1
|
Frade AF, Guérin H, Nunes JPS, Silva LFSE, Roda VMDP, Madeira RP, Brochet P, Andrieux P, Kalil J, Chevillard C, Cunha-Neto E. Cardiac and Digestive Forms of Chagas Disease: An Update on Pathogenesis, Genetics, and Therapeutic Targets. Mediators Inflamm 2025; 2025:8862004. [PMID: 40297326 PMCID: PMC12037249 DOI: 10.1155/mi/8862004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/12/2025] [Indexed: 04/30/2025] Open
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a neglected disease affecting around 6 million people, with no effective antiparasitic drugs or vaccines. About 40% of Chagas disease patients develop symptomatic forms in the chronic phase of infection, chronic Chagas cardiomyopathy (CCC) or digestive forms like megaoesophagus and megacolon, while most infected patients (60%) remain asymptomatic (ASY) in the so-called indeterminate form (IF). CCC is an inflammatory cardiomyopathy that occurs decades after the initial infection. Death results from heart failure or arrhythmia in a subset of CCC patients. Myocardial fibrosis, inflammation, and mitochondrial dysfunction are involved in heart failure and arrhythmia. Survival in CCC is worse than in other cardiomyopathies. Distinct from other cardiomyopathies, CCC displays a helper T-cell type 1 (Th1-T) cell-rich myocarditis with abundant interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) and selectively lower levels of mitochondrial energy metabolism enzymes and high-energy phosphates in the heart. A CD8+ T cell-rich inflammatory infiltrate has also been found in the Chagasic megaesophagus, which is associated with denervation of myoenteric plexi. IFN-γ and TNF-α signaling, which are constitutively upregulated in Chagas disease patients, negatively affect mitochondrial function and adenosine 5'-triphosphate (ATP) production-cytokine-induced mitochondrial dysfunction. In addition, the differential susceptibility to developing CCC has prompted many studies over the past 25 years on the association of genetic polymorphisms with disease outcomes. A comprehensive understanding of Chagas disease pathogenesis is crucial for identifying potential therapeutic targets. Genetic studies may offer valuable insights into factors with prognostic significance. In this review, we present an updated perspective on the pathogenesis and genetic factors associated with Chagas disease, emphasizing key studies that elucidate the differential progression of patients to CCC and other symptomatic forms. Furthermore, we explore the interplay between genetic susceptibility, inflammatory cytokines, mitochondrial dysfunction and discuss emerging therapeutic targets.
Collapse
Affiliation(s)
- Amanda Farage Frade
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
| | - Hélléa Guérin
- French National Institute for Health and Medical Research (INSERM), UMR U1090, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Aix Marseille University, Marseille 13288, France
| | - Joao Paulo Silva Nunes
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
| | - Luiz Felipe Souza e Silva
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
| | - Vinicius Moraes de Paiva Roda
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
| | - Rafael Pedro Madeira
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
| | - Pauline Brochet
- French National Institute for Health and Medical Research (INSERM), UMR U1090, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Aix Marseille University, Marseille 13288, France
| | - Pauline Andrieux
- French National Institute for Health and Medical Research (INSERM), UMR U1090, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Aix Marseille University, Marseille 13288, France
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
- Institute for Investigation in Immunology (III), National Institute of Science and Technology (INCT), São Paulo 05403-900, Brazil
- Department of Clinical Immunology and Allergy, University of São Paulo Medical School, São Paulo 01246-903, Brazil
| | - Christophe Chevillard
- French National Institute for Health and Medical Research (INSERM), UMR U1090, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Aix Marseille University, Marseille 13288, France
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-900, Brazil
- Institute for Investigation in Immunology (III), National Institute of Science and Technology (INCT), São Paulo 05403-900, Brazil
- Department of Clinical Immunology and Allergy, University of São Paulo Medical School, São Paulo 01246-903, Brazil
| |
Collapse
|
2
|
de Alba-Alvarado MC, Cabrera-Bravo M, Zenteno E, Salazar-Schetino PM, Bucio-Torres MI. The Functions of Cytokines in the Cardiac Immunopathogenesis of Chagas Disease. Pathogens 2024; 13:870. [PMID: 39452741 PMCID: PMC11510034 DOI: 10.3390/pathogens13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Chagas disease is a complex zoonosis. Clinically, it presents in two distinct phases, acute and chronic. The ability of patients to respond to Trypanosoma cruzi infection depends on the balance between inflammatory and anti-inflammatory responses, in which cytokines play a key regulatory role. In this review, we discuss the role of cytokines in regulating the host response and as mediators of cardiac injury by inducing profibrotic alterations. The importance of characterizing cytokine profiles as biomarkers of the evolution of cardiac damage in T.-cruzi-infected individuals is also emphasized.
Collapse
Affiliation(s)
- Mariana Citlalli de Alba-Alvarado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad México 04510, Mexico; (M.C.-B.); (P.M.S.-S.)
| | - Margarita Cabrera-Bravo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad México 04510, Mexico; (M.C.-B.); (P.M.S.-S.)
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Paz María Salazar-Schetino
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad México 04510, Mexico; (M.C.-B.); (P.M.S.-S.)
| | - Martha Irene Bucio-Torres
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad México 04510, Mexico; (M.C.-B.); (P.M.S.-S.)
| |
Collapse
|
3
|
Sinton MC, Chandrasegaran PRG, Capewell P, Cooper A, Girard A, Ogunsola J, Perona-Wright G, M Ngoyi D, Kuispond N, Bucheton B, Camara M, Kajimura S, Bénézech C, Mabbott NA, MacLeod A, Quintana JF. IL-17 signalling is critical for controlling subcutaneous adipose tissue dynamics and parasite burden during chronic murine Trypanosoma brucei infection. Nat Commun 2023; 14:7070. [PMID: 37923768 PMCID: PMC10624677 DOI: 10.1038/s41467-023-42918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
In the skin, Trypanosoma brucei colonises the subcutaneous white adipose tissue, and is proposed to be competent for forward transmission. The interaction between parasites, adipose tissue, and the local immune system is likely to drive the adipose tissue wasting and weight loss observed in cattle and humans infected with T. brucei. However, mechanistically, events leading to subcutaneous white adipose tissue wasting are not fully understood. Here, using several complementary approaches, including mass cytometry by time of flight, bulk and single cell transcriptomics, and in vivo genetic models, we show that T. brucei infection drives local expansion of several IL-17A-producing cells in the murine WAT, including TH17 and Vγ6+ cells. We also show that global IL-17 deficiency, or deletion of the adipocyte IL-17 receptor protect from infection-induced WAT wasting and weight loss. Unexpectedly, we find that abrogation of adipocyte IL-17 signalling results in a significant accumulation of Dpp4+ Pi16+ interstitial preadipocytes and increased extravascular parasites in the WAT, highlighting a critical role for IL-17 signalling in controlling preadipocyte fate, subcutaneous WAT dynamics, and local parasite burden. Taken together, our study highlights the central role of adipocyte IL-17 signalling in controlling WAT responses to infection, suggesting that adipocytes are critical coordinators of tissue dynamics and immune responses to T. brucei infection.
Collapse
Affiliation(s)
- Matthew C Sinton
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
- Division of Cardiovascular Science, University of Manchester, Manchester, UK.
| | - Praveena R G Chandrasegaran
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Paul Capewell
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Anneli Cooper
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Alex Girard
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - John Ogunsola
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Georgia Perona-Wright
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Dieudonné M Ngoyi
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of Congo
- Member of TrypanoGEN, Kinshasa, Democratic Republic of Congo
| | - Nono Kuispond
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of Congo
- Member of TrypanoGEN, Kinshasa, Democratic Republic of Congo
| | - Bruno Bucheton
- Member of TrypanoGEN, Kinshasa, Democratic Republic of Congo
- Institut de Recherche pour le Développement, Unité Mixte de Recherche IRD-CIRAD 177, Campus International de Baillarguet, Montpellier, France
| | - Mamadou Camara
- Member of TrypanoGEN, Kinshasa, Democratic Republic of Congo
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Ministère de la Santé, Conakry, Guinea
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Cécile Bénézech
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, Scotland, UK
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Member of TrypanoGEN, Kinshasa, Democratic Republic of Congo
| | - Juan F Quintana
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
- Division of Immunology, Immunity to Infection and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Nunes JPS, Roda VMDP, Andrieux P, Kalil J, Chevillard C, Cunha-Neto E. Inflammation and mitochondria in the pathogenesis of chronic Chagas disease cardiomyopathy. Exp Biol Med (Maywood) 2023; 248:2062-2071. [PMID: 38235691 PMCID: PMC10800136 DOI: 10.1177/15353702231220658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is a neglected disease affecting around 6 million people. About 30% of CD patients develop chronic Chagas disease cardiomyopathy (CCC), an inflammatory cardiomyopathy that occurs decades after the initial infection, while most infected patients (60%) remain asymptomatic in the so-called indeterminate form (IF). Death results from heart failure or arrhythmia in a subset of CCC patients. Myocardial fibrosis, inflammation, and mitochondrial dysfunction are involved in the arrhythmia substrate and triggering events. Survival in CCC is worse than in other cardiomyopathies, which may be linked to a Th1-T cell rich myocarditis with abundant interferon (IFN)-γ and tumor necrosis factor (TNF)-α, selectively lower levels of mitochondrial energy metabolism enzymes in the heart, and reduced levels of high-energy phosphate, indicating poor adenosine triphosphate (ATP) production. IFN-γ and TNF-α signaling, which are constitutively upregulated in CD patients, negatively affect mitochondrial function in cardiomyocytes, recapitulating findings in CCC heart tissue. Genetic studies such as whole-exome sequencing (WES) in nuclear families with multiple CCC/IF cases has disclosed rare heterozygous pathogenic variants in mitochondrial and inflammatory genes segregating in CCC cases. In this minireview, we summarized studies showing how IFN-γ and TNF-α affect cell energy generation, mitochondrial health, and redox homeostasis in cardiomyocytes, in addition to human CD and mitochondria. We hypothesize that cytokine-induced mitochondrial dysfunction in genetically predisposed patients may be the underlying cause of CCC severity and we believe this mechanism may have a bearing on other inflammatory cardiomyopathies.
Collapse
Affiliation(s)
- João Paulo Silva Nunes
- Laboratory of Immunology, Heart Institute (InCor), Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, 01246-903 São Paulo, Brazil
- Institute for Investigation in Immunology (III), Instituto Nacional de Ciência e Tecnologia (INCT), 05403-900 São Paulo, Brazil
| | - Vinicius Moraes de Paiva Roda
- Laboratory of Immunology, Heart Institute (InCor), Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, 01246-903 São Paulo, Brazil
| | - Pauline Andrieux
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) U1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, 13288 Marseille, France
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, 01246-903 São Paulo, Brazil
- Institute for Investigation in Immunology (III), Instituto Nacional de Ciência e Tecnologia (INCT), 05403-900 São Paulo, Brazil
| | - Christophe Chevillard
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) U1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, 13288 Marseille, France
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), Faculdade de Medicina da Universidade de São Paulo, 05403-900 São Paulo, Brazil
- Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, 01246-903 São Paulo, Brazil
- Institute for Investigation in Immunology (III), Instituto Nacional de Ciência e Tecnologia (INCT), 05403-900 São Paulo, Brazil
| |
Collapse
|
5
|
The Characterization of Cardiac Explants Reveals Unique Fibrosis Patterns and a Predominance of CD8+ T Cell Subpopulations in Patients with Chronic Chagas Cardiomyopathy. Pathogens 2022; 11:pathogens11121402. [PMID: 36558736 PMCID: PMC9788058 DOI: 10.3390/pathogens11121402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
AIM The present study aimed to characterize the histopathological findings and the phenotype of inflammatory cells in the myocardial tissue of patients with end-stage heart failure (ESHF) secondary to CCC in comparison with ESHF secondary to non-Chagas cardiomyopathies (NCC). METHODS A total of 32 explanted hearts were collected from transplanted patients between 2014 and 2017. Of these, 21 were classified as CCC and 11 as other NCC. A macroscopic analysis followed by a microscopic analysis were performed. Finally, the phenotypes of the inflammatory infiltrates were characterized using flow cytometry. RESULTS Microscopic analysis revealed more extensive fibrotic involvement in patients with CCC, with more frequent foci of fibrosis, collagen deposits, and degeneration of myocardial fibers, in addition to identifying foci of inflammatory infiltrate of greater magnitude. Finally, cell phenotyping identified more memory T cells, mainly CD8+CD45RO+ T cells, and fewer transitioning T cells (CD45RA+/CD45RO+) in patients with CCC compared with the NCC group. CONCLUSIONS CCC represents a unique form of myocardial involvement characterized by abundant inflammatory infiltrates, severe interstitial fibrosis, extensive collagen deposits, and marked cardiomyocyte degeneration. The structural myocardial changes observed in late-stage Chagas cardiomyopathy appear to be closely related to the presence of cardiac fibrosis and the colocalization of collagen fibers and inflammatory cells, a finding that serves as a basis for the generation of new hypotheses aimed at better understanding the role of inflammation and fibrogenesis in the progression of CCC. Finally, the predominance of memory T cells in CCC compared with NCC hearts highlights the critical role of the parasite-specific lymphocytic response in the course of the infection.
