1
|
Zhang X, Wang L, Zhao J, Zhao H. Knockoff procedure improves causal gene identifications in conditional transcriptome-wide association studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636660. [PMID: 39974930 PMCID: PMC11838583 DOI: 10.1101/2025.02.05.636660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Transcriptome-wide association studies (TWASs) have been developed to nominate candidate genes associated with complex traits by integrating genome-wide association studies (GWASs) with expression quantitative trait loci (eQTL) data. However, most existing TWAS methods evaluate the marginal association between a single gene and the trait of interest without accounting for other genes within the same genomic region or the same gene from different tissues. Additionally, false-positive gene-trait pairs can arise due to correlations with the direct effects of genetic variants. In this study, we introduce TWASKnockoff, a new knockoff-based framework for detecting causal gene-tissue pairs using GWAS summary statistics and eQTL data. Unlike marginal testing in traditional TWAS methods, TWASKnockoff examines the conditional independence for each gene-trait pair, considering both correlations in cis-predicted expression across genes and correlations between gene expression levels and genetic variants. TWASKnockoff estimates the theoretical correlation matrix for all genetic elements (cis-predicted expression across genes and genotypes for genetic variants) by averaging estimations from parametric boot-strap samples and then performs knockoff-based inference to detect causal gene-trait pairs while controlling the false discovery rate (FDR). Through empirical simulations and an application to type 2 diabetes (T2D) data, we demonstrate that TWASKnockoff achieves superior FDR control and improves the average power in detecting causal gene-trait pairs at a fixed FDR level.
Collapse
|
2
|
Migliorini A, Ge S, Atkins MH, Oakie A, Sambathkumar R, Kent G, Huang H, Sing A, Chua C, Gehring AJ, Keller GM, Notta F, Nostro MC. Embryonic macrophages support endocrine commitment during human pancreatic differentiation. Cell Stem Cell 2024; 31:1591-1611.e8. [PMID: 39406230 DOI: 10.1016/j.stem.2024.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 11/10/2024]
Abstract
Organogenesis is a complex process that relies on a dynamic interplay between extrinsic factors originating from the microenvironment and tissue-specific intrinsic factors. For pancreatic endocrine cells, the local niche consists of acinar and ductal cells as well as neuronal, immune, endothelial, and stromal cells. Hematopoietic cells have been detected in human pancreas as early as 6 post-conception weeks, but whether they play a role during human endocrinogenesis remains unknown. To investigate this, we performed single-nucleus RNA sequencing (snRNA-seq) of the second-trimester human pancreas and identified a wide range of hematopoietic cells, including two distinct subsets of tissue-resident macrophages. Leveraging this discovery, we developed a co-culture system of human embryonic stem cell-derived endocrine-macrophage organoids to model their interaction in vitro. Here, we show that macrophages support the differentiation and viability of endocrine cells in vitro and enhance tissue engraftment, highlighting their potential role in tissue engineering strategies for diabetes.
Collapse
Affiliation(s)
- Adriana Migliorini
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Sabrina Ge
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael H Atkins
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Amanda Oakie
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Gregory Kent
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Haiyang Huang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Angel Sing
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Conan Chua
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Faiyaz Notta
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
3
|
Sandovici I, Fernandez-Twinn DS, Campbell N, Cooper WN, Sekita Y, Zvetkova I, Ferland-McCollough D, Prosser HM, Oyama LM, Pantaleão LC, Cimadomo D, Barbosa de Queiroz K, Cheuk CSK, Smith NM, Kay RG, Antrobus R, Hoelle K, Ma MKL, Smith NH, Geyer SH, Reissig LF, Weninger WJ, Siddle K, Willis AE, Lam BYH, Bushell M, Ozanne SE, Constância M. Overexpression of Igf2-derived Mir483 inhibits Igf1 expression and leads to developmental growth restriction and metabolic dysfunction in mice. Cell Rep 2024; 43:114750. [PMID: 39283743 PMCID: PMC7617298 DOI: 10.1016/j.celrep.2024.114750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/04/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Mir483 is a conserved and highly expressed microRNA in placental mammals, embedded within the Igf2 gene. Its expression is dysregulated in a number of human diseases, including metabolic disorders and certain cancers. Here, we investigate the developmental regulation and function of Mir483 in vivo. We find that Mir483 expression is dependent on Igf2 transcription and the regulation of the Igf2/H19 imprinting control region. Transgenic Mir483 overexpression in utero causes fetal, but not placental, growth restriction through insulin-like growth factor 1 (IGF1) and IGF2 and also causes cardiovascular defects leading to fetal death. Overexpression of Mir483 post-natally results in growth stunting through IGF1 repression, increased hepatic lipid production, and excessive adiposity. IGF1 infusion rescues the post-natal growth restriction. Our findings provide insights into the function of Mir483 as a growth suppressor and metabolic regulator and suggest that it evolved within the INS-IGF2-H19 transcriptional region to limit excessive tissue growth through repression of IGF signaling.
