1
|
McMillan CL, Corner AV, Wijesundara DK, Choo JJ, Pittayakhajonwut D, Poredi I, Parry RH, Bindra GK, Bruce KL, Khromykh AA, Fernando GJ, Dapremont L, Young PR, Muller DA. Skin patch delivery of a SARS-CoV-2 spike DNA vaccine produces broad neutralising antibody responses. Heliyon 2025; 11:e42533. [PMID: 40034315 PMCID: PMC11872540 DOI: 10.1016/j.heliyon.2025.e42533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
The ongoing SARS-CoV-2 pandemic continues to be a major health burden globally, especially in resource-limited areas. Continued research into more effective and accessible vaccines is required to reduce the burden of disease. Here, we use an emerging vaccine delivery system, the high-density microarray patch (HD-MAP) to deliver a plasmid DNA vaccine (Delta 6P) encoding for the SARS-CoV-2 spike protein. HD-MAP delivery of this vaccine resulted in robust IgG responses in mice against multiple domains of the spike protein. The cellular response to vaccination was also measured, and comparative analysis showed that relative to intramuscular vaccination, HD-MAP vaccination elicited spike-specific CD4+ T and CD8+ T cell responses that were largely comparable, but the number of polyfunctional CD4+ T cells was higher in the HD-MAP group. Collectively, this work suggests that HD-MAP delivery of the Delta 6P vaccine is effective against SARS-CoV-2, warranting further investigation.
Collapse
Affiliation(s)
- Christopher L.D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| | - Andrea V. Corner
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Jovin J.Y. Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Indrajeet Poredi
- BioNet-Asia, Hi-Tech Industrial Estate, 81 Moo 1, Baan-Lane, Bang Pa-In, Ayutthaya, 13160, Thailand
| | - Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guneet K. Bindra
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kimberley L. Bruce
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| | - Germain J.P. Fernando
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Vaxxas Biomedical Facility, Brisbane, QLD, 4007, Australia
| | | | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| |
Collapse
|
2
|
Davies C, Baker B, Berger MN, Knox SL, Mowbray E, Stewart BG, Booy R, Hacker E, Marmol A, Ross C, Muller DA, Mortimore AM, Siller G, Forster AH, Skinner SR. Vaccine microarray patch self-administration: A preliminary study in adults 50 years of age and over. Vaccine 2025; 48:126699. [PMID: 39890558 DOI: 10.1016/j.vaccine.2024.126699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/25/2024] [Accepted: 12/30/2024] [Indexed: 02/03/2025]
Abstract
INTRODUCTION We assessed the safety, performance, acceptability, and usability of the High-Density Microarray Patch (HD-MAP) for vaccination in adults aged 50 and over. METHODS This study was a single-centre, open-label, single-arm intervention in healthy adults aged 50+. HD-MAPs (vaccine-free) were applied by a trained user and self-administered. Participants received one excipient-coated HD-MAP to the volar forearm (FA) and the upper arm (UA) administered by a trained user. Participants then self-administered a HD-MAP to the FA and UA. Application sites were compared for skin response. Participants completed an online survey and participated in a semi-structured interview on acceptability and usability. Analyses were undertaken using descriptive statistics. Interviews were coded in NVivo 12 and subject to thematic analysis. The study occurred from 8 September 2021 to 15 February 2022 in Brisbane, Australia. RESULTS Of 44 participants, 43 % (n = 19) were male, and 57 % (n = 25) female. The HD-MAP was well-tolerated, with no treatment-related serious adverse events. The increase in transepidermal water loss following self-administration was similar to that observed for trained user administration (UA: 7.5 fold vs 6-fold, FA: 6.1-fold vs 6.6 fold). Fluorescent dermatoscopy confirmed that HD-MAPs engaged with the skin surface and that self and trained user administrations were similar. All participants found the HD-MAP applicator easy to use. 82 % of participants preferred "vaccination" by HD-MAP should its efficacy be proven equivalent to intramuscular injection (IM). Participants reported high acceptance of the resulting transient marks on the skin (82 %). 98 % of participants agreed that self-administration of the HD-MAP at home, without supervision, was highly preferable for its convenience. CONCLUSION HD-MAPs were safe in adults 50+ years, and performance was effective, regardless of administrator. Participants preferred the HD-MAP for its ease of use and convenience in self-administration. This vaccine delivery method shows promise for future implementation for this population.
Collapse
Affiliation(s)
- C Davies
- Speciality of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| | - B Baker
- Vaxxas Pty Ltd, 240 Macarthur Avene, Hamilton, Queensland, Australia
| | - M N Berger
- Speciality of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Evergreen Community Health Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada; Centre for Population Health, Western Sydney Local Health District, North Parramatta, NSW, Australia
| | - S L Knox
- Speciality of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - E Mowbray
- Speciality of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - B G Stewart
- Speciality of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - R Booy
- Speciality of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - E Hacker
- Vaxxas Pty Ltd, 240 Macarthur Avene, Hamilton, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Brisbane, QLD 4222, Australia
| | - A Marmol
- Vaxxas Pty Ltd, 240 Macarthur Avene, Hamilton, Queensland, Australia
| | - C Ross
- Vaxxas Pty Ltd, 240 Macarthur Avene, Hamilton, Queensland, Australia
| | - D A Muller
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - A M Mortimore
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - G Siller
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia; Central Brisbane Dermatology, Brisbane, Queensland, Australia; Dermatology Research Centre, University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - A H Forster
- Vaxxas Pty Ltd, 240 Macarthur Avene, Hamilton, Queensland, Australia
| | - S R Skinner
- Speciality of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Shi H, Zhang X, Ross TM. A single dose of inactivated influenza virus vaccine expressing COBRA hemagglutinin elicits broadly-reactive and long-lasting protection. PLoS One 2025; 20:e0308680. [PMID: 39982912 PMCID: PMC11844911 DOI: 10.1371/journal.pone.0308680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/24/2024] [Indexed: 02/23/2025] Open
Abstract
Influenza virus infections present a pervasive global health concern resulting in millions of hospitalizations and thousands of fatalities annually. To address the influenza antigenic variation, the computationally optimized broadly reactive antigen (COBRA) methodology was used to design influenza hemagglutinin (HA) or neuraminidase (NA) for universal influenza vaccine candidates. In this study, whole inactivated virus (WIV) or split inactivated virus (SIV) vaccine formulations expressing either the H1 COBRA HA or H3 COBRA HA were formulated with or without an adjuvant and tested in ferrets with pre-existing anti-influenza immunity. A single dose of the COBRA-WIV vaccine elicited a robust and broadly reactive antibody response against H1N1 and H3N2 influenza viruses. In contrast, the COBRA-SIV elicited antibodies that recognized fewer viruses, but with R-DOATP, its specificity was expanded. Vaccinated ferrets were protected against morbidity and mortality following challenge with A/California/07/2009 at 14 weeks post-vaccination with reduced viral shedding post-infection compared to the naïve ferrets. However, the COBRA-IIVs did not block the viral transmission to naïve ferrets. The contact infection induced less severe disease and delayed viral shedding than direct infection. Overall, the COBRA HA WIV or the COBRA HA SIV plus R-DOTAP elicited broadly reactive antibodies with long-term protection against viral challenge and reduced viral transmission following a single dose of vaccine in ferrets pre-immune to historical H1N1 and H3N2 influenza viruses. IMPORTANCE The goal of the next-generation influenza vaccine is to provide broadly reactive protection against various drifted influenza strains. With the previous studies evaluating the COBRA HA-based vaccines, the breadth of antibody activities was confirmed following two or three vaccinations. However, for the commercial influenza vaccine, only one shot is required. In this study, only one shot was administrated to the pre-immune ferrets and the COBRA-WIV efficiently elicited broadly reactive antibodies and long-lasting protection against the pdm09 strain. Moreover, this study showed that different infection methods can lead to different disease severity, which emphasizes the significance of the model selection. The infection was conducted 14 weeks post-vaccination to evaluate the long-term protection elicited by only one vaccination. This is the first longevity study describing the immune responses elicited by COBRA-IIVs in ferrets and provides promising results for the potential clinical utilization.
Collapse
Affiliation(s)
- Hua Shi
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
| | - Xiaojian Zhang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States of America
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| |
Collapse
|
4
|
Nguyen HX. Beyond the Needle: Innovative Microneedle-Based Transdermal Vaccination. MEDICINES (BASEL, SWITZERLAND) 2025; 12:4. [PMID: 39982324 PMCID: PMC11843882 DOI: 10.3390/medicines12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
Vaccination represents a critical preventive strategy in the current global healthcare system, serving as an indispensable intervention against diverse pathogenic threats. Although conventional immunization relies predominantly on hypodermic needle-based administration, this method carries substantial limitations, including needle-associated fear, bloodborne pathogen transmission risks, occupational injuries among healthcare workers, waste management issues, and dependence on trained medical personnel. Microneedle technology has emerged as an innovative vaccine delivery system, offering convenient, effective, and minimally invasive administration. These microscale needle devices facilitate targeted antigen delivery to epidermal and dermal tissues, where abundant populations of antigen-presenting cells, specifically Langerhans and dermal dendritic cells, provide robust immunological responses. Multiple research groups have extensively investigated microneedle-based vaccination strategies. This transdermal delivery technique offers several advantages, notably circumventing cold-chain requirements and enabling self-administration. Numerous preclinical investigations and clinical trials have demonstrated the safety profile, immunogenicity, and patient acceptance of microneedle-mediated vaccine delivery across diverse immunization applications. This comprehensive review examines the fundamental aspects of microneedle-based immunization, including vaccination principles, transcutaneous immunization strategies, and microneedle-based transdermal delivery-including classifications, advantages, and barriers. Furthermore, this review addresses critical technical considerations, such as treatment efficacy, application methodologies, wear duration, dimensional optimization, manufacturing processes, regulatory frameworks, and sustainability considerations, followed by an analysis of the future perspective of this technology.
Collapse
Affiliation(s)
- Hiep X Nguyen
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
| |
Collapse
|
5
|
Kim E, Khan MS, Shin J, Huang S, Ferrari A, Han D, An E, Kenniston TW, Cassaniti I, Baldanti F, Jeong D, Gambotto A. The Long-Term Immunity of a Microneedle Array Patch of a SARS-CoV-2 S1 Protein Subunit Vaccine Irradiated by Gamma Rays in Mice. Vaccines (Basel) 2025; 13:86. [PMID: 39852865 PMCID: PMC11768753 DOI: 10.3390/vaccines13010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES COVID-19 vaccines effectively prevent severe disease, but unequal distribution, especially in low- and middle-income countries, has led to vaccine-resistant strains. This highlights the urgent need for alternative vaccine platforms that are safe, thermostable, and easy to distribute. This study evaluates the immunogenicity, stability, and scalability of a dissolved microneedle array patch (MAP) delivering the rS1RS09 subunit vaccine, comprising the SARS-CoV-2 S1 monomer and RS09, a TLR-4 agonist peptide. METHODS The rS1RS09 vaccine was administered via MAP or intramuscular injection in murine models. The immune responses of the MAP with and without gamma irradiation as terminal sterilization were assessed at doses of 5, 15, and 45 µg, alongside neutralizing antibody responses to Wuhan, Delta, and Omicron variants. The long-term storage stability was also evaluated through protein degradation analyses at varying temperatures. RESULTS The rS1RS09 vaccine elicited stronger immune responses and ACE2-binding inhibition than S1 monomer alone or trimer. The MAP delivery induced sgnificantly higher and longer-lasting S1-specific IgG responses for up to 70 weeks compared to intramuscular injections. Robust Th2-prevalent immune responses were generated in all the groups vaccinated via the MAP and significant neutralizing antibodies were elicited at 15 and 45 µg, showing dose-sparing potential. The rS1RS09 in MAP has remained stable with minimal protein degradation for 19 months at room temperature or under refrigeration, regardless of gamma-irradiation. After an additional month of storage at 42 °C, cit showed less than 3% degradation, ompared to over 23% in liquid vaccines Conclusions: Gamma-irradiated MAP-rS1RS09 is a promising platform for stable, scalable vaccine production and distribution, eliminating cold chain logistics. These findings support its potential for mass vaccination efforts, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.K.); (T.W.K.)
| | - Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.K.); (T.W.K.)