Collapse
|
6
|
Jones KM, Poveda C, Versteeg L, Bottazzi ME, Hotez PJ. Preclinical advances and the immunophysiology of a new therapeutic chagas disease vaccine. Expert Rev Vaccines 2022; 21:1185-1203. [PMID: 35735065 DOI: 10.1080/14760584.2022.2093721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Chronic infection with the protozoal parasite Trypanosoma cruzi leads to a progressive cardiac disease, known as chronic Chagasic cardiomyopathy (CCC). A new therapeutic Chagas disease vaccine is in development to augment existing antiparasitic chemotherapy drugs. AREAS COVERED We report on our current understanding of the underlying immunologic and physiologic mechanisms that lead to CCC, including parasite immune escape mechanisms that allow persistence and the subsequent inflammatory and fibrotic processes that lead to clinical disease. We report on vaccine design and the observed immunotherapeutic effects including induction of a balanced TH1/TH2/TH17 immune response that leads to reduced parasite burdens and tissue pathology. Further, we report vaccine-linked chemotherapy, a dose sparing strategy to further reduce parasite burdens and tissue pathology. EXPERT OPINION Our vaccine-linked chemotherapeutic approach is a multimodal treatment strategy, addressing both the parasite persistence and the underlying deleterious host inflammatory and fibrotic responses that lead to cardiac dysfunction. In targeting treatment towards patients with chronic indeterminate or early determinate Chagas disease, this vaccine-linked chemotherapeutic approach will be highly economical and will reduce the global disease burden and deaths due to CCC.
Collapse
Affiliation(s)
- Kathryn M Jones
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristina Poveda
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Cell Biology and Immunology Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Biology, Baylor University, Waco, Texas, United States of America.,James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America.,Hagler Institute for Advanced Study at Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
7
|
Khorshidvand Z, Khosravi A, Mahboobian MM, Larki-Harchegani A, Fallah M, Maghsood AH. Novel naltrexone hydrochloride nanovaccine based on chitosan nanoparticles promotes induction of Th1 and Th17 immune responses resulting in protection against Toxoplasma gondii tachyzoites in a mouse model. Int J Biol Macromol 2022; 208:962-972. [PMID: 35346684 DOI: 10.1016/j.ijbiomac.2022.03.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022]
Abstract
This study was aimed to encapsulate and construct the Toxoplasma gondii surface antigen (SAG1) and naltrexone hydrochloride (NLT-HCL) as an adjuvant within chitosan nanoparticles (CS-NPs) to develop efficacious vaccine against T. gondii. Seven groups of BALB/c mice were immunized with SAG1, chitosan (CS), NLT-SAG1, CS-SAG1, CS-SAG1-NLT, CS-NLT and PBS. The efficiency of each approach was detected in vivo mouse immunization. Moreover, the immuno-induction effect of SAG1 recombinant protein and CS-NPs-based NLT-HCL as an adjuvant in a vaccine delivery was evaluated. Experimentally, Th1/Th17 biased cellular and humoral immune responses were activated in the mice immunized with CS-SAG1-NLT nanoparticles that were accompanied by considerable increased production of IFN-γ, IL-17, IL-12, IL-4, IFN-γ/IL-4 ratio, IgG, IgG2a. This group of mice also showed significantly increased survival time post-challenging. The successful encapsulated SAG1 recombinant protein and NLT-HCL, as an adjuvant, within CS-NPs can induce immune responses against toxoplasmosis. We could incorporate NLT-HCL adjuvant into the CS-NPs based delivery systems, which makes CS-NPs attractive as a colloidal carrier system for NLT-HCL as secondary adjuvant. This new approach or the simultaneous use of CS and NLT demonstrated that the co-administration of CS-NPs and NLT-HCL induce production of IL-17 cytokine. This approach can be used for vaccination purposes, in which Th17 and Th1 cellular immune are considered the key of the successful immune response.
Collapse
Affiliation(s)
- Zohreh Khorshidvand
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afra Khosravi
- Department of Clinical Immunology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Larki-Harchegani
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Fallah
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Hossein Maghsood
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
8
|
Pinto BF, Medeiros NI, Teixeira-Carvalho A, Fiuza JA, Eloi-Santos SM, Nunes MCP, Silva SA, Fontes-Cal TCM, Belchior-Bezerra M, Dutra WO, Correa-Oliveira R, Gomes JAS. Modulation of Regulatory T Cells Activity by Distinct CD80 and CD86 Interactions With CD28/CTLA-4 in Chagas Cardiomyopathy. Front Cardiovasc Med 2022; 9:750876. [PMID: 35665256 PMCID: PMC9162138 DOI: 10.3389/fcvm.2022.750876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chagas cardiomyopathy is the symptomatic cardiac clinical form (CARD) of the chronic phase of Chagas disease caused by Trypanosoma cruzi infection. It was described as the most fibrosing cardiomyopathies, affecting approximately 30% of patients during the chronic phase. Other less frequent symptomatic clinical forms have also been described. However, most patients who progress to the chronic form develop the indeterminate clinical form (IND), may remain asymptomatic for life, or develop some cardiac damage. Some mechanisms involved in the etiology of the clinical forms of Chagas disease have been investigated. To characterize the contribution of CD80 and CD86 co-stimulatory molecules in the activation of different CD4+ (Th1, Th2, Th17, and Treg) and CD8+ T lymphocyte subsets, we used blocking antibodies for CD80 and CD86 receptors of peripheral blood mononuclear cells (PBMC) in cultures with T. cruzi antigens from non-infected (NI), IND, and CARD individuals. We demonstrated a higher frequency of CD8+ CD25+ T lymphocytes and CD8+ Treg cells after anti-CD80 antibody blockade only in the CARD group. In contrast, a lower frequency of CD4+ Treg lymphocytes after anti-CD86 antibody blockade was found only in IND patients. A higher frequency of CD4+ Treg CD28+ lymphocytes, as well as an association between CD4+ Treg lymphocytes and CD28+ expression on CD4+ Treg cells in the CARD group, but not in IND patients, and once again only after anti-CD80 antibody blockade, was observed. We proposed that Treg cells from IND patients could be activated via CD86-CTLA-4 interaction, leading to modulation of the immune response only in asymptomatic patients with Chagas disease, while CD80 may be involved in the proliferation control of T CD8+ lymphocytes, as also in the modulation of regulatory cell activation via CD28 receptor. For the first time, our data highlight the role of CD80 in modulation of Treg lymphocytes activation in patients with CARD, highlighting a key molecule in the development of Chagas cardiomyopathy.
Collapse
Affiliation(s)
- Bruna F. Pinto
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nayara I. Medeiros
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz–FIOCRUZ, Belo Horizonte, Brazil
| | | | - Jacqueline A. Fiuza
- Instituto René Rachou, Fundação Oswaldo Cruz–FIOCRUZ, Belo Horizonte, Brazil
| | | | - Maria C. P. Nunes
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Silvana A. Silva
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tereza C. M. Fontes-Cal
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mayara Belchior-Bezerra
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Walderez O. Dutra
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia Doenças Tropicais, Belo Horizonte, Brazil
| | - Rodrigo Correa-Oliveira
- Instituto René Rachou, Fundação Oswaldo Cruz–FIOCRUZ, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia Doenças Tropicais, Belo Horizonte, Brazil
| | - Juliana A. S. Gomes
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Juliana A. S. Gomes,
| |
Collapse
|
9
|
Soprano LL, Ferrero MR, Landoni M, García GA, Esteva MI, Couto AS, Duschak VG. Cruzipain Sulfotopes-Specific Antibodies Generate Cardiac Tissue Abnormalities and Favor Trypanosoma cruzi Infection in the BALB/c Mice Model of Experimental Chagas Disease. Front Cell Infect Microbiol 2022; 11:814276. [PMID: 35059328 PMCID: PMC8763857 DOI: 10.3389/fcimb.2021.814276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi cruzipain (Cz) bears a C-terminal domain (C-T) that contains sulfated epitopes “sulfotopes” (GlcNAc6S) on its unique N-glycosylation site. The effects of in vivo exposure to GlcNAc6S on heart tissue ultrastructure, immune responses, and along the outcome of infection by T. cruzi, were evaluated in a murine experimental model, BALB/c, using three independent strategies. First, mice were pre-exposed to C-T by immunization. C-T-immunized mice (C-TIM) showed IgG2a/IgG1 <1, induced the production of cytokines from Th2, Th17, and Th1 profiles with respect to those of dC-TIM, which only induced IL-10 respect to the control mice. Surprisingly, after sublethal challenge, both C-TIM and dC-TIM showed significantly higher parasitemia and mortality than the control group. Second, mice exposed to BSA-GlcNAc6S as immunogen (BSA-GlcNAc6SIM) showed: severe ultrastructural cardiac alterations while BSA-GlcNAcIM conserved the regular tissue architecture with slight myofibril changes; a strong highly specific humoral-immune-response reproducing the IgG-isotype-profile obtained with C-TIM; and a significant memory-T-cell-response demonstrating sulfotope-immunodominance with respect to BSA-GlcNAcIM. After sublethal challenge, BSA-GlcNAc6SIM showed exacerbated parasitemias, despite elevated IFN-γ levels were registered. In both cases, the abrogation of ultrastructural alterations when using desulfated immunogens supported the direct involvement of sulfotopes and/or indirect effect through their specific antibodies, in the induction of tissue damage. Finally, a third strategy using a passive transference of sulfotope-specific antibodies (IgG-GlcNAc6S) showed the detrimental activity of IgG-GlcNAc6S on mice cardiac tissue, and mice treated with IgG-GlcNAc6S after a sublethal dose of T. cruzi, surprisingly reached higher parasitemias than control groups. These findings confirmed the indirect role of the sulfotopes, via their IgG-GlcNAc6S, both in the immunopathogenicity as well as favoring T. cruzi infection.
Collapse
Affiliation(s)
- Luciana L Soprano
- Area of Biochemistry of Proteins and Glycobiology of Parasites, Research Department, National Institute of Parasitology "Dr. Mario Fatala Chaben", ANLIS-Malbrán, Health Department, Ciudad Autónoma de Buenos Aires (CABA, 1063), Buenos Aires, Argentina
| | - Maximiliano R Ferrero
- Area of Biochemistry of Proteins and Glycobiology of Parasites, Research Department, National Institute of Parasitology "Dr. Mario Fatala Chaben", ANLIS-Malbrán, Health Department, Ciudad Autónoma de Buenos Aires (CABA, 1063), Buenos Aires, Argentina
| | - Malena Landoni
- Organic Chemistry Department, Natural and Exact Sciences Faculty; Research Center in Carbohydrates (CIHIDECAR), University of Buenos Aires, Buenos Aires, Argentina.,Ministry of Science, Technology and Innovation, National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Gabriela A García
- Area of Biochemistry of Proteins and Glycobiology of Parasites, Research Department, National Institute of Parasitology "Dr. Mario Fatala Chaben", ANLIS-Malbrán, Health Department, Ciudad Autónoma de Buenos Aires (CABA, 1063), Buenos Aires, Argentina.,Ministry of Science, Technology and Innovation, National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Mónica I Esteva
- Area of Biochemistry of Proteins and Glycobiology of Parasites, Research Department, National Institute of Parasitology "Dr. Mario Fatala Chaben", ANLIS-Malbrán, Health Department, Ciudad Autónoma de Buenos Aires (CABA, 1063), Buenos Aires, Argentina
| | - Alicia S Couto
- Organic Chemistry Department, Natural and Exact Sciences Faculty; Research Center in Carbohydrates (CIHIDECAR), University of Buenos Aires, Buenos Aires, Argentina.,Ministry of Science, Technology and Innovation, National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Vilma G Duschak
- Area of Biochemistry of Proteins and Glycobiology of Parasites, Research Department, National Institute of Parasitology "Dr. Mario Fatala Chaben", ANLIS-Malbrán, Health Department, Ciudad Autónoma de Buenos Aires (CABA, 1063), Buenos Aires, Argentina.,Ministry of Science, Technology and Innovation, National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Braga YLL, Neto JRC, Costa AWF, Silva MVT, Silva MV, Celes MRN, Oliveira MAP, Joosten LAB, Ribeiro-Dias F, Gomes RS, Machado JR. Interleukin-32 γ in the Control of Acute Experimental Chagas Disease. J Immunol Res 2022; 2022:7070301. [PMID: 35097133 PMCID: PMC8794684 DOI: 10.1155/2022/7070301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease (CD) is an important parasitic disease caused by Trypanosoma cruzi. Interleukin-32 (IL-32) plays an important role in inflammation and in the development of Th1/Th17 acquired immune responses. We evaluated the influence of IL-32γ on the immune response profile, pathogenesis of myocarditis in acute experimental CD, and control of the disease. For this, C57BL/6 wild-type (WT) and IL-32γTg mice were infected subcutaneously with 1,000 forms of Colombian strain of T. cruzi. In the histopathological analyzes, T. cruzi nests, myocarditis, and collagen were quantified in cardiac tissue. Cytokine productions (IL-32, IFN-γ, TNF-α, IL-10, and IL-17) were measured in cardiac homogenate by ELISA. The IL-32γTg mice showed a better control of parasitemia and T. cruzi nests in the heart than WT mice. Infected-WT and -IL-32γTg mice showed similar levels of IFN-γ, TNF-α, and IL-17, but IL-10 was significantly higher expressed in IL-32γTg than in WT mice. The cytokine profile found in IL-32γTg animals contributed to body weight maintenance, parasitemia control, and survival. Our results indicate that the presence of human IL-32γ in mice infected with the Colombian strain of T. cruzi is important for infection control during the acute phase of Chagas disease.