Collapse
Affiliation(s)
- Ionel Sandovici
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Niamh Campbell
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Wendy N Cooper
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Yoichi Sekita
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ilona Zvetkova
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | | | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Lila M Oyama
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Departmento de Fisiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Lucas C Pantaleão
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Danilo Cimadomo
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Karina Barbosa de Queiroz
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Cecilia S K Cheuk
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Nicola M Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Richard G Kay
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Katharina Hoelle
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Marcella K L Ma
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Noel H Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Stefan H Geyer
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Lukas F Reissig
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J Weninger
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Kenneth Siddle
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Brian Y H Lam
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Susan E Ozanne
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Sandovici I, Knee O, Lopez-Tello J, Shreeve N, Fowden AL, Sferruzzi-Perri AN, Constância M. A genetically small fetus impairs placental adaptations near term. Dis Model Mech 2024; 17:dmm050719. [PMID: 39207227 PMCID: PMC11381921 DOI: 10.1242/dmm.050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
The placenta is a gatekeeper between the mother and fetus, adapting its structure and functions to support optimal fetal growth. Studies exploring adaptations of placentae that support the development of genetically small fetuses are lacking. Here, using a mouse model of impaired fetal growth, achieved by deleting insulin-like growth factor 2 (Igf2) in the epiblast, we assessed placental nutrient transfer and umbilical artery (UA) blood flow during late gestation. At embryonic day (E) 15.5, we observed a decline in the trans-placental flux of glucose and system A amino acids (by using 3H-MeG and 14C-MeAIB), proportionate to the diminished fetal size, whereas UA blood flow was normal. However, at E18.5, the trans-placental flux of both tracers was disproportionately decreased and accompanied by blunted UA blood flow. Feto-placental growth and nutrient transfer were more impaired in female conceptuses. Thus, reducing the fetal genetic demand for growth impairs the adaptations in placental blood flow and nutrient transport that normally support the fast fetal growth during late gestation. These findings have important implications for our understanding of the pathophysiology of pregnancies afflicted by fetal growth restriction.
Collapse
Affiliation(s)
- Ionel Sandovici
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Olatejumoye Knee
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK
| | - Jorge Lopez-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Norman Shreeve
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK
| | - Abigail L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Miguel Constância
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
5
|
Pandey K, Bessières B, Sheng SL, Taranda J, Osten P, Sandovici I, Constancia M, Alberini CM. Neuronal activity drives IGF2 expression from pericytes to form long-term memory. Neuron 2023; 111:3819-3836.e8. [PMID: 37788670 PMCID: PMC10843759 DOI: 10.1016/j.neuron.2023.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Investigations of memory mechanisms have been, thus far, neuron centric, despite the brain comprising diverse cell types. Using rats and mice, we assessed the cell-type-specific contribution of hippocampal insulin-like growth factor 2 (IGF2), a polypeptide regulated by learning and required for long-term memory formation. The highest level of hippocampal IGF2 was detected in pericytes, the multi-functional mural cells of the microvessels that regulate blood flow, vessel formation, the blood-brain barrier, and immune cell entry into the central nervous system. Learning significantly increased pericytic Igf2 expression in the hippocampus, particularly in the highly vascularized stratum lacunosum moleculare and stratum moleculare layers of the dentate gyrus. Igf2 increases required neuronal activity. Regulated hippocampal Igf2 knockout in pericytes, but not in fibroblasts or neurons, impaired long-term memories and blunted the learning-dependent increase of neuronal immediate early genes (IEGs). Thus, neuronal activity-driven signaling from pericytes to neurons via IGF2 is essential for long-term memory.