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15213, USA
| | - Juyeop Shin
- Medical Business Division, Raphas Co., Ltd., Seoul 07793, Republic of Korea (D.J.)
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.K.); (T.W.K.)
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Donghoon Han
- Medical Business Division, Raphas Co., Ltd., Seoul 07793, Republic of Korea (D.J.)
| | - Eunjin An
- Medical Business Division, Raphas Co., Ltd., Seoul 07793, Republic of Korea (D.J.)
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.K.); (T.W.K.)
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Dohyeon Jeong
- Medical Business Division, Raphas Co., Ltd., Seoul 07793, Republic of Korea (D.J.)
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (E.K.); (T.W.K.)
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15213, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
6
|
Tadros AR, Guo XD, Prausnitz MR. Multi-Layered Microneedles Loaded with Microspheres. AAPS PharmSciTech 2025; 26:19. [PMID: 39753909 DOI: 10.1208/s12249-024-03016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/02/2024] [Indexed: 02/21/2025] Open
Abstract
Delivery of therapies into skin is attractive for medical indications including vaccination and treatment of dermatoses but is highly constrained by the stratum corneum barrier. Microneedle (MN) patches have emerged as a promising technology to enable non-invasive, intuitive, and low-cost skin delivery. When combined with biodegradable polymer formulations, MN patches can further enable controlled-release drug delivery without injection. Herein, we sought to expand on the capability of MN patches to deliver therapies into skin by providing improved spatiotemporal control. Polylactic-co-glycolic acid (PLGA) microspheres were used to encapsulate model dye and then loaded into MN patches through a layer-by-layer fabrication method that created multiple layers of different composition within each MN. MN patches were loaded with up to 5 μg/MN of PLGA microspheres. Mechanical testing demonstrated that mechanical strength of MNs decreased with increasing number of microsphere layers. Microsphere-loaded MN patches inserted into porcine skin ex vivo and murine skin in vivo fully dissolved within 15 min, administering drug-loaded microspheres for controlled release lasting over 45 days. These data support the feasibility of multi-layered, microsphere-loaded MN patches designed for spatially targeted and sustained delivery of therapies into skin.
Collapse
Affiliation(s)
- Andrew R Tadros
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A
| | - Xin Dong Guo
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A..
| |
Collapse
|
7
|
Rajesh NU, Luna Hwang J, Xu Y, Saccone MA, Hung AH, Hernandez RAS, Coates IA, Driskill MM, Dulay MT, Jacobson GB, Tian S, Perry JL, DeSimone JM. 3D-Printed Latticed Microneedle Array Patches for Tunable and Versatile Intradermal Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404606. [PMID: 39221508 DOI: 10.1002/adma.202404606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Using high-resolution 3D printing, a novel class of microneedle array patches (MAPs) is introduced, called latticed MAPs (L-MAPs). Unlike most MAPs which are composed of either solid structures or hollow needles, L-MAPs incorporate tapered struts that form hollow cells capable of trapping liquid droplets. The lattice structures can also be coated with traditional viscous coating formulations, enabling both liquid- and solid-state cargo delivery, on a single patch. Here, a library of 43 L-MAP designs is generated and in-silico modeling is used to down-select optimal geometries for further characterization. Compared to traditionally molded and solid-coated MAPs, L-MAPs can load more cargo with fewer needles per patch, enhancing cargo loading and drug delivery capabilities. Further, L-MAP cargo release kinetics into the skin can be tuned based on formulation and needle geometry. In this work, the utility of L-MAPs as a platform is demonstrated for the delivery of small molecules, mRNA lipid nanoparticles, and solid-state ovalbumin protein. In addition, the production of programmable L-MAPs is demonstrated with tunable cargo release profiles, enabled by combining needle geometries on a single patch.
Collapse
Affiliation(s)
- Netra U Rajesh
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Jihyun Luna Hwang
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yue Xu
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Max A Saccone
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Andy H Hung
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Rosa A S Hernandez
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ian A Coates
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Madison M Driskill
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Maria T Dulay
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | | | - Shaomin Tian
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jillian L Perry
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph M DeSimone
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
8
|
Kim E, Khan MS, Shin J, Huang S, Ferrari A, Han D, An E, Kenniston TW, Cassaniti I, Baldanti F, Jeong D, Gambotto A. Long-term Immunity of a Microneedle Array Patch of SARS-CoV-2 S1 Protein Subunit Vaccine Irradiated by Gamma Rays in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620289. [PMID: 39484497 PMCID: PMC11527120 DOI: 10.1101/2024.10.25.620289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
COVID-19 vaccines effectively prevent symptomatic infection and severe disease, including hospitalization and death. However, unequal vaccine distribution during the pandemic, especially in low- and middle-income countries, has led to the emergence of vaccine-resistant strains. This underscores the need for alternative, safe, and thermostable vaccine platforms, such as dissolved microneedle array patches (MAP) delivering a subunit vaccine, which eliminate the need for cold chain and trained healthcare personnel. This study demonstrates that the SARS-CoV-2 S1 monomer with RS09, a TLR-4 agonist peptide, serves as an optimal protein subunit immunogen. This combination stimulates a stronger S1-specific immune response, resulting in binding to the membrane-bound spike on the cell surface and ACE2-binding inhibition, compared to the monomer S1 alone or trimer S1, regardless of RS09. MAP delivery of the rS1RS09 subunit vaccine elicited higher and longer-lasting immunity compared to conventional intramuscular injection. S1-specific IgG levels remained significantly elevated for up to 70 weeks post-administration. Additionally, different doses of 5, 15, and 45 μg of MAP vaccines induced robust and sustained Th2-prevalent immune responses, suggesting a dose-sparing effect and inducing significantly high neutralizing antibodies against the Wuhan, Delta, and Omicron variants at 15 and 45 μ g dose. Moreover, gamma irradiation as a terminal sterilization method did not significantly affect immunogenicity, with irradiated vaccines maintaining comparable efficacy to non-irradiated ones. The stability of MAP vaccines was evaluated after long-term storage at room temperature and refrigeration for 19 months, showing minimal protein degradation. Further, after an additional one-month of storage at elevated temperature (42°C), rS1RS09 in both non-irradiated and irradiated MAP degraded less than 3%, while the liquid subunit vaccine degraded over 23%. Overall, these results indicate that gamma irradiation sterilized MAP-rS1RS09 vaccines maintain stability during extended storage without refrigeration, supporting their potential for mass production and widespread use in global vaccination efforts.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Juyeop Shin
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Donghoon Han
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Eunjin An
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Dohyeon Jeong
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Gromer DJ, Plikaytis BD, McCullough MP, Wimalasena ST, Rouphael N. The Relationship between Immunogenicity and Reactogenicity of Seasonal Influenza Vaccine Using Different Delivery Methods. Vaccines (Basel) 2024; 12:809. [PMID: 39066447 PMCID: PMC11281354 DOI: 10.3390/vaccines12070809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Vaccine immunogenicity and reactogenicity depend on recipient and vaccine characteristics. We hypothesized that healthy adults reporting higher reactogenicity from seasonal inactivated influenza vaccine (IIV) developed higher antibody titers compared with those reporting lower reactogenicity. We performed a secondary analysis of a randomized phase 1 trial of a trivalent IIV delivered by microneedle patch (MNP) or intramuscular (IM) injection. We created composite reactogenicity scores as exposure variables and used hemagglutination inhibition (HAI) titers as outcome variables. We used mixed-model analysis of variance to estimate geometric mean titers (GMTs) and titer fold change and modified Poisson generalized estimating equations to estimate risk ratios of seroprotection and seroconversion. Estimates of H3N2 GMTs were associated with the Systemic and Local scores among the IM group. Within the IM group, those with high reaction scores had lower baseline H3N2 GMTs and twice the titer fold change by day 28. Those with high Local scores had a greater probability of seroconversion. These results suggest that heightened reactogenicity to IM IIV is related to low baseline humoral immunity to an included antigen. Participants with greater reactogenicity developed greater titer fold change after 4 weeks, although the response magnitude was similar or lower compared with low-reactogenicity participants.
Collapse
Affiliation(s)
- Daniel J. Gromer
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
- Laney Graduate School, Emory University, Atlanta, GA 30307, USA
| | | | - Michele P. McCullough
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
| | - Sonia Tandon Wimalasena
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
| | - Nadine Rouphael
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
| |
Collapse
|
10
|
Berger MN, Davies C, Mathieu E, Shaban RZ, Bag S, Skinner SR. Developing and validating a scale to measure the perceptions of safety, usability and acceptability of microarray patches for vaccination: a study protocol. Ther Adv Vaccines Immunother 2024; 12:25151355241263560. [PMID: 39044997 PMCID: PMC11265248 DOI: 10.1177/25151355241263560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/04/2024] [Indexed: 07/25/2024] Open
Abstract
Background Vaccination is a fundamental tenet of public and population health. Several barriers to vaccine uptake exist, exacerbated post-COVID-19, including misconceptions about vaccine efficacy and safety, vaccine hesitancy, vaccine inequity, costs, religious beliefs, and insufficient education and guidance for healthcare professionals. Vaccine uptake may be aided using microarray patches (MAPs) due to reduced pain, no hypodermic needle, enhanced thermostability, and potential for self and lay administration. Objectives This protocol outlines the development of a scale that aims to accurately measure the perceived safety, usability, and acceptability of MAPs for vaccination among laypeople, MAP recipients, clinicians, and parents or guardians of children. Methods and analysis This study will follow three phases of scale development and validation, including (1) item development, (2) scale development, and (3) scale evaluation. Inductive (interviews) and deductive methods (literature searches) will be used to develop scale items, which experts from target populations will assess through an online survey. Cognitive interviews will be conducted to observe their processes of answering the draft survey. Thematic analysis will be conducted to analyse qualitative data. Lastly, four surveys will be administered online to our target populations over two time points to determine their repeatability. Exploratory and confirmatory factor analyses, Cronbach's alpha, and construct validity will be performed. Ethics This study was approved by Metro South Health (HREC/2021/QMS/81653) and Western Sydney Local Health District (2023/ETH00705) Human Research Ethics Committees. Discussion The scale will support a standardised approach to assessing the social and behavioural aspects of MAP vaccines, enabling comparison of outcomes across studies. Once validated, this scale will assist vaccination programmes in developing effective strategies for integrating MAPs and overcoming barriers to vaccination. This includes improving vaccine equity and accessibility, especially in lower- and middle-income countries and rural or remote locations.