Collapse
Affiliation(s)
- Yarlla L. L. Braga
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - José R. C. Neto
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Arthur W. F. Costa
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Muriel V. T. Silva
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marcos V. Silva
- Departamento de Microbiologia, Bioquímica e Imunologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Mara R. N. Celes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Milton A. P. Oliveira
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Leo A. B. Joosten
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Rodrigo S. Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana R. Machado
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
11
|
SOCS2 expression in hematopoietic and non-hematopoietic cells during Trypanosoma cruzi infection: Correlation with immune response and cardiac dysfunction. Clin Immunol 2021; 234:108913. [PMID: 34954347 DOI: 10.1016/j.clim.2021.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/23/2022]
Abstract
Chagas disease has a complex pathogenesis wherein the host immune response is essential for controlling its development. Suppressor of cytokine signaling(SOCS)2 is a crucial protein that regulates cytokine production. In this study, SOCS2 deficiency resulted in an initial imbalance of IL12- and IL-10-producing neutrophils and dendritic cells (DCs), which caused a long-lasting impact reducing inflammatory neutrophils and DCs, and tolerogenic DCs at the peak of acute disease. A reduced number of inflammatory and pro-resolving macrophages, and IL17A-producing CD4+ T cells, and increased lymphocyte apoptosis was found in SOCS2-deficient mice. Electrocardiogram analysis of chimeric mice showed that WT mice that received SOCS2 KO bone marrow transplantation presented increased heart dysfunction. Taken together, the results demonstrated that SOCS2 is a crucial regulator of the immune response during Trypanosoma cruzi infection, and suggest that a SOCS2 genetic polymorphism, or failure of its expression, may increase the susceptibility of cardiomyopathy development in Chagasic patients.
Collapse
|
12
|
Sousa G, de Carvalho SS, Atella GC. Trypanosoma cruzi Affects Rhodnius prolixus Lipid Metabolism During Acute Infection. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.737909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The interaction between Rhodnius prolixus and Trypanosoma cruzi has huge medical importance because it responds to the transmission of Chagas disease, a neglected tropical disease that affects about eight million people worldwide. It is known that trypanosomatid pathogens depend on active lipid endocytosis from the insect host to meet growth and differentiation requirements. However, until now, knowledge on how the parasite affects the lipid physiology of individual insect organs was largely unknown. Herein, the biochemical and molecular dynamics of the triatomine R. prolixus lipid metabolism in response to T. cruzi acute infection were investigated. A qRT-PCR approach was used to determine the expression profile of 12 protein-coding genes involved in R. prolixus lipid physiology. In addition, microscopic and biochemical assays revealed the lipid droplet profile and the levels of the different identified lipid classes. Finally, spectrometry analyses were used to determine fatty acid and sterol composition and their modulation towards the infection. T. cruzi infection downregulated the transcript levels of protein-coding genes for lipid biosynthetic and degrading pathways in individual triatomine organs. On the other hand, upregulation of lipid receptor transcripts indicates an attempt to capture more lipids from hemolymphatic lipoproteins. Consequently, several lipid classes (such as monoacylglycerol, diacylglycerol, triacylglycerol, cholesteryl ester, phosphatidylcholine, and phosphatidylethanolamine) were involved in the response to the parasite challenge, although modulating only the insect fat body. T. cruzi never leaves the insect gut and yet it modulates non-infected tissues, suggesting that the association between the parasite and the vector organs is reached by cell signaling molecules. This hypothesis raises several intriguing issues to inspire future studies in the parasite-vector interaction field.
Collapse
|
13
|
Mateus J, Nocua P, Lasso P, López MC, Thomas MC, Egui A, Cuervo C, González JM, Puerta CJ, Cuéllar A. CD8 + T Cell Response Quality Is Related to Parasite Control in an Animal Model of Single and Mixed Chronic Trypanosoma cruzi Infections. Front Cell Infect Microbiol 2021; 11:723121. [PMID: 34712620 PMCID: PMC8546172 DOI: 10.3389/fcimb.2021.723121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
Chagas disease (ChD) is a chronic infection caused by Trypanosoma cruzi. This highly diverse intracellular parasite is classified into seven genotypes or discrete typing units (DTUs) and they overlap in geographic ranges, vectors, and clinical characteristics. Although studies have suggested that ChD progression is due to a decline in the immune response quality, a direct relationship between T cell responses and disease outcome is still unclear. To investigate the relationship between parasite control and immune T cell responses, we used two distinct infection approaches in an animal model to explore the histological and parasitological outcomes and dissect the T cell responses in T. cruzi-infected mice. First, we performed single infection experiments with DA (TcI) or Y (TcII) T. cruzi strains to compare the infection outcomes and evaluate its relationship with the T cell response. Second, because infections with diverse T. cruzi genotypes can occur in naturally infected individuals, mice were infected with the Y or DA strain and subsequently reinfected with the Y strain. We found different infection outcomes in the two infection approaches used. The single chronic infection showed differences in the inflammatory infiltrate level, while mixed chronic infection by different T. cruzi DTUs showed dissimilarities in the parasite loads. Chronically infected mice with a low inflammatory infiltrate (DA-infected mice) or low parasitemia and parasitism (Y/Y-infected mice) showed increases in early-differentiated CD8+ T cells, a multifunctional T cell response and lower expression of inhibitory receptors on CD8+ T cells. In contrast, infected mice with a high inflammatory infiltrate (Y-infected mice) or high parasitemia and parasitism (DA/Y-infected mice) showed a CD8+ T cell response distinguished by an increase in late-differentiated cells, a monofunctional response, and enhanced expression of inhibitory receptors. Overall, our results demonstrated that the infection outcomes caused by single or mixed T. cruzi infection with different genotypes induce a differential immune CD8+ T cell response quality. These findings suggest that the CD8+ T cell response might dictate differences in the infection outcomes at the chronic T. cruzi stage. This study shows that the T cell response quality is related to parasite control during chronic T. cruzi infection.
Collapse
Affiliation(s)
- Jose Mateus
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Nocua
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Manuel Carlos López
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - M Carmen Thomas
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Adriana Egui
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - John Mario González
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Concepción J Puerta
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Cuéllar
- Grupo de Ciencias de Laboratorio Clínico, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
14
|
Liu Z, Ulrich vonBargen R, McCall LI. Central role of metabolism in Trypanosoma cruzi tropism and Chagas disease pathogenesis. Curr Opin Microbiol 2021; 63:204-209. [PMID: 34455304 PMCID: PMC8463485 DOI: 10.1016/j.mib.2021.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/17/2023]
Abstract
Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi parasites. During mammalian infection, T. cruzi alternates between an intracellular stage and extracellular stage. T. cruzi adapts its metabolism to this lifestyle, while also reshaping host metabolic pathways. Such host metabolic adaptations compensate for parasite-induced stress, but may promote parasite survival and proliferation. Recent work has demonstrated that metabolism controls parasite tropism and location of Chagas disease symptoms, and regulates whether infection is mild or severe. Such findings have important translational applications with regards to treatment and diagnostic test development, though further research is needed with regards to in vivo parasite metabolic gene expression, relationship between magnitude of local metabolic perturbation, parasite strain and disease location, and host-parasite-microbiota co-metabolism.
Collapse
Affiliation(s)
- Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, 73019, United States
| | - Rebecca Ulrich vonBargen
- Department of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, United States
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, 73019, United States; Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, 73019, United States.
| |
Collapse
|
15
|
Choudhuri S, Rios L, Vázquez-Chagoyán JC, Garg NJ. Oxidative stress implications for therapeutic vaccine development against Chagas disease. Expert Rev Vaccines 2021; 20:1395-1406. [PMID: 34406892 DOI: 10.1080/14760584.2021.1969230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Pathogenesis of Chagas disease (CD) caused by the protozoan parasite Trypanosoma cruzi (T. cruzi) involves chronic oxidative and inflammatory stress. In this review, we discuss the research efforts in therapeutic vaccine development to date and the potential challenges imposed by oxidative stress in achieving an efficient therapeutic vaccine against CD. AREAS COVERED This review covers the immune and nonimmune mechanisms of reactive oxygen species production and immune response patterns during T. cruzi infection in CD. A discussion on immunotherapy development efforts, the efficacy of antigen-based immune therapies against T. cruzi, and the role of antioxidants as adjuvants is discussed to provide promising insights to developing future treatment strategies against CD. EXPERT OPINION Administration of therapeutic vaccines can be a good option to confront persistent parasitemia in CD by achieving a rapid, short-lived stimulation of type 1 cell-mediated immunity. At the same time, adjunct therapies could play a critical role in the preservation of mitochondrial metabolism and cardiac muscle contractility in CD. We propose combined therapy with antigen-based vaccine and small molecules to control the pathological oxidative insult would be effective in the conservation of cardiac structure and function in CD.
Collapse
Affiliation(s)
- Subhadip Choudhuri
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lizette Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados En Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Nisha Jain Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Tx, USA
| |
Collapse
|
16
|
Th17 Cells Provide Mucosal Protection against Gastric Trypanosoma cruzi Infection. Infect Immun 2021; 89:e0073820. [PMID: 33941576 DOI: 10.1128/iai.00738-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma cruzi is the intracellular parasite of Chagas disease, a chronic condition characterized by cardiac and gastrointestinal morbidity. Protective immunity requires CD4+ T cells, and Th1 cells and gamma interferon (IFN-γ) are important players in host defense. More recently, Th17 cells and interleukin 17A (IL-17A) have been shown to exert protective functions in systemic T. cruzi infection. However, it remains unclear whether Th17 cells and IL-17A protect in the mucosa, the initial site of parasite invasion in many human cases. We found that IL-17RA knockout (KO) mice are highly susceptible to orogastric infection, indicating an important function for this cytokine in mucosal immunity to T. cruzi. To investigate the specific role of Th17 cells for mucosal immunity, we reconstituted RAG1 KO mice with T. cruzi-specific T cell receptor transgenic Th17 cells prior to orogastric T. cruzi challenges. We found that Th17 cells provided protection against gastric mucosal T. cruzi infection, indicated by significantly lower stomach parasite burdens. In vitro macrophage infection assays revealed that protection by Th17 cells is reduced with IL-17A neutralization or reversed by loss of macrophage NADPH oxidase activity. Consistently with this, mice lacking functional NADPH oxidase were not protected by Th17 cell transfer. These data are the first report that Th17 cells protect against mucosal T. cruzi infection and identify a novel protective mechanism involving the induction of NADPH oxidase activity by IL-17A. These studies provide important insights for Chagas vaccine development and, more broadly, increase our understanding of the diverse roles of Th17 cells in host defense.
Collapse
|
17
|
Wei X, Li C, Zhang Y, Li K, Li J, Ai K, Li K, Zhang J, Yang J. Fish NF‐κB couples TCR and IL‐17 signals to regulate ancestral T‐cell immune response against bacterial infection. FASEB J 2021; 35:e21457. [DOI: 10.1096/fj.202002393rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Cheng Li
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Jiaqi Li
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Kunming Li
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
18
|
Wei H, Jin C, Peng A, Xie H, Xie S, Feng Y, Xie A, Li J, Fang C, Yang Q, Qiu H, Qi Y, Yin Z, Wang X, Huang J. Characterization of γδT cells in lung of Plasmodium yoelii-infected C57BL/6 mice. Malar J 2021; 20:89. [PMID: 33588839 PMCID: PMC7885449 DOI: 10.1186/s12936-021-03619-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
Background Malaria has high morbidity and mortality rates in some parts of tropical and subtropical countries. Besides respiratory and metabolic function, lung plays a role in immune system. γδT cells have multiple functions in producing cytokines and chemokines, regulating the immune response by interacting with other cells. It remains unclear about the role of γδT cells in the lung of mice infected by malaria parasites. Methods Flow cytometry (FCM) was used to evaluate the frequency of γδT cells and the effects of γδT cells on the phenotype and function of B and T cells in Plasmodium yoelii-infected wild-type (WT) or γδTCR knockout (γδT KO) mice. Haematoxylin-eosin (HE) staining was used to observe the pathological changes in the lungs. Results The percentage and absolute number of γδT cells in the lung increased after Plasmodium infection (p < 0.01). More γδT cells were expressing CD80, CD11b, or PD-1 post-infection (p < 0.05), while less γδT cells were expressing CD34, CD62L, and CD127 post-infection (p < 0.05). The percentages of IL-4+, IL-5+, IL-6+, IL-21+, IL-1α+, and IL-17+ γδT cells were increased (p < 0.05), but the percentage of IFN-γ-expressing γδT cells decreased (p < 0.05) post-infection. The pathological changes in the lungs of the infected γδT KO mice were not obvious compared with the infected WT mice. The proportion of CD3+ cells and absolute numbers of CD3+ cells, CD3+ CD4+ cells, CD3+ CD8+ cells decreased in γδT KO infected mice (p < 0.05). γδT KO infected mice exhibited no significant difference in the surface molecular expression of T cells compared with the WT infected mice (p > 0.05). While, the percentage of IFN-γ-expressing CD3+ and CD3+ CD8+ cells increased in γδT KO infected mice (p < 0.05). There was no significant difference in the absolute numbers of the total, CD69+, ICOS+, and CD80+ B cells between the WT infected and γδT KO infected mice (p > 0.05). Conclusions The content, phenotype, and function of γδT cells in the lung of C57BL/6 mice were changed after Plasmodium infection. γδT cells contribute to T cell immune response in the progress of Plasmodium infection.
