1
|
La Rosa C, Sharma P, Junaid Dar M, Jin Y, Qin L, Roy A, Kendall A, Wu M, Lin Z, Uchenik D, Li J, Basu S, Moitra S, Zhang K, Zhuo Wang M, Werbovetz KA. N-substituted-4-(pyridin-4-ylalkyl)piperazine-1-carboxamides and related compounds as Leishmania CYP51 and CYP5122A1 inhibitors. Bioorg Med Chem 2024; 113:117907. [PMID: 39288704 PMCID: PMC11552653 DOI: 10.1016/j.bmc.2024.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
CYP5122A1, an enzyme involved in sterol biosynthesis in Leishmania, was recently characterized as a sterol C4-methyl oxidase. Screening of a library of compounds against CYP5122A1 and CYP51 from Leishmania resulted in the identification of two structurally related classes of inhibitors of these enzymes. Analogs of screening hit N-(3,5-dimethylphenyl)-4-(pyridin-4-ylmethyl)piperazine-1-carboxamide (4a) were generally strong inhibitors of CYP51 but were less potent against CYP5122A1 and typically displayed weak inhibition of L. donovani promastigote growth. Analogs of screening hit N-(4-(benzyloxy)phenyl)-4-(2-(pyridin-4-yl)ethyl)piperazine-1-carboxamide (18a) were stronger inhibitors of both CYP5122A1 and L. donovani promastigote proliferation but also remained selective for inhibition of CYP51. Two compounds in this series, N-(4-((3,5-bis(trifluoromethyl)benzyl)oxy)phenyl)-4-(2-(pyridin-4-yl)ethyl)piperazine-1-carboxamide (18e) and N-(4-((3,5-di-tert-butylbenzyl)oxy)phenyl)-4-(2-(pyridin-4-yl)ethyl)piperazine-1-carboxamide (18i) showed modest selectivity for inhibiting L. donovani promastigote proliferation compared to J774 macrophages and were effective against intracellular L. donovani with EC50 values in the low micromolar range. Replacement of the 4-pyridyl ring present in 18e with imidazole resulted in a compound (4-(2-(1H-imidazol-1-yl)ethyl)-N-(4-((3,5-bis(trifluoromethyl)benzyl)oxy)phenyl)piperazine-1-carboxamide, 18p) with approximately fourfold selectivity for CYP5122A1 over CYP51 that inhibited both enzymes with IC50 values ≤ 1 µM, although selective potency against L. donovani promastigotes was lost. Compound 18p also inhibited the proliferation of L. major promastigotes and caused the accumulation of 4-methylated sterols in L. major membranes, indicating that this compound blocks sterol demethylation at the 4-position in Leishmania parasites. The molecules described here may therefore be useful for the future identification of dual inhibitors of CYP51 and CYP5122A1 as potential antileishmanial drug candidates and as probes to shed further light on sterol biosynthesis in Leishmania and related parasites.
Collapse
Affiliation(s)
- Chris La Rosa
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Pankaj Sharma
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - M Junaid Dar
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yiru Jin
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Lingli Qin
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - Allie Kendall
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Meng Wu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Zhihong Lin
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Dmitriy Uchenik
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Junan Li
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Karl A Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Liu L, Lucero B, Manriquez-Rodriguez C, Francisco KR, Teixeira TR, Yohannan DJ, Ballatore C, Myers SA, O’Donoghue AJ, Caffrey CR. Clickable Probes for Pathogen Proteasomes: Synthesis and Applications. ACS OMEGA 2024; 9:34829-34840. [PMID: 39157084 PMCID: PMC11325529 DOI: 10.1021/acsomega.4c04316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
The 20S proteasome is a multimeric protease complex that is essential for proteostasis in the cell. Small molecule proteasome inhibitors are approved drugs for various cancers and are advancing clinically as antiparasitics. Although tools and technologies to study the 20S proteasome have advanced, only one probe is commercially available to image proteasome activity. This probe consists of a fluorescently labeled, peptidyl vinyl sulfone that binds to one or more of the catalytic proteasome subunits. Here, we synthesized two, active site-directed epoxyketone probes, LJL-1 and LJL-2, that were based on the peptidyl backbones of the anticancer drugs, carfilzomib and bortezomib, respectively. Each probe was conjugated, via click chemistry, to a bifunctional group comprising 5-carboxytetramethylrhodamine (TAMRA) and biotin to, respectively, visualize and enrich the 20S proteasome from protein extracts of two eukaryotic pathogens, Leishmania donovani and Trichomonas vaginalis. Depending on species, each probe generated a different subunit-binding profile by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and the biotin tag enabled the enrichment of the bound subunits which were then formally identified by proteomics. Species differences in the order of electrophoretic migration by the β subunits were also noted. Finally, both probes reacted specifically with the 20S subunits in contrast to the commercial vinyl sulfone probe that cross reacted with cysteine proteases. LJL-1 and LJL-2 should find general utility in the identification and characterization of pathogen proteasomes, and serve as reagents to evaluate the specificity and mechanism of binding of new antiparasitic proteasome inhibitors.
Collapse
Affiliation(s)
- Lawrence
J. Liu
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Bobby Lucero
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Cindy Manriquez-Rodriguez
- Center
for Autoimmunity and Inflammation, La Jolla
Institute for Immunology, La Jolla, California 92037, United States
- Laboratory
for Immunochemical Circuits, La Jolla Institute
for Immunology, La Jolla, California 92037, United States
| | - Karol R. Francisco
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Thaiz R. Teixeira
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Darius J. Yohannan
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Carlo Ballatore
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Samuel A. Myers
- Center
for Autoimmunity and Inflammation, La Jolla
Institute for Immunology, La Jolla, California 92037, United States
- Laboratory
for Immunochemical Circuits, La Jolla Institute
for Immunology, La Jolla, California 92037, United States
| | - Anthony J. O’Donoghue
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Conor R. Caffrey
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Datta A, Barrie U, Wetzel DM. A Multi-Color Immunofluorescence Assay to Distinguish Intracellular From External Leishmania Parasites. Bio Protoc 2024; 14:e5009. [PMID: 38873017 PMCID: PMC11166538 DOI: 10.21769/bioprotoc.5009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Leishmaniasis, a neglected tropical disease, is caused by the intracellular protozoan parasite Leishmania. Upon its transmission through a sandfly bite, Leishmania binds and enters host phagocytic cells, ultimately resulting in a cutaneous or visceral form of the disease. The limited therapeutics available for leishmaniasis, in combination with this parasite's techniques to evade the host immune system, call for exploring various methods to target this infection. To this end, our laboratory has been characterizing how Leishmania is internalized by phagocytic cells through the activation of multiple host cell signaling pathways. This protocol, which we use routinely for our experiments, delineates how to infect mammalian macrophages with either promastigote or amastigote forms of the Leishmania parasite. Subsequently, the number of intracellular parasites, external parasites, and macrophages can be quantified using immunofluorescence microscopy and semi-automated analysis protocols. Studying the pathways that underlie Leishmania uptake by phagocytes will not only improve our understanding of these host-pathogen interactions but may also provide a foundation for discovering additional treatments for leishmaniasis. Key features • This protocol visualizes and quantifies multiple intracellular forms of Leishmania. • It offers flexibility at various points for researchers to introduce modifications according to their study needs.