Collapse
Affiliation(s)
- Matthew N. Berger
- Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Centre for Population Health, Western Sydney Local Health District, Gungurra, Building 68, Cumberland Hospital Campus, Fleet Street, North Parramatta, NSW 2151, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
| | - Cristyn Davies
- Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
| | - Erin Mathieu
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ramon Z. Shaban
- Centre for Population Health, Western Sydney Local Health District, North Parramatta, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- New South Wales Biocontainment Centre, Western Sydney Local Health District and New South Wales Health, Camperdown, NSW, Australia
| | - Shopna Bag
- Centre for Population Health, Western Sydney Local Health District, North Parramatta, NSW, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - S. Rachel Skinner
- Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Kids Research, Children’s Hospital Westmead, Sydney Children’s Hospitals Network, Westmead, NSW, Australia
| |
Collapse
|
11
|
Garg N, Tellier G, Vale N, Kluge J, Portman JL, Markowska A, Tussey L. Phase 1, randomized, rater and participant blinded placebo-controlled study of the safety, reactogenicity, tolerability and immunogenicity of H1N1 influenza vaccine delivered by VX-103 (a MIMIX microneedle patch [MAP] system) in healthy adults. PLoS One 2024; 19:e0303450. [PMID: 38843267 PMCID: PMC11156369 DOI: 10.1371/journal.pone.0303450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The MIMIX platform is a novel microneedle array patch (MAP) characterized by slowly dissolving microneedle tips that deploy into the dermis following patch application. We describe safety, reactogenicity, tolerability and immunogenicity for MIMIX MAP vaccination against influenza. METHODOLOGY The trial was a Phase 1, exploratory, first-in-human, parallel randomized, rater, participant, study analyst-blinded, placebo-controlled study in Canada. Forty-five healthy participants (18 to 39 years of age, inclusive) were randomized in a 1:1:1 ratio to receive either 15 μg or 7.5 μg of an H1N1 influenza vaccine, or placebo delivered via MIMIX MAP to the volar forearm. A statistician used a computer program to create a randomization scheme with a block size of 3. Post-treatment follow-up was approximately 180 days. Primary safety outcomes included the incidence of study product related serious adverse events and unsolicited events within 180 days, solicited application site and systemic reactogenicity through 7 days after administration and solicited application site erythema and/or pigmentation 14, 28, 56 and 180 days after administration. Immunogenicity outcomes included antibody titers and percentage of seroconversion (SCR) and seroprotection (SPR) rates determined by the hemagglutination inhibition (HAI) assay. Exploratory outcomes included virus microneutralization (MN) titers, durability and breadth of the immune response. The trial was registered with ClinicalTrials.gov, number NCT06125717. FINDINGS Between July 7, 2022 and March 13, 2023 45 participants were randomized to a treatment group. One participant was lost to follow up in the 15 μg group and 1 participant withdrew from the 7.5 μg dose group. Safety analyses included n = 15 per group, immunogenicity analyses included n = 14 for the 15 μg and 7.5 μg treatment groups and n = 15 for the placebo group. No SAEs were reported in any of the treatment groups. All treatment groups reported solicited local events within 7 days after vaccination, with mild (Grade 1) erythema being the most frequent symptom reported. Other local symptoms reported included mostly mild (Grade 1) induration/swelling, itching, pigmentation, skin flaking, and tenderness. Within 7 days after vaccination, 2 participants (4.4%) reported moderate (Grade 2) erythema, 1 participant (2.2%) reported moderate (Grade 2) induration/swelling, and 1 participant (2.2%) reported moderate (Grade 2) itching. There was an overall reduction in erythema and pigmentation reported on Days 15, 29, 57, and 180 among all treatment groups. Systemic symptoms reported within 7 days after vaccination, included mild (Grade 1) fatigue reported among all treatment groups, and mild (Grade 1) headache reported by 1 participant in the 7.5 μg treatment group. No study drug related severe symptoms were reported in the study. Group mean fold rises in HAI titers ranged between 8.7 and 12-fold, SCRs were >76% and SPRs were >92% for both VX-103 dose groups thereby fulfilling serological criteria established by the EMA and FDA for seasonal influenza vaccines. Longitudinal assessments demonstrate persistence of the immune response through at least Day 180. CONCLUSIONS The MIMIX MAP platform is safe, well tolerated and elicits robust antibody responses.
Collapse
Affiliation(s)
- Naveen Garg
- Centricity Research-Montreal, Point-Claire, Québec, Canada
| | - Guy Tellier
- Centricity Research-Mirabel, Mirabel, Québec, Canada
| | - Noah Vale
- Centricity Research-Toronto, Toronto, Ontario, Canada
| | - Jon Kluge
- Research and Development, Vaxess Technologies, Cambridge, Massachusetts, United States of America
| | - Jonathan L. Portman
- Research and Development, Vaxess Technologies, Cambridge, Massachusetts, United States of America
| | - Anna Markowska
- Research and Development, Vaxess Technologies, Cambridge, Massachusetts, United States of America
| | - Lynda Tussey
- Development and MAP Production, Vaxess Technologies, Woburn, Massachusetts, United States of America
| |
Collapse
|
12
|
Kim E, Shin J, Ferrari A, Huang S, An E, Han D, Khan MS, Kenniston TW, Cassaniti I, Baldanti F, Jeong D, Gambotto A. Fourth dose of microneedle array patch of SARS-CoV-2 S1 protein subunit vaccine elicits robust long-lasting humoral responses in mice. Int Immunopharmacol 2024; 129:111569. [PMID: 38340419 PMCID: PMC11939117 DOI: 10.1016/j.intimp.2024.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The COVID-19 pandemic has underscored the pressing need for safe and effective booster vaccines, particularly in considering the emergence of new SARS-CoV-2 variants and addressing vaccine distribution inequalities. Dissolving microneedle array patches (MAP) offer a promising delivery method, enhancing immunogenicity and improving accessibility through the skin's immune potential. In this study, we evaluated a microneedle array patch-based S1 subunit protein COVID-19 vaccine candidate, which comprised a bivalent formulation targeting the Wuhan and Beta variant alongside a monovalent Delta variant spike proteins in a murine model. Notably, the second boost of homologous bivalent MAP-S1(WU + Beta) induced a 15.7-fold increase in IgG endpoint titer, while the third boost of heterologous MAP-S1RS09Delta yielded a more modest 1.6-fold increase. Importantly, this study demonstrated that the administration of four doses of the MAP vaccine induced robust and long-lasting immune responses, persisting for at least 80 weeks. These immune responses encompassed various IgG isotypes and remained statistically significant for one year. Furthermore, neutralizing antibodies against multiple SARS-CoV-2 variants were generated, with comparable responses observed against the Omicron variant. Overall, these findings emphasize the potential of MAP-based vaccines as a promising strategy to combat the evolving landscape of COVID-19 and to deliver a safe and effective booster vaccine worldwide.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Juyeop Shin
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eunjin An
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Donghoon Han
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Muhammad S Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Thomas W Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Dohyeon Jeong
- Medical Business Division, Raphas Co., Ltd., Seoul, Republic of Korea
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
McMillan CLD, Wijesundara DK, Choo JJY, Amarilla AA, Modhiran N, Fernando GJP, Khromykh AA, Watterson D, Young PR, Muller DA. Enhancement of cellular immunity following needle-free vaccination of mice with SARS-CoV-2 spike protein. J Gen Virol 2024; 105. [PMID: 38271027 DOI: 10.1099/jgv.0.001947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic has highlighted the need for vaccines capable of providing rapid and robust protection. One way to improve vaccine efficacy is delivery via microarray patches, such as the Vaxxas high-density microarray patch (HD-MAP). We have previously demonstrated that delivery of a SARS-CoV-2 protein vaccine candidate, HexaPro, via the HD-MAP induces potent humoral immune responses. Here, we investigate the cellular responses induced by HexaPro HD-MAP vaccination. We found that delivery via the HD-MAP induces a type one biassed cellular response of much greater magnitude as compared to standard intramuscular immunization.
Collapse
Affiliation(s)
- Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Danushka K Wijesundara
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Vaxxas Biomedical Facility, Hamilton, Queensland 4007, Australia
| | - Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Germain J P Fernando
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Vaxxas Biomedical Facility, Hamilton, Queensland 4007, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| |
Collapse
|
14
|
Nainggolan ADC, Anjani QK, Hartrianti P, Donnelly RF, Kurniawan A, Ramadon D. Microneedle-Mediated Transdermal Delivery of Genetic Materials, Stem Cells, and Secretome: An Update and Progression. Pharmaceutics 2023; 15:2767. [PMID: 38140107 PMCID: PMC10747930 DOI: 10.3390/pharmaceutics15122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Medical practitioners commonly use oral and parenteral dosage forms to administer drugs to patients. However, these forms have certain drawbacks, particularly concerning patients' comfort and compliance. Transdermal drug delivery presents a promising solution to address these issues. Nevertheless, the stratum corneum, as the outermost skin layer, can impede drug permeation, especially for macromolecules, genetic materials, stem cells, and secretome. Microneedles, a dosage form for transdermal delivery, offer an alternative approach, particularly for biopharmaceutical products. In this review, the authors will examine the latest research on microneedle formulations designed to deliver genetic materials, stem cells, and their derivatives. Numerous studies have explored different types of microneedles and evaluated their ability to deliver these products using preclinical models. Some of these investigations have compared microneedles with conventional dosage forms, demonstrating their significant potential for advancing the development of biotherapeutics in the future.
Collapse
Affiliation(s)
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Q.K.A.); (R.F.D.)
| | - Pietradewi Hartrianti
- School of Life Sciences, Indonesia International Institute of Life Sciences, Jakarta 13210, Indonesia;
| | - Ryan F. Donnelly
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Q.K.A.); (R.F.D.)
| | - Arief Kurniawan
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; (A.D.C.N.); (A.K.)
| | - Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; (A.D.C.N.); (A.K.)
| |
Collapse
|
15
|
Edwards C, Shah SA, Gebhardt T, Jewell CM. Exploiting Unique Features of Microneedles to Modulate Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302410. [PMID: 37380199 PMCID: PMC10753036 DOI: 10.1002/adma.202302410] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Microneedle arrays (MNAs) are small patches containing hundreds of short projections that deliver signals directly to dermal layers without causing pain. These technologies are of special interest for immunotherapy and vaccine delivery because they directly target immune cells concentrated in the skin. The targeting abilities of MNAs result in efficient immune responses-often more protective or therapeutic-compared to conventional needle delivery. MNAs also offer logistical benefits, such as self-administration and transportation without refrigeration. Thus, numerous preclinical and clinical studies are exploring these technologies. Here the unique advantages of MNA, as well as critical challenges-such as manufacturing and sterility issues-the field faces to enable widespread deployment are discussed. How MNA design parameters can be exploited for controlled release of vaccines and immunotherapies, and the application to preclinical models of infection, cancer, autoimmunity, and allergies are explained. Specific strategies are also discussed to reduce off-target effects compared to conventional vaccine delivery routes, and novel chemical and manufacturing controls that enable cargo stability in MNAs across flexible intervals and temperatures. Clinical research using MNAs is then examined. Drawbacks of MNAs and the implications, and emerging opportunities to exploit MNAs for immune engineering and clinical use are concluded.
Collapse
Affiliation(s)
- Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Thomas Gebhardt
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC, 3000, Australia
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, USA
| |
Collapse
|
16
|
Baker B, Bermingham IM, Leelasena I, Hickling J, Young PR, Muller DA, Forster AH. Safety, Tolerability, and Immunogenicity of Measles and Rubella Vaccine Delivered with a High-Density Microarray Patch: Results from a Randomized, Partially Double-Blinded, Placebo-Controlled Phase I Clinical Trial. Vaccines (Basel) 2023; 11:1725. [PMID: 38006057 PMCID: PMC10675090 DOI: 10.3390/vaccines11111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 11/26/2023] Open
Abstract
Microarray patches (MAPs) have the potential to be a safer, more acceptable, easier-to-use, and more cost-effective means for the administration of vaccines than injection by needle and syringe. Here, we report findings from a randomized, partially double-blinded, placebo-controlled Phase I trial using the Vaxxas high-density MAP (HD-MAP) to deliver a measles rubella (MR) vaccine. Healthy adults (N = 63, age 18-50 years) were randomly assigned 1:1:1:1 to four groups: uncoated (placebo) HD-MAPs, low-dose MR HD-MAPs (~3100 median cell-culture infectious dose [CCID50] measles, ~4300 CCID50 rubella); high-dose MR-HD-MAPs (~9300 CCID50 measles, ~12,900 CCID50 rubella); or a sub-cutaneous (SC) injection of an approved MR vaccine, MR-Vac (≥1000 CCID50 per virus). The MR vaccines were stable and remained viable on HD-MAPs when stored at 2-8 °C for at least 24 months. When MR HD-MAPs stored at 2-8 °C for 24 months were transferred to 40 °C for 3 days in a controlled temperature excursion, loss of potency was minimal, and MR HD-MAPs still met World Health Organisation (WHO) specifications. MR HD-MAP vaccination was safe and well-tolerated; any systemic or local adverse events (AEs) were mild or moderate. Similar levels of binding and neutralizing antibodies to measles and rubella were induced by low-dose and high-dose MR HD-MAPs and MR-Vac. The neutralizing antibody seroconversion rates on day 28 after vaccination for the low-dose HD-MAP, high-dose HD-MAP and MR-Vac groups were 37.5%, 18.8% and 35.7%, respectively, for measles, and 37.5%, 25.0% and 35.7%, respectively, for rubella. Most participants were seropositive for measles and rubella antibodies at baseline, which appeared to negatively impact the number of participants that seroconverted to vaccines delivered by either route. The data reported here suggest HD-MAPs could be a valuable means for delivering MR-vaccine to hard-to-reach populations and support further development. Clinical trial registry number: ACTRN12621000820808.