Collapse
Affiliation(s)
- Haixia Wei
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Chenxi Jin
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Anping Peng
- Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Hongyan Xie
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shihao Xie
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuanfa Feng
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Anqi Xie
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jiajie Li
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Chao Fang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Quan Yang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Huaina Qiu
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yanwei Qi
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xinhua Wang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Jun Huang
- Key Laboratory of Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
19
|
Cruz-Chan JV, Villanueva-Lizama LE, Versteeg L, Damania A, Villar MJ, González-López C, Keegan B, Pollet J, Gusovsky F, Hotez PJ, Bottazzi ME, Jones KM. Vaccine-linked chemotherapy induces IL-17 production and reduces cardiac pathology during acute Trypanosoma cruzi infection. Sci Rep 2021; 11:3222. [PMID: 33547365 PMCID: PMC7865072 DOI: 10.1038/s41598-021-82930-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023] Open
Abstract
Chagas disease resulting from Trypanosoma cruzi infection leads to a silent, long-lasting chronic neglected tropical disease affecting the poorest and underserved populations around the world. Antiparasitic treatment with benznidazole does not prevent disease progression or death in patients with established cardiac disease. Our consortium is developing a therapeutic vaccine based on the T. cruzi flagellar—derived antigen Tc24-C4 formulated with a Toll-like receptor 4 agonist adjuvant, to complement existing chemotherapy and improve treatment efficacy. Here we demonstrate that therapeutic treatment of acutely infected mice with a reduced dose of benznidazole concurrently with vaccine treatment – also known as “vaccine-linked chemotherapy”—induced a TH17 like immune response, with significantly increased production of antigen specific IL-17A, IL-23 and IL-22, and CD8 + T lymphocytes, as well as significantly increased T. cruzi specific IFNγ-producing CD4 + T lymphocytes. Significantly reduced cardiac inflammation, fibrosis, and parasite burdens and improved survival were achieved by vaccine-linked chemotherapy and individual treatments. Importantly, low dose treatments were comparably efficacious to high dose treatments, demonstrating potential dose sparing effects. We conclude that through induction of TH17 immune responses vaccine-linked chemotherapeutic strategies could bridge the tolerability and efficacy gaps of current drug treatment in Chagasic patients.
Collapse
Affiliation(s)
- Julio V Cruz-Chan
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Liliana E Villanueva-Lizama
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Cell Biology and Immunology Group, Wageningen University & Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Ashish Damania
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Maria José Villar
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Cristina González-López
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Brian Keegan
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jeroen Pollet
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.,James A. Baker III Institute for Public Policy, Rice University, Houston, TX, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn M Jones
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Duarte-Silva E, Maes M, Macedo D, Savino W, Peixoto CA. Shared neuroimmune and oxidative pathways underpinning Chagas disease and major depressive disorder. Transl Psychiatry 2020; 10:419. [PMID: 33268766 PMCID: PMC7710744 DOI: 10.1038/s41398-020-01105-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/24/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
The cellular and molecular basis to understand the relationship between Chagas disease (CD), a infection caused by Trypanosoma cruzi, and depression, a common psychiatric comorbidity in CD patients, is largely unknown. Clinical studies show an association between CD and depression and preclinical evidence suggests that depressive-like behaviors in T. cruzi infected mice are due, at least partially, to immune dysregulation. However, mechanistic studies regarding this issue are still lacking. Herein, we present and discuss the state of art of data on CD and depression, and revise the mechanisms that may explain the development of depression in CD. We also discuss how the knowledge generated by current and future data may contribute to the discovery of new mechanisms underlying depressive symptoms associated with CD and, hence, to the identification of new therapeutic targets, which ultimately may change the way we see and treat CD and its psychiatric comorbidities.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure. Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil.
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, Brazil.
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Danielle Macedo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- National Institute of Science and Technology on Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure. Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil.
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
El-Wakil ES, Salem AE, Al-Ghandour AMF. Evaluation of possible prophylactic and therapeutic effect of mefloquine on experimental cryptosporidiosis in immunocompromised mice. J Parasit Dis 2020; 45:380-393. [PMID: 34295037 DOI: 10.1007/s12639-020-01315-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/05/2020] [Indexed: 01/18/2023] Open
Abstract
Cryptosporidiosis is an imperative global health concern. Unfortunately, Nitazoxanide (NTZ) (the nowadays drug of choice) is not effective in treatment of immunocompromised patients. We aimed to assess the possible anti-cryptosporidial prophylactic and therapeutic effects of Mefloquine (MQ) on infected immunosuppressed murine models. Mice were divided into five groups; GI: received Mefloquine (400 mg/kg/day), GII: received NTZ (100 mg/kg/bid), GIII: received a combination, half dose regimen of both drugs, GIV: infected untreated and GV: non-infected untreated. Each treated group was divided into three subgroups; Ga prophylaxis (PX), thereafter infection, Gb first and Gc second treatment doses. Assessment was done by parasitological, histopathological and serological techniques. A significant oocyst clearance was detected in all prophylactically treated groups. GIa showed 77% reduction of the mean oocyst count in stool while GIb and GIIIc showed100% oocyst clearance. Histopathologically, the ileocecal sections from GIV showed loss of brush borders with marked villous atrophy. GIa induced a moderate improvement of those pathological changes. Moreover, the villi in GIb and GIIIc retained their normal appearance with minimal inflammatory cells. Serum interferon gamma levels showed highly significant increases in GI&GIII compared to GIV while a non-significant increase was observed in GIIa only. On the contrary, serum interleukin-17 levels showed a highly significant down-regulation in all treated groups in comparison to GIV. This study proved a marvelous effect of MQ-PX on cryptosporidiosis in immunosuppressed mice and thus it could be introduced as one of the most promising re-purposed prophylactic and therapeutic anti-cryptosporidial agents.
Collapse
Affiliation(s)
- Eman S El-Wakil
- Department of Parasitology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Amal E Salem
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa M F Al-Ghandour
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
22
|
Hypothyroidism impairs the host immune response during the acute phase of Chagas disease. Immunobiology 2020; 225:152024. [PMID: 33227693 DOI: 10.1016/j.imbio.2020.152024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/20/2020] [Accepted: 10/18/2020] [Indexed: 11/24/2022]
Abstract
Diseases associated with thyroid hypofunction have been the subject of studies in infectious models, since several authors have demonstrated a pivotal role of iodinated hormones (thyroxine and triiodothyronine) in the modulation of immune effector responses. Using a model of hypothyroidism induced by anti-thyroid drug, we investigated the influence of hypothyroidism in the course of acute Trypanosoma cruzi infection. For this, male Hannover Wistar rats were challenged with methimazole for 21 days (0.02% in drinking water), and water for control counterparts. After confirmation of the hypothyroidism, rats were intraperitoneally challenged with 1x105 blood trypomastigotes of the Y strain of T. cruzi. Our findings suggest that hypothyroidism impairs animal weight gain, but does not affect the health of essential organs. Interestingly, infected hypothyroid animals had a significant increase in thymic cell death, with consequent drop in lymphocyte frequency in whole blood (evaluated on the 11th day of infection). Analyzing the percentage of immune cells in the spleen, we found a strong influence of hypothyroidism as a negative regulator of B cells, and antigenic ability of macrophages (RT1b expression) in the course of the experimental chagasic infection. Enhanced serum IL-17A concentration was induced by T. cruzi infection, but hypothyroidism impaired the production of this mediator as seen in infected hypothyroid animals. Taken together, our work suggests for the first time that hypothyroidism may adversely interfere with the modulation of effective immunity in the early phase of Chagas' disease.
Collapse
|
23
|
Gomes Dos Santos A, Watanabe EH, Ferreira DT, Oliveira J, Nakanishi ÉS, Oliveira CS, Bocchi E, Novaes CTG, Cruz F, Carvalho NB, Sato PK, Yamashiro-Kanashiro EH, Pontillo A, de Freitas VLT, Onuchic LF, Shikanai-Yasuda MA. A Specific IL6 Polymorphic Genotype Modulates the Risk of Trypanosoma cruzi Parasitemia While IL18, IL17A, and IL1B Variant Profiles and HIV Infection Protect Against Cardiomyopathy in Chagas Disease. Front Immunol 2020; 11:521409. [PMID: 33193300 PMCID: PMC7642879 DOI: 10.3389/fimmu.2020.521409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Chagas disease caused by Trypanosoma cruzi (T. cruzi) affects approximately six million individuals worldwide. Clinical manifestations are expected to occur due to the parasite persistence and host immune response. Herein we investigated potential associations between IL1B, IL6, IL17A, or IL18 polymorphism profiles and cardiomyopathy or T. cruzi parasitemia, as well as the impact of HIV infection on cardiopathy. Methods Two hundred twenty-six patients and 90 control individuals were analyzed. IL1B rs1143627 T>C, IL6 rs1800795 C>G, IL17A rs2275913 G>A, IL18 rs187238 C>G, and IL18 rs1946518 C>A SNVs were analyzed by real-time PCR and T. cruzi parasitemia by PCR. Results Our data revealed association between a cytokine gene polymorphism and parasitemia never previously reported. The IL6 rs1800795 CG genotype lowered the risk of positive parasitemia (OR = 0.45, 95% CI 0.24–0.86, P = 0.015). Original findings included associations between IL17A rs2275913 AA and IL18 s1946518 AA genotypes with decreased risk of developing cardiomyopathy (OR = 0.27, 95% CI 0.07–0.97, P = 0.044; and OR = 0.35, 95% CI 0.14–0.87, P = 0.023, respectively). IL18 rs1946518 AA and IL1B rs1143627 TC were associated with reduced risk for cardiomyopathy severity, including NYHA (New York Heart Association) class ≥ 2 (OR = 0.21, 95% CI 0.06–0.68, P = 0.009; and OR = 0.48, 95% CI 0.24–0.95, P = 0.036, respectively) and LVEF (left ventricular ejection fraction) <45% for IL18 rs1946518 AA (OR = 0.22, 95% CI 0.05–0.89, P = 0.034). A novel, unexpected protective effect of HIV infection against development/progression of cardiomyopathy was identified, based on a lower risk of developing cardiopathy (OR = 0.48, 95% CI 0.23–0.96, P = 0.039), NYHA class ≥ 2 (OR = 0.15, 95% CI 0.06–0.39, P < 0.001), and LVEF < 45% (OR = 0.03, 95% CI 0.00–0.25, P = 0.001). Digestive involvement was negatively associated with NYHA ≥ 2 and LVEF < 45% (OR = 0.20, 95% CI 0.09–0.47, P < 0.001; and OR = 0.24, 95% CI 0.09–0.62, P = 0.004, respectively). Conclusions Our data support a protective role of IL17A AA, IL18 AA, and IL1B TC genotypes against development/progression of cardiomyopathy and a modulatory effect of the IL6 CG genotype on the risk of parasitemia in Chagas disease. Notably, HIV infection was shown to protect against development/progression of cardiopathy, potentially associated with a synergistic effect of HIV and highly active antiretroviral therapy (HAART), attenuating a Th1-mediated response in the myocardium. This proposed hypothesis requires confirmation, however, in larger and more comprehensive future studies.
Collapse
Affiliation(s)
- Alexandra Gomes Dos Santos
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Elieser Hitoshi Watanabe
- Department of Medicine, Divisions of Molecular Medicine and Nephrology, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Daiane Tomomi Ferreira
- Laboratory of Immunology (LIM 48), Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Jamille Oliveira
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Érika Shimoda Nakanishi
- Laboratory of Immunology (LIM 48), Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Claudia Silva Oliveira
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Edimar Bocchi
- Heart Institute, Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | | | - Fatima Cruz
- Heart Institute, Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Noemia Barbosa Carvalho
- Division of Infectious Diseases, Hospital das Clinicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Paula Keiko Sato
- Laboratory of Immunology (LIM 48), Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Edite Hatsumi Yamashiro-Kanashiro
- Laboratory of Immunology (LIM 48), Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto de Medicina Tropical, University of São Paulo, São Paulo, Brazil
| | - Alessandra Pontillo
- Departament of Immunology, Instituto de Ciências Biomédicas (ICB), University of São Paulo, São Paulo, Brazil
| | - Vera Lucia Teixeira de Freitas
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Laboratory of Immunology (LIM 48), Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Luiz Fernando Onuchic
- Department of Medicine, Divisions of Molecular Medicine and Nephrology, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Maria Aparecida Shikanai-Yasuda
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Laboratory of Immunology (LIM 48), Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Villanueva-Lizama LE, Cruz-Chan JV, Versteeg L, Teh-Poot CF, Hoffman K, Kendricks A, Keegan B, Pollet J, Gusovsky F, Hotez PJ, Bottazzi ME, Jones KM. TLR4 agonist protects against Trypanosoma cruzi acute lethal infection by decreasing cardiac parasite burdens. Parasite Immunol 2020; 42:e12769. [PMID: 32592180 DOI: 10.1111/pim.12769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/11/2023]
Abstract
E6020 is a synthetic agonist of Toll-like receptor-4 (TLR4). The purpose of this study was to evaluate the effect of different doses of E6020-SE on Trypanosoma cruzi-specific immune responses and its ability to confer protection against acute lethal infection in mice. Forty female BALB/c were infected with 500 trypomastigotes of T cruzi H1 strain, divided into four groups (n = 10) and treated at 7- and 14-day post-infection (dpi) with different doses of E6020-SE or PBS (control). Survival was followed for 51 days, mice were euthanized and hearts were collected to evaluate parasite burden, inflammation and fibrosis. We found significantly higher survival and lower parasite burdens in mice injected with E6020-SE at all doses compared to the control group. However, E6020-SE treatment did not significantly reduce cardiac inflammation or fibrosis. On the other hand, E6020-SE modulated Th1 and Th2 cytokines, decreasing IFN-γ and IL-4 in a dose-dependent manner after stimulation with parasite antigens. We conclude that E6020-SE alone increased survival by decreasing cardiac parasite burdens in BALB/c mice acutely infected with T cruzi but failed to prevent cardiac damage. Our results suggest that for optimal protection, a vaccine antigen is necessary to balance and orient a protective immune response.