Collapse
Affiliation(s)
- Kiran Pandey
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Susan L Sheng
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Julian Taranda
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Miguel Constancia
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
6
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
7
|
Lopez-Tello J, Yong HEJ, Sandovici I, Dowsett GKC, Christoforou ER, Salazar-Petres E, Boyland R, Napso T, Yeo GSH, Lam BYH, Constancia M, Sferruzzi-Perri AN. Fetal manipulation of maternal metabolism is a critical function of the imprinted Igf2 gene. Cell Metab 2023; 35:1195-1208.e6. [PMID: 37437545 DOI: 10.1016/j.cmet.2023.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/12/2023] [Accepted: 06/09/2023] [Indexed: 07/14/2023]
Abstract
Maternal-offspring interactions in mammals involve both cooperation and conflict. The fetus has evolved ways to manipulate maternal physiology to enhance placental nutrient transfer, but the mechanisms involved remain unclear. The imprinted Igf2 gene is highly expressed in murine placental endocrine cells. Here, we show that Igf2 deletion in these cells impairs placental endocrine signaling to the mother, without affecting placental morphology. Igf2 controls placental hormone production, including prolactins, and is crucial to establish pregnancy-related insulin resistance and to partition nutrients to the fetus. Consequently, fetuses lacking placental endocrine Igf2 are growth restricted and hypoglycemic. Mechanistically, Igf2 controls protein synthesis and cellular energy homeostasis, actions dependent on the placental endocrine cell type. Igf2 loss also has additional long-lasting effects on offspring metabolism in adulthood. Our study provides compelling evidence for an intrinsic fetal manipulation system operating in placenta that modifies maternal metabolism and fetal resource allocation, with long-term consequences for offspring metabolic health.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | - Hannah E J Yong
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A(∗)STAR), 30 Medical Drive, Singapore 117609, Singapore
| | - Ionel Sandovici
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK; Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Georgina K C Dowsett
- Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Efthimia R Christoforou
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Esteban Salazar-Petres
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Rebecca Boyland
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Royal Devon and Exeter Hospital NHS Trust, Barrack Rd, Exeter EX2 5DW, UK
| | - Tina Napso
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Giles S H Yeo
- Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Brian Y H Lam
- Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Miguel Constancia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK; Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
8
|
Cechinel LR, Batabyal RA, Freishtat RJ, Zohn IE. Parental obesity-induced changes in developmental programming. Front Cell Dev Biol 2022; 10:918080. [PMID: 36274855 PMCID: PMC9585252 DOI: 10.3389/fcell.2022.918080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies support the link between parental obesity and the predisposition to develop adult-onset metabolic syndromes that include obesity, high blood pressure, dyslipidemia, insulin resistance, and diabetes in the offspring. As the prevalence of obesity increases in persons of childbearing age, so does metabolic syndrome in their descendants. Understanding how parental obesity alters metabolic programs in the progeny, predisposing them to adult-onset metabolic syndrome, is key to breaking this cycle. This review explores the basis for altered metabolism of offspring exposed to overnutrition by focusing on critical developmental processes influenced by parental obesity. We draw from human and animal model studies, highlighting the adaptations in metabolism that occur during normal pregnancy that become maladaptive with obesity. We describe essential phases of development impacted by parental obesity that contribute to long-term alterations in metabolism in the offspring. These encompass gamete formation, placentation, adipogenesis, pancreas development, and development of brain appetite control circuits. Parental obesity alters the developmental programming of these organs in part by inducing epigenetic changes with long-term consequences on metabolism. While exposure to parental obesity during any of these phases is sufficient to alter long-term metabolism, offspring often experience multiple exposures throughout their development. These insults accumulate to increase further the susceptibility of the offspring to the obesogenic environments of modern society.