Collapse
Affiliation(s)
- Ben Baker
- Vaxxas Pty Ltd., Hamilton, QLD 4007, Australia; (B.B.)
| | | | - Indika Leelasena
- University of the Sunshine Coast Clinical Trials Centre, Sippy Downs, QLD 4556, Australia
| | | | - Paul R. Young
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | | |
Collapse
|
17
|
Fu H, Abbas K, Malvolti S, Gregory C, Ko M, Amorij JP, Jit M. Impact and cost-effectiveness of measles vaccination through microarray patches in 70 low-income and middle-income countries: mathematical modelling and early-stage economic evaluation. BMJ Glob Health 2023; 8:e012204. [PMID: 37949503 PMCID: PMC10649680 DOI: 10.1136/bmjgh-2023-012204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/01/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Microarray patches (MAPs) are a promising technology being developed to reduce barriers to vaccine delivery based on needles and syringes (N&S). To address the evidence gap on the public health value of applying this potential technology to immunisation programmes, we evaluated the health impact on measles burden and cost-effectiveness of introducing measles-rubella MAPs (MR-MAPs) in 70 low-income and middle-income countries (LMICs). METHODS We used an age-structured dynamic model of measles transmission and vaccination to project measles cases, deaths and disability-adjusted life-years during 2030-2040. Compared with the baseline scenarios with continuing current N&S-based practice, we evaluated the introduction of MR-MAPs under different measles vaccine coverage projections and MR-MAP introduction strategies. Costs were calculated based on the ingredients approach, including direct cost of measles treatment, vaccine procurement and vaccine delivery. Model-based burden and cost estimates were derived for individual countries and country income groups. We compared the incremental cost-effectiveness ratios of introducing MR-MAPs to health opportunity costs. RESULTS MR-MAP introduction could prevent 27%-37% of measles burden between 2030 and 2040 in 70 LMICs, compared with the N&S-only immunisation strategy. The largest health impact could be achieved under lower coverage projection and accelerated introduction strategy, with 39 million measles cases averted. Measles treatment cost is a key driver of the net cost of introduction. In countries with a relatively higher income, introducing MR-MAPs could be a cost-saving intervention due to reduced treatment costs. Compared with country-specific health opportunity costs, introducing MR-MAPs would be cost-effective in 16%-81% of LMICs, depending on the MR-MAPs procurement prices and vaccine coverage projections. CONCLUSIONS Introducing MR-MAPs in LMICs can be a cost-effective strategy to revitalise measles immunisation programmes with stagnant uptake and reach undervaccinated children. Sustainable introduction and uptake of MR-MAPs has the potential to improve vaccine equity within and between countries and accelerate progress towards measles elimination.
Collapse
Affiliation(s)
- Han Fu
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Kaja Abbas
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Public Health Foundation of India, New Delhi, India
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | | | | | - Melissa Ko
- MMGH Consulting GmbH, Zurich, Switzerland
| | | | - Mark Jit
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- School of Public Health, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
18
|
Hervé PL, Dioszeghy V, Matthews K, Bee KJ, Campbell DE, Sampson HA. Recent advances in epicutaneous immunotherapy and potential applications in food allergy. FRONTIERS IN ALLERGY 2023; 4:1290003. [PMID: 37965375 PMCID: PMC10641725 DOI: 10.3389/falgy.2023.1290003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Given the potent immunological properties of the skin, epicutaneous immunotherapy (EPIT) emerges as a promising treatment approach for inducing immune tolerance, particularly for food allergies. Targeting the highly immunocompetent, non-vascularized epidermis allows for the application of microgram amounts of allergen while significantly reducing the risk of allergen passage into the bloodstream, thus limiting systemic allergen exposure and distribution. This makes EPIT highly suitable for the treatment of potentially life-threatening allergies such as food allergies. Multiple approaches to EPIT are currently under investigation for the treatment of food allergy, and these include the use of allergen-coated microneedles, application of allergen on the skin pretreated by tape stripping, abrasion or laser-mediated microperforation, or the application of allergen on the intact skin using an occlusive epicutaneous system. To date, the most clinically advanced approach to EPIT is the Viaskin technology platform. Viaskin is an occlusive epicutaneous system (patch) containing dried native allergen extracts, without adjuvants, which relies on frequent application for the progressive passage of small amounts of allergen to the epidermis through occlusion of the intact skin. Numerous preclinical studies of Viaskin have demonstrated that this particular approach to EPIT can induce potent and long-lasting T-regulatory cells with broad homing capabilities, which can exert their suppressive effects in multiple organs and ameliorate immune responses from different routes of allergen exposure. Clinical trials of the Viaskin patch have studied the efficacy and safety for the treatment of life-threatening allergies in younger patients, at an age when allergic diseases start to occur. Moreover, this treatment approach is designed to provide a non-invasive therapy with no restrictions on daily activities. Taken together, the preclinical and clinical data on the use of EPIT support the continued investigation of this therapeutic approach to provide improved treatment options for patients with allergic disorders in the near future.
Collapse
Affiliation(s)
| | | | | | | | - Dianne E. Campbell
- DBV Technologies, Montrouge, France
- Department of Allergy and Immunology, University of Sydney, Sydney, NSW, Australia
| | - Hugh A. Sampson
- Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
19
|
Berger MN, Mowbray ES, Farag MWA, Mathieu E, Davies C, Thomas C, Booy R, Forster AH, Skinner SR. Immunogenicity, safety, usability and acceptability of microarray patches for vaccination: a systematic review and meta-analysis. BMJ Glob Health 2023; 8:e012247. [PMID: 37827725 PMCID: PMC10583062 DOI: 10.1136/bmjgh-2023-012247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Microarray patches (MAPs) deliver vaccines to the epidermis and the upper dermis, where abundant immune cells reside. There are several potential benefits to using MAPs, including reduced sharps risk, thermostability, no need for reconstitution, tolerability and self-administration. We aimed to explore and evaluate the immunogenicity, safety, usability and acceptability of MAPs for vaccination. METHODS We searched CINAHL, Cochrane Library, Ovid Embase, Ovid MEDLINE and Web of Science from inception to January 2023. Eligibility criteria included all research studies in any language, which examined microarrays or microneedles intended or used for vaccination and explored immunogenicity, safety, usability or acceptability in their findings. Two reviewers conducted title and abstract screening, full-text reviewing and data extraction. RESULTS Twenty-two studies were included (quantitative=15, qualitative=2 and mixed methods=5). The risk of bias was mostly low, with two studies at high risk of bias. Four clinical trials were included, three using influenza antigens and one with Japanese encephalitis delivered by MAP. A meta-analysis indicated similar or higher immunogenicity in influenza MAPs compared with needle and syringe (N&S) (standardised mean difference=10.80, 95% CI: 3.51 to 18.08, p<0.00001). There were no significant differences in immune cell function between MAPs and N&S. No serious adverse events were reported in MAPs. Erythema was more common after MAP application than N&S but was brief and well tolerated. Lower pain scores were usually reported after MAP application than N&S. Most studies found MAPs easy to use and highly acceptable among healthcare professionals, laypeople and parents. CONCLUSION MAPs for vaccination were safe and well tolerated and evoked similar or enhanced immunogenicity than N&S, but further research is needed. Vaccine uptake may be increased using MAPs due to less pain, enhanced thermostability, layperson and self-administration. MAPs could benefit at-risk groups and low and middle-income countries. PROSPERO REGISTRATION NUMBER CRD42022323026.
Collapse
Affiliation(s)
- Matthew N Berger
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Centre for Population Health, Western Sydney Local Health District, North Parramatta, New South Wales, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ellen S Mowbray
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Marian W A Farag
- Hillarys Plaza Medical Centre, Perth, Western Australia, Australia
| | - Erin Mathieu
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Cristyn Davies
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Claire Thomas
- Centre for Population Health, Western Sydney Local Health District, North Parramatta, New South Wales, Australia
| | - Robert Booy
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | | | - S Rachel Skinner
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Kids Research, The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Westmead, New South Wales, Australia
| |
Collapse
|
20
|
Hacker E, Baker B, Lake T, Ross C, Cox M, Davies C, Skinner SR, Booy R, Forster A. Vaccine microarray patch self-administration: An innovative approach to improve pandemic and routine vaccination rates. Vaccine 2023; 41:5925-5930. [PMID: 37643926 DOI: 10.1016/j.vaccine.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
The high-density microprojection array patch (HD-MAP) is a novel vaccine delivery system with potential for self-administered vaccination. HD-MAPs provide an alternative to needle and syringe (N&S) vaccination. Additional advantages could include reduced cold-chain requirements, reduced vaccine dose, reduced vaccine wastage, an alternative for needle phobic patients and elimination of needlestick injuries. The drivers and potential benefits of vaccination by self-administering HD-MAPs are high patient acceptance and preference, higher vaccination rates, speed of roll-out, cost-savings, and reduced sharps and environmental waste. The HD-MAP presents a unique approach in pandemic preparedness and routine vaccination of adults. It could alleviate strain on the healthcare workforce and allows vaccine administration by minimally-trained workers, guardian or subjects themselves. Self-vaccination using HD-MAPs could occur in vaccination hubs with supervision, at home after purchasing at the pharmacy, or direct distribution to in-home settings. As a result, it has the potential to increase vaccine coverage and expand the reach of vaccines, while also reducing labor costs associated with vaccination. Key challenges remain around shifting the paradigm from medical professionals administrating vaccines using N&S to a future of self-administration using HD-MAPs. Greater awareness of HD-MAP technology and improving our understanding of the implementation processes required for adopting this technology, are critical factors underpinning HD-MAP uptake by the public.
Collapse
Affiliation(s)
- E Hacker
- Vaxxas Pty Ltd, Translational Research Institute, Woolloongabba, Australia; Menzies Health Institute Queensland, Griffith University, Brisbane, QLD 4222, Australia
| | - B Baker
- Vaxxas Pty Ltd, Translational Research Institute, Woolloongabba, Australia
| | - T Lake
- Vaxxas Pty Ltd, Translational Research Institute, Woolloongabba, Australia
| | - C Ross
- Vaxxas Pty Ltd, Translational Research Institute, Woolloongabba, Australia
| | - M Cox
- NextWaveBio, East Haven, CT, United States
| | - C Davies
- Specialty of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia; Sydney Institute of Infectious Diseases, University of Sydney, Sydney, Australia
| | - S R Skinner
- Specialty of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia; Sydney Institute of Infectious Diseases, University of Sydney, Sydney, Australia
| | - R Booy
- Specialty of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia; Sydney Institute of Infectious Diseases, University of Sydney, Sydney, Australia
| | - A Forster
- Vaxxas Pty Ltd, Translational Research Institute, Woolloongabba, Australia.
