J. Balieu
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS ChemobiologieRouenFrance
| | - M‐L. Walet‐Balieu
- Infrastructure de Recherche HeRacLeS, Plate‐forme protéomique PISSARO, Université de Rouen NormandieRouenFrance
| | - P. Lerouge
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS ChemobiologieRouenFrance
| | - M. Bardor
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS ChemobiologieRouenFrance
| | - E. Mathieu‐Rivet
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS ChemobiologieRouenFrance
| |
Collapse
|
8
|
Xu Z, Xiao Y, Guo J, Lv Z, Chen W. Relevance and regulation of alternative splicing in plant secondary metabolism: current understanding and future directions. HORTICULTURE RESEARCH 2024; 11:uhae173. [PMID: 39135731 PMCID: PMC11317897 DOI: 10.1093/hr/uhae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Abstract
The secondary metabolism of plants is an essential life process enabling organisms to navigate various stages of plant development and cope with ever-changing environmental stresses. Secondary metabolites, abundantly found in nature, possess significant medicinal value. Among the regulatory mechanisms governing these metabolic processes, alternative splicing stands out as a widely observed post-transcriptional mechanism present in multicellular organisms. It facilitates the generation of multiple mRNA transcripts from a single gene by selecting different splicing sites. Selective splicing events in plants are widely induced by various signals, including external environmental stress and hormone signals. These events ultimately regulate the secondary metabolic processes and the accumulation of essential secondary metabolites in plants by influencing the synthesis of primary metabolites, hormone metabolism, biomass accumulation, and capillary density. Simultaneously, alternative splicing plays a crucial role in enhancing protein diversity and the abundance of the transcriptome. This paper provides a summary of the factors inducing alternative splicing events in plants and systematically describes the progress in regulating alternative splicing with respect to different secondary metabolites, including terpenoid, phenolic compounds, and nitrogen-containing compounds. Such elucidation offers critical foundational insights for understanding the role of alternative splicing in regulating plant metabolism and presents novel avenues and perspectives for bioengineering.
Collapse
Affiliation(s)
- Zihan Xu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611103, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611103, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
9
|
Lihanova Y, Nagel R, Jakob T, Sasso S. Characterization of activating cis-regulatory elements from the histone genes of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:525-539. [PMID: 38693717 DOI: 10.1111/tpj.16781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Regulation of gene expression in eukaryotes is controlled by cis-regulatory modules (CRMs). A major class of CRMs are enhancers which are composed of activating cis-regulatory elements (CREs) responsible for upregulating transcription. To date, most enhancers and activating CREs have been studied in angiosperms; in contrast, our knowledge about these key regulators of gene expression in green algae is limited. In this study, we aimed at characterizing putative activating CREs/CRMs from the histone genes of the unicellular model alga Chlamydomonas reinhardtii. To test the activity of four candidates, reporter constructs consisting of a tetramerized CRE, an established promoter, and a gene for the mCerulean3 fluorescent protein were incorporated into the nuclear genome of C. reinhardtii, and their activity was quantified by flow cytometry. Two tested candidates, Eupstr and Ehist cons, significantly upregulated gene expression and were characterized in detail. Eupstr, which originates from highly expressed genes of C. reinhardtii, is an orientation-independent CRE capable of activating both the RBCS2 and β2-tubulin promoters. Ehist cons, which is a CRM from histone genes of angiosperms, upregulates the β2-tubulin promoter in C. reinhardtii over a distance of at least 1.5 kb. The octamer motif present in Ehist cons was identified in C. reinhardtii and the related green algae Chlamydomonas incerta, Chlamydomonas schloesseri, and Edaphochlamys debaryana, demonstrating its high evolutionary conservation. The results of this investigation expand our knowledge about the regulation of gene expression in green algae. Furthermore, the characterized activating CREs/CRMs can be applied as valuable genetic tools.
Collapse
Affiliation(s)
- Yuliia Lihanova
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Raimund Nagel
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Torsten Jakob
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Severin Sasso
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
10
|
Einhaus A, Baier T, Kruse O. Molecular design of microalgae as sustainable cell factories. Trends Biotechnol 2024; 42:728-738. [PMID: 38092627 DOI: 10.1016/j.tibtech.2023.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 06/09/2024]
Abstract
Microalgae are regarded as sustainable and potent chassis for biotechnology. Their capacity for efficient photosynthesis fuels dynamic growth independent from organic carbon sources and converts atmospheric CO2 directly into various valuable hydrocarbon-based metabolites. However, approaches to gene expression and metabolic regulation have been inferior to those in more established heterotrophs (e.g., prokaryotes or yeast) since the genetic tools and insights in expression regulation have been distinctly less advanced. In recent years, however, these tools and their efficiency have dramatically improved. Various examples have demonstrated new trends in microalgal biotechnology and the potential of microalgae for the transition towards a sustainable bioeconomy.
Collapse
Affiliation(s)
- Alexander Einhaus
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
11
|
Jacobebbinghaus N, Lauersen KJ, Kruse O, Baier T. Bicistronic expression of nuclear transgenes in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1400-1412. [PMID: 38415961 DOI: 10.1111/tpj.16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
In eukaryotic organisms, proteins are typically translated from monocistronic messenger RNAs containing a single coding sequence (CDS). However, recent long transcript sequencing identified 87 nuclear polycistronic mRNAs in Chlamydomonas reinhardtii natively carrying multiple co-expressed CDSs. In this study, we investigated the dynamics of 22 short intergenic sequences derived from these native polycistronic loci by their application in genetic constructs for synthetic transgene expression. A promising candidate sequence was identified based on the quantification of transformation efficiency and expression strength of a fluorescence reporter protein. Subsequently, the expression of independent proteins from one mRNA was verified by cDNA amplification and protein molecular mass characterization. We demonstrated engineered bicistronic expression in vivo to drive successful co-expression of several terpene synthases with the selection marker aphVIII. Bicistronic transgene design resulted in significantly increased (E)-α-bisabolene production of 7.95 mg L-1 from a single open reading frame, 18.1× fold higher than previous reports. Use of this strategy simplifies screening procedures for identification of high-level expressing transformants, does not require the application of additional fluorescence reporters, and reduces the nucleotide footprint compared to classical monocistronic expression cassettes. Although clear advantages for bicistronic transgene expression were observed, this strategy was found to be limited to the aphVIII marker, and further studies are necessary to gain insights into the underlying mechanism that uniquely permits this co-expression from the algal nuclear genome.
Collapse
Affiliation(s)
- Nick Jacobebbinghaus
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
12
|
Kneip JS, Kniepkamp N, Jang J, Mortaro MG, Jin E, Kruse O, Baier T. CRISPR/Cas9-Mediated Knockout of the Lycopene ε-Cyclase for Efficient Astaxanthin Production in the Green Microalga Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:1393. [PMID: 38794462 PMCID: PMC11125023 DOI: 10.3390/plants13101393] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Carotenoids are valuable pigments naturally occurring in all photosynthetic plants and microalgae as well as in selected fungi, bacteria, and archaea. Green microalgae developed a complex carotenoid profile suitable for efficient light harvesting and light protection and harbor great capacity for carotenoid production through the substantial power of the endogenous 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Previous works established successful genome editing and induced significant changes in the cellular carotenoid content in Chlamydomonas reinhardtii. This study employs a tailored carotenoid pathway for engineered bioproduction of the valuable ketocarotenoid astaxanthin. Functional knockout of lycopene ε-cyclase (LCYE) and non-homologous end joining (NHEJ)-based integration of donor DNA at the target site inhibit the accumulation of α-carotene and consequently lutein and loroxanthin, abundant carotenoids in C. reinhardtii without changes in cellular fitness. PCR-based screening indicated that 4 of 96 regenerated candidate lines carried (partial) integrations of donor DNA and increased ß-carotene as well as derived carotenoid contents. Iterative overexpression of CrBKT, PacrtB, and CrCHYB resulted in a 2.3-fold increase in astaxanthin accumulation in mutant ΔLCYE#3 (1.8 mg/L) compared to the parental strain UVM4, which demonstrates the potential of genome editing for the design of a green cell factory for astaxanthin bioproduction.
Collapse
Affiliation(s)
- Jacob Sebastian Kneip
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Niklas Kniepkamp
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Maria Grazia Mortaro
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
13
|
Tajeddin N, Arabfard M, Alizadeh S, Salesi M, Khamse S, Delbari A, Ohadi M. Novel islands of GGC and GCC repeats coincide with human evolution. Gene 2024; 902:148194. [PMID: 38262548 DOI: 10.1016/j.gene.2024.148194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/29/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Because of high mutation rate, overrepresentation in genic regions, and link with various neurological, neurodegenerative, and movement disorders, GGC and GCC short tandem repeats (STRs) are prone to natural selection. Among a number of lacking data, the 3-repeats of these STRs remain widely unexplored. RESULTS In a genome-wide search in human, here we mapped GGC and GCC STRs of ≥3-repeats, and found novel islands of up to 45 of those STRs, populating spans of 1 to 2 kb of genomic DNA. RGPD4 and NOC4L harbored the densest (GGC)3 (probability 3.09061E-71) and (GCC)3 (probability 1.72376E-61) islands, respectively, and were human-specific. We also found prime instances of directional incremented density of STRs at specific loci in human versus other species, including the FOXK2 and SKI GGC islands. The genes containing those islands significantly diverged in expression in human versus other species, and the proteins encoded by those genes interact closely in a physical interaction network, consequence of which may be human-specific characteristics such as higher order brain functions. CONCLUSION We report novel islands of GGC and GCC STRs of evolutionary relevance to human. The density, and in some instances, periodicity of these islands support them as a novel genomic entity, which need to be further explored in evolutionary, mechanistic, and functional platforms.