Collapse
|
9
|
Kumar D, Das M, Oberg A, Sahoo D, Wu P, Sauceda C, Jih L, Ellies LG, Langiewicz MT, Sen S, Webster NJG. Hepatocyte Deletion of IGF2 Prevents DNA Damage and Tumor Formation in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105120. [PMID: 35615981 PMCID: PMC9313545 DOI: 10.1002/advs.202105120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/18/2022] [Indexed: 05/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Serine-arginine rich splicing factor 3 (SRSF3) plays a critical role in hepatocyte function and its loss in mice promotes chronic liver damage and leads to HCC. Hepatocyte-specific SRSF3 knockout mice (SKO mice) also overexpress insulin-like growth factor 2 (IGF2). In the present study, double deletion of Igf2 and Srsf3 (DKO mice) prevents hepatic fibrosis and inflammation, and completely prevents tumor formation, and is associated with decreased proliferation, apoptosis and DNA damage, and restored DNA repair enzyme expression. This is confirmed in vitro, where IGF2 treatment of HepG2 hepatoma cells decreases DNA repair enzyme expression and causes DNA damage. Tumors from the SKO mice also show mutational signatures consistent with homologous recombination and mismatch repair defects. Analysis of frozen human samples shows that SRSF3 protein is decreased sixfold in HCC compared to normal liver tissue but SRSF3 mRNA is increased. Looking at public TCGA data, HCC patients having high SRSF3 mRNA expression show poor survival, as do patients with alterations in known SRSF3-dependent splicing events. The results indicate that IGF2 overexpression in conjunction with reduced SRSF3 splicing activity could be a major cause of DNA damage and driver of liver cancer.
Collapse
Affiliation(s)
- Deepak Kumar
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Manasi Das
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Alexis Oberg
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Debashis Sahoo
- Division of Genome Information Sciences, Department of PediatricsUniversity of California San DiegoLa JollaCA92093USA
| | - Panyisha Wu
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Consuelo Sauceda
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Lily Jih
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Lesley G. Ellies
- Division of Cancer Biology Research, Department of PathologyUniversity of California San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California San DiegoLa JollaCA92093USA
| | - Magda T. Langiewicz
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Supriya Sen
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Nicholas J. G. Webster
- Research and Development ServiceVA San Diego Healthcare SystemSan DiegoCA92161USA
- Division of Endocrinology and Metabolism, Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
- Moores Cancer CenterUniversity of California San DiegoLa JollaCA92093USA
| |
Collapse
|
10
|
IGF2: Development, Genetic and Epigenetic Abnormalities. Cells 2022; 11:cells11121886. [PMID: 35741015 PMCID: PMC9221339 DOI: 10.3390/cells11121886] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
In the 30 years since the first report of parental imprinting in insulin-like growth factor 2 (Igf2) knockout mouse models, we have learnt much about the structure of this protein, its role and regulation. Indeed, many animal and human studies involving innovative techniques have shed light on the complex regulation of IGF2 expression. The physiological roles of IGF-II have also been documented, revealing pleiotropic tissue-specific and developmental-stage-dependent action. Furthermore, in recent years, animal studies have highlighted important interspecies differences in IGF-II function, gene expression and regulation. The identification of human disorders due to impaired IGF2 gene expression has also helped to elucidate the major role of IGF-II in growth and in tumor proliferation. The Silver-Russell and Beckwith-Wiedemann syndromes are the most representative imprinted disorders, as they constitute both phenotypic and molecular mirrors of IGF2-linked abnormalities. The characterization of patients with either epigenetic or genetic defects altering IGF2 expression has confirmed the central role of IGF-II in human growth regulation, particularly before birth, and its effects on broader body functions, such as metabolism or tumor susceptibility. Given the long-term health impact of these rare disorders, it is important to understand the consequences of IGF2 defects in these patients.