Collapse
Affiliation(s)
- Arani Datta
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Umaru Barrie
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dawn M. Wetzel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Cruz MGFDML, Santi AMM, de Morais-Teixeira E, Caldeira ASP, de Siqueira EP, Oliveira E, Alves TMDA, Murta SMF. Anti- Leishmania compounds can be screened using Leishmania spp. expressing red fluorescence ( tdTomato). Antimicrob Agents Chemother 2024; 68:e0050923. [PMID: 38063403 PMCID: PMC10777850 DOI: 10.1128/aac.00509-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/30/2023] [Indexed: 01/11/2024] Open
Abstract
The main challenges associated with leishmaniasis chemotherapy are drug toxicity, the possible emergence of resistant parasites, and a limited choice of therapeutic agents. Therefore, new drugs and assays to screen and detect novel active compounds against leishmaniasis are urgently needed. We thus validated Leishmania braziliensis (Lb) and Leishmania infantum (Li) that constitutively express the tandem tomato red fluorescent protein (tdTomato) as a model for large-scale screens of anti-Leishmania compounds. Confocal microscopy of Lb and Li::tdTomato revealed red fluorescence distributed throughout the entire parasite, including the flagellum, and flow cytometry confirmed that the parasites emitted intense fluorescence. We evaluated the infectivity of cloned promastigotes and amastigotes constitutively expressing tdTomato, their growth profiles in THP-1 macrophages, and susceptibility to trivalent antimony, amphotericin, and miltefosine in vitro. The phenotypes of mutant and wild-type parasites were similar, indicating that the constitutive expression of tdTomato did not interfere with the evaluated parameters. We applied our validated model to a repositioning strategy and assessed the susceptibility of the parasites to eight commercially available drugs. We also screened 32 natural plant and fungal extracts and 10 pure substances to reveal new active compounds. The infectivity and Glucantime treatment efficacy of BALB/c mice and golden hamsters infected with Lb and Li::tdTomato mutant lines, respectively, were very similar compared to animals infected with wild-type parasites. Standardizing our methodology would offer more rapid, less expensive, and easier assays to screen of compounds against L. braziliensis and L. infantum in vitro and in vivo. Our method could also enhance the discovery of active compounds for treating leishmaniasis.
Collapse
Affiliation(s)
- Mariza Gabriela Faleiro de Moura Lodi Cruz
- Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
- Química de Produtos Naturais Bioativos, Instituto René Rachou, Fundação Oswaldo Cruz FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Maria Murta Santi
- Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Eliane de Morais-Teixeira
- Pesquisa Clínica e Políticas Públicas em Doenças Infecto-Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Alisson Samuel Portes Caldeira
- Química de Produtos Naturais Bioativos, Instituto René Rachou, Fundação Oswaldo Cruz FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Ezequias Pessoa de Siqueira
- Química de Produtos Naturais Bioativos, Instituto René Rachou, Fundação Oswaldo Cruz FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Edward Oliveira
- Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Tânia Maria de Almeida Alves
- Química de Produtos Naturais Bioativos, Instituto René Rachou, Fundação Oswaldo Cruz FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Silvane Maria Fonseca Murta
- Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz FIOCRUZ Minas, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Juez-Castillo G, Valencia-Vidal B, Orrego LM, Cabello-Donayre M, Montosa-Hidalgo L, Pérez-Victoria JM. FiCRoN, a deep learning-based algorithm for the automatic determination of intracellular parasite burden from fluorescence microscopy images. Med Image Anal 2024; 91:103036. [PMID: 38016388 DOI: 10.1016/j.media.2023.103036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/27/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Protozoan parasites are responsible for dramatic, neglected diseases. The automatic determination of intracellular parasite burden from fluorescence microscopy images is a challenging problem. Recent advances in deep learning are transforming this process, however, high-performance algorithms have not been developed. The limitations in image acquisition, especially for intracellular parasites, make this process complex. For this reason, traditional image-processing methods are not easily transferred between different datasets and segmentation-based strategies do not have a high performance. Here, we propose a novel method FiCRoN, based on fully convolutional regression networks (FCRNs), as a promising new tool for estimating intracellular parasite burden. This estimation requires three values, intracellular parasites, infected cells and uninfected cells. FiCRoN solves this problem as multi-task learning: counting by regression at two scales, a smaller one for intracellular parasites and a larger one for host cells. It does not use segmentation or detection, resulting in a higher generalization of counting tasks and, therefore, a decrease in error propagation. Linear regression reveals an excellent correlation coefficient between manual and automatic methods. FiCRoN is an innovative freedom-respecting image analysis software based on deep learning, designed to provide a fast and accurate quantification of parasite burden, also potentially useful as a single-cell counter.