Collapse
Affiliation(s)
- N Tajeddin
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - S Alizadeh
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Salesi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - S Khamse
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - A Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Arabfard M, Tajeddin N, Alizadeh S, Salesi M, Bayat H, Khorram Khorshid HR, Khamse S, Delbari A, Ohadi M. Dyads of GGC and GCC form hotspot colonies that coincide with the evolution of human and other great apes. BMC Genom Data 2024; 25:21. [PMID: 38383300 PMCID: PMC10880355 DOI: 10.1186/s12863-024-01207-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND GGC and GCC short tandem repeats (STRs) are of various evolutionary, biological, and pathological implications. However, the fundamental two-repeats (dyads) of these STRs are widely unexplored. RESULTS On a genome-wide scale, we mapped (GGC)2 and (GCC)2 dyads in human, and found monumental colonies (distance between each dyad < 500 bp) of extraordinary density, and in some instances periodicity. The largest (GCC)2 and (GGC)2 colonies were intergenic, homogeneous, and human-specific, consisting of 219 (GCC)2 on chromosome 2 (probability < 1.545E-219) and 70 (GGC)2 on chromosome 9 (probability = 1.809E-148). We also found that several colonies were shared in other great apes, and directionally increased in density and complexity in human, such as a colony of 99 (GCC)2 on chromosome 20, that specifically expanded in great apes, and reached maximum complexity in human (probability 1.545E-220). Numerous other colonies of evolutionary relevance in human were detected in other largely overlooked regions of the genome, such as chromosome Y and pseudogenes. Several of the genes containing or nearest to those colonies were divergently expressed in human. CONCLUSION In conclusion, (GCC)2 and (GGC)2 form unprecedented genomic colonies that coincide with the evolution of human and other great apes. The extent of the genomic rearrangements leading to those colonies support overlooked recombination hotspots, shared across great apes. The identified colonies deserve to be studied in mechanistic, evolutionary, and functional platforms.
Collapse
Affiliation(s)
- M Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - N Tajeddin
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - S Alizadeh
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Salesi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - H Bayat
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - H R Khorram Khorshid
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran
| | - S Khamse
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - A Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - M Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Murik O, Geffen O, Shotland Y, Fernandez-Pozo N, Ullrich KK, Walther D, Rensing SA, Treves H. Genomic imprints of unparalleled growth. THE NEW PHYTOLOGIST 2024; 241:1144-1160. [PMID: 38072860 DOI: 10.1111/nph.19444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023]
Abstract
Chlorella ohadii was isolated from desert biological soil crusts, one of the harshest habitats on Earth, and is emerging as an exciting new green model for studying growth, photosynthesis and metabolism under a wide range of conditions. Here, we compared the genome of C. ohadii, the fastest growing alga on record, to that of other green algae, to reveal the genomic imprints empowering its unparalleled growth rate and resistance to various stressors, including extreme illumination. This included the genome of its close relative, but slower growing and photodamage sensitive, C. sorokiniana UTEX 1663. A larger number of ribosome-encoding genes, high intron abundance, increased codon bias and unique genes potentially involved in metabolic flexibility and resistance to photodamage are all consistent with the faster growth of C. ohadii. Some of these characteristics highlight general trends in Chlorophyta and Chlorella spp. evolution, and others open new broad avenues for mechanistic exploration of their relationship with growth. This work entails a unique case study for the genomic adaptations and costs of exceptionally fast growth and sheds light on the genomic signatures of fast growth in photosynthetic cells. It also provides an important resource for future studies leveraging the unique properties of C. ohadii for photosynthesis and stress response research alongside their utilization for synthetic biology and biotechnology aims.
Collapse
Affiliation(s)
- Omer Murik
- Department of Plant and Environmental Sciences, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- Medical Genetics Institute, Shaare Zedek Medical Center, 93722, Jerusalem, Israel
| | - Or Geffen
- School of Plant Sciences and Food Security, Tel-Aviv University, 39040, Tel-Aviv, Israel
| | - Yoram Shotland
- Chemical Engineering, Shamoon College of Engineering, 84100, Beer-Sheva, Israel
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, 35037, Marburg, Germany
| | - Kristian Karsten Ullrich
- Plant Cell Biology, Department of Biology, University of Marburg, 35037, Marburg, Germany
- Max-Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Dirk Walther
- Max-Planck Institute for Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Stefan Andreas Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, 35037, Marburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, 79098, Freiburg, Germany
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, 39040, Tel-Aviv, Israel
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| |
Collapse
|
16
|
Beauchemin R, Merindol N, Fantino E, Lavoie P, Nouemssi SB, Meddeb-Mouelhi F, Desgagné-Penix I. Successful reversal of transgene silencing in Chlamydomonas reinhardtii. Biotechnol J 2024; 19:e2300232. [PMID: 37975165 DOI: 10.1002/biot.202300232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Chlamydomonas reinhardtii has been successfully engineered to produce compounds of interest following transgene integration and heterologous protein expression. The advantages of this model include the availability of validated tools for bioengineering, its photosynthetic ability, and its potential use as biofuel. Despite this, breakthroughs have been hindered by its ability to silence transgene expression through epigenetic changes. Histone deacetylases (HDAC) are main players in gene expression. We hypothesized that transgene silencing can be reverted with chemical treatments using HDAC inhibitors. To analyze this, we transformed C. reinhardtii, integrating into its genome the mVenus reporter gene under the HSP70-rbcs2 promoter. From 384 transformed clones, 88 (22.9%) displayed mVenus positive (mVenus+ ) cells upon flow-cytometry analysis. Five clones with different fluorescence intensities were selected. The number of integrated copies was measured by qPCR. Transgene expression levels were followed over the growth cycle and upon SAHA treatment, using a microplate reader, flow cytometry, RT-qPCR, and western blot analysis. First, we observed that expression varies with the cell cycle, reaching a maximum level just before the stationary phase in all clones. Second, we uncovered that supplementation with HDAC inhibitors of the hydroxamate family, such as vorinostat (suberoylanilide-hydroxamic-acid, SAHA) at the initiation of culture increases the frequency (% of mVenus+ cells) and the level of transgene expression per cell over the whole growth cycle, through histone deacetylase inhibition. Thus, we propose a new tool to successfully trigger the expression of heterologous proteins in the green algae C. reinhardtii, overcoming its main obstacle as an expression platform.
Collapse
Affiliation(s)
- Rémy Beauchemin
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Elisa Fantino
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Pamela Lavoie
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Serge Basile Nouemssi
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Fatma Meddeb-Mouelhi
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Plant Biology Research Group, Trois-Rivières, Québec, Canada
| |
Collapse
|
17
|
Kikuta H, Aramaki T, Mabu S, Akada R, Hoshida H. The presence of an intron relieves gene repression caused by promoter-proximal four-bp specific sequences in yeast. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194982. [PMID: 37659722 DOI: 10.1016/j.bbagrm.2023.194982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
Introns can enhance gene expression in eukaryotic cells in a process called intron-mediated enhancement (IME). The levels of enhancement are affected not only by the intron sequence but also by coding sequences (CDSs). However, the parts of CDSs responsible for mediating IME have not yet been identified. In this study, we identified an IME-mediating sequence by analyzing three pairs of IME-sensitive and -insensitive CDSs in Saccharomyces cerevisiae. Expression of the CDSs yCLuc, yRoGLU1, and KmBGA1 was enhanced by the presence of an intron (i.e., they were IME sensitive), but the expression of each corresponding codon-changed CDS, which encoded the identical amino acid sequence, was not enhanced (i.e., they were IME insensitive). Interestingly, the IME-insensitive CDSs showed higher expression levels that were like intron-enhanced expression of IME-sensitive CDSs, suggesting that expression of IME-sensitive CDSs was repressed. A four-nucleotide sequence (TCTT) located in the promoter-proximal position of either the untranslated or coding region was found to be responsible for repression in IME-sensitive CDSs, and repression caused by the TCTT sequence was relieved by the presence of an intron. Further, it was found that the expression of intron-containing yeast-native genes, UBC4 and MPT5, was repressed by TCTT in the CDS but relieved by the introns. These results indicate that TCTT sequences in promoter-proximal positions repress gene expression and that introns play a role in relieving gene repression caused by sequences such as TCTT.