| |
Collapse
|
21
|
Wang J, Ma C, Li M, Gao X, Wu H, Dong W, Wei L. Streptococcus pyogenes: Pathogenesis and the Current Status of Vaccines. Vaccines (Basel) 2023; 11:1510. [PMID: 37766186 PMCID: PMC10534548 DOI: 10.3390/vaccines11091510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS), a Gram-positive coccal bacterium, poses a significant global disease burden, especially in low- and middle-income countries. Its manifestations can range from pharyngitis and skin infection to severe and aggressive diseases, such as necrotizing fasciitis and streptococcal toxic shock syndrome. At present, although GAS is still sensitive to penicillin, there are cases of treatment failure for GAS pharyngitis, and antibiotic therapy does not universally prevent subsequent disease. In addition to strengthening global molecular epidemiological surveillance and monitoring of antibiotic resistance, developing a safe and effective licensed vaccine against GAS would be the most effective way to broadly address GAS-related diseases. Over the past decades, the development of GAS vaccines has been stalled, mainly because of the wide genetic heterogeneity of GAS and the diverse autoimmune responses to GAS. With outbreaks of scarlet fever in various countries in recent years, accelerating the development of a safe and effective vaccine remains a high priority. When developing a GAS vaccine, many factors need to be considered, including the selection of antigen epitopes, avoidance of self-response, and vaccine coverage. Given the challenges in GAS vaccine development, this review describes the important virulence factors that induce disease by GAS infection and how this has influenced the progression of vaccine development efforts, focusing on several candidate vaccines that are further along in development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Wei
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
22
|
Ismail A, Magni S, Katahoire A, Ayebare F, Siu G, Semitala F, Kyambadde P, Friedland B, Jarrahian C, Kilbourne-Brook M. Exploring user and stakeholder perspectives from South Africa and Uganda to refine microarray patch development for HIV PrEP delivery and as a multipurpose prevention technology. PLoS One 2023; 18:e0290568. [PMID: 37651432 PMCID: PMC10470907 DOI: 10.1371/journal.pone.0290568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Oral HIV pre-exposure prophylaxis (PrEP) is highly effective, but alternative delivery options are needed to reach more users. Microarray patches (MAPs), a novel drug-delivery system containing micron-scale projections or "microneedles" that deliver drugs via skin, are being developed to deliver long-acting HIV PrEP and as a multipurpose prevention technology to protect from HIV and unintended pregnancy. We explored whether MAP technology could meet user and health system needs in two African countries. METHODS Researchers in South Africa and Uganda conducted 27 focus group discussions, 76 mock-use exercises, and 31 key informant interviews to explore perceptions about MAPs and specific features such as MAP size, duration of protection, delivery indicator, and health system fit. Participants included young women and men from key populations and vulnerable groups at high risk of HIV and/or unintended pregnancy, including adolescent girls and young women; female sex workers and men who have sex with these women; and men who have sex with men. In Uganda, researchers also recruited young women and men from universities and the community as vulnerable groups. Key stakeholders included health care providers, sexual and reproductive health experts, policymakers, and youth activists. Qualitative data were transcribed, translated, coded, and analyzed to explore perspectives and preferences about MAPs. Survey responses after mock-use in Uganda were tabulated to assess satisfaction with MAP features and highlight areas for additional refinement. RESULTS All groups expressed interest in MAP technology, reporting perceived advantages over other methods. Most participants preferred the smallest MAP size for ease of use and discreetness. Some would accept a larger MAP if it provided longer protection. Most preferred a protection duration of 1 to 3 months or longer; others preferred 1-week protection. Upper arm and thigh were the most preferred application sites. Up to 30 minutes of wear time was considered acceptable; some wanted longer to ensure the drug was fully delivered. Self-administration was valued by all groups; most preferred initial training by a provider. CONCLUSIONS Potential users and stakeholders showed strong interest in/acceptance of MAP technology, and their feedback identified key improvements for MAP design. If a MAP containing a high-potency antiretroviral or a MAP containing both an antiretroviral and hormonal contraceptive is developed, these products could improve acceptability/uptake of protection options in sub-Saharan Africa.
Collapse
Affiliation(s)
| | - Sarah Magni
- Genesis Analytics, Johannesburg, South Africa
| | - Anne Katahoire
- Child Health and Development Centre, Makerere University, Kampala, Uganda
| | - Florence Ayebare
- Child Health and Development Centre, Makerere University, Kampala, Uganda
| | - Godfrey Siu
- Child Health and Development Centre, Makerere University, Kampala, Uganda
| | | | - Peter Kyambadde
- Department of Internal Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | | | | |
Collapse
|
23
|
Walvekar P, Kumar P, Choonara YE. Long-acting vaccine delivery systems. Adv Drug Deliv Rev 2023; 198:114897. [PMID: 37225091 DOI: 10.1016/j.addr.2023.114897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Bolus vaccines are often administered multiple times due to rapid clearance and reduced transportation to draining lymph nodes resulting in inadequate activation of T and B lymphocytes. In order to achieve adaptive immunity, prolonged exposure of antigens to these immune cells is crucial. Recent research has been focusing on developing long-acting biomaterial-based vaccine delivery systems, which can modulate the release of encapsulated antigens or epitopes to facilitate enhanced antigen presentation in lymph nodes and subsequently achieve robust T and B cell responses. Over the past few years, various polymers and lipids have been extensively explored to develop effective biomaterial-based vaccine strategies. The article reviews relevant polymer and lipid-based strategies used to prepare long-acting vaccine carriers and discusses their results concerning immune responses.
Collapse
Affiliation(s)
- Pavan Walvekar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa.
| |
Collapse
|
24
|
Edwards C, Oakes RS, Jewell CM. Tuning innate immune function using microneedles containing multiple classes of toll-like receptor agonists. NANOSCALE 2023; 15:8662-8674. [PMID: 37185984 PMCID: PMC10358826 DOI: 10.1039/d3nr00333g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Microneedle arrays (MNAs) are patches displaying hundreds of micron-scale needles that can penetrate skin. As a result, these arrays efficiently and painlessly access this immune cell-rich niche, motivating significant clinical interest in MNA-based vaccines. Our lab has developed immune polyelectrolyte multilayers (iPEMs), nanostructures built entirely from immune signals employing electrostatic self-assembly. iPEMs consist of positively charged peptide antigen and negatively charged toll-like receptor agonists (TLRas) to assemble these components at ultra-high density since no carrier is needed. Here we used this technology to deliver MNAs with antigen and defined ratios of multiple classes of TLRa. Notably, this approach resulted in facile assembly and corresponding signal transduction through each respective TLR pathway. This control ultimately activated primary antigen presenting cells and drove proliferation of antigen-specific T cells. In related in vivo vaccine studies, application of MNAs resulted in distinct T cells response depending on the number of TLRa classes delivered with MNAs. These MNAs technologies create an opportunity to deliver nanostructured vaccine components at high density, and to probe integration of multiple TLRas in skin to tune immunity.
Collapse
Affiliation(s)
- Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
25
|
Feng YX, Hu H, Wong YY, Yao X, He ML. Microneedles: An Emerging Vaccine Delivery Tool and a Prospective Solution to the Challenges of SARS-CoV-2 Mass Vaccination. Pharmaceutics 2023; 15:pharmaceutics15051349. [PMID: 37242591 DOI: 10.3390/pharmaceutics15051349] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Vaccination is an effective measure to prevent infectious diseases. Protective immunity is induced when the immune system is exposed to a vaccine formulation with appropriate immunogenicity. However, traditional injection vaccination is always accompanied by fear and severe pain. As an emerging vaccine delivery tool, microneedles overcome the problems associated with routine needle vaccination, which can effectively deliver vaccines rich in antigen-presenting cells (APCs) to the epidermis and dermis painlessly, inducing a strong immune response. In addition, microneedles have the advantages of avoiding cold chain storage and have the flexibility of self-operation, which can solve the logistics and delivery obstacles of vaccines, covering the vaccination of the special population more easily and conveniently. Examples include people in rural areas with restricted vaccine storage facilities and medical professionals, elderly and disabled people with limited mobility, infants and young children afraid of pain. Currently, in the late stage of fighting against COVID-19, the main task is to increase the coverage of vaccines, especially for special populations. To address this challenge, microneedle-based vaccines have great potential to increase global vaccination rates and save many lives. This review describes the current progress of microneedles as a vaccine delivery system and its prospects in achieving mass vaccination against SARS-CoV-2.
Collapse
Affiliation(s)
- Ya-Xiu Feng
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Huan Hu
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Yu-Yuen Wong
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Xi Yao
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ming-Liang He
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
- CityU Shenzhen Research Institute, Shenzhen 518071, China
| |
Collapse
|
26
|
Scarnà T, Menozzi-Arnaud M, Friede M, DeMarco K, Plopper G, Hamer M, Chakrabarti A, Gilbert PA, Jarrahian C, Mistilis J, Hesselink R, Gandrup-Marino K, Amorij JP, Giersing B. Accelerating the development of vaccine microarray patches for epidemic response and equitable immunization coverage requires investment in microarray patch manufacturing facilities. Expert Opin Drug Deliv 2023; 20:315-322. [PMID: 36649573 DOI: 10.1080/17425247.2023.2168641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION There is a need for investment in manufacturing for vaccine microarray patches (vMAPs) to accelerate vMAP development and access. vMAPs could transform vaccines deployment and reach to everyone, everywhere. AREAS COVERED We outline vMAPs' potential benefits for epidemic preparedness and for outreach in low- and lower-middle-income countries (LMICs), share lessons learned from pandemic response, and highlight that investment in manufacturing-at-risk could accelerate vMAP development. EXPERT OPINION Pilot manufacturing capabilities are needed to produce clinical trial material and enable emergency response. Funding vMAP manufacturing scale-up in parallel to clinical proof-of-concept studies could accelerate vMAP approval and availability. Incentives could mitigate the risks of establishing multi-vMAP manufacturing facilities early.
Collapse
Affiliation(s)
| | | | | | - Kerry DeMarco
- Biomedical Advanced Research and Development Authority, Seattle, Washington DC, USA
| | - George Plopper
- Biomedical Advanced Research and Development Authority, Seattle, Washington DC, USA
| | - Melinda Hamer
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland, USA.,Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Seattle, Washington DC, USA.,Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, USA
| | | | | | | | | | - Renske Hesselink
- Coalition for Epidemics Preparedness Innovations (CEPI), Oslo, Norway
| | | | | | | |
Collapse
|
27
|
Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Rev Vaccines 2023; 22:937-955. [PMID: 37846657 DOI: 10.1080/14760584.2023.2270598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.
Collapse
Affiliation(s)
- Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Skin Vaccination with Ebola Virus Glycoprotein Using a Polyphosphazene-Based Microneedle Patch Protects Mice against Lethal Challenge. J Funct Biomater 2022; 14:jfb14010016. [PMID: 36662063 PMCID: PMC9860647 DOI: 10.3390/jfb14010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Ebolavirus (EBOV) infection in humans is a severe and often fatal disease, which demands effective interventional strategies for its prevention and treatment. The available vaccines, which are authorized under exceptional circumstances, use viral vector platforms and have serious disadvantages, such as difficulties in adapting to new virus variants, reliance on cold chain supply networks, and administration by hypodermic injection. Microneedle (MN) patches, which are made of an array of micron-scale, solid needles that painlessly penetrate into the upper layers of the skin and dissolve to deliver vaccines intradermally, simplify vaccination and can thereby increase vaccine access, especially in resource-constrained or emergency settings. The present study describes a novel MN technology, which combines EBOV glycoprotein (GP) antigen with a polyphosphazene-based immunoadjuvant and vaccine delivery system (poly[di(carboxylatophenoxy)phosphazene], PCPP). The protein-stabilizing effect of PCPP in the microfabrication process enabled preparation of a dissolvable EBOV GP MN patch vaccine with superior antigenicity compared to a non-polyphosphazene polymer-based analog. Intradermal immunization of mice with polyphosphazene-based MN patches induced strong, long-lasting antibody responses against EBOV GP, which was comparable to intramuscular injection. Moreover, mice vaccinated with the MN patches were completely protected against a lethal challenge using mouse-adapted EBOV and had no histologic lesions associated with ebolavirus disease.
Collapse
|
29
|
Forster A, Junger M. Opportunities and challenges for commercializing microarray patches for vaccination from a MAP developer's perspective. Hum Vaccin Immunother 2022; 18:2050123. [PMID: 35356872 PMCID: PMC9196745 DOI: 10.1080/21645515.2022.2050123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Continued advances in microarray patch (MAP) technology are starting to make needle-free delivery of a broad range of vaccines an achievable goal. The drivers and potential benefits of a MAP platform for pandemic response and routine vaccination are clear and include dose-sparing, cold-chain elimination, increased safety, and potential self-administration. MAP technology is regarded as a priority innovation to overcome vaccination barriers, ensure equitable access, and improve the effectiveness of vaccines. Vaxxas, a global leader in this technology, has built a strong evidence-base for the commercial application of their high-density (HD) MAP platform, and is rapidly advancing scale-up of the manufacturing process for HD-MAPs. A greater awareness and understanding of the implications of the technology amongst supply-chain participants, regulatory authorities, and global healthcare organizations and foundations is needed to accelerate adoption and, particularly, to prepare for MAP use in pandemics. Key challenges remain in the commercialization of MAP technology and its adoption, including market acceptance, scale-up of production, regulatory approval, and the availability of capital to build advanced manufacturing infrastructure ahead of late-stage clinical trials.