Collapse
Affiliation(s)
- Graciela Juez-Castillo
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientìficas, (IPBLN-CSIC), PTS Granada, 18016 Granada, Spain; Research Group Osiris&Bioaxis, Faculty of Engineering, El Bosque University, 110121 Bogotá, Colombia
| | - Brayan Valencia-Vidal
- Research Group Osiris&Bioaxis, Faculty of Engineering, El Bosque University, 110121 Bogotá, Colombia; Department of Computer Engineering, Automation and Robotics, Research Centre for Information and Communication Technologies, University of Granada, 18014 Granada, Spain.
| | - Lina M Orrego
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientìficas, (IPBLN-CSIC), PTS Granada, 18016 Granada, Spain
| | - María Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientìficas, (IPBLN-CSIC), PTS Granada, 18016 Granada, Spain; Universidad Internacional de la Rioja, 26006 La Rioja, Spain
| | - Laura Montosa-Hidalgo
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientìficas, (IPBLN-CSIC), PTS Granada, 18016 Granada, Spain
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientìficas, (IPBLN-CSIC), PTS Granada, 18016 Granada, Spain.
| |
Collapse
|
6
|
Pérez-Bonilla M, Sánchez-Hidalgo M, González I, Oves-Costales D, Martín J, Murillo-Alba J, Tormo JR, Cho A, Byun SY, No JH, Shum D, Ioset JR, Genilloud O, Reyes F. Madurastatins with Imidazolidinone Rings: Natural Products or Side-Reaction Products from Extraction Solvents? Int J Mol Sci 2023; 25:301. [PMID: 38203471 PMCID: PMC10779116 DOI: 10.3390/ijms25010301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Madurastatins are a group of pentapeptides containing an oxazoline moiety, and, in a few cases, an imidazolidinone ring as an additional structural feature. In our search for new potential antiparasitic metabolites from natural sources, we studied the acetone extracts from a culture of Actinomadura sp. CA-135719. The LC/HRMS analysis of this extract identified the presence of the known madurastatins C1 (1), D1 (4), and D2 (5) together with additional members of the family that were identified as the new madurastatins H2 (2) and 33-epi-D1 (3) after isolation and spectroscopic analysis. The planar structures of the new compounds were established by HRMS, ESI-qTOF-MS/MS, and 1D and 2D NMR data, and their absolute configuration was proposed using Marfey's and bioinformatic analyses of the biosynthetic gene cluster (BGC). A revision of the absolute configuration of madurastatins D1 and D2 is proposed. Additionally, madurastatins containing imidazolidinone rings are proved to be artifacts originating during acetone extraction of the bacterial cultures.
Collapse
Affiliation(s)
- Mercedes Pérez-Bonilla
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Granada, Spain; (M.S.-H.); (I.G.); (D.O.-C.); (J.M.); (J.M.-A.); (J.R.T.); (O.G.)
| | - Marina Sánchez-Hidalgo
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Granada, Spain; (M.S.-H.); (I.G.); (D.O.-C.); (J.M.); (J.M.-A.); (J.R.T.); (O.G.)
| | - Ignacio González
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Granada, Spain; (M.S.-H.); (I.G.); (D.O.-C.); (J.M.); (J.M.-A.); (J.R.T.); (O.G.)
| | - Daniel Oves-Costales
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Granada, Spain; (M.S.-H.); (I.G.); (D.O.-C.); (J.M.); (J.M.-A.); (J.R.T.); (O.G.)
| | - Jesús Martín
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Granada, Spain; (M.S.-H.); (I.G.); (D.O.-C.); (J.M.); (J.M.-A.); (J.R.T.); (O.G.)
| | - José Murillo-Alba
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Granada, Spain; (M.S.-H.); (I.G.); (D.O.-C.); (J.M.); (J.M.-A.); (J.R.T.); (O.G.)
| | - José R. Tormo
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Granada, Spain; (M.S.-H.); (I.G.); (D.O.-C.); (J.M.); (J.M.-A.); (J.R.T.); (O.G.)
| | - Ahreum Cho
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (A.C.); (S.-Y.B.); (J.-H.N.); (D.S.)
| | - Soo-Young Byun
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (A.C.); (S.-Y.B.); (J.-H.N.); (D.S.)
| | - Joo-Hwan No
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (A.C.); (S.-Y.B.); (J.-H.N.); (D.S.)
| | - David Shum
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (A.C.); (S.-Y.B.); (J.-H.N.); (D.S.)
| | - Jean-Robert Ioset
- Drugs for Neglected Diseases Initiative, 15 Chemin Camille-Vidart, 1202 Geneva, Switzerland;
| | - Olga Genilloud
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Granada, Spain; (M.S.-H.); (I.G.); (D.O.-C.); (J.M.); (J.M.-A.); (J.R.T.); (O.G.)
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Granada, Spain; (M.S.-H.); (I.G.); (D.O.-C.); (J.M.); (J.M.-A.); (J.R.T.); (O.G.)
| |
Collapse
|
7
|
Barazorda-Ccahuana HL, Goyzueta-Mamani LD, Candia Puma MA, Simões de Freitas C, de Sousa Vieria Tavares G, Pagliara Lage D, Ferraz Coelho EA, Chávez-Fumagalli MA. Computer-aided drug design approaches applied to screen natural product's structural analogs targeting arginase in Leishmania spp. F1000Res 2023; 12:93. [PMID: 37424744 PMCID: PMC10323282 DOI: 10.12688/f1000research.129943.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction: Leishmaniasis is a disease with high mortality rates and approximately 1.5 million new cases each year. Despite the new approaches and advances to fight the disease, there are no effective therapies. Methods: Hence, this study aims to screen for natural products' structural analogs as new drug candidates against leishmaniasis. We applied Computer-aided drug design (CADD) approaches, such as virtual screening, molecular docking, molecular dynamics simulation, molecular mechanics-generalized Born surface area (MM-GBSA) binding free estimation, and free energy perturbation (FEP) aiming to select structural analogs from natural products that have shown anti-leishmanial and anti-arginase activities and that could bind selectively against the Leishmania arginase enzyme. Results: The compounds 2H-1-benzopyran, 3,4-dihydro-2-(2-methylphenyl)-(9CI), echioidinin, and malvidin showed good results against arginase targets from three parasite species and negative results for potential toxicities. The echioidinin and malvidin ligands generated interactions in the active center at pH 2.0 conditions by MM-GBSA and FEP methods. Conclusions: This work suggests the potential anti-leishmanial activity of the compounds and thus can be further in vitro and in vivo experimentally validated.