Collapse
Affiliation(s)
- Hiroki Kikuta
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Takahiro Aramaki
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Shingo Mabu
- Division of Electrical, Electronic and Information Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Rinji Akada
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan; Yamaguchi University Biomedical Engineering Center, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Hisashi Hoshida
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan; Yamaguchi University Biomedical Engineering Center, 2-16-1 Tokiwadai, Ube 755-8611, Japan.
| |
Collapse
|
18
|
Cao K, Cui Y, Sun F, Zhang H, Fan J, Ge B, Cao Y, Wang X, Zhu X, Wei Z, Yao Q, Ma J, Wang Y, Meng C, Gao Z. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnol Adv 2023; 68:108236. [PMID: 37586543 DOI: 10.1016/j.biotechadv.2023.108236] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Microalgae are microorganisms capable of producing bioactive compounds using photosynthesis. Microalgae contain a variety of high value-added natural pigments such as carotenoids, phycobilins, and chlorophylls. These pigments play an important role in many areas such as food, pharmaceuticals, and cosmetics. Natural pigments have a health value that is unmatched by synthetic pigments. However, the current commercial production of natural pigments from microalgae is not able to meet the growing market demand. The use of metabolic engineering and synthetic biological strategies to improve the production performance of microalgal cell factories is essential to promote the large-scale production of high-value pigments from microalgae. This paper reviews the health and economic values, the applications, and the synthesis pathways of microalgal pigments. Overall, this review aims to highlight the latest research progress in metabolic engineering and synthetic biology in constructing engineered strains of microalgae with high-value pigments and the application of CRISPR technology and multi-omics in this context. Finally, we conclude with a discussion on the bottlenecks and challenges of microalgal pigment production and their future development prospects.
Collapse
Affiliation(s)
- Kai Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yujiao Cao
- School of Foreign Languages, Shandong University of Technology, Zibo 255090, China
| | - Xiaodong Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Zuoxi Wei
- School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jinju Ma
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
19
|
Khalid K, Poh CL. The development of DNA vaccines against SARS-CoV-2. Adv Med Sci 2023; 68:213-226. [PMID: 37364379 PMCID: PMC10290423 DOI: 10.1016/j.advms.2023.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND The COVID-19 pandemic exerted significant impacts on public health and global economy. Research efforts to develop vaccines at warp speed against SARS-CoV-2 led to novel mRNA, viral vectored, and inactivated vaccines being administered. The current COVID-19 vaccines incorporate the full S protein of the SARS-CoV-2 Wuhan strain but rapidly emerging variants of concern (VOCs) have led to significant reductions in protective efficacies. There is an urgent need to develop next-generation vaccines which could effectively prevent COVID-19. METHODS PubMed and Google Scholar were systematically reviewed for peer-reviewed papers up to January 2023. RESULTS A promising solution to the problem of emerging variants is a DNA vaccine platform since it can be easily modified. Besides expressing whole protein antigens, DNA vaccines can also be constructed to include specific nucleotide genes encoding highly conserved and immunogenic epitopes from the S protein as well as from other structural/non-structural proteins to develop effective vaccines against VOCs. DNA vaccines are associated with low transfection efficiencies which could be enhanced by chemical, genetic, and molecular adjuvants as well as delivery systems. CONCLUSIONS The DNA vaccine platform offers a promising solution to the design of effective vaccines. The challenge of limited immunogenicity in humans might be solved through the use of genetic modifications such as the addition of nuclear localization signal (NLS) peptide gene, strong promoters, MARs, introns, TLR agonists, CD40L, and the development of appropriate delivery systems utilizing nanoparticles to increase uptake by APCs in enhancing the induction of potent immune responses.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia.
| |
Collapse
|
20
|
Boisset ND, Favoino G, Meloni M, Jomat L, Cassier-Chauvat C, Zaffagnini M, Lemaire SD, Crozet P. Phosphoribulokinase abundance is not limiting the Calvin-Benson-Bassham cycle in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2023; 14:1230723. [PMID: 37719215 PMCID: PMC10501310 DOI: 10.3389/fpls.2023.1230723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023]
Abstract
Improving photosynthetic efficiency in plants and microalgae is of utmost importance to support the growing world population and to enable the bioproduction of energy and chemicals. Limitations in photosynthetic light conversion efficiency can be directly attributed to kinetic bottlenecks within the Calvin-Benson-Bassham cycle (CBBC) responsible for carbon fixation. A better understanding of these bottlenecks in vivo is crucial to overcome these limiting factors through bio-engineering. The present study is focused on the analysis of phosphoribulokinase (PRK) in the unicellular green alga Chlamydomonas reinhardtii. We have characterized a PRK knock-out mutant strain and showed that in the absence of PRK, Chlamydomonas cannot grow photoautotrophically while functional complementation with a synthetic construct allowed restoration of photoautotrophy. Nevertheless, using standard genetic elements, the expression of PRK was limited to 40% of the reference level in complemented strains and could not restore normal growth in photoautotrophic conditions suggesting that the CBBC is limited. We were subsequently able to overcome this initial limitation by improving the design of the transcriptional unit expressing PRK using diverse combinations of DNA parts including PRK endogenous promoter and introns. This enabled us to obtain strains with PRK levels comparable to the reference strain and even overexpressing strains. A collection of strains with PRK levels between 16% and 250% of WT PRK levels was generated and characterized. Immunoblot and growth assays revealed that a PRK content of ≈86% is sufficient to fully restore photoautotrophic growth. This result suggests that PRK is present in moderate excess in Chlamydomonas. Consistently, the overexpression of PRK did not increase photosynthetic growth indicating that that the endogenous level of PRK in Chlamydomonas is not limiting the Calvin-Benson-Bassham cycle under optimal conditions.
Collapse
Affiliation(s)
- Nicolas D. Boisset
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Parie-Seine, Sorbonne Université, CNRS, UMR 7238, Paris, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Sorbonne Université, CNRS, UMR 8226, Paris, France
- Doctoral School of Plant Sciences, Université Paris-Saclay, Saint-Aubin, France
| | - Giusi Favoino
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Parie-Seine, Sorbonne Université, CNRS, UMR 7238, Paris, France
| | - Maria Meloni
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Lucile Jomat
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Parie-Seine, Sorbonne Université, CNRS, UMR 7238, Paris, France
| | - Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), UMR 9198, Gif-sur-Yvette, France
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Parie-Seine, Sorbonne Université, CNRS, UMR 7238, Paris, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Sorbonne Université, CNRS, UMR 8226, Paris, France
| | - Pierre Crozet
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Parie-Seine, Sorbonne Université, CNRS, UMR 7238, Paris, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Sorbonne Université, CNRS, UMR 8226, Paris, France
- Polytech-Sorbonne, Sorbonne Université, Paris, France
| |
Collapse
|
21
|
Perozeni F, Baier T. Current Nuclear Engineering Strategies in the Green Microalga Chlamydomonas reinhardtii. Life (Basel) 2023; 13:1566. [PMID: 37511941 PMCID: PMC10381326 DOI: 10.3390/life13071566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The green model microalga Chlamydomonas reinhardtii recently emerged as a sustainable production chassis for the efficient biosynthesis of recombinant proteins and high-value metabolites. Its capacity for scalable, rapid and light-driven growth in minimal salt solutions, its simplicity for genetic manipulation and its "Generally Recognized As Safe" (GRAS) status are key features for its application in industrial biotechnology. Although nuclear transformation has typically resulted in limited transgene expression levels, recent developments now allow the design of powerful and innovative bioproduction concepts. In this review, we summarize the main obstacles to genetic engineering in C. reinhardtii and describe all essential aspects in sequence adaption and vector design to enable sufficient transgene expression from the nuclear genome. Several biotechnological examples of successful engineering serve as blueprints for the future establishment of C. reinhardtii as a green cell factory.
Collapse
Affiliation(s)
- Federico Perozeni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
22
|
Zhou LY, Zhang S, Li LY, Yang GY, Zeng L. Optimization of mammalian expression vector by cis-regulatory element combinations. Mol Genet Genomics 2023:10.1007/s00438-023-02042-0. [PMID: 37318628 DOI: 10.1007/s00438-023-02042-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
The regulation of gene expression in mammalian cells by combining various cis-regulatory features has rarely been discussed. In this study, we constructed expression vectors containing various combinations of regulatory elements to examine the regulation of gene expression by different combinations of cis-regulatory elements. The effects of four promoters (CMV promoter, PGK promoter, Polr2a promoter, and EF-1α core promoter), two enhancers (CMV enhancer and SV40 enhancer), two introns (EF-1α intron A and hybrid intron), two terminators (CYC1 terminator and TEF terminator), and their different combinations on downstream gene expression were compared in various mammalian cells using fluorescence microscopy to observe fluorescence, quantitative real-time PCR (qRT-PCR), and western blot. The receptor binding domain (RBD) sequence from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein was used to replace the eGFP sequence in the expression vector and the RBD expression was detected by qRT-PCR and western blot. The results showed that protein expression can be regulated by optimizing the combination of cis-acting elements. The vector with the CMV enhancer, EF-1α core promoter, and TEF terminator was found to express approximately threefold higher eGFP than the unmodified vector in different animal cells, as well as 2.63-fold higher recombinant RBD protein than the original vector in HEK-293T cells. Moreover, we suggest that combinations of multiple regulatory elements capable of regulating gene expression do not necessarily exhibit synergistic effects to enhance expression further. Overall, our findings provide insights into biological applications that require the regulation of gene expression and will help to optimize expression vectors for biosynthesis and other fields. Additionally, we provide valuable insights into the production of RBD proteins, which may aid in developing reagents for diagnosis and treatment during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Lu-Yu Zhou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, 450046, Henan, People's Republic of China
| | - Shuang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, 450046, Henan, People's Republic of China
| | - Li-Yun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, 450046, Henan, People's Republic of China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, 450046, Henan, People's Republic of China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
- Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China.