Collapse
Affiliation(s)
- Liliana E Villanueva-Lizama
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA.,Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, México
| | - Julio V Cruz-Chan
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA.,Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, México
| | - Leroy Versteeg
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA.,Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Christian F Teh-Poot
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, México
| | - Kristyn Hoffman
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - April Kendricks
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Brian Keegan
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Jeroen Pollet
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | | | - Peter J Hotez
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA.,Department of Biology, Baylor University, Waco, TX, USA.,James A. Baker III Institute for Public Policy, Rice University, Houston, TX, USA.,Hagler Institute for Advanced Study at Texas A&M University, College Station, TX, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA.,Department of Biology, Baylor University, Waco, TX, USA
| | - Kathryn M Jones
- Department of Pediatrics and National School of Tropical Medicine, Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
25
|
da Mota JB, Echevarria-Lima J, Kyle-Cezar F, Melo M, Bellio M, Scharfstein J, Oliveira AC. IL-18R signaling is required for γδ T cell response and confers resistance to Trypanosoma cruzi infection. J Leukoc Biol 2020; 108:1239-1251. [PMID: 32450614 DOI: 10.1002/jlb.4ma0420-568r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023] Open
Abstract
IFN-γ-producing γδ T cells have been suggested to play an important role in protection against infection with Trypanosoma cruzi. However, little is known about the mechanisms leading to functional differentiation of this T cell subset in this model. In the current work, we investigated the possibility that the IL-18/MyD88 pathway is central for the generation of effector γδ T cells, playing a role for resistance against infection. We found that splenic γδ+ CD3+ cells were rapidly expanded (10-14 days post infection), which was accompanied by an early γδ T cell infiltration into the heart. In the following days, intracardiac parasitism was reduced, the protective immunity being accompanied by decreased γδ T cells tissue infiltration. As predicted, there was a drastic reduction of γδ T cells in Myd88- and Il18r1-deficient mice, both transgenic strains displaying a susceptible phenotype with increased intracardiac parasitism. In vivo and in vitro assays confirmed that IL-18R deficiency hampered γδ T cell proliferation. Further characterization revealed that T. cruzi infection up-regulates IL-18R expression in WT γδ+ T cell population whereas Il18r1-/- mice showed impaired generation of cytotoxic GzB+ and IFN-γ-producing γδ T cells. Consistently, in vitro cytotoxicity assay confirmed that cytolytic function was impaired in Il18r1-deficient γδ T cells. As a proof of concept, adoptive transfer of WT γδ T cells rescues Il18r1-deficient mice from susceptibility, reducing parasitemia and abrogating the mortality. Collectively, our findings implicate the IL-18R-MyD88 signaling in the mechanisms underlying generation of immunoprotective γδ T cells response in experimental Trypanosoma cruzi infection.
Collapse
Affiliation(s)
- Julia Barbalho da Mota
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Kyle-Cezar
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Matheus Melo
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Laboratório de Imunobiologia, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Oliveira
- Laboratório de Imunologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Yeung C, Mendoza I, Echeverria LE, Baranchuk A. Chagas' cardiomyopathy and Lyme carditis: Lessons learned from two infectious diseases affecting the heart. Trends Cardiovasc Med 2020; 31:233-239. [PMID: 32376493 DOI: 10.1016/j.tcm.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/26/2022]
Abstract
Chagas' disease and Lyme disease are two endemic, vector-borne zoonotic infectious diseases that impact multiple organ systems, including the heart. Chagas' cardiomyopathy is a progressive process that can evolve into a dilated cardiomyopathy and heart failure several decades after the acute infection; in contrast, although early-disseminated Lyme carditis has been relatively well characterized, the sequelae of Lyme disease on the heart are less well-defined. A century of research on Chagas' cardiomyopathy has generated compelling data for pathophysiological models, evaluated the efficacy of therapy in large randomized controlled trials, and explored the social determinants of health impacting preventative measures. Recognizing the commonalities between Chagas' disease and Lyme disease, we speculate on whether some of the lessons learned from Chagas' cardiomyopathy may be applicable to Lyme carditis.
Collapse
Affiliation(s)
- Cynthia Yeung
- Department of Medicine, Clinical Electrophysiology and Pacing, Kingston General Hospital, Queen's University, 76 Stuart Street, Kingston, Ontario K7L 2V7, Canada
| | - Ivan Mendoza
- Department of Experimental Cardiology, Institute of Tropical Medicine, Central University of Venezuela Section of Cardiology, Caracas, Venezuela
| | - Luis Eduardo Echeverria
- Clínica de Falla Cardíaca y Trasplante, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Adrian Baranchuk
- Department of Medicine, Clinical Electrophysiology and Pacing, Kingston General Hospital, Queen's University, 76 Stuart Street, Kingston, Ontario K7L 2V7, Canada.
| |
Collapse
|
27
|
Amezcua Vesely MC, Rodríguez C, Gruppi A, Acosta Rodríguez EV. Interleukin-17 mediated immunity during infections with Trypanosoma cruzi and other protozoans. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165706. [PMID: 31987839 PMCID: PMC7071987 DOI: 10.1016/j.bbadis.2020.165706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/05/2019] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
Host resistance during infection with Trypanosoma cruzi, and other protozoans, is dependent on a balanced immune response. Robust immunity against these pathogens requires of the concerted action of many innate and adaptive cell populations including macrophages, neutrophils, dendritic cells, CD4+, and CD8+ T cells and B cells among others. Indeed, during most protozoan infections only a balanced production of inflammatory (TH1) and anti-inflammatory (TH2/regulatory) cytokines will allow the control of parasite spreading without compromising host tissue integrity. The description of TH17 cells, a novel effector helper T cell lineage that produced IL-17 as signature cytokine, prompted the revision of our knowledge about the mechanisms that mediate protection and immunopathology during protozoan infections. In this manuscript we discuss the general features of IL-17 mediated immune responses as well as the cellular sources, effector mechanisms and overall role of IL-17 in the immune response to T. cruzi and other protozoan infections.
Collapse
Affiliation(s)
- María Carolina Amezcua Vesely
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Constanza Rodríguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Eva Virginia Acosta Rodríguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
28
|
Strauss M, Palma-Vega M, Casares-Marfil D, Bosch-Nicolau P, Lo Presti MS, Molina I, González CI, Martín J, Acosta-Herrera M. Genetic polymorphisms of IL17A associated with Chagas disease: results from a meta-analysis in Latin American populations. Sci Rep 2020; 10:5015. [PMID: 32193469 PMCID: PMC7081280 DOI: 10.1038/s41598-020-61965-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
Genetic factors and the immunologic response have been suggested to determine the susceptibility against the infection and the outcome of Chagas disease. In the present study, we analysed three IL17A genetic variants (rs4711998, rs8193036 and rs2275913) regarding the predisposition to Trypanosoma cruzi infection and the development of chronic Chagas cardiomyopathy (CCC) in different Latin American populations. A total of 2,967 individuals from Colombia, Argentina, Bolivia and Brazil, were included in this study. The individuals were classified as seronegative and seropositive for T. cruzi antigens, and this last group were divided into asymptomatic and CCC. For T. cruzi infection susceptibility, the IL17A rs2275913*A showed a significant association in a fixed-effect meta-analysis after a Bonferroni correction (P = 0.016, OR = 1.21, 95%CI = 1.06-1.41). No evidence of association was detected when comparing CCC vs. asymptomatic patients. However, when CCC were compared with seronegative individuals, it showed a nominal association in the meta-analysis (P = 0.040, OR = 1.20, 95%CI = 1.01-1.45). For the IL17A rs4711998 and rs8193036, no association was observed. In conclusion, our results suggest that IL17A rs2275913 plays an important role in the susceptibility to T. cruzi infection and could also be implicated in the development of chronic cardiomyopathy in the studied Latin American population.
Collapse
Affiliation(s)
- Mariana Strauss
- Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, FCM, INICSA-CONICET-UNC, Córdoba, Argentina.
| | - Miriam Palma-Vega
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Granada, España
| | | | - Pau Bosch-Nicolau
- Unidad de Medicina Tropical y Salud Internacional Hospital Universitari Vall d'Hebron, PROSICS, Barcelona, España
| | - María Silvina Lo Presti
- Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, FCM, INICSA-CONICET-UNC, Córdoba, Argentina
| | - Israel Molina
- Unidad de Medicina Tropical y Salud Internacional Hospital Universitari Vall d'Hebron, PROSICS, Barcelona, España
| | | | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Granada, España.
| | | |
Collapse
|
29
|
Pritchard GH, Kedl RM, Hunter CA. The evolving role of T-bet in resistance to infection. Nat Rev Immunol 2020; 19:398-410. [PMID: 30846856 DOI: 10.1038/s41577-019-0145-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of T-bet as a key transcription factor associated with the development of IFNγ-producing CD4+ T cells predicted a crucial role for T-bet in cell-mediated immunity and in resistance to many intracellular infections. This idea was reinforced by initial reports showing that T-bet-deficient mice were more susceptible to pathogens that survived within the lysosomal system of macrophages. However, subsequent studies revealed IFNγ-dependent, T-bet-independent pathways of resistance to diverse classes of microorganisms that occupy other intracellular niches. Consequently, a more complex picture has emerged of how T-bet and the related transcription factor eomesodermin (EOMES) coordinate many facets of the immune response to bona fide pathogens as well as commensals. This article provides an overview of the discovery and evolutionary relationship between T-bet and EOMES and highlights the studies that have uncovered broader functions of T-bet in innate and adaptive immunity and in the development of the effector and memory T cell populations that mediate long-term resistance to infection.
Collapse
Affiliation(s)
- Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Sanchez Alberti A, Bivona AE, Matos MN, Cerny N, Schulze K, Weißmann S, Ebensen T, González G, Morales C, Cardoso AC, Cazorla SI, Guzmán CA, Malchiodi EL. Mucosal Heterologous Prime/Boost Vaccination Induces Polyfunctional Systemic Immunity, Improving Protection Against Trypanosoma cruzi. Front Immunol 2020; 11:128. [PMID: 32153562 PMCID: PMC7047160 DOI: 10.3389/fimmu.2020.00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/17/2020] [Indexed: 12/15/2022] Open
Abstract
There are several unmet needs in modern immunology. Among them, vaccines against parasitic diseases and chronic infections lead. Trypanosoma cruzi, the causative agent of Chagas disease, is an excellent example of a silent parasitic invasion that affects millions of people worldwide due to its progression into the symptomatic chronic phase of infection. In search for novel vaccine candidates, we have previously introduced Traspain, an engineered trivalent immunogen that was designed to address some of the known mechanisms of T. cruzi immune evasion. Here, we analyzed its performance in different DNA prime/protein boost protocols and characterized the systemic immune response associated with diverse levels of protection. Formulations that include a STING agonist, like c-di-AMP in the boost doses, were able to prime a Th1/Th17 immune response. Moreover, comparison between them showed that vaccines that were able to prime polyfunctional cell-mediated immunity at the CD4 and CD8 compartment enhanced protection levels in the murine model. These findings contribute to a better knowledge of the desired vaccine-elicited immunity against T. cruzi and promote the definition of a vaccine correlate of protection against the infection.
Collapse
Affiliation(s)
- Andrés Sanchez Alberti
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Augusto E Bivona
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marina N Matos
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natacha Cerny
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian Weißmann
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Germán González
- Departamento de Patología, Facultad de Medicina, Instituto de Fisiopatología Cardiovascular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Celina Morales
- Departamento de Patología, Facultad de Medicina, Instituto de Fisiopatología Cardiovascular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro C Cardoso
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia I Cazorla
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Emilio L Malchiodi
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral "Prof. Ricardo A. Margni" (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
31
|
Lopes CD, Possato B, Gaspari APS, Oliveira RJ, Abram U, Almeida JPA, Rocho FDR, Leitão A, Montanari CA, Maia PIS, da Silva JS, de Albuquerque S, Carneiro ZA. Organometallic Gold(III) Complex [Au(Hdamp)(L1 4)] + (L1 = SNS-Donating Thiosemicarbazone) as a Candidate to New Formulations against Chagas Disease. ACS Infect Dis 2019; 5:1698-1707. [PMID: 31419384 DOI: 10.1021/acsinfecdis.8b00284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chagas disease remains a serious public health concern with unsatisfactory treatment outcomes due to strain-specific drug resistance and various side effects. To identify new therapeutic drugs against Trypanosoma cruzi, we evaluated both the in vitro and in vivo activity of the organometallic gold(III) complex [Au(III)(Hdamp)(L14)]Cl (L1 = SNS-donating thiosemicarbazone), henceforth denoted 4-Cl. Our results demonstrated that 4-Cl was more effective than benznidazole (Bz) in eliminating both the extracellular trypomastigote and intracellular amastigote forms of the parasite without cytotoxic effects on mammalian cells. In in vivo assays, 4-Cl in PBS solution loses the protonation and becomes the 4-neutral. 4-Neutral reduced parasitaemia and tissue parasitism in addition to protecting the liver and heart from tissue damage at 2.8 mg/kg/day. All these changes resulted in the survival of 100% of the mice treated with the gold complex during the acute phase. Analyzing the surviving animals of the acute infection, the parasite load after 150 days of infection was equivalent to those treated with the standard dose of Bz without demonstrating the hepatotoxicity of the latter. In addition, we identified a modulation of interferon gamma (IFN-γ) levels that may be targeting the disease's positive outcome. To the best of our knowledge, this is the first gold organometallic study that shows promise in an in vivo experimental model against Chagas disease.