Collapse
Affiliation(s)
- Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
| | - Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa, Peru
| | - Mayron Antonio Candia Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
- Universidad Católica de Santa María, Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Arequipa, Peru
| | - Camila Simões de Freitas
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele de Sousa Vieria Tavares
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Pagliara Lage
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Belo Horizonte, Minas Gerais, Brazil
- Universidade Federal de Minas Gerais, Departamento de Patologia Clínica, COLTEC, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Catolica de Santa Maria de Arequipa, Arequipa, Peru
| |
Collapse
|
8
|
Gopu B, Kour P, Pandian R, Singh K. Insights into the drug screening approaches in leishmaniasis. Int Immunopharmacol 2023; 114:109591. [PMID: 36700771 DOI: 10.1016/j.intimp.2022.109591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Leishmaniasis, a tropically neglected disease, is responsible for the high mortality and morbidity ratio in poverty-stricken areas. Currently, no vaccine is available for the complete cure of the disease. Current chemotherapeutic regimens face the limitations of drug resistance and toxicity concerns indicating a great need to develop better chemotherapeutic leads that are orally administrable, potent, non-toxic, and cost-effective. The anti-leishmanial drug discovery process accelerated the desire for large-scale drug screening assays and high-throughput screening (HTS) technology to identify new chemo-types that can be used as potential drug molecules to control infection. Using the HTS approach, about one million compounds can be screened daily within the shortest possible time for biological activity using automation tools, miniaturized assay formats, and large-scale data analysis. Classical and modern in vitro screening assays have led to the progression of active compounds further to ex vivo and in vivo studies. In the present review, we emphasized on the HTS approaches employed in the leishmanial drug discovery program. Recent in vitro screening assays are widely explored to discover new chemical scaffolds. Developing appropriate experimental animal models and their related techniques is necessary to understand the pathophysiological processes and disease host responses, paving the way for unraveling novel therapies against leishmaniasis.
Collapse
Affiliation(s)
- Boobalan Gopu
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Parampreet Kour
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ramajayan Pandian
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
A Broad Spectrum Antiparasitic Activity of Organotin (IV) Derivatives and Its Untargeted Proteomic Profiling Using Leishmania donovani. Pathogens 2022; 11:pathogens11121424. [PMID: 36558759 PMCID: PMC9785441 DOI: 10.3390/pathogens11121424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Metals have been used in medicine since ancient times for the treatment of different ailments with various elements such as iron, gold and arsenic. Metal complexes have also been reported to show antibiotic and antiparasitic activity. In this context, we tested the antiparasitic potential of 10 organotin (IV) derivatives from 4-(4-methoxyphenylamino)-4 oxobutanoic acid (MS26) against seven eukaryotic pathogens of medical importance: Leishmania donovani, Trypanosoma cruzi, Trypanosoma brucei, Entamoeba histolytica, Giardia lamblia, Naegleria fowleri and Schistosoma mansoni. Among the compounds with and without antiparasitic activity, compound MS26Et3 stood out with a 50% effective concentration (EC50) of 0.21 and 0.19 µM against promastigotes and intracellular amastigotes of L. donovani, respectively, 0.24 µM against intracellular amastigotes of T. cruzi, 0.09 µM against T. brucei, 1.4 µM against N. fowleri and impaired adult S. mansoni viability at 1.25 µM. In terms of host/pathogen selectivity, MS26Et3 demonstrated relatively mild cytotoxicity toward host cells with a 50% viability concentration of 4.87 µM against B10R cells (mouse monocyte cell line), 2.79 µM against C2C12 cells (mouse myoblast cell line) and 1.24 µM against HEK923 cells (human embryonic kidney cell line). The selectivity index supports this molecule as a therapeutic starting point for a broad spectrum antiparasitic alternative. Proteomic analysis of host cells infected with L. donovani after exposure to MS26Et3 showed a reduced expression of Rab7, which may affect the fusion of the endosome with the lysosome, and, consequently, impairing the differentiation of L. donovani to the amastigote form. Future studies to investigate the molecular target(s) and mechanism of action of MS26Et3 will support its chemical optimization.
Collapse
|
10
|
Schadich E, Nylén S, Gurská S, Kotulová J, Andronati S, Pavlovsky V, Soboleva S, Polishchuk P, Hajdúch M, Džubák P. Activity of 1-aryl-4-(naphthalimidoalkyl) piperazine derivatives against Leishmania major and Leishmania mexicana. Parasitol Int 2022; 91:102647. [PMID: 35985636 DOI: 10.1016/j.parint.2022.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
A series of 1-aryl-4-(phthalimidoalkyl) piperazines and 1-aryl-4-(naphthalimidoalkyl) piperazines were retrieved from a proprietary library based on their high structural similarity to haloperidol, an antipsychotic with antiparasitic activity, and assessed as potential antileishmanial scaffolds. Selected compounds were tested for antileishmanial activity against promastigotes of Leishmania major and Leishmania mexicana in dose-response assays. Two of the 1-aryl-4-(naphthalimidoalkyl) piperazines (compounds 10 and 11) were active against promastigotes of both Leishmania species without being toxic to human fibroblasts. Their activity was found to correlate with the length of their alkyl chains. Further analyses showed that compound 11 was also active against intracellular amastigotes of both Leishmania species. In promastigotes of both Leishmania species, compound 11 induced collapse of the mitochondrial electrochemical potential and increased the intracellular Ca2+ concentration. Therefore, it may serve as a promising lead compound for the development of novel antiparasitic drugs.
Collapse
Affiliation(s)
- Ermin Schadich
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and University Hospital, Palacky University Olomouc, Czech Republic
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and University Hospital, Palacky University Olomouc, Czech Republic
| | - Jana Kotulová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and University Hospital, Palacky University Olomouc, Czech Republic
| | - Sergey Andronati
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine, Odessa, Ukraine
| | - Victor Pavlovsky
- A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine, Odessa, Ukraine
| | | | - Pavel Polishchuk
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and University Hospital, Palacky University Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and University Hospital, Palacky University Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and University Hospital, Palacky University Olomouc, Czech Republic.
| |
Collapse
|
11
|
Multiplexed-Based Assessment of DNA Damage Response to Chemotherapies Using Cell Imaging Cytometry. Int J Mol Sci 2022; 23:ijms23105701. [PMID: 35628514 PMCID: PMC9145608 DOI: 10.3390/ijms23105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The current methods for measuring the DNA damage response (DDR) are relatively labor-intensive and usually based on Western blotting, flow cytometry, and/or confocal immunofluorescence analyses. They require many cells and are often limited to the assessment of a single or few proteins. Here, we used the Celigo® image cytometer to evaluate the cell response to DNA-damaging agents based on a panel of biomarkers associated with the main DDR signaling pathways. We investigated the cytostatic or/and the cytotoxic effects of these drugs using simultaneous propidium iodide and calcein-AM staining. We also describe new dedicated multiplexed protocols to investigate the qualitative (phosphorylation) or the quantitative changes of eleven DDR markers (H2AX, DNA-PKcs, ATR, ATM, CHK1, CHK2, 53BP1, NBS1, RAD51, P53, P21). The results of our study clearly show the advantage of using this methodology because the multiplexed-based evaluation of these markers can be performed in a single experiment using the standard 384-well plate format. The analyses of multiple DDR markers together with the cell cycle status provide valuable insights into the mechanism of action of investigational drugs that induce DNA damage in a time- and cost-effective manner due to the low amounts of antibodies and reagents required.