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
23
|
Yahya RZ, Wellman GB, Overmans S, Lauersen KJ. Engineered production of isoprene from the model green microalga Chlamydomonas reinhardtii. Metab Eng Commun 2023; 16:e00221. [PMID: 37006831 PMCID: PMC10063407 DOI: 10.1016/j.mec.2023.e00221] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Isoprene is a clear, colorless, volatile 5-carbon hydrocarbon that is one monomer of all cellular isoprenoids and a platform chemical with multiple applications in industry. Many plants have evolved isoprene synthases (IspSs) with the capacity to liberate isoprene from dimethylallyl diphosphate (DMADP) as part of cellular thermotolerance mechanisms. Isoprene is hydrophobic and volatile, rapidly leaves plant tissues and is one of the main carbon emission sources from vegetation globally. The universality of isoprenoid metabolism allows volatile isoprene production from microbes expressing heterologous IspSs. Here, we compared heterologous overexpression from the nuclear genome and localization into the plastid of four plant terpene synthases (TPs) in the green microalga Chlamydomonas reinhardtii. Using sealed vial mixotrophic cultivation, direct quantification of isoprene production was achieved from the headspace of living cultures, with the highest isoprene production observed in algae expressing the Ipomoea batatas IspS. Perturbations of the downstream carotenoid pathway through keto carotenoid biosynthesis enhanced isoprene titers, which could be further enhanced by increasing flux towards DMADP through heterologous co-expression of a yeast isopentenyl-DP delta isomerase. Multiplexed controlled-environment testing revealed that cultivation temperature, rather than illumination intensity, was the main factor affecting isoprene yield from the engineered alga. This is the first report of heterologous isoprene production from a eukaryotic alga and sets a foundation for further exploration of carbon conversion to this commodity chemical.
Collapse
|
24
|
Amendola S, Kneip JS, Meyer F, Perozeni F, Cazzaniga S, Lauersen KJ, Ballottari M, Baier T. Metabolic Engineering for Efficient Ketocarotenoid Accumulation in the Green Microalga Chlamydomonas reinhardtii. ACS Synth Biol 2023; 12:820-831. [PMID: 36821819 DOI: 10.1021/acssynbio.2c00616] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Astaxanthin is a valuable ketocarotenoid with various pharmaceutical and nutraceutical applications. Green microalgae harbor natural capacities for pigment accumulation due to their 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Recently, a redesigned ß-carotene ketolase (BKT) was found to enable ketocarotenoid accumulation in the model microalga Chlamydomonas reinhardtii, and transformants exhibited reduced photoinhibition under high-light. Here, a systematic screening by synthetic transgene design of carotenoid pathway enzymes and overexpression from the nuclear genome identified phytoene synthase (PSY/crtB) as a bottleneck for carotenoid accumulation in C. reinhardtii. Increased ß-carotene hydroxylase (CHYB) activity was found to be essential for engineered astaxanthin accumulation. A combined BKT, crtB, and CHYB expression strategy resulted in a volumetric astaxanthin production of 9.5 ± 0.3 mg L-1 (4.5 ± 0.1 mg g-1 CDW) in mixotrophic and 23.5 mg L-1 (1.09 mg L-1 h-1) in high cell density conditions, a 4-fold increase compared to previous reports in C. reinhardtii. This work presents a systematic investigation of bottlenecks in astaxanthin accumulation in C. reinhardtii and the phototrophic green cell factory design for competitive use in industrial biotechnology.
Collapse
Affiliation(s)
- Sofia Amendola
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jacob S Kneip
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Florian Meyer
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Federico Perozeni
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Stefano Cazzaniga
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
25
|
de Freitas BB, Overmans S, Medina JS, Hong PY, Lauersen KJ. Biomass generation and heterologous isoprenoid milking from engineered microalgae grown in anaerobic membrane bioreactor effluent. WATER RESEARCH 2023; 229:119486. [PMID: 36535088 DOI: 10.1016/j.watres.2022.119486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Wastewater (WW) treatment in anaerobic membrane bioreactors (AnMBR) is considered more sustainable than in aerobic reactors. However, outputs from AnMBR are a mixed methane and carbon dioxide gas stream as well as ammonium- (N) and phosphate- (P) containing waters. Using AnMBR outputs as inputs for photoautotrophic algal cultivation can strip the CO2 while removing N and P from effluent which feed algal biomass generation. Recent advances in algal engineering have generated strains that produce high-value side products concomitant with biomass, although only shown in heavily domesticated, lab-adapted strains. Here, it was investigated whether engineered Chlamydomonas reinhardtii could be grown directly in AnMBR effluent with CO2 concentrations found in AnMBR off-gas. The strain was found to proliferate over bacteria in the non-sterile effluent, consume N and P to levels that meet general discharge or reuse limits, and tolerate cultivation in modelled (extreme) outdoor environmental conditions prevalent along the central Red Sea coast. In addition to ∼2.4 g CDW L-1 biomass production in 96 h, a high-value heterologous sesquiterpene co-product could be obtained from 'milking' up to 837 µg L-1 culture in 96 h. This is the first demonstration of a combined bio-process that employs a heavily engineered algal strain to enhance the product generation potentials from AnMBR effluent treatment. This study shows it is possible to convert waste into value through use of engineered algae while also improving wastewater treatment economics through co-product generation.
Collapse
Affiliation(s)
- Bárbara Bastos de Freitas
- Bioengineering Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sebastian Overmans
- Bioengineering Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Julie Sanchez Medina
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pei-Ying Hong
- Bioengineering Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
26
|
Zhong V, Archibald BN, Brophy JAN. Transcriptional and post-transcriptional controls for tuning gene expression in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102315. [PMID: 36462457 PMCID: PMC12061055 DOI: 10.1016/j.pbi.2022.102315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Plant biotechnologists seek to modify plants through genetic reprogramming, but our ability to precisely control gene expression in plants is still limited. Here, we review transcription and translation in the model plants Arabidopsis thaliana and Nicotiana benthamiana with an eye toward control points that may be used to predictably modify gene expression. We highlight differences in gene expression requirements between these plants and other species, and discuss the ways in which our understanding of gene expression has been used to engineer plants. This review is intended to serve as a resource for plant scientists looking to achieve precise control over gene expression.
Collapse
Affiliation(s)
- Vivian Zhong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Bella N Archibald
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
27
|
Lee TM, Lin JY, Tsai TH, Yang RY, Ng IS. Clustered regularly interspaced short palindromic repeats (CRISPR) technology and genetic engineering strategies for microalgae towards carbon neutrality: A critical review. BIORESOURCE TECHNOLOGY 2023; 368:128350. [PMID: 36414139 DOI: 10.1016/j.biortech.2022.128350] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Carbon dioxide is the major greenhouse gas and regards as the critical issue of global warming and climate changes. The inconspicuous microalgae are responsible for 40% of carbon fixation among all photosynthetic plants along with a higher photosynthetic efficiency and convert the carbon into lipids, protein, pigments, and bioactive compounds. Genetic approach and metabolic engineering are applied to accelerate the growth rate and biomass of microalgae, hence achieve the mission of carbon neutrality. Meanwhile, CRISPR/Cas9 is efficiently to enhance the productivity of high-value compounds in microalgae for it is easier operation, more affordable and is able to regulate multiple genes simultaneously. The genetic engineering strategies provide the multidisciplinary concept to evolute and increase the CO2 fixation rate through Calvin-Benson-Bassham cycle. Therefore, the technologies, bioinformatics tools, systematic engineering approaches for carbon neutrality and circular economy are summarized and leading one step closer to the decarbonization society in this review.