Collapse
|
11
|
Sandovici I, Georgopoulou A, Pérez-García V, Hufnagel A, López-Tello J, Lam BYH, Schiefer SN, Gaudreau C, Santos F, Hoelle K, Yeo GSH, Burling K, Reiterer M, Fowden AL, Burton GJ, Branco CM, Sferruzzi-Perri AN, Constância M. The imprinted Igf2-Igf2r axis is critical for matching placental microvasculature expansion to fetal growth. Dev Cell 2022; 57:63-79.e8. [PMID: 34963058 PMCID: PMC8751640 DOI: 10.1016/j.devcel.2021.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022]
Abstract
In all eutherian mammals, growth of the fetus is dependent upon a functional placenta, but whether and how the latter adapts to putative fetal signals is currently unknown. Here, we demonstrate, through fetal, endothelial, hematopoietic, and trophoblast-specific genetic manipulations in the mouse, that endothelial and fetus-derived IGF2 is required for the continuous expansion of the feto-placental microvasculature in late pregnancy. The angiocrine effects of IGF2 on placental microvasculature expansion are mediated, in part, through IGF2R and angiopoietin-Tie2/TEK signaling. Additionally, IGF2 exerts IGF2R-ERK1/2-dependent pro-proliferative and angiogenic effects on primary feto-placental endothelial cells ex vivo. Endothelial and fetus-derived IGF2 also plays an important role in trophoblast morphogenesis, acting through Gcm1 and Synb. Thus, our study reveals a direct role for the imprinted Igf2-Igf2r axis on matching placental development to fetal growth and establishes the principle that hormone-like signals from the fetus play important roles in controlling placental microvasculature and trophoblast morphogenesis.
Collapse
Affiliation(s)
- Ionel Sandovici
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | - Aikaterini Georgopoulou
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Vicente Pérez-García
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 46012 Valencia, Spain
| | - Antonia Hufnagel
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Jorge López-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Brian Y H Lam
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Samira N Schiefer
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Chelsea Gaudreau
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Fátima Santos
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Katharina Hoelle
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Giles S H Yeo
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Keith Burling
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Moritz Reiterer
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Abigail L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Cristina M Branco
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Miguel Constância
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
12
|
Aykroyd BRL, Tunster SJ, Sferruzzi-Perri AN. Loss of imprinting of the Igf2-H19 ICR1 enhances placental endocrine capacity via sex-specific alterations in signalling pathways in the mouse. Development 2022; 149:dev199811. [PMID: 34982814 PMCID: PMC8783045 DOI: 10.1242/dev.199811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Imprinting control region (ICR1) controls the expression of the Igf2 and H19 genes in a parent-of-origin specific manner. Appropriate expression of the Igf2-H19 locus is fundamental for normal fetal development, yet the importance of ICR1 in the placental production of hormones that promote maternal nutrient allocation to the fetus is unknown. To address this, we used a novel mouse model to selectively delete ICR1 in the endocrine junctional zone (Jz) of the mouse placenta (Jz-ΔICR1). The Jz-ΔICR1 mice exhibit increased Igf2 and decreased H19 expression specifically in the Jz. This was accompanied by an expansion of Jz endocrine cell types due to enhanced rates of proliferation and increased expression of pregnancy-specific glycoprotein 23 in the placenta of both fetal sexes. However, changes in the endocrine phenotype of the placenta were related to sexually-dimorphic alterations to the abundance of Igf2 receptors and downstream signalling pathways (Pi3k-Akt and Mapk). There was no effect of Jz-ΔICR1 on the expression of targets of the H19-embedded miR-675 or on fetal weight. Our results demonstrate that ICR1 controls placental endocrine capacity via sex-dependent changes in signalling.