Collapse
Affiliation(s)
- Carla Duque Lopes
- Department of Clinical Toxicological and Bromatological Analysis School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
- Departament of Biochemistry and Immunology, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Bruna Possato
- Department of Clinical Toxicological and Bromatological Analysis School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Ana Paula S. Gaspari
- Department of Clinical Toxicological and Bromatological Analysis School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Ronaldo J. Oliveira
- Núcleo de Desenvolvimento de Compostos Bioativos (NDCBio), Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais 38025-470, Brazil
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin D-14195, Germany
| | - José P. A. Almeida
- Department of Clinical Toxicological and Bromatological Analysis School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Fernanda dos Reis Rocho
- Grupo de Estudos em Química Medicinal de Produtos Naturais−NEQUIMED-PN, Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sancarlense 400, P.O. Box 780, São Carlos, São Paulo 13560-960, Brazil
| | - Andrei Leitão
- Grupo de Estudos em Química Medicinal de Produtos Naturais−NEQUIMED-PN, Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sancarlense 400, P.O. Box 780, São Carlos, São Paulo 13560-960, Brazil
| | - Carlos A. Montanari
- Grupo de Estudos em Química Medicinal de Produtos Naturais−NEQUIMED-PN, Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador Sancarlense 400, P.O. Box 780, São Carlos, São Paulo 13560-960, Brazil
| | - Pedro I. S. Maia
- Núcleo de Desenvolvimento de Compostos Bioativos (NDCBio), Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais 38025-470, Brazil
| | - João S. da Silva
- Departament of Biochemistry and Immunology, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Sérgio de Albuquerque
- Department of Clinical Toxicological and Bromatological Analysis School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Zumira A. Carneiro
- Department of Clinical Toxicological and Bromatological Analysis School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| |
Collapse
|
32
|
Vásquez Velásquez C, Russomando G, Espínola EE, Sanchez Z, Mochizuki K, Roca Y, Revollo J, Guzman A, Quiroga B, Rios Morgan S, Vargas Ortiz R, Zambrana Ortega A, Espinoza E, Nishizawa JE, Kamel MG, Kikuchi M, Mizukami S, Na-Bangchang K, Tien Huy N, Hirayama K. IL-17A, a possible biomarker for the evaluation of treatment response in Trypanosoma cruzi infected children: A 12-months follow-up study in Bolivia. PLoS Negl Trop Dis 2019; 13:e0007715. [PMID: 31553732 PMCID: PMC6760767 DOI: 10.1371/journal.pntd.0007715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Background The National Program for Chagas disease was implemented in Bolivia in 2006, and it greatly decreased the number of infections through vector control. Subsequently, a treatment regimen of benznidazole (BNZ) was started in seropositive school-age children living in certified vector control areas. Methods and findings We conducted a 12-month follow-up study and seven blood samples were taken during and after the treatment. Serology, conventional diagnostic PCR (cPCR) and quantitative Real-time PCR (qPCR) were performed. Plasma Th1/Th2/Th17 cytokines levels were also determined. Approximately 73 of 103 seropositive children complied with BNZ, with three interruptions due to side effects. To evaluate each individual’s treatment efficacy, the cPCR and qPCR values during the final 6 months of the follow-up period were observed. Among 57 children who completed follow-up, 6 individuals (11%) showed both cPCR(+) and qPCR(+) (non reactive), 24 (42%) cPCR(-) but qPCR(+) (ambiguous) and 27 (47%) cPCR(-) and qPCR(-) (reactive). Within 14 Th1/Th2/Th17 cytokines, IL-17A showed significantly higher levels in seropositive children before the treatment compared to age-matched seronegative children and significantly decreased to the normal level one-year after. Moreover, throughout the follow-up study, IL-17A levels were positively co-related to parasite counts detected by qPCR. At the 12 months’ time point, IL-17A levels of non-reactive subjects were significantly higher than either those of reactive or ambiguous subjects suggesting that IL-17A might be useful to determine the reactivity to BNZ treatment. Conclusions Plasma levels of IL-17A might be a bio-marker for detecting persistent infection of T. cruzi and its chronic inflammation. Chagas is a zoonosis endemic in 21 Latin American countries caused by T. cruzi. Results of common Benznidazole (BNZ) treatment vary by infection phase, treatment period, and dosage. In Bolivia, the national Chagas program controls vector distribution in different regions of the country. The program began BNZ treatment in school-age children from infestation-free endemic areas. Lack of information regarding follow-up and efficacy in children with recent chronic Chagas makes treatment failure difficult to detect in endemic areas. The present study aimed to estimate parasite DNA in blood through quantitative real-time and conventional PCR (qPCR, cPCR), and observe Th1/Th2/Th17 cytokine profiling during a 12-month follow-up in Bolivia school children. Results showed persistence of low, substantial amounts of T. cruzi DNA, and significantly higher IL-17A levels in the seropositive group before treatment than the seronegative group, which decreased to seronegative levels one year later. Of 57 treated, 6 showed cPCR positive results 6 months after treatment and were diagnosed as definitely non-reactive (10.5%). The six non-reactive individuals showed significantly higher levels of IL-17A at 12 months than residual reactive (cPCR negative, qPCR negative) and ambiguously reactive (cPCR negative, qPCR positive) groups, indicating that IL-17A might be a biomarker for non-reactive to BNZ.
Collapse
Affiliation(s)
- Clara Vásquez Velásquez
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Graciela Russomando
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Emilio E. Espínola
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Zunilda Sanchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Kota Mochizuki
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Yelin Roca
- Centro Nacional de Enfermedades Tropicales (CENETROP), Santa Cruz, Bolivia
| | - Jimmy Revollo
- Centro Nacional de Enfermedades Tropicales (CENETROP), Santa Cruz, Bolivia
| | - Angelica Guzman
- Centro Nacional de Enfermedades Tropicales (CENETROP), Santa Cruz, Bolivia
| | - Benjamín Quiroga
- Programa Departamental de Control de Chagas del Ministerio de Salud, Santa Cruz, Bolivia
| | - Susana Rios Morgan
- Programa Departamental de Control de Chagas del Ministerio de Salud, Santa Cruz, Bolivia
| | - Roberto Vargas Ortiz
- Programa Departamental de Control de Chagas del Ministerio de Salud, Santa Cruz, Bolivia
| | | | - Eida Espinoza
- Hospital Municipal Warnes "Nuestra Señora del Rosario", Santa Cruz, Bolivia
| | | | | | - Mihoko Kikuchi
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Shusaku Mizukami
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Nguyen Tien Huy
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
33
|
Mendonça AA, Gonçalves RV, Souza-Silva TG, Maldonado IR, Talvani A, Natali AJ, Novaes RD. Concomitant exercise training attenuates the cardioprotective effects of pharmacological therapy in a murine model of acute infectious myocarditis. Life Sci 2019; 230:141-149. [DOI: 10.1016/j.lfs.2019.05.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
|
34
|
Miranda MCG, Oliveira RP, Torres L, Aguiar SLF, Pinheiro-Rosa N, Lemos L, Guimarães MA, Reis D, Silveira T, Ferreira Ê, Moreira TG, Cara DC, Maioli TU, Kelsall BL, Carlos D, Faria AMC. Frontline Science: Abnormalities in the gut mucosa of non-obese diabetic mice precede the onset of type 1 diabetes. J Leukoc Biol 2019; 106:513-529. [PMID: 31313381 DOI: 10.1002/jlb.3hi0119-024rr] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/06/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations in the composition of the intestinal microbiota have been associated with development of type 1 diabetes (T1D), but little is known about changes in intestinal homeostasis that contribute to disease pathogenesis. Here, we analyzed oral tolerance induction, components of the intestinal barrier, fecal microbiota, and immune cell phenotypes in non-obese diabetic (NOD) mice during disease progression compared to non-obese diabetes resistant (NOR) mice. NOD mice failed to develop oral tolerance and had defective protective/regulatory mechanisms in the intestinal mucosa, including decreased numbers of goblet cells, diminished mucus production, and lower levels of total and bacteria-bound secretory IgA, as well as an altered IEL profile. These disturbances correlated with bacteria translocation to the pancreatic lymph node possibly contributing to T1D onset. The composition of the fecal microbiota was altered in pre-diabetic NOD mice, and cross-fostering of NOD mice by NOR mothers corrected their defect in mucus production, indicating a role for NOD microbiota in gut barrier dysfunction. NOD mice had a reduction of CD103+ dendritic cells (DCs) in the MLNs, together with an increase of effector Th17 cells and ILC3, as well as a decrease of Th2 cells, ILC2, and Treg cells in the small intestine. Importantly, most of these gut alterations precede the onset of insulitis. Disorders in the intestinal mucosa of NOD mice can potentially interfere with the development of T1D due the close relationship between the gut and the pancreas. Understanding these early alterations is important for the design of novel therapeutic strategies for T1D prevention.
Collapse
Affiliation(s)
- Mariana Camila Gonçalves Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Lícia Torres
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sarah Leão Fiorini Aguiar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Natalia Pinheiro-Rosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luísa Lemos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Andrade Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Reis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiany Silveira
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ênio Ferreira
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaís Garcias Moreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denise Carmona Cara
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Brian L Kelsall
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniela Carlos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto de Investigação em Imunologia (iii), São Paulo, Brazil
| |
Collapse
|
35
|
Ambrosio LF, Insfran C, Volpini X, Acosta Rodriguez E, Serra HM, Quintana FJ, Cervi L, Motrán CC. Role of Aryl Hydrocarbon Receptor (AhR) in the Regulation of Immunity and Immunopathology During Trypanosoma cruzi Infection. Front Immunol 2019; 10:631. [PMID: 30984194 PMCID: PMC6450169 DOI: 10.3389/fimmu.2019.00631] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Resistance to Trypanosoma cruzi infection is dependent on a rapid induction of Th1-type and CD8+ T cell responses that should be promptly balanced to prevent immunopathology. T. cruzi-infected B6 mice are able to control parasite replication but show a limited expansion of Foxp3+regulatory T (Treg) cells that results in the accumulation of effector immune cells and the development of acute liver pathology. AhR is a ligand-activated transcription factor that promotes Treg cell development and suppression of pro-inflammatory cytokine production in dendritic cells, altering the course of adaptive immune response and the development of immunopathology. Here, we used different AhR-dependent activation strategies aiming to improve the Treg response, and B6 congenic mice carrying a mutant AhR variant with low affinity for its ligands (AhRd) to evaluate the role of AhR activation by natural ligands during experimental T. cruzi infection. The outcome of TCDD or 3-HK plus ITE treatments indicated that strong or weak AhR activation before or during T. cruzi infection was effective to regulate inflammation improving the Treg cell response and regularizing the ratio between CD4+ CD25- to Treg cells. However, AhR activation shifted the host-parasite balance to the parasite replication. Weak AhR activation resulted in Treg promotion while strong activation differentially modulated the susceptibility and resistance of cell death in activated T and Treg cells and the increase in TGF-β-producing Treg cells. Of note, T. cruzi-infected AhRd mice showed low levels of Treg cells associated with strong Th1-type response, low parasite burden and absence of liver pathology. These mice developed a Treg- and Tr1-independent mechanism of Th1 constriction showing increased levels of systemic IL-10 and IL-10-secreting CD4+ splenocytes. In addition, AhR activation induced by exogenous ligands had negative effects on the development of memory CD8+ T cell subsets while the lack/very weak activation in AhRd mice showed opposite results, suggesting that AhR ligation restricts the differentiation of memory CD8+T cell subsets. We propose a model in which a threshold of AhR activation exists and may explain how activation or inhibition of AhR-derived signals by infection/inflammation-induced ligands, therapeutic interventions or exposure to pollutants can modulate infections/diseases outcomes or vaccination efficacy.
Collapse
Affiliation(s)
- Laura Fernanda Ambrosio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Constanza Insfran
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Ximena Volpini
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Eva Acosta Rodriguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Horacio Marcelo Serra
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| | - Claudia Cristina Motrán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| |
Collapse
|
36
|
Wang Q, Wu L, Hasan MW, Lu M, Wang W, Yan R, Xu L, Song X, Li X. Hepatocellular carcinoma-associated antigen 59 of Haemonchus contortus modulates the functions of PBMCs and the differentiation and maturation of monocyte-derived dendritic cells of goats in vitro. Parasit Vectors 2019; 12:105. [PMID: 30871600 PMCID: PMC6416944 DOI: 10.1186/s13071-019-3375-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/05/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma-associated antigen 59 (HCA59), which is one of the most important excretory/secretory products of Haemonchus contortus (HcESPs), is known to have antigenic functions. However, its immunomodulatory effects on host cells are poorly understood. METHODS Here, we cloned the HCA59 gene and expressed the recombinant protein of HCA59 (rHCA59). Binding activities of rHCA59 to goat peripheral blood mononuclear cells (PBMCs) and dendritic cells (DCs) were checked by immunofluorescence assay (IFA) and the immunoregulatory effects of rHCA59 on cytokine secretions, cell migration, cell proliferation, nitric oxide production, and changes in expression of genes in related pathways were observed by co-incubation of rHCA59 with goat PBMCs and DCs. Monocyte phagocytosis and characterization of goat blood DC subsets were detected by flow cytometry. RESULTS The IFA results revealed that rHCA59 could bind to PBMCs and DCs. Treatment of PBMCs with rHCA59 significantly increased cellular proliferation and NO production in a dose-dependent manner, while cell migration was vigorously blocked. Treatment with rHCA59 significantly suppressed monocytes phagocytosis. The quantity of surface marker CD80 on DCs increased significantly after rHCA59 treatment. In addition, the expression of genes included in the WNT pathway was related to the differentiation and maturation of DCs, and the production of IL-10 and IL-17 produced by PBMCs was altered. CONCLUSIONS Our findings illustrated that rHCA59 could enhance host immune responses by regulating the functions of goat PBMCs and DCs, which would benefit our understanding of HCA59 from parasitic nematodes contributing to the mechanism of parasitic immune evasion.