Collapse
Affiliation(s)
- Angus Forster
- Research & Development, Vaxxas Pty Ltd., Brisbane, Australia
| | - Michael Junger
- Research & Development, Vaxxas Pty Ltd., Brisbane, Australia
| |
Collapse
|
30
|
McMillan CLD, Amarilla AA, Modhiran N, Choo JJY, Azuar A, Honeyman KE, Khromykh AA, Young PR, Watterson D, Muller DA. Skin-patch delivered subunit vaccine induces broadly neutralising antibodies against SARS-CoV-2 variants of concern. Vaccine 2022; 40:4929-4932. [PMID: 35871873 PMCID: PMC9291373 DOI: 10.1016/j.vaccine.2022.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
The ongoing SARS-CoV-2 pandemic continues to pose an enormous health challenge globally. The ongoing emergence of variants of concern has resulted in decreased vaccine efficacy necessitating booster immunizations. This was particularly highlighted by the recent emergence of the Omicron variant, which contains over 30 mutations in the spike protein and quickly became the dominant viral strain in global circulation. We previously demonstrated that delivery of a SARS-CoV-2 subunit vaccine via a high-density microarray patch (HD-MAP) induced potent immunity resulting in robust protection from SARS-CoV-2 challenge in mice. Here we show that serum from HD-MAP immunized animals maintained potent neutralisation against all variants tested, including Delta and Omicron. These findings highlight the advantages of HD-MAP vaccine delivery in inducing high levels of neutralising antibodies and demonstrates its potential at providing protection from emerging viral variants.
Collapse
Affiliation(s)
- Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Kate E Honeyman
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia.
| |
Collapse
|
31
|
Shin Y, Kim J, Seok JH, Park H, Cha HR, Ko SH, Lee JM, Park MS, Park JH. Development of the H3N2 influenza microneedle vaccine for cross-protection against antigenic variants. Sci Rep 2022; 12:12189. [PMID: 35842468 PMCID: PMC9287697 DOI: 10.1038/s41598-022-16365-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Due to the continuously mutating nature of the H3N2 virus, two aspects were considered when preparing the H3N2 microneedle vaccines: (1) rapid preparation and (2) cross-protection against multiple antigenic variants. Previous methods of measuring hemagglutinin (HA) content required the standard antibody, thus rapid preparation of H3N2 microneedle vaccines targeting the mutant H3N2 was delayed as a result of lacking a standard antibody. In this study, H3N2 microneedle vaccines were prepared by high performance liquid chromatography (HPLC) without the use of an antibody, and the cross-protection of the vaccines against several antigenic variants was observed. The HA content measured by HPLC was compared with that measured by ELISA to observe the accuracy of the HPLC analysis of HA content. The cross-protection afforded by the H3N2 microneedle vaccines was evaluated against several antigenic variants in mice. Microneedle vaccines for the 2019–20 seasonal H3N2 influenza virus (19–20 A/KS/17) were prepared using a dip-coating process. The cross-protection of 19–20 A/KS/17 H3N2 microneedle vaccines against the 2015–16 seasonal H3N2 influenza virus in mice was investigated by monitoring body weight changes and survival rate. The neutralizing antibody against several H3N2 antigenic variants was evaluated using the plaque reduction neutralization test (PRNT). HA content in the solid microneedle vaccine formulation with trehalose post-exposure at 40℃ for 24 h was 48% and 43% from the initial HA content by HPLC and ELISA, respectively. The vaccine was administered to two groups of mice, one by microneedles and the other by intramuscular injection (IM). In vivo efficacies in the two groups were found to be similar, and cross-protection efficacy was also similar in both groups. HPLC exhibited good diagnostic performance with H3N2 microneedle vaccines and good agreement with ELISA. The H3N2 microneedle vaccines elicited a cross-protective immune response against the H3N2 antigenic variants. Here, we propose the use of HPLC for a more rapid approach in preparing H3N2 microneedle vaccines targeting H3N2 virus variants.
Collapse
Affiliation(s)
- Yura Shin
- Department of BioNano Technology, Gachon University, Seongnam, Republic of Korea
| | - Jeonghun Kim
- Department of Microbiology, Institute for Viral Diseases, Chung Mong-Koo Vaccine Innovation Center, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jong Hyeon Seok
- Department of Microbiology, Institute for Viral Diseases, Chung Mong-Koo Vaccine Innovation Center, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heedo Park
- Department of Microbiology, Institute for Viral Diseases, Chung Mong-Koo Vaccine Innovation Center, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hye-Ran Cha
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Si Hwan Ko
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Chung Mong-Koo Vaccine Innovation Center, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon University, Seongnam, Republic of Korea. .,QuadMedicine R&D Centre, QuadMedicine Co., Ltd, Seongnam, Republic of Korea.
| |
Collapse
|
32
|
Li W, Chen JY, Terry RN, Tang J, Romanyuk A, Schwendeman SP, Prausnitz MR. Core-shell microneedle patch for six-month controlled-release contraceptive delivery. J Control Release 2022; 347:489-499. [PMID: 35550913 DOI: 10.1016/j.jconrel.2022.04.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
There is a tremendous need for simple-to-administer, long-acting contraception, which can increase access to improved family planning. Microneedle (MN) patches enable simple self-administration and have previously been formulated for 1-2 months' controlled release of contraceptive hormone using monolithic polymer/drug MN designs having first-order release kinetics. To achieve zero-order release, we developed a novel core-shell MN patch where the shell acts as a rate-controlling membrane to delay release of a contraceptive hormone, levonorgestrel (LNG), for 6 months. In this approach, LNG was encapsulated in a poly(lactide-co-glycolide) (PLGA) core surrounded by a poly(l-lactide) (PLLA) shell and a poly(D,l-lactide) (PLA) cap that were fabricated by sequential casting into a MN mold. Upon application to skin, the core-shell MNs utilized an effervescent interface to separate from the patch backing within 1 min. The core-shell design limited the initial 24 h burst release of LNG to 5.8 ± 0.5% and achieved roughly zero-order LNG release for 6.2 ± 0.1 months in vitro. A monolithic MN patch formulated with the same LNG and PLGA core, but without the rate-controlling PLLA shell and PLA cap had a larger LNG burst release of 22.6 ± 2.0% and achieved LNG release for just 2.1 ± 0.2 months. This study provides the first core-shell MN patch for controlled months-long drug release and supports the development of long-acting contraception using a simple-to-administer, twice-per-year MN patch.
Collapse
Affiliation(s)
- Wei Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
| | - Jonathan Yuxuan Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Richard N Terry
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jie Tang
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrey Romanyuk
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
33
|
Coffey JW, van der Burg NMD, Rananakomol T, Ng HI, Fernando GJP, Kendall MAF. An Ultrahigh‐Density Microneedle Array for Skin Vaccination: Inducing Epidermal Cell Death by Increasing Microneedle Density Enhances Total IgG and IgG1 Immune Responses. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jacob W. Coffey
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- Department of Chemical Engineering David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Division of Gastroenterology Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunology University of Melbourne Melbourne VIC 3000 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St Lucia QLD 4072 Australia
| | - Nicole M. D. van der Burg
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St Lucia QLD 4072 Australia
| | - Thippayawan Rananakomol
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
| | - Hwee-Ing Ng
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
| | - Germain J. P. Fernando
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- The University of Queensland School of Chemistry and Molecular Biosciences Brisbane QLD 4072 Australia
- Vaxxas Pty Translational Research Institute Woolloongabba QLD 4102 Australia
| | - Mark A. F. Kendall
- The Delivery of Drugs and Genes Group (D2G) Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia QLD 4072 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland St Lucia QLD 4072 Australia
- The University of Queensland School of Chemistry and Molecular Biosciences Brisbane QLD 4072 Australia
| |
Collapse
|
34
|
Local Response and Barrier Recovery in Elderly Skin Following the Application of High-Density Microarray Patches. Vaccines (Basel) 2022; 10:vaccines10040583. [PMID: 35455332 PMCID: PMC9031416 DOI: 10.3390/vaccines10040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
The high-density microneedle array patch (HD-MAP) is a promising alternative vaccine delivery system device with broad application in disease, including SARS-CoV-2. Skin reactivity to HD-MAP applications has been extensively studied in young individuals, but not in the >65 years population, a risk group often requiring higher dose vaccines to produce protective immune responses. The primary aims of the present study were to characterise local inflammatory responses and barrier recovery to HD-MAPs in elderly skin. In twelve volunteers aged 69−84 years, HD-MAPs were applied to the forearm and deltoid regions. Measurements of transepidermal water loss (TEWL), dielectric permittivity and erythema were performed before and after HD-MAP application at t = 10 min, 30 min, 48 h, and 7 days. At all sites, TEWL (barrier damage), dielectric permittivity (superficial water);, and erythema measurements rapidly increased after HD-MAP application. After 7 days, the mean measures had recovered toward pre-application values. The fact that the degree and chronology of skin reactivity and recovery after HD-MAP was similar in elderly skin to that previously reported in younger adults suggests that the reactivity basis for physical immune enhancement observed in younger adults will also be achievable in the older population.
Collapse
|
35
|
McMillan CLD, Azuar A, Choo JJY, Modhiran N, Amarilla AA, Isaacs A, Honeyman KE, Cheung STM, Liang B, Wurm MJ, Pino P, Kint J, Fernando GJP, Landsberg MJ, Khromykh AA, Hobson-Peters J, Watterson D, Young PR, Muller DA. Dermal Delivery of a SARS-CoV-2 Subunit Vaccine Induces Immunogenicity against Variants of Concern. Vaccines (Basel) 2022; 10:578. [PMID: 35455326 PMCID: PMC9030474 DOI: 10.3390/vaccines10040578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/02/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic continues to disrupt essential health services in 90 percent of countries today. The spike (S) protein found on the surface of the causative agent, the SARS-CoV-2 virus, has been the prime target for current vaccine research since antibodies directed against the S protein were found to neutralize the virus. However, as new variants emerge, mutations within the spike protein have given rise to potential immune evasion of the response generated by the current generation of SARS-CoV-2 vaccines. In this study, a modified, HexaPro S protein subunit vaccine, delivered using a needle-free high-density microarray patch (HD-MAP), was investigated for its immunogenicity and virus-neutralizing abilities. Mice given two doses of the vaccine candidate generated potent antibody responses capable of neutralizing the parental SARS-CoV-2 virus as well as the variants of concern, Alpha and Delta. These results demonstrate that this alternative vaccination strategy has the potential to mitigate the effect of emerging viral variants.
Collapse
Affiliation(s)
- Christopher L. D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Jovin J. Y. Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Kate E. Honeyman
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Stacey T. M. Cheung
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Maria J. Wurm
- ExcellGene SA, CH1870 Monthey, Switzerland; (M.J.W.); (P.P.); (J.K.)
| | - Paco Pino
- ExcellGene SA, CH1870 Monthey, Switzerland; (M.J.W.); (P.P.); (J.K.)
| | - Joeri Kint
- ExcellGene SA, CH1870 Monthey, Switzerland; (M.J.W.); (P.P.); (J.K.)
| | - Germain J. P. Fernando
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Translational Research Institute, Vaxxas Pty Ltd., Brisbane, QLD 4102, Australia
| | - Michael J. Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| |
Collapse
|
36
|
Trends in Drug- and Vaccine-based Dissolvable Microneedle Materials and Methods of Fabrication. Eur J Pharm Biopharm 2022; 173:54-72. [DOI: 10.1016/j.ejpb.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/24/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
|
37
|
Davies C, Taba M, Deng L, Karatas C, Bag S, Ross C, Forster A, Booy R, Skinner SR. Usability, acceptability, and feasibility of a High-Density Microarray Patch (HD-MAP) applicator as a delivery method for vaccination in clinical settings. Hum Vaccin Immunother 2022; 18:2018863. [PMID: 35100525 PMCID: PMC9196792 DOI: 10.1080/21645515.2021.2018863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background High-density microarray patch (HD-MAP) vaccines may increase vaccine acceptance and use. We aimed to ascertain whether professional immunizers (PIs) and other healthcare workers (HCWs) in Australia, a High-Income Country (HIC), found the HD-MAP applicator usable and acceptable for vaccine delivery. Methods This feasibility study recruited PIs and HCWs to administer/receive simulated HD-MAP administration, including via self-administration. We assessed usability against essential and desirable criteria. Participants completed a survey, rating their agreement to statements about HD-MAP administration. A subset also participated in an interview or focus group. Survey data were analyzed using descriptive statistics, and interviews were transcribed and subject to thematic analysis. Results We recruited 61 participants: 23 PIs and 38 HCWs. Findings indicated high usability and acceptability of HD-MAP use across both groups by a healthcare professional or trained user and for self-administration with safety measures in place. Most administrations met essential criteria, but PIs, on average, applied the HD-MAP for slightly less time than the required 10-seconds, which the HCWs achieved. PIs perceived safety concerns about home administration but found layperson self-administration acceptable in an emergency, pandemic, and rural or remote settings. Conclusions Participants found HD-MAP administration usable and acceptable. Usability and acceptability are likely to be improved through end-user education and training. Professional immunizers and healthcare workers found high-density microarray patch devices highly usable and acceptable to administer vaccines. HD-MAPs may have advantages over intramuscular injections in clinical settings and in pandemics.