Collapse
|
12
|
Benítez D, Medeiros A, Quiroga C, Comini MA. A Simple Bioluminescent Assay for the Screening of Cytotoxic Molecules Against the Intracellular Form of Leishmania infantum. Methods Mol Biol 2022; 2524:127-147. [PMID: 35821468 DOI: 10.1007/978-1-0716-2453-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter describes a viability assay for the intracellular (amastigote) and clinically relevant form of Leishmania infantum that is based on the detection of bioluminescence (BL) signal. The assay uses a reporter cell line of L. infantum that expresses constitutively a redshifted luciferase from Photinus pyralis and murine macrophages (cell line J774.A1) as host cells for infection. The host cell line was selected because it is a differentiated cell line, easy to manipulate in vitro, and advantageous for ethical reasons. This chapter introduces an assay designed for the screening of bioactive compounds/molecules employing a 96-well microplate and a 24 h treatment. The assay setup shows excellent balance between simplicity (cell culture manipulation/infection and timing) and quality parameters, as well as potential to detect drug-like molecules acting in a fast and cytotoxic manner.
Collapse
Affiliation(s)
- Diego Benítez
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | - Andrea Medeiros
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cristina Quiroga
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
13
|
Bioflavonoid-Induced Apoptosis and DNA Damage in Amastigotes and Promastigotes of Leishmania donovani: Deciphering the Mode of Action. Molecules 2021; 26:molecules26195843. [PMID: 34641387 PMCID: PMC8512304 DOI: 10.3390/molecules26195843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
Natural products from plants contain many interesting biomolecules. Among them, quercetin (Q), gallic acid (GA), and rutin (R) all have well-reported antileishmanial activity; however, their exact mechanisms of action are still not known. The current study is a step forward towards unveil the possible modes of action of these compounds against Leishmania donovani (the causative agent of visceral leishmaniasis). The selected compounds were checked for their mechanisms of action against L. donovani using different biological assays including apoptosis and necrosis evaluation, effects on genetic material (DNA), quantitative testing of nitric oxide production, ultrastructural modification via transmission electron microscopy, and real-time PCR analysis. The results confirmed that these compounds are active against L. donovani, with IC50 values of 84.65 µg/mL, 86 µg/mL, and 98 µg/mL for Q, GA, and R, respectively. These compounds increased nitric oxide production and caused apoptosis and DNA damage, which led to changes in the treated cells’ ultrastructural behavior and finally to the death of L. donovani. These compounds also suppressed essential enzymes like trypanothione reductase and trypanothione synthetase, which are critical for leishmanial survival. The selected compounds have high antileishmanial potentials, and thus in-vivo testing and further screening are highly recommended.
Collapse
|
14
|
Erasmus C, Aucamp J, Smit FJ, Seldon R, Jordaan A, Warner DF, N'Da DD. Synthesis and comparison of in vitro dual anti-infective activities of novel naphthoquinone hybrids and atovaquone. Bioorg Chem 2021; 114:105118. [PMID: 34216896 DOI: 10.1016/j.bioorg.2021.105118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/11/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
A principal factor that contributes towards the failure to eradicate leishmaniasis and tuberculosis infections is the reduced efficacy of existing chemotherapies, owing to a continuous increase in multidrug-resistant strains of the causative pathogens. This accentuates the dire need to develop new and effective drugs against both plights. A series of naphthoquinone-triazole hybrids was synthesized and evaluated in vitro against Leishmania (L.) and Mycobacterium tuberculosis (Mtb) strains. Their cytotoxicities were also evaluated, using the human embryonic kidney cell line (HEK-293). The hybrids were found to be non-toxic towards human cells and had demonstrated micromolar cellular antileishmanial and antimycobacterial potencies. Hybrid 13, i.e. 2-{[1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl]methoxy}naphthalene-1,4-dione was the most active of all. It was found with MIC90 0.5 µM potency against Mtb in a protein free medium, and with half-maxima inhibitory concentrations (IC50) of 0.81 µM and 1.48 µM against the infective promastigote parasites of L. donavani and L. major, respectively, with good selectivity towards these pathogens (SI 22 - 65). Comparatively, the clinical naphthoquinone, atovaquone, although less cytotoxic, was found to be two-fold less antimycobacterial potent, and six- to twelve-fold less active against leishmania. Hybrid 13 may therefore stand as a potential anti-infective hit for further development in the search for new antitubercular and antileishmanial drugs. Elucidation of its exact mechanism of action and molecular targets will constitute future endeavour.