Collapse
Affiliation(s)
| | | | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
13
|
Ghezelayagh Z, Zabihi M, Kazemi Ashtiani M, Ghezelayagh Z, Lynn FC, Tahamtani Y. Recapitulating pancreatic cell-cell interactions through bioengineering approaches: the momentous role of non-epithelial cells for diabetes cell therapy. Cell Mol Life Sci 2021; 78:7107-7132. [PMID: 34613423 PMCID: PMC11072828 DOI: 10.1007/s00018-021-03951-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Over the past few years, extensive efforts have been made to generate in-vitro pancreatic micro-tissue, for disease modeling or cell replacement approaches in pancreatic related diseases such as diabetes mellitus. To obtain these goals, a closer look at the diverse cells participating in pancreatic development is necessary. Five major non-epithelial pancreatic (pN-Epi) cell populations namely, pancreatic endothelium, mesothelium, neural crests, pericytes, and stellate cells exist in pancreas throughout its development, and they are hypothesized to be endogenous inducers of the development. In this review, we discuss different pN-Epi cells migrating to and existing within the pancreas and their diverse effects on pancreatic epithelium during organ development mediated via associated signaling pathways, soluble factors or mechanical cell-cell interactions. In-vivo and in-vitro experiments, with a focus on N-Epi cells' impact on pancreas endocrine development, have also been considered. Pluripotent stem cell technology and multicellular three-dimensional organoids as new approaches to generate pancreatic micro-tissues have also been discussed. Main challenges for reaching a detailed understanding of the role of pN-Epi cells in pancreas development in utilizing for in-vitro recapitulation have been summarized. Finally, various novel and innovative large-scale bioengineering approaches which may help to recapitulate cell-cell interactions and are crucial for generation of large-scale in-vitro multicellular pancreatic micro-tissues, are discussed.
Collapse
Affiliation(s)
- Zahra Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Zabihi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeinab Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery and School of Biomedical Engineering , University of British Columbia, Vancouver, BC, Canada
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
14
|
Sandovici I, Hammerle CM, Virtue S, Vivas-Garcia Y, Izquierdo-Lahuerta A, Ozanne SE, Vidal-Puig A, Medina-Gómez G, Constância M. Autocrine IGF2 programmes β-cell plasticity under conditions of increased metabolic demand. Sci Rep 2021; 11:7717. [PMID: 33833312 PMCID: PMC8032793 DOI: 10.1038/s41598-021-87292-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
When exposed to nutrient excess and insulin resistance, pancreatic β-cells undergo adaptive changes in order to maintain glucose homeostasis. The role that growth control genes, highly expressed in early pancreas development, might exert in programming β-cell plasticity in later life is a poorly studied area. The imprinted Igf2 (insulin-like growth factor 2) gene is highly transcribed during early life and has been identified in recent genome-wide association studies as a type 2 diabetes susceptibility gene in humans. Hence, here we investigate the long-term phenotypic metabolic consequences of conditional Igf2 deletion in pancreatic β-cells (Igf2βKO) in mice. We show that autocrine actions of IGF2 are not critical for β-cell development, or for the early post-natal wave of β-cell remodelling. Additionally, adult Igf2βKO mice maintain glucose homeostasis when fed a chow diet. However, pregnant Igf2βKO females become hyperglycemic and hyperinsulinemic, and their conceptuses exhibit hyperinsulinemia and placentomegalia. Insulin resistance induced by congenital leptin deficiency also renders Igf2βKO females more hyperglycaemic compared to leptin-deficient controls. Upon high-fat diet feeding, Igf2βKO females are less susceptible to develop insulin resistance. Based on these findings, we conclude that in female mice, autocrine actions of β-cell IGF2 during early development determine their adaptive capacity in adult life.
Collapse
Affiliation(s)
- Ionel Sandovici
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Constanze M Hammerle
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Novo Nordisk A/S, 2880, Bagsværd, Denmark.
| | - Sam Virtue
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Yurena Vivas-Garcia
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Adriana Izquierdo-Lahuerta
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
- Welcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Cambridge University Nanjing Centre of Technology and Innovation, Jiangbei Area, Nanjing, People's Republic of China
| | - Gema Medina-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain
| | - Miguel Constância
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|