Vaccination with HD-MAP may improve acceptance for those with needle-related anxiety.
Collapse
Affiliation(s)
- Cristyn Davies
- Specialty of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Sydney Institute of Infectious Diseases, University of Sydney, Sydney, Australia
| | - Melody Taba
- Specialty of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Sydney Institute of Infectious Diseases, University of Sydney, Sydney, Australia
| | - Lucy Deng
- Specialty of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,National Centre for Immunisation Research and Surveillance, The Children's Hospital at Westmead, Westmead, Australia
| | - Ceylan Karatas
- Specialty of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Graduate School of Medicine, The University of Wollongong, Keiraville, Australia
| | - Shopna Bag
- Centre for Population Health, Western Sydney Public Health Unit, North Parramatta, Australia.,Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, Australia
| | - Charles Ross
- Vaxxas Pty Ltd, Translational Research Institute, Woolloongabba, Australia
| | - Angus Forster
- Vaxxas Pty Ltd, Translational Research Institute, Woolloongabba, Australia
| | - Robert Booy
- Specialty of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Sydney Institute of Infectious Diseases, University of Sydney, Sydney, Australia
| | - S Rachel Skinner
- Specialty of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Sydney Institute of Infectious Diseases, University of Sydney, Sydney, Australia
| |
Collapse
|
38
|
Henricson J, Muller DA, Baker SB, Iredahl F, Togö T, Anderson CD. Micropuncture closure following high density microarray patch application in healthy subjects. Skin Res Technol 2022; 28:305-310. [PMID: 35064694 PMCID: PMC9907643 DOI: 10.1111/srt.13131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The high-density microarray patch (HD-MAP) promises to be a robust vaccination platform with clear advantages for future global societal demands for health care management. The method of action has its base not only in efficient delivery of vaccine but also in the reliable induction of a local innate physical inflammatory response to adjuvant the vaccination process. The application process needs to induce levels of reactivity, which are acceptable to the vaccine, and from which the skin promptly recovers. MATERIALS AND METHODS 1 × 1 cm HD-MAP patches containing 5000, 250-μm long microprojections were applied to the skin in 12 healthy volunteers. The return of skin barrier function was assessed by transepidermal water loss (TEWL) and reaction to topical histamine challenge. RESULTS Skin barrier recovery by 48 h was confirmed for all HD-MAP sites by recovered resistance to the effects of topical histamine application. CONCLUSIONS Our previous observation, that the barrier disruption indicator TEWL returns to normal by 48 h, is supported by this paper's demonstration of return of skin resistance to topical histamine challenge in twelve healthy subjects.
Collapse
Affiliation(s)
- Joakim Henricson
- Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden.,Department of Emergency Medicine, Local Health Care Services in Central Östergötland, Linkoping, Sweden
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - S Ben Baker
- Vaxxas Pty Ltd, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Fredrik Iredahl
- Department of Primary health care, Region Östergötland, Linköping, Sweden.,Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Totte Togö
- Allergy Centre, Region Östergötland, Linkoping, Sweden
| | - Chris D Anderson
- Division of Cell Biology, Faculty of Health Sciences, Linköping University, Linkoping, Sweden
| |
Collapse
|
39
|
Iyer S, Yadav R, Agarwal S, Tripathi S, Agarwal R. Bioengineering Strategies for Developing Vaccines against Respiratory Viral Diseases. Clin Microbiol Rev 2022; 35:e0012321. [PMID: 34788128 PMCID: PMC8597982 DOI: 10.1128/cmr.00123-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory viral pathogens like influenza and coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused outbreaks leading to millions of deaths. Vaccinations are, to date, the best and most economical way to control such outbreaks and have been highly successful for several pathogens. Currently used vaccines for respiratory viral pathogens are primarily live attenuated or inactivated and can risk reversion to virulence or confer inadequate immunity. The recent trend of using potent biomolecules like DNA, RNA, and protein antigenic components to synthesize vaccines for diseases has shown promising results. Still, it remains challenging to translate due to their high susceptibility to degradation during storage and after delivery. Advances in bioengineering technology for vaccine design have made it possible to control the physicochemical properties of the vaccines for rapid synthesis, heightened antigen presentation, safer formulations, and more robust immunogenicity. Bioengineering techniques and materials have been used to synthesize several potent vaccines, approved or in trials, against coronavirus disease 2019 (COVID-19) and are being explored for influenza, SARS, and Middle East respiratory syndrome (MERS) vaccines as well. Here, we review bioengineering strategies such as the use of polymeric particles, liposomes, and virus-like particles in vaccine development against influenza and coronaviruses and the feasibility of adopting these technologies for clinical use.
Collapse
Affiliation(s)
- Shalini Iyer
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rajesh Yadav
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Smriti Agarwal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Department of Microbiology and Cell Biology, Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Rachit Agarwal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
40
|
Microneedle-Mediated Vaccination: Innovation and Translation. Adv Drug Deliv Rev 2021; 179:113919. [PMID: 34375682 DOI: 10.1016/j.addr.2021.113919] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Vaccine administration by subcutaneous or intramuscular injection is the most commonly prescribed route for inoculation, however, it is often associated with some deficiencies such as low compliance, high professionalism, and risk of infection. Therefore, the application of microneedles for vaccine delivery has gained widespread interests in the past few years due to its high compliance, minimal invasiveness, and convenience. This review focuses on recent advances in the development and application of microneedles for vaccination based on different delivery strategies, and introduces the current status of microneedle-mediated vaccination in clinical translation. The prospects for its application including opportunities and challenges are further discussed.
Collapse
|
41
|
Developing a Stabilizing Formulation of a Live Chimeric Dengue Virus Vaccine Dry Coated on a High-Density Microarray Patch. Vaccines (Basel) 2021; 9:vaccines9111301. [PMID: 34835234 PMCID: PMC8625757 DOI: 10.3390/vaccines9111301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Alternative delivery systems such as the high-density microarray patch (HD-MAP) are being widely explored due to the variety of benefits they offer over traditional vaccine delivery methods. As vaccines are dry coated onto the HD-MAP, there is a need to ensure the stability of the vaccine in a solid state upon dry down. Other challenges faced are the structural stability during storage as a dried vaccine and during reconstitution upon application into the skin. Using a novel live chimeric virus vaccine candidate, BinJ/DENV2-prME, we explored a panel of pharmaceutical excipients to mitigate vaccine loss during the drying and storage process. This screening identified human serum albumin (HSA) as the lead stabilizing excipient. When bDENV2-coated HD-MAPs were stored at 4 °C for a month, we found complete retention of vaccine potency as assessed by the generation of potent virus-neutralizing antibody responses in mice. We also demonstrated that HD-MAP wear time did not influence vaccine deposition into the skin or the corresponding immunological outcomes. The final candidate formulation with HSA maintained ~100% percentage recovery after 6 months of storage at 4 °C.
Collapse
|
42
|
McMillan CLD, Choo JJY, Idris A, Supramaniam A, Modhiran N, Amarilla AA, Isaacs A, Cheung STM, Liang B, Bielefeldt-Ohmann H, Azuar A, Acharya D, Kelly G, Fernando GJP, Landsberg MJ, Khromykh AA, Watterson D, Young PR, McMillan NAJ, Muller DA. Complete protection by a single-dose skin patch-delivered SARS-CoV-2 spike vaccine. SCIENCE ADVANCES 2021; 7:eabj8065. [PMID: 34714668 PMCID: PMC8555896 DOI: 10.1126/sciadv.abj8065] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/08/2021] [Indexed: 05/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 160 million people and resulted in more than 3.3 million deaths, and despite the availability of multiple vaccines, the world still faces many challenges with their rollout. Here, we use the high-density microarray patch (HD-MAP) to deliver a SARS-CoV-2 spike subunit vaccine directly to the skin. We show that the vaccine is thermostable on the patches, with patch delivery enhancing both cellular and antibody immune responses. Elicited antibodies potently neutralize clinically relevant isolates including the Alpha and Beta variants. Last, a single dose of HD-MAP–delivered spike provided complete protection from a lethal virus challenge in an ACE2-transgenic mouse model. Collectively, these data show that HD-MAP delivery of a SARS-CoV-2 vaccine was superior to traditional needle-and-syringe vaccination and may be a significant addition to the ongoing COVID-19 (coronavirus disease 2019) pandemic.
Collapse
Affiliation(s)
- Christopher L. D. McMillan
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jovin J. Y. Choo
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Adi Idris
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Aroon Supramaniam
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Stacey T. M. Cheung
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
- School of Veterinary Science, University of Queensland Gatton Campus, Gatton, Queensland 4343, Australia
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Dhruba Acharya
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Gabrielle Kelly
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Germain J. P. Fernando
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, Queensland 4102, Australia
| | - Michael J. Landsberg
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Nigel A. J. McMillan
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
43
|
Harrison JJ, Hobson-Peters J, Bielefeldt-Ohmann H, Hall RA. Chimeric Vaccines Based on Novel Insect-Specific Flaviviruses. Vaccines (Basel) 2021; 9:1230. [PMID: 34835160 PMCID: PMC8623431 DOI: 10.3390/vaccines9111230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Vector-borne flaviviruses are responsible for nearly half a billion human infections worldwide each year, resulting in millions of cases of debilitating and severe diseases and approximately 115,000 deaths. While approved vaccines are available for some of these viruses, the ongoing efficacy, safety and supply of these vaccines are still a significant problem. New technologies that address these issues and ideally allow for the safe and economical manufacture of vaccines in resource-poor countries where flavivirus vaccines are in most demand are urgently required. Preferably a new vaccine platform would be broadly applicable to all flavivirus diseases and provide new candidate vaccines for those diseases not yet covered, as well as the flexibility to rapidly pivot to respond to newly emerged flavivirus diseases. Here, we review studies conducted on novel chimeric vaccines derived from insect-specific flaviviruses that provide a potentially safe and simple system to produce highly effective vaccines against a broad spectrum of flavivirus diseases.
Collapse
Affiliation(s)
- Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| |
Collapse
|
44
|
Manufacturing readiness assessment for evaluation of the microneedle array patch industry: an exploration of barriers to full-scale manufacturing. Drug Deliv Transl Res 2021; 12:368-375. [PMID: 34655041 PMCID: PMC8724218 DOI: 10.1007/s13346-021-01076-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 11/28/2022]
Abstract
Microneedle array patch (MAP) technology is a promising new delivery technology for vaccines and pharmaceuticals, yet due to several differing and novel production methods, barriers to full-scale manufacturing exist. PATH conducted a manufacturing readiness assessment and follow-up interviews to identify both the current manufacturing readiness of the industry as well as how readiness varies by developer type and MAP type. Follow-up interviews identified barriers the industry faces in reaching full manufacturing readiness, including the perceived regulatory and investment risk of manufacturing MAPs at scale due to quality requirements and control methods, uncertain sterility requirements, lack of standard production methods (especially around dissolvable MAP drying methods), and the lack of available contract manufacturing organizations with MAP manufacturing capabilities. A Regulatory Working Group has been established to identify and address critical quality issues specific to MAP manufacturing with the aim of providing developers insight into what will be expected for MAP product approvals. Standardizing MAP production equipment and automatic, visual quality control could reduce the overall investment risk to developers and contract manufacturing organizations in pursuing pilot-scale manufacturing capabilities and ultimately lower barriers to the scale-up of full medical MAP product lines.