Collapse
Affiliation(s)
- Chané Erasmus
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Frans J Smit
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Ronnett Seldon
- SAMRC Drug Discovery and Development Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa; Wellcome Centre for Clinical Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
15
|
Haghdoust S, Azizi M, Haji Molla Hoseini M, Bandehpour M, Mohseni Masooleh M, Yeganeh F. Parasite Burden Measurement in the Leishmania major Infected Mice by Using the Direct Fluorescent Microscopy, Limiting Dilution Assay, and Real-Time PCR Analysis. IRANIAN JOURNAL OF PARASITOLOGY 2021; 15:576-586. [PMID: 33884015 PMCID: PMC8039490 DOI: 10.18502/ijpa.v15i4.4867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: We aimed to compare parasite burden in BALB/c mice, using three methods including the direct fluorescent microscopic using recombinant Leishmania major expressing an enhanced green fluorescent protein, limiting dilution assay, and real-time PCR technique. Methods: The current study was carried out in 2018, to induce stable enhanced green fluorescent protein (EGFP) production. Initially, the linearized DNA expression cassette (pLEXSY-egfp-sat2) was integrated into the ssu locus of L. major. The expression of EGFP in recombinant parasite was analyzed using direct fluorescent microscopy. Afterward, BALB/c mice were infected with the L. major
EGFP, and the infection was evaluated in the foot-pads and inguinal lymph-nodes using an in vivo imaging system. Subsequently, eight BALB/c mice were infected with L. major
EGFP, and the results of evaluating parasite burden by a SYBR-Green based real-time PCR analysis and the limiting dilution assays were compared to the results obtained from the direct fluorescent microscopy. Results: The results of the direct fluorescent microscopy showed that EGFP gene stably was expressed in parasites. Moreover, the in vivo imaging analysis of foot-pad lesions revealed that the infection caused by L. major
EGFP was progressing over time. Additionally, significant correlations were observed between the results of parasite burden assay using the direct fluorescent microscopy and either limiting dilution assay (r=0.976, P<0.0001) or quantitative real-time PCR assay (r=0.857, P<0.001). Conclusion: Ultimately, the utilization of the direct fluorescent microscopy by employing a stable EGFP-expressing L. major is a suitable substitution for the existing methods to quantify parasite burden.
Collapse
Affiliation(s)
- Sepideh Haghdoust
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Farshid Yeganeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
High Content Analysis of Macrophage-Targeting EhPIb-Compounds against Cutaneous and Visceral Leishmania Species. Microorganisms 2021; 9:microorganisms9020422. [PMID: 33670713 PMCID: PMC7923059 DOI: 10.3390/microorganisms9020422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/12/2021] [Indexed: 01/29/2023] Open
Abstract
An immunostimulatory glycolipid molecule from the intestinal protozoan parasite Entamoeba histolytica (Eh) and its synthetic analogs derived from its phosphatidylinositol-b-anchor (EhPIb) previously showed considerable immunotherapeutic effects against Leishmania major infection in vitro and in vivo. Here, we describe a high content screening assay, based on primary murine macrophages. Parasites detection is based on a 90 kDA heat shock protein-specific staining, enabling the detection of several Leishmania species. We validated the assay using L. major, L. braziliensis, L. donovani, and L. infantum as well as investigated the anti-leishmanial activity of six immunostimulatory EhPIb-compounds (Eh-1 to Eh-6). Macrophages infected with dermotropic species were more sensitive towards treatment with the compounds as their viability showed a stronger reduction compared to macrophages infected with viscerotropic species. Most compounds caused a significant reduction of the infection rates and the parasite burdens depending on the infecting species. Only compound Eh-6 was found to have activity against all Leishmania species. Considering the challenges in anti-leishmanial drug discovery, we developed a multi-species screening assay capable of utilizing non-recombinant parasite strains, and demonstrated its usefulness by screening macrophage-targeting EhPIb-compounds showing their potential for the treatment of cutaneous and visceral leishmaniasis.
Collapse
|
17
|
Luczywo A, Sauter IP, Silva Ferreira TC, Cortez M, Romanelli GP, Sathicq G, Asís SE. Microwave‐assisted synthesis of 2‐styrylquinoline‐4‐carboxylic acid derivatives to improve the toxic effect against
Leishmania (Leishmania) amazonensis. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ayelen Luczywo
- Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica Universidad de Buenos Aires Buenos Aires Argentina
| | - Ismael Pretto Sauter
- Laboratório de Imunobiologia da Interação Leishmania‐macrófagos, Departamento de Parasitologia Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo Brazil
| | - Thalita Camêlo Silva Ferreira
- Laboratório de Imunobiologia da Interação Leishmania‐macrófagos, Departamento de Parasitologia Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo Brazil
| | - Mauro Cortez
- Laboratório de Imunobiologia da Interação Leishmania‐macrófagos, Departamento de Parasitologia Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo Brazil
| | - Gustavo P. Romanelli
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” (CINDECA‐CONICET‐CCT‐La Plata) Universidad Nacional de La Plata La Plata Argentina
| | - Gabriel Sathicq
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” (CINDECA‐CONICET‐CCT‐La Plata) Universidad Nacional de La Plata La Plata Argentina
| | - Silvia E. Asís
- Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica Universidad de Buenos Aires Buenos Aires Argentina
| |
Collapse
|
18
|
Souza Silva JA, Tunes LG, Coimbra RS, Ascher DB, Pires DEV, Monte-Neto RL. Unveiling six potent and highly selective antileishmanial agents via the open source compound collection 'Pathogen Box' against antimony-sensitive and -resistant Leishmania braziliensis. Biomed Pharmacother 2020; 133:111049. [PMID: 33378956 DOI: 10.1016/j.biopha.2020.111049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Despite all efforts to provide new chemical entities to tackle leishmaniases, we are still dependent on a the limited drug arsenal, together with drawbacks like toxicity and drug-resistant parasites. Collaborative drug discovery emerged as an option to speed up the way to find alternative antileishmanial agents. This is the case of Medicines for Malaria Ventures - MMV, that promotes an open source drug discovery initiative to fight diseases worldwide. Here, we screened 400 compounds from 'Pathogen Box' (PBox) collection against Leishmania braziliensis, the main etiological agent of cutaneous leishmaniasis in Brazil. Twenty-three compounds were able to inhibit ≥ 80 % L. braziliensis growth at 5 μM. Six out of the PBox selected 23 compounds were found to be highly selective against L. braziliensis intracellular amastigotes with selectivity index varying from > 104 to > 746 and IC50s ranging from 47 to 480 nM. The compounds were also active against antimony-resistant L. braziliensis isolated from the field or laboratory selected mutants, revealing the potential on treating patients infected with drug resistant parasites. Most of the selected compounds were known to be active against kinetoplastids, however, two compounds (MMV688703 and MMV676477) were part of toxoplasmosis and tuberculosis 'PBox' disease set, reinforcing the potential of phenotyping screening to unveil drug repurposing. Here we applied a computational prediction of pharmacokinetic properties using the ADMET predictor pkCSM (http://biosig.unimelb.edu.au/pkcsm/). The tool offered clues on potential drug development needs and can support further in vivo studies. Molecular docking analysis identified CRK3 (LbrM.35.0660), CYP450 (LbrM.30.3580) and PKA (LbrM.18.1180) as L. braziliensis targets for MMV676604, MMV688372 and MMV688703, respectively. Compounds from 'Pathogen Box' thus represents a new hope for novel (or repurposed) small molecules source to tackle leishmaniases.