Collapse
Affiliation(s)
- Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsung-Han Tsai
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ru-Yin Yang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
28
|
Dehghani J, Movafeghi A, Mathieu-Rivet E, Mati-Baouche N, Calbo S, Lerouge P, Bardor M. Microalgae as an Efficient Vehicle for the Production and Targeted Delivery of Therapeutic Glycoproteins against SARS-CoV-2 Variants. Mar Drugs 2022; 20:md20110657. [PMID: 36354980 PMCID: PMC9698596 DOI: 10.3390/md20110657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022] Open
Abstract
Severe acute respiratory syndrome–Coronavirus 2 (SARS-CoV-2) can infect various human organs, including the respiratory, circulatory, nervous, and gastrointestinal ones. The virus is internalized into human cells by binding to the human angiotensin-converting enzyme 2 (ACE2) receptor through its spike protein (S-glycoprotein). As S-glycoprotein is required for the attachment and entry into the human target cells, it is the primary mediator of SARS-CoV-2 infectivity. Currently, this glycoprotein has received considerable attention as a key component for the development of antiviral vaccines or biologics against SARS-CoV-2. Moreover, since the ACE2 receptor constitutes the main entry route for the SARS-CoV-2 virus, its soluble form could be considered as a promising approach for the treatment of coronavirus disease 2019 infection (COVID-19). Both S-glycoprotein and ACE2 are highly glycosylated molecules containing 22 and 7 consensus N-glycosylation sites, respectively. The N-glycan structures attached to these specific sites are required for the folding, conformation, recycling, and biological activity of both glycoproteins. Thus far, recombinant S-glycoprotein and ACE2 have been produced primarily in mammalian cells, which is an expensive process. Therefore, benefiting from a cheaper cell-based biofactory would be a good value added to the development of cost-effective recombinant vaccines and biopharmaceuticals directed against COVID-19. To this end, efficient protein synthesis machinery and the ability to properly impose post-translational modifications make microalgae an eco-friendly platform for the production of pharmaceutical glycoproteins. Notably, several microalgae (e.g., Chlamydomonas reinhardtii, Dunaliella bardawil, and Chlorella species) are already approved by the U.S. Food and Drug Administration (FDA) as safe human food. Because microalgal cells contain a rigid cell wall that could act as a natural encapsulation to protect the recombinant proteins from the aggressive environment of the stomach, this feature could be used for the rapid production and edible targeted delivery of S-glycoprotein and soluble ACE2 for the treatment/inhibition of SARS-CoV-2. Herein, we have reviewed the pathogenesis mechanism of SARS-CoV-2 and then highlighted the potential of microalgae for the treatment/inhibition of COVID-19 infection.
Collapse
Affiliation(s)
- Jaber Dehghani
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran
| | - Elodie Mathieu-Rivet
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Narimane Mati-Baouche
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Sébastien Calbo
- Université de Rouen Normandie, Inserm U1234, F-76000 Rouen, France
| | - Patrice Lerouge
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Muriel Bardor
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
- Correspondence: ; Tel.: +33-2-35-14-67-51
| |
Collapse
|
29
|
Freudenberg RA, Wittemeier L, Einhaus A, Baier T, Kruse O. Advanced pathway engineering for phototrophic putrescine production. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1968-1982. [PMID: 35748533 PMCID: PMC9491463 DOI: 10.1111/pbi.13879] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The polyamine putrescine (1,4-diaminobutane) contributes to cellular fitness in most organisms, where it is derived from the amino acids ornithine or arginine. In the chemical industry, putrescine serves as a versatile building block for polyamide synthesis. The green microalga Chlamydomonas reinhardtii accumulates relatively high putrescine amounts, which, together with recent advances in genetic engineering, enables the generation of a powerful green cell factory to promote sustainable biotechnology for base chemical production. Here, we report a systematic investigation of the native putrescine metabolism in C. reinhardtii, leading to the first CO2 -based bio-production of putrescine, by employing modern synthetic biology and metabolic engineering strategies. A CRISPR/Cas9-based knockout of key enzymes of the polyamine biosynthesis pathway identified ornithine decarboxylase 1 (ODC1) as a gatekeeper for putrescine accumulation and demonstrated that the arginine decarboxylase (ADC) route is likely inactive and that amine oxidase 2 (AMX2) is mainly responsible for putrescine degradation in C. reinhardtii. A 4.5-fold increase in cellular putrescine levels was achieved by engineered overexpression of potent candidate ornithine decarboxylases (ODCs). We identified unexpected substrate promiscuity in two bacterial ODCs, which exhibited co-production of cadaverine and 4-aminobutanol. Final pathway engineering included overexpression of recombinant arginases for improved substrate availability as well as functional knockout of putrescine degradation, which resulted in a 10-fold increase in cellular putrescine titres and yielded 200 mg/L in phototrophic high cell density cultivations after 10 days.
Collapse
Affiliation(s)
- Robert A. Freudenberg
- Faculty of Biology, Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Luisa Wittemeier
- Faculty of Biology, Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Alexander Einhaus
- Faculty of Biology, Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Thomas Baier
- Faculty of Biology, Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Olaf Kruse
- Faculty of Biology, Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| |
Collapse
|
30
|
Gutiérrez S, Wellman GB, Lauersen KJ. Teaching an old ‘doc’ new tricks for algal biotechnology: Strategic filter use enables multi-scale fluorescent protein signal detection. Front Bioeng Biotechnol 2022; 10:979607. [PMID: 36213064 PMCID: PMC9540369 DOI: 10.3389/fbioe.2022.979607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Fluorescent proteins (FPs) are powerful reporters with a broad range of applications in gene expression and subcellular localization. High-throughput screening is often required to identify individual transformed cell lines in organisms that favor non-homologous-end-joining integration of transgenes into genomes, like in the model green microalga Chlamydomonas reinhardtii. Strategic transgene design, including genetic fusion of transgenes to FPs, and strain domestication have aided engineering efforts in this host but have not removed the need for screening large numbers of transformants to identify those with robust transgene expression levels. FPs facilitate transformant screening by providing a visual signal indicating transgene expression. However, limited combinations of FPs have been described in alga and inherent background fluorescence from cell pigments can hinder FP detection efforts depending on available infrastructure. Here, an updated set of algal nuclear genome-domesticated plasmid parts for seven FPs and six epitope tags were generated and tested in C. reinhardtii. Strategic filter selection was found to enable detection of up to five independent FPs signals from cyan to far-red separately from inherent chlorophyll fluorescence in live algae at the agar plate-level and also in protein electrophoresis gels. This work presents technical advances for algal engineering that can assist reporter detection efforts in other photosynthetic host cells or organisms with inherent background fluorescence.
Collapse
|
31
|
Wichmann J, Eggert A, Elbourne LDH, Paulsen IT, Lauersen KJ, Kruse O. Farnesyl pyrophosphate compartmentalization in the green microalga Chlamydomonas reinhardtii during heterologous (E)-α-bisabolene production. Microb Cell Fact 2022; 21:190. [PMID: 36104783 PMCID: PMC9472337 DOI: 10.1186/s12934-022-01910-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Eukaryotic algae have recently emerged as hosts for metabolic engineering efforts to generate heterologous isoprenoids. Isoprenoid metabolic architectures, flux, subcellular localization, and transport dynamics have not yet been fully elucidated in algal hosts. Results In this study, we investigated the accessibility of different isoprenoid precursor pools for C15 sesquiterpenoid generation in the cytoplasm and chloroplast of Chlamydomonas reinhardtii using the Abies grandis bisabolene synthase (AgBS) as a reporter. The abundance of the C15 sesquiterpene precursor farnesyl pyrophosphate (FPP) was not increased in the cytosol by co-expression and fusion of AgBS with different FPP synthases (FPPSs), indicating limited C5 precursor availability in the cytoplasm. However, FPP was shown to be available in the plastid stroma, where bisabolene titers could be improved several-fold by FPPSs. Sesquiterpene production was greatest when AgBS-FPPS fusions were directed to the plastid and could further be improved by increasing the gene dosage. During scale-up cultivation with different carbon sources and light regimes, specific sesquiterpene productivities from the plastid were highest with CO2 as the only carbon source and light:dark illumination cycles. Potential prenyl unit transporters are proposed based on bioinformatic analyses, which may be in part responsible for our observations. Conclusions Our findings indicate that the algal chloroplast can be harnessed in addition to the cytosol to exploit the full potential of algae as green cell factories for non-native sesquiterpenoid generation. Identification of a prenyl transporter may be leveraged for further extending this capacity. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01910-5.
Collapse
|
32
|
Schroda M, Remacle C. Molecular Advancements Establishing Chlamydomonas as a Host for Biotechnological Exploitation. FRONTIERS IN PLANT SCIENCE 2022; 13:911483. [PMID: 35845675 PMCID: PMC9277225 DOI: 10.3389/fpls.2022.911483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/07/2022] [Indexed: 05/13/2023]
Abstract
Chlamydomonas reinhardtii is emerging as a production platform for biotechnological purposes thanks to recent achievements, which we briefly summarize in this review. Firstly, robust nuclear transgene expression is now possible because several impressive improvements have been made in recent years. Strains allowing efficient and stable nuclear transgene expression are available and were recently made more amenable to rational biotechnological approaches by enabling genetic crosses and identifying their causative mutation. The MoClo synthetic biology strategy, based on Golden Gate cloning, was developed for Chlamydomonas and includes a growing toolkit of more than 100 genetic parts that can be robustly and rapidly assembled in a predefined order. This allows for rapid iterative cycles of transgene design, building, testing, and learning. Another major advancement came from various findings improving transgene design and expression such as the systematic addition of introns into codon-optimized coding sequences. Lastly, the CRISPR/Cas9 technology for genome editing has undergone several improvements since its first successful report in 2016, which opens the possibility of optimizing biosynthetic pathways by switching off competing ones. We provide a few examples demonstrating that all these recent developments firmly establish Chlamydomonas as a chassis for synthetic biology and allow the rewiring of its metabolism to new capabilities.