Collapse
|
45
|
Li S, Hart K, Norton N, Ryan CA, Guglani L, Prausnitz MR. Administration of pilocarpine by microneedle patch as a novel method for cystic fibrosis sweat testing. Bioeng Transl Med 2021; 6:e10222. [PMID: 34589599 PMCID: PMC8459588 DOI: 10.1002/btm2.10222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/18/2023] Open
Abstract
The sweat test is the gold standard for the diagnosis of cystic fibrosis (CF). The test utilizes iontophoresis to administer pilocarpine to the skin to induce sweating for measurement of chloride concentration in sweat. However, the sweat test procedure needs to be conducted in an accredited lab with dedicated instrumentation, and it can lead to inadequate sweat samples being collected in newborn babies and young children due to variable sweat production with pilocarpine iontophoresis. We tested the feasibility of using microneedle (MN) patches as an alternative to iontophoresis to administer pilocarpine to induce sweating. Pilocarpine-loaded MN patches were developed. Both MN patches and iontophoresis were applied on horses to induce sweating. The sweat was collected to compare the sweat volume and chloride concentration. The patches contained an array of 100 MNs measuring 600 μm long that were made of water-soluble materials encapsulating pilocarpine nitrate. When manually pressed to the skin, the MN patches delivered >0.5 mg/cm2 pilocarpine, which was double that administered by iontophoresis. When administered to horses, MN patches generated the same volume of sweat when normalized to drug dose and more sweat when normalized to skin area compared to iontophoresis using a commercial device. Moreover, both MN patches and iontophoresis generated sweat with comparable chloride concentration. These results suggest that administration of pilocarpine by MN patches may provide a simpler and more-accessible alternative to iontophoresis for performing a sweat test for the diagnosis of CF.
Collapse
Affiliation(s)
- Song Li
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Kelsey Hart
- Department of Large Animal MedicineUniversity of Georgia College of Veterinary MedicineAthensGeorgiaUSA
| | - Natalie Norton
- Department of Large Animal MedicineUniversity of Georgia College of Veterinary MedicineAthensGeorgiaUSA
| | - Clare A. Ryan
- Department of Large Animal MedicineUniversity of Georgia College of Veterinary MedicineAthensGeorgiaUSA
| | - Lokesh Guglani
- Center for Cystic Fibrosis and Airways Disease ResearchEmory University Department of Pediatrics and Children's Healthcare of AtlantaAtlantaGeorgiaUSA
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
46
|
Lee MS, Pan CX, Nambudiri VE. Transdermal approaches to vaccinations in the COVID-19 pandemic era. Ther Adv Vaccines Immunother 2021; 9:25151355211039073. [PMID: 34447901 PMCID: PMC8384302 DOI: 10.1177/25151355211039073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic has necessitated rapid vaccine development for the control of the disease. Most vaccinations, including those currently approved for COVID-19 are administered intramuscularly and subcutaneously using hypodermic needles. However, there are several disadvantages including pain and fear of needlesticks, the need for two doses, the need for trained health care professionals for vaccine administration, and barriers to global distribution given the need for cold supply chain. Recently, transdermal techniques have been under investigation for vaccines including COVID-19. Microneedle array technology utilizes multiple microscopic projections from a plate which delivers a vaccine in the form of a patch placed on the skin, allowing for painless antigen delivery with improved immune response. In this review, we discuss challenges of existing vaccines and review the literature on the science behind transdermal vaccines including microneedles, current evidence of application in infectious diseases including COVID-19, and considerations for implementation and global access.
Collapse
Affiliation(s)
- Michelle S Lee
- Harvard Medical School, Boston, MA, USA; Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Catherina X Pan
- Harvard Medical School, Boston, MA, USA; Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Vinod E Nambudiri
- Department of Dermatology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
47
|
Wan Y, Gupta V, Bird C, Pullagurla SR, Fahey P, Forster A, Volkin DB, Joshi SB. Formulation Development and Improved Stability of a Combination Measles and Rubella Live-Viral Vaccine Dried for Use in the Nanopatch TM Microneedle Delivery System. Hum Vaccin Immunother 2021; 17:2501-2516. [PMID: 33957843 PMCID: PMC8475600 DOI: 10.1080/21645515.2021.1887692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Measles (Me) and rubella (Ru) viral diseases are targeted for elimination by ensuring a high level of vaccination coverage worldwide. Less costly, more convenient MeRu vaccine delivery systems should improve global vaccine coverage, especially in low - and middle - income countries (LMICs). In this work, we examine formulating a live, attenuated Me and Ru combination viral vaccine with Nanopatch™, a solid polymer micro-projection array for intradermal delivery. First, high throughput, qPCR-based viral infectivity and genome assays were established to enable formulation development to stabilize Me and Ru in a scaled-down, custom-built evaporative drying system to mimic the Nanopatch™ vaccine coating process. Second, excipient screening and optimization studies identified virus stabilizers for use during the drying process and upon storage in the dried state. Finally, a series of real-time and accelerated stability studies identified eight candidate formulations that met a target thermal stability criterion for live vaccines (<1 log10 loss after 1 week storage at 37°C). Compared to -80°C control samples, the top candidate formulations resulted in minimal viral infectivity titer losses after storage at 2-8°C for 6 months (i.e., <0.1 log10 for Me, and ~0.4 log10 for Ru). After storage at 25°C over 6 months, ~0.3-0.5 and ~1.0-1.4 log10 titer losses were observed for Me and Ru, respectively, enabling the rank-ordering of the stability of candidate formulations. These results are discussed in the context of future formulation challenges for developing microneedle-based dosage forms containing stabilized live, attenuated viral vaccines for use in LMICs.
Collapse
Affiliation(s)
- Ying Wan
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Vineet Gupta
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Christopher Bird
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Swathi R. Pullagurla
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Paul Fahey
- Vaxxas Pty Ltd, Translational Research Institute, Brisbane, QLD, Australia
| | - Angus Forster
- Vaxxas Pty Ltd, Translational Research Institute, Brisbane, QLD, Australia
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
48
|
Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Rajpreet Singh Minhas
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
- INM-Leibniz Institute for New Materials Campus D2 2 Saarbrücken 66123 Germany
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
| |
Collapse
|
49
|
Depelsenaire ACI, Witham K, Veitch M, Wells JW, Anderson CD, Lickliter JD, Rockman S, Bodle J, Treasure P, Hickling J, Fernando GJP, Forster AH. Cellular responses at the application site of a high-density microarray patch delivering an influenza vaccine in a randomized, controlled phase I clinical trial. PLoS One 2021; 16:e0255282. [PMID: 34329337 PMCID: PMC8323919 DOI: 10.1371/journal.pone.0255282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/09/2021] [Indexed: 12/23/2022] Open
Abstract
Microarray patches (MAPs) have the potential to be a safer, more acceptable, easier to use and more cost-effective method for administration of vaccines when compared to the needle and syringe. Since MAPs deliver vaccine to the dermis and epidermis, a degree of local immune response at the site of application is expected. In a phase 1 clinical trial (ACTRN 12618000112268), the Vaxxas high-density MAP (HD-MAP) was used to deliver a monovalent, split inactivated influenza virus vaccine into the skin. HD-MAP immunisation led to significantly enhanced humoral responses on day 8, 22 and 61 compared with IM injection of a quadrivalent commercial seasonal influenza vaccine (Afluria Quadrivalent®). Here, the aim was to analyse cellular responses to HD-MAPs in the skin of trial subjects, using flow cytometry and immunohistochemistry. HD-MAPs were coated with a split inactivated influenza virus vaccine (A/Singapore/GP1908/2015 [H1N1]), to deliver 5 μg haemagglutinin (HA) per HD-MAP. Three HD-MAPs were applied to the volar forearm (FA) of five healthy volunteers (to achieve the required 15 μg HA dose), whilst five control subjects received three uncoated HD-MAPs (placebo). Local skin response was recorded for over 61 days and haemagglutination inhibition antibody titres (HAI) were assessed on days 1, 4, 8, 22, and 61. Skin biopsies were taken before (day 1), and three days after HD-MAP application (day 4) and analysed by flow-cytometry and immunohistochemistry to compare local immune subset infiltration. HD-MAP vaccination with 15 μg HA resulted in significant HAI antibody titres compared to the placebo group. Application of uncoated placebo HD-MAPs resulted in mild erythema and oedema in most subjects, that resolved by day 4 in 80% of subjects. Active, HA-coated HD-MAP application resulted in stronger erythema responses on day 4, which resolved between days 22-61. Overall, these erythema responses were accompanied by an influx of immune cells in all subjects. Increased cell infiltration of CD3+, CD4+, CD8+ T cells as well as myeloid CD11b+ CD11c+ and non-myeloid CD11b- dendritic cells were observed in all subjects, but more pronounced in active HD-MAP groups. In contrast, CD19+/CD20+ B cell counts remained unchanged. Key limitations include the use of an influenza vaccine, to which the subjects may have had previous exposure. Different results might have been obtained with HD-MAPs inducing a primary immune response. In conclusion, influenza vaccine administered to the forearm (FA) using the HD-MAP was well-tolerated and induced a mild to moderate skin response with lymphocytic infiltrate at the site of application.
Collapse
Affiliation(s)
| | | | - Margaret Veitch
- The University of Queensland Diamantina Institute, Woolloongabba, Queensland, Australia
| | - James W. Wells
- The University of Queensland Diamantina Institute, Woolloongabba, Queensland, Australia
| | | | | | - Steve Rockman
- Seqirus Pty Ltd, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jesse Bodle
- Seqirus Pty Ltd, Parkville, Victoria, Australia
| | - Peter Treasure
- Peter Treasure Statistical Services Ltd, Kings Lynn, United Kingdom
| | | | - Germain J. P. Fernando
- Vaxxas Pty Ltd, Brisbane, Queensland, Australia
- The University of Queensland, School of Chemistry & Molecular Biosciences, Faculty of Science, Brisbane, Queensland, Australia
| | | |
Collapse
|
50
|
Rouphael NG, Lai L, Tandon S, McCullough MP, Kong Y, Kabbani S, Natrajan MS, Xu Y, Zhu Y, Wang D, O'Shea J, Sherman A, Yu T, Henry S, McAllister D, Stadlbauer D, Khurana S, Golding H, Krammer F, Mulligan MJ, Prausnitz MR. Immunologic mechanisms of seasonal influenza vaccination administered by microneedle patch from a randomized phase I trial. NPJ Vaccines 2021; 6:89. [PMID: 34262052 PMCID: PMC8280206 DOI: 10.1038/s41541-021-00353-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
In a phase 1 randomized, single-center clinical trial, inactivated influenza virus vaccine delivered through dissolvable microneedle patches (MNPs) was found to be safe and immunogenic. Here, we compare the humoral and cellular immunologic responses in a subset of participants receiving influenza vaccination by MNP to the intramuscular (IM) route of administration. We collected serum, plasma, and peripheral blood mononuclear cells in 22 participants up to 180 days post-vaccination. Hemagglutination inhibition (HAI) titers and antibody avidity were similar after MNP and IM vaccination, even though MNP vaccination used a lower antigen dose. MNPs generated higher neuraminidase inhibition (NAI) titers for all three influenza virus vaccine strains tested and triggered a larger percentage of circulating T follicular helper cells (CD4 + CXCR5 + CXCR3 + ICOS + PD-1+) compared to the IM route. Our study indicates that inactivated influenza virus vaccination by MNP produces humoral and cellular immune response that are similar or greater than IM vaccination.
Collapse
Affiliation(s)
- Nadine G Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia.
| | - Lilin Lai
- Emory Vaccine Center, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Sonia Tandon
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia.,Laney Graduate School, Emory University, Atlanta, Georgia
| | - Michele Paine McCullough
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Yunchuan Kong
- Laney Graduate School, Emory University, Atlanta, Georgia
| | - Sarah Kabbani
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Muktha S Natrajan
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Yongxian Xu
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Yerun Zhu
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Dongli Wang
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Jesse O'Shea
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Amy Sherman
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Tianwei Yu
- Laney Graduate School, Emory University, Atlanta, Georgia
| | | | | | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Surender Khurana
- Division of Viral Products Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Hana Golding
- Division of Viral Products Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark J Mulligan
- New York University Langone Medical Center, Alexandria Center for Life Sciences, New York, NY, USA
| | - Mark R Prausnitz
- Micron Biomedical, Inc., Atlanta, Georgia.,School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|