Collapse
Affiliation(s)
- Juliano A Souza Silva
- Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715, Belo Horizonte, 30190-009, MG, Brazil.
| | - Luiza G Tunes
- Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715, Belo Horizonte, 30190-009, MG, Brazil.
| | - Roney S Coimbra
- Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715, Belo Horizonte, 30190-009, MG, Brazil.
| | - David B Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Institute, 30 Flemington Rd, Parkville, VIC 3052, Melbourne, Australia; Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, VIC 3004, Melbourne, Australia.
| | - Douglas E V Pires
- Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715, Belo Horizonte, 30190-009, MG, Brazil; School of Computing and Information Systems, The University of Melbourne, Doug McDonell Building, VIC 3010, Parkville, Melbourne, Australia.
| | - Rubens L Monte-Neto
- Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715, Belo Horizonte, 30190-009, MG, Brazil.
| |
Collapse
|
19
|
Gervazoni LFO, Barcellos GB, Ferreira-Paes T, Almeida-Amaral EE. Use of Natural Products in Leishmaniasis Chemotherapy: An Overview. Front Chem 2020; 8:579891. [PMID: 33330368 PMCID: PMC7732490 DOI: 10.3389/fchem.2020.579891] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Leishmaniasis is an infectious parasitic disease that is caused by protozoa of the genus Leishmania, a member of the Trypanosomatidae family. Leishmaniasis is classified by the World Health Organization as a neglected tropical disease that is responsible for millions of deaths worldwide. Although there are many possible treatments for leishmaniasis, these treatments remain mostly ineffective, expensive, and long treatment, as well as causing side effects and leading to the development of resistance. For novel and effective treatments to combat leishmaniasis, many research groups have sought to utilize natural products. In addition to exhibiting potential as therapeutic compounds, natural products may also contribute to the development of new drugs based on their chemical structures. This review presents the most promising natural products, including crude extracts and isolated compounds, employed against Leishmania spp.
Collapse
Affiliation(s)
- Luiza F O Gervazoni
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Gabrielle B Barcellos
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Taiana Ferreira-Paes
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Elmo E Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Scarim CB, Chin CM. Current Approaches to Drug Discovery for Chagas Disease: Methodological Advances. Comb Chem High Throughput Screen 2020; 22:509-520. [PMID: 31608837 DOI: 10.2174/1386207322666191010144111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays. OBJECTIVE Current approaches to drug discovery for Chagas disease. METHOD This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases. RESULTS Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease. CONCLUSION There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.
Collapse
Affiliation(s)
- Cauê B Scarim
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.,Lapdesf - Laboratory of Research and Development of Drugs, Araraquara, São Paulo, Brazil
| | - Chung M Chin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.,Lapdesf - Laboratory of Research and Development of Drugs, Araraquara, São Paulo, Brazil
| |
Collapse
|
21
|
Ribeiro JM, Bandeira CC, de Faria BG, Alves MLR, Vieira FO, Giunchetti RC, Uzonna JE, Teixeira-Carvalho A, Peruhype-Magalhães V, Souza-Fagundes EM. An ex vivo multiparametric flow cytometry assay using human whole blood to simultaneously measure cytotoxicity and leishmanicidal activities. Exp Parasitol 2020; 216:107940. [PMID: 32562606 DOI: 10.1016/j.exppara.2020.107940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/28/2020] [Accepted: 06/13/2020] [Indexed: 01/17/2023]
Abstract
Therapeutic options for the treatment of leishmaniasis are insufficient and need improvements owing to their low efficiency and high toxicity as well as the emergence of resistant strains. The limited number of new drugs for neglected diseases and lack of innovation in your development are still challenges. In this context, the process of discovery and development of biological assays play a pivotal role for the identification of bioactive compounds. The assays currently used for screening of drugs with cytotoxic activity against Leishmania parasites, include different processes that utilize intact parasite (free or intracellular) or specific enzymes of metabolism as a target cell. These assays allow the screening of large numbers of samples followed by more detailed secondary confirmatory assays to confirm the observed activity and assess their toxicity. In the present study, we described the development of a new functional and more complete assay that enables simultaneous assessment of potential anti-Leishmania compounds through evaluation of internalization of fluorescein-labeled L. braziliensis promastigotes by human peripheral blood monocytes and their cytotoxicity by flow cytometry. We standardized the conditions for parasite labeling to achieve better phagocytosis analysis by setting the ratio of number of parasites per cell as 1 to 2, at incubation time of 6h. The cytotoxicity assessment was performed by the quantification of cells undergoing early/late apoptosis and necrosis using a double labelling platform employing 7AAD for late apoptosis and necrosis analysis and Annexin-V for early apoptosis evaluation. Hemolysis analysis was an additional parameter to test cytotoxicity. Two drugs used on clinic (Amphotericin B and Glucantime®) were used to validate the proposed methodology, and the assay was able to detect their known leishmanicidal activity and immunotoxicity properties. This new predictive assay will contribute to the development of translational medicine strategies in drug discovery for neglected diseases such as leishmaniasis.