Collapse
Affiliation(s)
- Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liege, Liege, Belgium
| |
Collapse
|
33
|
Einhaus A, Steube J, Freudenberg RA, Barczyk J, Baier T, Kruse O. Engineering a powerful green cell factory for robust photoautotrophic diterpenoid production. Metab Eng 2022; 73:82-90. [PMID: 35717002 DOI: 10.1016/j.ymben.2022.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023]
Abstract
Diterpenoids display a large and structurally diverse class of natural compounds mainly found as specialized plant metabolites. Due to their diverse biological functions they represent an essential source for various industrially relevant applications as biopharmaceuticals, nutraceuticals, and fragrances. However, commercial production utilizing their native hosts is inhibited by low abundances, limited cultivability, and challenging extraction, while the precise stereochemistry displays a particular challenge for chemical synthesis. Due to a high carbon flux through their native 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway towards photosynthetically active pigments, green microalgae hold great potential as efficient and sustainable heterologous chassis for sustainable biosynthesis of plant-derived diterpenoids. In this study, innovative synthetic biology and efficient metabolic engineering strategies were systematically combined to re-direct the metabolic flux through the MEP pathway for efficient heterologous diterpenoid synthesis in C. reinhardtii. Engineering of the 1-Deoxy-D-xylulose 5-phosphate synthase (DXS) as the main rate-limiting enzyme of the MEP pathway and overexpression of diterpene synthase fusion proteins increased the production of high-value diterpenoids. Applying fully photoautotrophic high cell density cultivations demonstrate potent and sustainable production of the high-value diterpenoid sclareol up to 656 mg L-1 with a maximal productivity of 78 mg L-1 day-1 in a 2.5 L scale photobioreactor, which is comparable to sclareol titers reached by highly engineered yeast. Consequently, this work represents a breakthrough in establishing a powerful phototrophic green cell factory for the competetive use in industrial biotechnology.
Collapse
Affiliation(s)
- Alexander Einhaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Jasmin Steube
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Robert Ansgar Freudenberg
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Jonas Barczyk
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
34
|
Rafique F, Lauersen KJ, Chodasiewicz M, Figueroa NE. A New Approach to the Study of Plastidial Stress Granules: The Integrated Use of Arabidopsis thaliana and Chlamydomonas reinhardtii as Model Organisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:1467. [PMID: 35684240 PMCID: PMC9182737 DOI: 10.3390/plants11111467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 05/16/2023]
Abstract
The field of stress granules (SGs) has recently emerged in the study of the plant stress response, yet these structures, their dynamics and importance remain poorly characterized. There is currently a gap in our understanding of the physiological function of SGs during stress. Since there are only a few studies addressing SGs in planta, which are primarily focused on cytoplasmic SGs. The recent observation of SG-like foci in the chloroplast (cpSGs) of Arabidopsis thaliana opened even more questions regarding the role of these subcellular features. In this opinion article, we review the current knowledge of cpSGs and propose a workflow for the joint use of the long-established model organisms Chlamydomonas reinhardtii and A. thaliana to accelerate the evaluation of individual plant cpSGs components and their impact on stress responses. Finally, we present a short outlook and what we believe are the significant gaps that need to be addressed in the following years.
Collapse
Affiliation(s)
- Fareena Rafique
- Plant Science Program, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (F.R.); (M.C.)
| | - Kyle J. Lauersen
- Bioengineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Monika Chodasiewicz
- Plant Science Program, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (F.R.); (M.C.)
| | - Nicolás E. Figueroa
- Plant Science Program, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (F.R.); (M.C.)
| |
Collapse
|
35
|
Abdallah MN, Wellman GB, Overmans S, Lauersen KJ. Combinatorial Engineering Enables Photoautotrophic Growth in High Cell Density Phosphite-Buffered Media to Support Engineered Chlamydomonas reinhardtii Bio-Production Concepts. Front Microbiol 2022; 13:885840. [PMID: 35633717 PMCID: PMC9141048 DOI: 10.3389/fmicb.2022.885840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Chlamydomonas reinhardtii has emerged as a powerful green cell factory for metabolic engineering of sustainable products created from the photosynthetic lifestyle of this microalga. Advances in nuclear genome modification and transgene expression are allowing robust engineering strategies to be demonstrated in this host. However, commonly used lab strains are not equipped with features to enable their broader implementation in non-sterile conditions and high-cell density concepts. Here, we used combinatorial chloroplast and nuclear genome engineering to augment the metabolism of the C. reinhardtii strain UVM4 with publicly available genetic tools to enable the use of inorganic phosphite and nitrate as sole sources of phosphorous and nitrogen, respectively. We present recipes to create phosphite-buffered media solutions that enable high cell density algal cultivation. We then combined previously reported engineering strategies to produce the heterologous sesquiterpenoid patchoulol to high titers from our engineered green cell factories and show these products are possible to produce in non-sterile conditions. Our work presents a straightforward means to generate C. reinhardtii strains for broader application in bio-processes for the sustainable generation of products from green microalgae.
Collapse
Affiliation(s)
| | | | | | - Kyle J. Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
36
|
Identification, Characterization and Comparison of the Genome-Scale UTR Introns from Six Citrus Species. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ever since their discovery, introns within the coding sequence (CDS) of transcripts have been paid great attention. However, the introns located in the untranslated regions (UTRs) are often ignored. Here, we identified, characterized and compared the UTR introns (UIs) from six citrus species. Results showed that the average intron number of UTRs is greatly lower than that of CDSs. Among all six citrus species, the number and density of 5′UTR introns (5UIs) are higher than those of 3′UTR introns (3UIs). The UI densities varied greatly among different citrus species. There are 11 and 9 types of splice site (SS) pairs for the UIs of C. sinensis and C. medica, respectively. However, the UIs of the other four citrus species all own only three kinds of SS pairs. The ‘GT-AG’, accounting for more than 95% of both 5UIs and 3UIs SS pairs for all the six species, is the most popular type. Moreover, 81 5UIs and 26 3UIs were identified as common UIs among the six citrus species, and the transcripts containing these common UIs were mostly involved in gene expression or gene expression regulation. Our study revealed that the UIs’ length, abundance, density and SS pair types varied among different citrus species and that many UI-containing genes play important roles in gene expression regulation. Our findings have great implications for future citrus UI function research.
Collapse
|
37
|
Abdallah MN, Wellman GB, Overmans S, Lauersen KJ. Combinatorial Engineering Enables Photoautotrophic Growth in High Cell Density Phosphite-Buffered Media to Support Engineered Chlamydomonas reinhardtii Bio-Production Concepts. Front Microbiol 2022; 13:885840. [PMID: 35633717 DOI: 10.1101/2022.02.28.482248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 05/28/2023] Open
Abstract
Chlamydomonas reinhardtii has emerged as a powerful green cell factory for metabolic engineering of sustainable products created from the photosynthetic lifestyle of this microalga. Advances in nuclear genome modification and transgene expression are allowing robust engineering strategies to be demonstrated in this host. However, commonly used lab strains are not equipped with features to enable their broader implementation in non-sterile conditions and high-cell density concepts. Here, we used combinatorial chloroplast and nuclear genome engineering to augment the metabolism of the C. reinhardtii strain UVM4 with publicly available genetic tools to enable the use of inorganic phosphite and nitrate as sole sources of phosphorous and nitrogen, respectively. We present recipes to create phosphite-buffered media solutions that enable high cell density algal cultivation. We then combined previously reported engineering strategies to produce the heterologous sesquiterpenoid patchoulol to high titers from our engineered green cell factories and show these products are possible to produce in non-sterile conditions. Our work presents a straightforward means to generate C. reinhardtii strains for broader application in bio-processes for the sustainable generation of products from green microalgae.
Collapse
Affiliation(s)
- Malak N Abdallah
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gordon B Wellman
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sebastian Overmans
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
38
|
Cutolo EA, Mandalà G, Dall’Osto L, Bassi R. Harnessing the Algal Chloroplast for Heterologous Protein Production. Microorganisms 2022; 10:743. [PMID: 35456794 PMCID: PMC9025058 DOI: 10.3390/microorganisms10040743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Photosynthetic microbes are gaining increasing attention as heterologous hosts for the light-driven, low-cost production of high-value recombinant proteins. Recent advances in the manipulation of unicellular algal genomes offer the opportunity to establish engineered strains as safe and viable alternatives to conventional heterotrophic expression systems, including for their use in the feed, food, and biopharmaceutical industries. Due to the relatively small size of their genomes, algal chloroplasts are excellent targets for synthetic biology approaches, and are convenient subcellular sites for the compartmentalized accumulation and storage of products. Different classes of recombinant proteins, including enzymes and peptides with therapeutical applications, have been successfully expressed in the plastid of the model organism Chlamydomonas reinhardtii, and of a few other species, highlighting the emerging potential of transplastomic algal biotechnology. In this review, we provide a unified view on the state-of-the-art tools that are available to introduce protein-encoding transgenes in microalgal plastids, and discuss the main (bio)technological bottlenecks that still need to be addressed to develop robust and sustainable green cell biofactories.