Collapse
Affiliation(s)
- QiangQiang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - LingYan Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - MingMin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - WenJuan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
37
|
Camara EJN, Mendonca VRR, Souza LCL, Carvalho JS, Lessa RA, Gatto R, Barreto LO, Chiacchio G, Amarante E, Cunha M, Alves-Silva LS, Guimarães BAC, Barral-Netto M. Elevated IL-17 levels and echocardiographic signs of preserved myocardial function in benznidazole-treated individuals with chronic Chagas' disease. Int J Infect Dis 2018; 79:123-130. [PMID: 30528394 DOI: 10.1016/j.ijid.2018.11.369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The immunological and clinical impact of trypanocidal treatment in chronic Chagas' disease (CCD) is unclear. METHODOLOGY AND FINDINGS Several cytokines were measured in plasma of 66 patients with CCD. Thirty-three patients had been previously treated with benznidazole and 33 had never been treated. The treated group exhibited higher levels of IL-17 (median 142.45×1.22pg/ml, P=0.025), which was the only one significantly associated with Bz treatment, especially after adjusting for time of disease and NYHA class (P=0.024; OR 1.006, 95% CI 1.001-1.010). Compared to untreated patients, the treated group exhibited higher median values of mitral annular E' lateral (13.0×10.0cm/s, P=0.038), S' infero-lateral (8.9×7.6cm/s, P=0.013), S' septal (8.5×7.4cm/s, P=0.034), mean S' (9.0×7.9cm/s, P=0.013) and tricuspid annular S' (13.3×11.1cm/s, P=0.001) and lower values of E/E' septal (7.2×9.5cm/s, P=0.049). After adjustment for time of disease and NYHA class, S' infero-lateral (P=0.031), mean S' (P=0.049) and S' tricuspid (P=0.024) persisted as significantly associated with treatment. CONCLUSION The present findings suggest that the group of CCD patients treated with Bz displayed increased plasma levels of IL-17 and preserved myocardial function, reinforcing the idea that Bz treatment may be beneficial.
Collapse
Affiliation(s)
- Edmundo J N Camara
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil; Unidade Docente Assistencial de Cardiologia (UDAC), Complexo Hospitalar Professor Edgard Santos Universidade Federal da Bahia, Salvador, Brazil
| | - Vitor R R Mendonca
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil; Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Ligia C L Souza
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil; Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Ruda A Lessa
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Ramon Gatto
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Luan O Barreto
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | | | | | - Monaliza Cunha
- Unidade Docente Assistencial de Cardiologia (UDAC), Complexo Hospitalar Professor Edgard Santos Universidade Federal da Bahia, Salvador, Brazil
| | - Luis S Alves-Silva
- Unidade Docente Assistencial de Cardiologia (UDAC), Complexo Hospitalar Professor Edgard Santos Universidade Federal da Bahia, Salvador, Brazil
| | | | - Manoel Barral-Netto
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil; Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil; Instituto Nacional de Ciência e Tecnologia em Investigação em Imunologia (iii-INCT), São Paulo, Brazil.
| |
Collapse
|
38
|
Chevillard C, Nunes JPS, Frade AF, Almeida RR, Pandey RP, Nascimento MS, Kalil J, Cunha-Neto E. Disease Tolerance and Pathogen Resistance Genes May Underlie Trypanosoma cruzi Persistence and Differential Progression to Chagas Disease Cardiomyopathy. Front Immunol 2018; 9:2791. [PMID: 30559742 PMCID: PMC6286977 DOI: 10.3389/fimmu.2018.02791] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023] Open
Abstract
Chagas disease is caused by infection with the protozoan Trypanosoma cruzi and affects over 8 million people worldwide. In spite of a powerful innate and adaptive immune response in acute infection, the parasite evades eradication, leading to a chronic persistent infection with low parasitism. Chronically infected subjects display differential patterns of disease progression. While 30% develop chronic Chagas disease cardiomyopathy (CCC)-a severe inflammatory dilated cardiomyopathy-decades after infection, 60% of the patients remain disease-free, in the asymptomatic/indeterminate (ASY) form, and 10% develop gastrointestinal disease. Infection of genetically deficient mice provided a map of genes relevant for resistance to T. cruzi infection, leading to the identification of multiple genes linked to survival to infection. These include pathogen resistance genes (PRG) needed for intracellular parasite destruction, and genes involved in disease tolerance (protection against tissue damage and acute phase death-DTG). All identified DTGs were found to directly or indirectly inhibit IFN-γ production or Th1 differentiation. We hypothesize that the absolute need for DTG to control potentially lethal IFN-γ PRG activity leads to T. cruzi persistence and establishment of chronic infection. IFN-γ production is higher in CCC than ASY patients, and is the most highly expressed cytokine in CCC hearts. Key DTGs that downmodulate IFN-γ, like IL-10, and Ebi3/IL27p28, are higher in ASY patients. Polymorphisms in PRG and DTG are associated with differential disease progression. We thus hypothesize that ASY patients are disease tolerant, while an imbalance of DTG and IFN-γ PRG activity leads to the inflammatory heart damage of CCC.
Collapse
Affiliation(s)
| | - João Paulo Silva Nunes
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Amanda Farage Frade
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
- Department of Bioengineering, Brazil University, São Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Ramendra Pati Pandey
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Marilda Savóia Nascimento
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Jorge Kalil
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| |
Collapse
|
39
|
Felizardo AA, Caldas IS, Mendonça AAS, Gonçalves RV, Tana FL, Almeida LA, Novaes RD. Impact of Trypanosoma cruzi infection on nitric oxide synthase and arginase expression and activity in young and elderly mice. Free Radic Biol Med 2018; 129:227-236. [PMID: 30248443 DOI: 10.1016/j.freeradbiomed.2018.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/21/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
Abstract
Elderly organisms are more susceptible to infectious diseases. However, the impact of aging on antiparasitic mechanisms, especially the nitric oxide pathway, is poorly understood. Using an integrated in vivo and in vitro model, we compared the severity of Trypanosoma cruzi infection in young and elderly (8 or 72 weeks old) mice. Forty C57BL/6 mice were randomized into four groups: Y-inf, young infected; Yn-inf, young uninfected; A-inf, aged infected; An-inf, aged uninfected. Parasitemia was measured daily, and animals were euthanized after 15 days of infection. Trypanosoma cruzi-induced inflammatory processes were analyzed in blood and heart samples, as well as in bone marrow-derived macrophages (BMDMs) co-cultured with splenocytes isolated from young or elderly mice. Our results indicated upregulated IgG2b and IL-17 production in elderly animals, which was not sufficient to reduce parasitemia, parasitic load and myocarditis to levels observed in young animals. The higher susceptibility of elderly mice to T. cruzi infection was accompanied by reduced cardiac inducible nitric oxide synthase (iNOS) gene expression, nitric oxide (NO) and IFN-γ levels, as well as an antagonistic upregulation of arginase-1 expression and arginase activity. The same responses were observed when BMDMs co-cultured with splenocytes from elderly mice were stimulated with T. cruzi antigens. Our findings indicate that elderly mice were more susceptible to T. cruzi infection, which was potentially related to an attenuated response to antigenic stimulation, inhibition of iNOS gene expression and NO production, and antagonistic upregulation of arginase gene expression and activity, which created favorable conditions for heart parasitism and myocarditis development.
Collapse
Affiliation(s)
- Amanda A Felizardo
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil
| | - Ivo S Caldas
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil; Department of Pathology and Parasitology, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil
| | - Andréa A S Mendonça
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil; Department of Microbiology and Immunology, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil
| | - Reggiani V Gonçalves
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-000, Minas Gerais, Brazil
| | - Fernanda L Tana
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil; Department of Microbiology and Immunology, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil
| | - Leonardo A Almeida
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil; Department of Microbiology and Immunology, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil
| | - Rômulo D Novaes
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil; Department of Structural Biology, Federal University of Alfenas, Alfenas, 37130-001 Minas Gerais, Brazil.
| |
Collapse
|
40
|
Upregulation of Cardiac IL-10 and Downregulation of IFN- γ in Balb/c IL-4 -/- in Acute Chagasic Myocarditis due to Colombian Strain of Trypanosoma cruzi. Mediators Inflamm 2018; 2018:3421897. [PMID: 30622430 PMCID: PMC6304210 DOI: 10.1155/2018/3421897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Inflammatory response in Chagas disease is related to parasite and host factors. However, immune system regulation has not been fully elucidated. Thus, this study is aimed at evaluating IL-4 influence on acute phase of Trypanosoma cruzi experimental infection through dosage of cytokine levels in cardiac homogenate of infected Balb/c WT and Balb/c IL-4−/− as well as its histopathological repercussions. For such purpose, mice were divided into two groups: an infected group with 100 forms of the Colombian strain and an uninfected group. After 21 days of infection, animals were euthanized and the blood, spleen, and heart were collected. The spleen was used to culture splenic cells in 48 h. Subsequently, cytokines TNF-α, IL-12p70, IL-10, IFN-γ, and IL-17 were measured in the blood, culture supernatant, and heart apex by ELISA. The base of the heart was used for histopathological analysis. From these analysis, infected Balb/c IL-4−/− mice showed milder inflammatory infiltrate compared to Balb/c WT, but without changes in nest density and collagen deposition. IL-4 absence culminated in lower cardiac tissue IFN-γ production, although it did not affect TNF-α expression in situ. It also decreased TNF-α systemic production and increased IL-10, both systemically and in situ. In addition, IL-4 absence did not influence IL-17 expression. Splenocytes of IL-4-deficient mice produced higher amounts of IFN-γ, TNF-α, and IL-17 and lower amounts of IL-10. Thus, IL-4 absence in acute phase of experimental infection with T. cruzi Colombian strain reduces myocarditis due to lower IFN-γ production and greater IL-10 production in situ and this pattern is not influenced by splenocyte general repertoire.
Collapse
|
41
|
de Andrade MF, de Almeida VD, de Souza LMS, Paiva DCC, Andrade CDM, de Medeiros Fernandes TAA. Involvement of neutrophils in Chagas disease pathology. Parasite Immunol 2018; 40:e12593. [PMID: 30276823 DOI: 10.1111/pim.12593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/27/2022]
Abstract
Chagas disease (CD) is a public health problem in Latin America. The acute phase presents nonspecific symptoms and most patients recover from acute parasitemia and undergo a prolonged asymptomatic phase. Several years later, about 30% of infected individuals develop chronic cardiopathy with progressive cardiomegaly, arrhythmia, thromboembolic events and heart failure. These symptoms suggest a persistent association with the presence of inflammatory infiltrate and tissue, and cellular destruction in the heart muscle. Nevertheless, few research studies have attempted to understand the role of inflammatory cells, such as neutrophils, in establishing the pathology and progression of CD. Only recently have some studies been performed with this intention. Despite this effort, the role of neutrophils in CD is still considered controversial. This review discusses the morphological and functional characteristics of neutrophils that describes their participation in the establishment and progression of Trypanosoma cruzi infection, through the development of its effector functions, such as release of lithic components, production of oxidative agents and release of inflammatory mediators capable of modulating the host immune response.
Collapse
Affiliation(s)
- Micássio Fernandes de Andrade
- Department of Biomedical Sciences, School of Health Sciences, University of Rio Grande do Norte State, Mossoró, Brazil
| | - Valéria Duarte de Almeida
- Department of Biomedical Sciences, School of Health Sciences, University of Rio Grande do Norte State, Mossoró, Brazil
| | - Lara Michelly Soares de Souza
- Department of Biomedical Sciences, School of Health Sciences, University of Rio Grande do Norte State, Mossoró, Brazil
| | - Dayane Carla Costa Paiva
- Department of Biomedical Sciences, School of Health Sciences, University of Rio Grande do Norte State, Mossoró, Brazil
| | - Cléber de Mesquita Andrade
- Department of Biomedical Sciences, School of Health Sciences, University of Rio Grande do Norte State, Mossoró, Brazil
| | | |
Collapse
|
42
|
Bonney KM, Luthringer DJ, Kim SA, Garg NJ, Engman DM. Pathology and Pathogenesis of Chagas Heart Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:421-447. [PMID: 30355152 DOI: 10.1146/annurev-pathol-020117-043711] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chagas heart disease is an inflammatory cardiomyopathy that develops in approximately one-third of people infected with the protozoan parasite Trypanosoma cruzi. One way T. cruzi is transmitted to people is through contact with infected kissing bugs, which are found in much of the Western Hemisphere, including in vast areas of the United States. The epidemiology of T. cruzi and Chagas heart disease and the varied mechanisms leading to myocyte destruction, mononuclear cell infiltration, fibrosis, and edema in the heart have been extensively studied by hundreds of scientists for more than 100 years. Despite this wealth of knowledge, it is still impossible to predict what will happen in an individual infected with T. cruzi because of the tremendous variability in clonal parasite virulence and human susceptibility to infection and the lack of definitive molecular predictors of outcome from either side of the host-parasite equation. Further, while several distinct mechanisms of pathogenesis have been studied in isolation, it is certain that multiple coincident mechanisms combine to determine the ultimate outcome. For these reasons, Chagas disease is best considered a collection of related but distinct illnesses. This review highlights the pathology and pathogenesis of the most common adverse sequela of T. cruzi infection-Chagas heart disease-and concludes with a discussion of key unanswered questions and a view to the future.