Collapse
Affiliation(s)
| | | | | | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.A.C.); (G.M.); (L.D.)
| |
Collapse
|
39
|
The Spermidine Synthase Gene SPD1: A Novel Auxotrophic Marker for Chlamydomonas reinhardtii Designed by Enhanced CRISPR/Cas9 Gene Editing. Cells 2022; 11:cells11050837. [PMID: 35269459 PMCID: PMC8909627 DOI: 10.3390/cells11050837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
Biotechnological application of the green microalga Chlamydomonas reinhardtii hinges on the availability of selectable markers for effective expression of multiple transgenes. However, biological safety concerns limit the establishment of new antibiotic resistance genes and until today, only a few auxotrophic markers exist for C. reinhardtii. The recent improvements in gene editing via CRISPR/Cas allow directed exploration of new endogenous selectable markers. Since editing frequencies remain comparably low, a Cas9-sgRNA ribonucleoprotein (RNP) delivery protocol was strategically optimized by applying nitrogen starvation to the pre-culture, which improved successful gene edits from 10% to 66% after pre-selection. Probing the essential polyamine biosynthesis pathway, the spermidine synthase gene (SPD1) is shown to be a potent selectable marker with versatile biotechnological applicability. Very low levels of spermidine (0.75 mg/L) were required to maintain normal mixotrophic and phototrophic growth in newly designed spermidine auxotrophic strains. Complementation of these strains with a synthetic SPD1 gene was achieved when the mature protein was expressed in the cytosol or targeted to the chloroplast. This work highlights the potential of new selectable markers for biotechnology as well as basic research and proposes an effective pipeline for the identification of new auxotrophies in C. reinhardtii.
Collapse
|
40
|
McQuillan JL, Berndt AJ, Sproles AE, Mayfield SP, Pandhal J. Novel cis-regulatory elements as synthetic promoters to drive recombinant protein expression from the Chlamydomonas reinhardtii nuclear genome. N Biotechnol 2022; 68:9-18. [PMID: 34990855 DOI: 10.1016/j.nbt.2022.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/29/2021] [Accepted: 01/01/2022] [Indexed: 12/17/2022]
Abstract
Eukaryotic green microalgae represent a sustainable, photosynthetic biotechnology platform for generating high-value products. The model green alga Chlamydomonas reinhardtii has already been used to generate high value bioproducts such as recombinant proteins and terpenoids. However, low, unstable, and variable nuclear transgene expression has limited the ease and speed of metabolic engineering and recombinant protein expression in this system. Here, novel genetic devices for transgene expression in C. reinhardtii have been developed by identifying cis-regulatory DNA elements capable of driving high transgene expression in C. reinhardtii promoters using de novo motif discovery informatics approaches. Thirteen putative motifs were synthesized as concatemers, linked to a common minimal basal promoter, and assayed for their activity to drive expression of a yellow fluorescent protein reporter gene. Following transformation of the vectors into C. reinhardtii by electroporation, in vivo measurements of yellow fluorescent protein expression by flow cytometry revealed that five of the DNA motifs analyzed displayed significantly higher reporter expression compared to the basal promoter control. Two of the concatemerized motifs, despite being much smaller minimal cis-regulatory elements, drove reporter expression at levels approaching that of the conventionally-used AR1 promoter. This analysis provides insight into C. reinhardtii promoter structure and gene regulation, and provides a new toolbox of cis-regulatory elements that can be used to drive transgene expression at a variety of expression levels.
Collapse
Affiliation(s)
- Josie L McQuillan
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Anthony J Berndt
- California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Ashley E Sproles
- California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Stephen P Mayfield
- California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| |
Collapse
|
41
|
Molino JVD, Carpine R, Gademann K, Mayfield S, Sieber S. Development of a cell surface display system in Chlamydomonas reinhardtii. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Kikuta H, Goto S, Kondo M, Akada R, Hoshida H. Identification of essential intron sequences that enhance gene expression independently of splicing in the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194784. [PMID: 34990853 DOI: 10.1016/j.bbagrm.2021.194784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Gene expression in eukaryotes is enhanced by the presence of introns in a process known as intron-mediated enhancement (IME), but its mechanism remains unclear. In Saccharomyces cerevisiae, sequences at the 5'-splice sites (SS) and branch point sites (BPS) are highly conserved compared with other higher eukaryotes. Here, the minimum intron sequence essential for IME was investigated using various short introns and a yeast codon-optimized luciferase gene as an IME model. Mutations at the 5'-SS conserved sequence and branch point in the QCR10 intron caused splicing deficiency with either a complete loss or a marked decrease in IME. By contrast, however, the 3'-AG to tG mutant was spliced and retained IME function. Moreover, heterologous introns, which did not show IME in S. cerevisiae, gained splicing competency and IME ability by substitutions to the S. cerevisiae-type 5'-SS and BPS sequences. Intriguingly, several deletion mutants between the 5'-SS and BPS in introns exhibited high levels of IME despite a loss in splicing competency. In most cases, further deletions or substitutions did not recover splicing competency and were found to decrease IME. However, a 16-nt variant consisting of the conserved 5'-SS and BPS sequences and 3'-CAG showed an IME level comparable with that of the wild-type intron. These results indicate that IME can be independent of splicing in S. cerevisiae while intron sequences at the 5'-SS and BPS play an essential role in IME.
Collapse
Affiliation(s)
- Hiroki Kikuta
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Satoshi Goto
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Masaki Kondo
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Rinji Akada
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan; Yamaguchi University Biomedical Engineering Center, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Hisashi Hoshida
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan; Yamaguchi University Biomedical Engineering Center, 2-16-1 Tokiwadai, Ube 755-8611, Japan.
| |
Collapse
|
43
|
Berndt AJ, Smalley TN, Ren B, Simkovsky R, Badary A, Sproles AE, Fields FJ, Torres-Tiji Y, Heredia V, Mayfield SP. Recombinant production of a functional SARS-CoV-2 spike receptor binding domain in the green algae Chlamydomonas reinhardtii. PLoS One 2021; 16:e0257089. [PMID: 34793485 PMCID: PMC8601568 DOI: 10.1371/journal.pone.0257089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/25/2021] [Indexed: 01/12/2023] Open
Abstract
Recombinant production of viral proteins can be used to produce vaccine antigens or reagents to identify antibodies in patient serum. Minimally, these proteins must be correctly folded and have appropriate post-translation modifications. Here we report the production of the SARS-CoV-2 spike protein Receptor Binding Domain (RBD) in the green algae Chlamydomonas. RBD fused to a fluorescent reporter protein accumulates as an intact protein when targeted for ER-Golgi retention or secreted from the cell, while a chloroplast localized version is truncated. The ER-retained RBD fusion protein was able to bind the human ACE2 receptor, the host target of SARS-CoV-2, and was specifically out-competed by mammalian cell-produced recombinant RBD, suggesting that the algae produced proteins are sufficiently post-translationally modified to act as authentic SARS-CoV-2 antigens. Because algae can be grown at large scale very inexpensively, this recombinant protein may be a low cost alternative to other expression platforms.
Collapse
Affiliation(s)
- Anthony J. Berndt
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Tressa N. Smalley
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Bijie Ren
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ryan Simkovsky
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Amr Badary
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ashley E. Sproles
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Francis J. Fields
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Yasin Torres-Tiji
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Vanessa Heredia
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Stephen P. Mayfield
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Vavitsas K, Kugler A, Satta A, Hatzinikolaou DG, Lindblad P, Fewer DP, Lindberg P, Toivari M, Stensjö K. Doing synthetic biology with photosynthetic microorganisms. PHYSIOLOGIA PLANTARUM 2021; 173:624-638. [PMID: 33963557 DOI: 10.1111/ppl.13455] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The use of photosynthetic microbes as synthetic biology hosts for the sustainable production of commodity chemicals and even fuels has received increasing attention over the last decade. The number of studies published, tools implemented, and resources made available for microalgae have increased beyond expectations during the last few years. However, the tools available for genetic engineering in these organisms still lag those available for the more commonly used heterotrophic host organisms. In this mini-review, we provide an overview of the photosynthetic microbes most commonly used in synthetic biology studies, namely cyanobacteria, chlorophytes, eustigmatophytes and diatoms. We provide basic information on the techniques and tools available for each model group of organisms, we outline the state-of-the-art, and we list the synthetic biology tools that have been successfully used. We specifically focus on the latest CRISPR developments, as we believe that precision editing and advanced genetic engineering tools will be pivotal to the advancement of the field. Finally, we discuss the relative strengths and weaknesses of each group of organisms and examine the challenges that need to be overcome to achieve their synthetic biology potential.
Collapse
Affiliation(s)
- Konstantinos Vavitsas
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, Australia
| | - Dimitris G Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - David P Fewer
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Mervi Toivari
- VTT, Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Kim S, Song H, Hur Y. Intron-retained radish (Raphanus sativus L.) RsMYB1 transcripts found in colored-taproot lines enhance anthocyanin accumulation in transgenic Arabidopsis plants. PLANT CELL REPORTS 2021; 40:1735-1749. [PMID: 34308490 DOI: 10.1007/s00299-021-02735-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Overexpression of the naturally occurring intron-retained (IR) forms of radish RsMYB1 and RsTT8 transcripts in Arabidopsis causes a substantial increase in anthocyanin accumulation. The production of anthocyanins in plants is tightly controlled by the MYB-bHLH-WD40 (MBW) complex. In this study, analysis of four radish (Raphanus sativus L.) inbred lines with different colored taproots revealed that regulatory genes of anthocyanin biosynthesis, RsMYB1 and RsTT8, produce three transcripts, one completely spliced and two intron retention (IR1 and IR2) forms. Transcripts RsMYB1-IR1 and RsMYB1-IR2 retained the 1st (380 nt) and 2nd (149 nt) introns, respectively; RsTT8-IR1 retained the 4th intron (113 nt); RsTT8-IR2 retained both the 3rd (128 nt) and 4th introns. Levels of most IR forms were substantially low in radish samples, but the RsTT8-IR2 level was higher than RsTT8 in red skin/red flesh (RsRf) root. Since all IR forms contained a stop codon within the intron, they were predicted to encode truncated proteins with defective interaction domains, resulting in the inability to form the MBW complex in vivo. However, tobacco leaves transiently co-expressing RsMYB1-IRs and RsTT8-IRs showed substantially higher anthocyanin accumulation than those co-expressing their spliced forms. Consistently, co-expression of constructs encoding truncated proteins with spliced or IR forms of their interaction partner in tobacco leaves did not result in anthocyanin accumulation. Compared with RsMYB1, the overexpression of RsMYB1-IRs in Arabidopsis pap1 mutant increased anthocyanin accumulation by > sevenfold and upregulated the expression of Arabidopsis flavonoid biosynthesis genes including AtTT8. Our results suggest that the stable co-expression of RsMYB1-IRs in fruit trees and vegetable crops could be used to increase their anthocyanin contents.
Collapse
Affiliation(s)
- Soyun Kim
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hayoung Song
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yoonkang Hur
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
46
|
de Grahl I, Reumann S. Stramenopile microalgae as "green biofactories" for recombinant protein production. World J Microbiol Biotechnol 2021; 37:163. [PMID: 34453200 PMCID: PMC8397651 DOI: 10.1007/s11274-021-03126-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/06/2021] [Indexed: 12/23/2022]
Abstract
Photoautotrophic microalgae have become intriguing hosts for recombinant protein production because they offer important advantages of both prokaryotic and eukaryotic expression systems. Advanced molecular tools have recently been established for the biotechnologically relevant group of stramenopile microalgae, particularly for several Nannochloropsis species and diatoms. Strategies for the selection of powerful genetic elements and for optimization of protein production have been reported. Much needed high-throughput techniques required for straight-forward identification and selection of the best expression constructs and transformants have become available and are discussed. The first recombinant proteins have already been produced successfully in stramenopile microalgae and include not only several subunit vaccines but also one antimicrobial peptide, a fish growth hormone, and an antibody. These research results offer interesting future applications in aquaculture and as biopharmaceuticals. In this review we highlight recent progress in genetic technology development for recombinant protein production in the most relevant Nannochloropsis species and diatoms. Diverse realistic biotechnological applications of these proteins are emphasized that have the potential to establish stramenopile algae as sustainable green factories for an economically competitive production of high-value biomolecules.
Collapse
Affiliation(s)
- Imke de Grahl
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Sigrun Reumann
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| |
Collapse
|
47
|
Dwyer K, Agarwal N, Gega A, Ansari A. Proximity to the Promoter and Terminator Regions Regulates the Transcription Enhancement Potential of an Intron. Front Mol Biosci 2021; 8:712639. [PMID: 34291091 PMCID: PMC8287100 DOI: 10.3389/fmolb.2021.712639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/25/2021] [Indexed: 11/15/2022] Open
Abstract
An evolutionarily conserved feature of introns is their ability to enhance expression of genes that harbor them. Introns have been shown to regulate gene expression at the transcription and post-transcription level. The general perception is that a promoter-proximal intron is most efficient in enhancing gene expression and the effect diminishes with the increase in distance from the promoter. Here we show that the intron regains its positive influence on gene expression when in proximity to the terminator. We inserted ACT1 intron into different positions within IMD4 and INO1 genes. Transcription Run-On (TRO) analysis revealed that the transcription of both IMD4 and INO1 was maximal in constructs with a promoter-proximal intron and decreased with the increase in distance of the intron from the promoter. However, activation was partially restored when the intron was placed close to the terminator. We previously demonstrated that the promoter-proximal intron stimulates transcription by affecting promoter directionality through gene looping-mediated recruitment of termination factors in the vicinity of the promoter region. Here we show that the terminator-proximal intron also enhances promoter directionality and results in compact gene architecture with the promoter and terminator regions in close physical proximity. Furthermore, we show that both the promoter and terminator-proximal introns facilitate assembly or stabilization of the preinitiation complex (PIC) on the promoter. On the basis of these findings, we propose that proximity to both the promoter and the terminator regions affects the transcription regulatory potential of an intron, and the terminator-proximal intron enhances transcription by affecting both the assembly of preinitiation complex and promoter directionality.
Collapse
Affiliation(s)
| | | | | | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
48
|
Tanaka T, Maeda Y, Suhaimi N, Tsuneoka C, Nonoyama T, Yoshino T, Kato N, Lauersen KJ. Intron-mediated enhancement of transgene expression in the oleaginous diatom Fistulifera solaris towards bisabolene production. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Dementyeva P, Freudenberg RA, Baier T, Rojek K, Wobbe L, Weisshaar B, Kruse O. A novel, robust and mating-competent Chlamydomonas reinhardtii strain with an enhanced transgene expression capacity for algal biotechnology. ACTA ACUST UNITED AC 2021; 31:e00644. [PMID: 34168966 PMCID: PMC8209186 DOI: 10.1016/j.btre.2021.e00644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/26/2021] [Accepted: 06/06/2021] [Indexed: 11/03/2022]
Abstract
In the future, algae biotechnology could play an important role in sustainable development, especially with regard to the production of valuable chemicals. Among the established laboratory strains with efficient transgene expression, there are none that have demonstrated the required robustness for industrial applications, which generally require growth at larger scale. Here, we created a robust and mating-competent cell line of the green microalga Chlamydomonas reinhardtii, which also possesses a high transgene expression capacity. This strain shows a comparably high resistance to shear stress by accumulating increased amounts of biomass under these conditions. As a proof-of-concept, a high phototrophic productivity of cadaverine from CO2 and nitrate was demonstrated by efficiently expressing a bacterial l-lysine decarboxylase. In contrast to other established strains, this novel chassis strain for phototrophic production schemes is equipped with the traits required for industrial applications, by combining mating-competence, cell wall-mediated robustness and high level transgene expression.
Collapse
Affiliation(s)
- Polina Dementyeva
- Algae Biotechnology and Bioenergy, Faculty of Biology, Bielefeld University, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Robert A Freudenberg
- Algae Biotechnology and Bioenergy, Faculty of Biology, Bielefeld University, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Bielefeld University, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Kristin Rojek
- Algae Biotechnology and Bioenergy, Faculty of Biology, Bielefeld University, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Lutz Wobbe
- Algae Biotechnology and Bioenergy, Faculty of Biology, Bielefeld University, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Bernd Weisshaar
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Bielefeld, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Bielefeld University, Universitätsstrasse 27, 33615, Bielefeld, Germany
| |
Collapse
|
50
|
Dwyer K, Agarwal N, Pile L, Ansari A. Gene Architecture Facilitates Intron-Mediated Enhancement of Transcription. Front Mol Biosci 2021; 8:669004. [PMID: 33968994 PMCID: PMC8097089 DOI: 10.3389/fmolb.2021.669004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/31/2021] [Indexed: 12/28/2022] Open
Abstract
Introns impact several vital aspects of eukaryotic organisms like proteomic plasticity, genomic stability, stress response and gene expression. A role for introns in the regulation of gene expression at the level of transcription has been known for more than thirty years. The molecular basis underlying the phenomenon, however, is still not entirely clear. An important clue came from studies performed in budding yeast that indicate that the presence of an intron within a gene results in formation of a multi-looped gene architecture. When looping is defective, these interactions are abolished, and there is no enhancement of transcription despite normal splicing. In this review, we highlight several potential mechanisms through which looping interactions may enhance transcription. The promoter-5′ splice site interaction can facilitate initiation of transcription, the terminator-3′ splice site interaction can enable efficient termination of transcription, while the promoter-terminator interaction can enhance promoter directionality and expedite reinitiation of transcription. Like yeast, mammalian genes also exhibit an intragenic interaction of the promoter with the gene body, especially exons. Such promoter-exon interactions may be responsible for splicing-dependent transcriptional regulation. Thus, the splicing-facilitated changes in gene architecture may play a critical role in regulation of transcription in yeast as well as in higher eukaryotes.
Collapse
Affiliation(s)
- Katherine Dwyer
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Neha Agarwal
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Lori Pile
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|