Collapse
Affiliation(s)
- Kevin M Bonney
- Liberal Studies, Faculty of Arts and Sciences, New York University, New York, NY 10003, USA;
| | - Daniel J Luthringer
- Department of Pathology and Laboratory Medicine and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA; , ,
| | - Stacey A Kim
- Department of Pathology and Laboratory Medicine and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA; , ,
| | - Nisha J Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA;
| | - David M Engman
- Department of Pathology and Laboratory Medicine and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA; , ,
| |
Collapse
|
43
|
Acevedo GR, Girard MC, Gómez KA. The Unsolved Jigsaw Puzzle of the Immune Response in Chagas Disease. Front Immunol 2018; 9:1929. [PMID: 30197647 PMCID: PMC6117404 DOI: 10.3389/fimmu.2018.01929] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Trypanosoma cruzi interacts with the different arms of the innate and adaptive host's immune response in a very complex and flowery manner. The history of host-parasite co-evolution has provided this protozoan with means of resisting, escaping or subverting the mechanisms of immunity and establishing a chronic infection. Despite many decades of research on the subject, the infection remains incurable, and the factors that steer chronic Chagas disease from an asymptomatic state to clinical onset are still unclear. As the relationship between T. cruzi and the host immune system is intricate, so is the amount and diversity of scientific knowledge on the matter. Many of the mechanisms of immunity are fairly well understood, but unveiling the factors that lead each of these to success or failure, within the coordinated response as a whole, requires further research. The intention behind this Review is to compile the available information on the different aspects of the immune response, with an emphasis on those phenomena that have been studied and confirmed in the human host. For ease of comprehension, it has been subdivided in sections that cover the main humoral and cell-mediated components involved therein. However, we also intend to underline that these elements are not independent, but function intimately and concertedly. Here, we summarize years of investigation carried out to unravel the puzzling interplay between the host and the parasite.
Collapse
Affiliation(s)
| | | | - Karina A. Gómez
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
44
|
Colato RP, Brazão V, do Vale GT, Santello FH, Sampaio PA, Tirapelli CR, Pereira-da-Silva G, Do Prado JC. Cytokine modulation, oxidative stress and thymic dysfunctions: Role of age-related changes in the experimental Trypanosoma cruzi infection: Age-related thymic dysfunctions and Trypanosoma cruzi infection. Cytokine 2018; 111:88-96. [PMID: 30130728 DOI: 10.1016/j.cyto.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
Aging is linked with a thymic oxidative damage and some infectious diseases such as Chagas' disease may aggravate this process. The aim of this study was to evaluate the production of distinct cytokines as well as the antioxidant/oxidant status of the thymus and thymocytes populations during Trypanosoma cruzi (T. cruzi) infection. Young (5 weeks old) and aged (18 weeks old) male Wistar rats were inoculated with blood trypomastigotes forms of the Y strain of T. cruzi. On the 16th day after T. cruzi infection, increased concentrations of transforming growth factor β (TGF-β), interleukin (IL)-12, IL-17 were detected in aged infected subjects as compared to young infected ones. Interestingly, a reduction in the production of tumor necrose factor (TNF)-α was observed in aged infected rats when compared to young infected subjects. Aged-infected rats presented increased O2- levels, compared to young counterparts. Significant raise in the generation of O2- in aged infected animals, as compared to uninfected counterparts was observed. Up-regulated expression of Nox2 in the thymus of young and aged infected animals was observed. An increased SOD2 expression was detected in the thymus of young animals infected with T. cruzi, when compared to uninfected young rats. Aged animals showed reduced thymus weight and the number of thymocytes. Decreased percentages of SPCD4+ and SPCD8+T cells were detected in aged and control groups when compared to young counterparts. In summary, this is the first data to directly examine the influence of aging on age-related dysfunctions during the acute phase of experimental Chagas disease. Concerning to oxidative stress, it is clear from our analysis that aged infected rats suffer a more intense oxidative damage when compared to young and infected ones. Age and infection triggered a dynamic interplay of cytokines, oxidative stress and thymic dysfunctions which led to impaired response from aged and infected rats. Such findings may have significant functional relevance in therapeutic strategies in order to reestablish the thymic immunological function which occurs in aged and T. cruzi infected subjects.
Collapse
Affiliation(s)
- Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Av. do Café s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Av. do Café s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Tavares do Vale
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Fabricia Helena Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Av. do Café s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Pedro Alexandre Sampaio
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Av. do Café s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Gabriela Pereira-da-Silva
- Department of Maternal-Infant Nursing and Public Health, Ribeirão Preto, College of Nursing, USP, Ribeirão Preto, SP, Brazil
| | - José Clóvis Do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Av. do Café s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
45
|
Regulatory Role of CD4 + T Cells in Myocarditis. J Immunol Res 2018; 2018:4396351. [PMID: 30035131 PMCID: PMC6032977 DOI: 10.1155/2018/4396351] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
Myocarditis is an important cause of heart failure in young patients. Autoreactive, most often, infection-triggered CD4+ T cells were confirmed to be critical for myocarditis induction. Due to a defect in clonal deletion of heart-reactive CD4+ T cells in the thymus of mice and humans, significant numbers of heart-specific autoreactive CD4+ T cells circulate in the blood. Normally, regulatory T cells maintain peripheral tolerance and prevent spontaneous myocarditis development. In the presence of tissue damage and innate immune activation, however, activated self-antigen-loaded dendritic cells promote CD4+ effector T cell expansion and myocarditis. So far, a direct pathogenic role has been described for both activated Th17 and Th1 effector CD4+ T cell subsets, though Th1 effector T cell-derived interferon-gamma was shown to limit myocarditis severity and prevent transition to inflammatory dilated cardiomyopathy. Interestingly, recent observations point out that various CD4+ T cell subsets demonstrate high plasticity in maintaining immune homeostasis and modulating disease phenotypes in myocarditis. These subsets include Th1 and Th17 effector cells and regulatory T cells, despite the fact that there are still sparse and controversial data on the specific role of FOXP3-expressing Treg in myocarditis. Understanding the specific roles of these T cell populations at different stages of the disease progression might provide a key for the development of successful therapeutic strategies.
Collapse
|
46
|
Fresno M, Gironès N. Regulatory Lymphoid and Myeloid Cells Determine the Cardiac Immunopathogenesis of Trypanosoma cruzi Infection. Front Microbiol 2018; 9:351. [PMID: 29545782 PMCID: PMC5838393 DOI: 10.3389/fmicb.2018.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/14/2018] [Indexed: 01/19/2023] Open
Abstract
Chagas disease is a multisystemic disorder caused by the protozoan parasite Trypanosoma cruzi, which affects ~8 million people in Latin America, killing 7,000 people annually. Chagas disease is one of the main causes of death in the endemic area and the leading cause of infectious myocarditis in the world. T. cruzi infection induces two phases, acute and chronic, where the infection is initially asymptomatic and the majority of patients will remain clinically indeterminate for life. However, over a period of 10–30 years, ~30% of infected individuals will develop irreversible, potentially fatal cardiac syndromes (chronic chagasic cardiomyopathy [CCC]), and/or dilatation of the gastro-intestinal tract (megacolon or megaesophagus). Myocarditis is the most serious and frequent manifestation of chronic Chagas heart disease and appears in about 30% of infected individuals several years after infection occurs. Myocarditis is characterized by a mononuclear cell infiltrate that includes different types of myeloid and lymphoid cells and it can occur also in the acute phase. T. cruzi infects and replicates in macrophages and cardiomyocytes as well as in other nucleated cells. The pathogenesis of the chronic phase is thought to be dependent on an immune-inflammatory reaction to a low-grade replicative infection. It is known that cytokines produced by type 1 helper CD4+ T cells are able to control infection. However, the role that infiltrating lymphoid and myeloid cells may play in experimental and natural Chagas disease pathogenesis has not been completely elucidated, and several reports indicate that it depends on the mouse genetic background and parasite strain and/or inoculum. Here, we review the role that T cell CD4+ subsets, myeloid subclasses including myeloid-derived suppressor cells may play in the immunopathogenesis of Chagas disease with special focus on myocarditis, by comparing results obtained with different experimental animal models.
Collapse
Affiliation(s)
- Manuel Fresno
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
47
|
Gadahi JA, Li B, Ehsan M, Wang S, Zhang Z, Wang Y, Hasan MW, Yan R, Song X, Xu L, Li X. Recombinant Haemonchus contortus 24 kDa excretory/secretory protein (rHcES-24) modulate the immune functions of goat PBMCs in vitro. Oncotarget 2018; 7:83926-83937. [PMID: 27893414 PMCID: PMC5356635 DOI: 10.18632/oncotarget.13487] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022] Open
Abstract
A 24 kDa protein is one of the important components in Haemonchus contortus (barber pole worm) excretory/secretory products (HcESPs), which was shown to have important antigenic function. However, little is known about the immunomodulatory effects of this proteinon host cell. In the present study gene encoding 24kDa excretory/secretory protein (HcES-24) was cloned. The recombinant protein of HcES-24 (rHcES-24) was expressed in a histidine-tagged fusion protein soluble form in Escherichia coli. Binding activity of rHcES-24 to goat PBMCs was confirmed by immunofluorescence assay (IFA) and its immunomudulatory effect on cytokine secretion, cell proliferation, cell migration and nitric oxide production were observed by co-incubation of rHcES-24. IFA results revealed that rHcES-24 could bind to the PBMCs. The interaction of rHcES-24 increased the production of IL4, IL10, IL17 and cell migration in dose dependent manner. However, rHcES-24 treatment significantly suppressed the production of IFNγ, proliferation of the PBMC and Nitric oxide (NO) production. Our findings showed that the rHcES-24 played important regulatory effects on the goat PBMCs.
Collapse
Affiliation(s)
- Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China.,Department of Veterinary Parasitology, Sindh Agriculture University Tandojam, Pakistan
| | - Baojie Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Zhenchao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Yujian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | | | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
48
|
Pinheiro AF, Roloff BC, da Silveira Moreira A, Berne MEA, Silva RA, Leite FPL. Identification of suitable adjuvant for vaccine formulation with the Neospora caninum antigen NcSRS2. Vaccine 2018; 36:1154-1159. [DOI: 10.1016/j.vaccine.2018.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 01/21/2023]
|
49
|
De Alba-Alvarado M, Salazar-Schettino PM, Jiménez-Álvarez L, Cabrera-Bravo M, García-Sancho C, Zenteno E, Vazquez-Antona C, Cruz-Lagunas A, Zúñiga J, Bucio-Torres MI. Th-17 cytokines are associated with severity of Trypanosoma cruzi chronic infection in pediatric patients from endemic areas of Mexico. Acta Trop 2018; 178:134-141. [PMID: 29180164 DOI: 10.1016/j.actatropica.2017.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 01/07/2023]
Abstract
In Chagas disease the clinical, acute and chronic manifestations are the result of the interaction between the parasite and the host factors. The balance between inflammatory and anti-inflammatory immune responses is essential for the increase or resolution of the manifestations in individuals infected with T. cruzi. To identify if children with chronic Chagas disease and heart injury is related with non-regulated Th1, Th2 and Th17 responses. We included 31 children with T. cruzi confirmed chronic infection from endemic areas of Mexico. Subsequently, they were separated according to their ECHO and ECG results into three groups according to the severity of cardiac involvement. Circulating Th1, Th2 and Th17 cytokine profiles were performed by Luminex assays and the results were analyzed by bivariate and multivariable analysis. Patients were classified in asymptomatic chronic (group 1, N=12); individuals with IRBBB in ECG and incipient lesions in ECHO (Group 2, N=8) and Patients with severe chronic symptomatic disease (Group 3, N=11). The analysis of immune mediators revealed that patients with severe cardiac manifestations had significant higher levels (p <0.05) of Th17 related cytokines including IL-17 and IL-6 as well as IFN-γ and IL-2. Also patients with severe cardiomyopathy exhibit increased levels of IL-13 (p <0.05) after multivariate analysis. High levels of Th17 related cytokines including IL-17, IFN-γ, IL-6 and IL-2 and pro-fibrotic factors such as IL-13 could be associated to the severity of cardiac involvement in children with chronic T. cruzi infection. These cytokines could be useful as indicators for the early identification of cardiac damage associated to the T. cruzi infection.
Collapse
Affiliation(s)
- Mariana De Alba-Alvarado
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Paz María Salazar-Schettino
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Luis Jiménez-Álvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Margarita Cabrera-Bravo
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Cecilia García-Sancho
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Edgar Zenteno
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Clara Vazquez-Antona
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Martha Irene Bucio-Torres
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
50
|
Haemonchus contortus excretory and secretory proteins (HcESPs) suppress functions of goat PBMCs in vitro. Oncotarget 2018; 7:35670-35679. [PMID: 27229536 PMCID: PMC5094953 DOI: 10.18632/oncotarget.9589] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/17/2016] [Indexed: 02/03/2023] Open
Abstract
Excretory and secretory products (ESPs) of nematode contain various proteins which are capable of inducing the instigation or depression of the host immune response and are involved in the pathogenesis of the worms. In the present study, Haemonchus contortus excretory and secretory products (HcESPs) were collected from the adult worms. Binding of HcESPs to goat peripheral blood mononuclear cells (PBMCs) was confirmed by immune-fluorescence assay. Effects of the HcESPs on cytokine production, cell proliferation, cell migration and nitric oxide (NO) production of PBMCs were checked by co-incubation of HcESPs with goat PBMCs. The results indicated that the production of IL-4 and IFN-γ were significantly decreased by HcESPs in dose dependent manner. On the contrary, the production of IL-10 and IL-17 were increased. Cell migration was significantly enhanced by HcESPs, whereas, HcESPs treatment significantly suppressed the cell proliferation and NO production. These results indicated that the HcESPs played important suppressive regulatory roles on PBMCs and provided highlights to the understanding of the host-parasite interactions.
Collapse
|