Collapse
Affiliation(s)
- Juliana M Ribeiro
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Cristiano C Bandeira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno G de Faria
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Marina L R Alves
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Francisco O Vieira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Rodolfo C Giunchetti
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Jude E Uzonna
- Department of Immunology, College of Medicine, University of Manitoba, R3T 0T5, Winnipeg, Manitoba, Canada
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Peruhype-Magalhães
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine M Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Alcântara LM, Ferreira TCS, Fontana V, Chatelain E, Moraes CB, Freitas-Junior LH. A Multi-Species Phenotypic Screening Assay for Leishmaniasis Drug Discovery Shows That Active Compounds Display a High Degree of Species-Specificity. Molecules 2020; 25:E2551. [PMID: 32486239 PMCID: PMC7321149 DOI: 10.3390/molecules25112551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 12/05/2022] Open
Abstract
High genetic and phenotypic variability between Leishmania species and strains within species make the development of broad-spectrum antileishmanial drugs challenging. Thus, screening panels consisting of several diverse Leishmania species can be useful in enabling compound prioritization based on their spectrum of activity. In this study, a robust and reproducible high content assay was developed, and 1280 small molecules were simultaneously screened against clinically relevant cutaneous and visceral species: L. amazonensis, L. braziliensis, and L. donovani. The assay is based on THP-1 macrophages infected with stationary phase promastigotes and posterior evaluation of both compound antileishmanial activity and host cell toxicity. The profile of compound activity was species-specific, and out of 51 active compounds, only 14 presented broad-spectrum activity against the three species, with activities ranging from 52% to 100%. Notably, the compounds CB1954, Clomipramine, Maprotiline, Protriptyline, and ML-9 presented pan-leishmanial activity, with efficacy greater than 70%. The results highlight the reduced number of compound classes with pan-leishmanial activity that might be available from diversity libraries, emphasizing the need to screen active compounds against a panel of species and strains. The assay reported here can be adapted to virtually any Leishmania species without the need for genetic modification of parasites, providing the basis for the discovery of broad spectrum anti-leishmanial agents.
Collapse
Affiliation(s)
- Laura M. Alcântara
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Thalita C. S. Ferreira
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Instituto Butantan, São Paulo, SP 05503-900, Brazil
| | - Vanessa Fontana
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative, 1211 Geneva, Switzerland;
| | - Carolina B. Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Lucio H. Freitas-Junior
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
- Instituto Butantan, São Paulo, SP 05503-900, Brazil
| |
Collapse
|
23
|
Identification of Inhibitors to Trypanosoma cruzi Sirtuins Based on Compounds Developed to Human Enzymes. Int J Mol Sci 2020; 21:ijms21103659. [PMID: 32455951 PMCID: PMC7279216 DOI: 10.3390/ijms21103659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is an illness caused by the protozoan parasite Trypanosoma cruzi, affecting more than 7 million people in the world. Benznidazole and nifurtimox are the only drugs available for treatment and in addition to causing several side effects, are only satisfactory in the acute phase of the disease. Sirtuins are NAD+-dependent deacetylases involved in several biological processes, which have become drug target candidates in various disease settings. T. cruzi presents two sirtuins, one cytosolic (TcSir2rp1) and the latter mitochondrial (TcSir2rp3). Here, we characterized the effects of human sirtuin inhibitors against T. cruzi sirtuins as an initial approach to develop specific parasite inhibitors. We found that, of 33 compounds tested, two inhibited TcSir2rp1 (15 and 17), while other five inhibited TcSir2rp3 (8, 12, 13, 30, and 32), indicating that specific inhibitors can be devised for each one of the enzymes. Furthermore, all inhibiting compounds prevented parasite proliferation in cultured mammalian cells. When combining the most effective inhibitors with benznidazole at least two compounds, 17 and 32, demonstrated synergistic effects. Altogether, these results support the importance of exploring T. cruzi sirtuins as drug targets and provide key elements to develop specific inhibitors for these enzymes as potential targets for Chagas disease treatment.
Collapse
|
24
|
Baek KH, Piel L, Rosazza T, Prina E, Späth GF, No JH. Infectivity and Drug Susceptibility Profiling of Different Leishmania-Host Cell Combinations. Pathogens 2020; 9:pathogens9050393. [PMID: 32443883 PMCID: PMC7281264 DOI: 10.3390/pathogens9050393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022] Open
Abstract
Protozoan parasites of the genus Leishmania are the causative agents of leishmaniasis, a spectrum of a disease that threatens public health worldwide. Although next-generation therapeutics are urgently needed, the early stage of the drug discovery process is hampered by very low hit rates from intracellular Leishmania phenotypic high-throughput screenings. Designing and applying a physiologically relevant in vitro assay is therefore in high demand. In this study, we characterized the infectivity, morphology, and drug susceptibility of different Leishmania and host cell infection combinations. Primary bone marrow-derived macrophage (BMDM) and differentiated human acute monocytic leukemia (THP-1) cells were infected with amastigote or promastigote forms of Leishmania amazonensis and Leishmania donovani. Regardless of host cell types, amastigotes were generally well phagocytosed and showed high infectivity, whereas promastigotes, especially those of L. donovani, had predominantly remained in the extracellular space. In the drug susceptibility test, miltefosine and sodium stibogluconate (SSG) showed varying ranges of activity with 14 and >10-fold differences in susceptibility, depending on the host-parasite pairs, indicating the importance of assay conditions for evaluating antileishmanial activity. Overall, our results suggest that combinations of Leishmania species, infection forms, and host cells must be carefully optimized to evaluate the activity of potential therapeutic compounds against Leishmania.
Collapse
Affiliation(s)
- Kyung-Hwa Baek
- Leishmania Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Korea;
| | - Laura Piel
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Thibault Rosazza
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Eric Prina
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Gerald F. Späth
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Joo Hwan No
- Leishmania Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Korea;
- Correspondence: ; Tel.: +82-31-8018-8210
| |
Collapse
|
25
|
Phan TN, Baek KH, Lee N, Byun SY, Shum D, No JH. In Vitro and in Vivo Activity of mTOR Kinase and PI3K Inhibitors Against Leishmania donovani and Trypanosoma brucei. Molecules 2020; 25:molecules25081980. [PMID: 32340370 PMCID: PMC7221892 DOI: 10.3390/molecules25081980] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022] Open
Abstract
Kinetoplastid parasites, including Leishmania and Trypanosoma spp., are life threatening pathogens with a worldwide distribution. Next-generation therapeutics for treatment are needed as current treatments have limitations, such as toxicity and drug resistance. In this study, we examined the activities of established mammalian target of rapamycin (mTOR)/phosphoinositide 3-kinase (PI3K) inhibitors against these tropical diseases. High-throughput screening of a library of 1742 bioactive compounds against intracellular L. donovani was performed, and seven mTOR/PI3K inhibitors were identified. Dose-dilution assays revealed that these inhibitors had half maximal effective concentration (EC50) values ranging from 0.14 to 13.44 μM for L. donovani amastigotes and from 0.00005 to 8.16 μM for T. brucei. The results of a visceral leishmaniasis mouse model indicated that treatment with Torin2, dactolisib, or NVP-BGT226 resulted in reductions of 35%, 53%, and 54%, respectively, in the numbers of liver parasites. In an acute T. brucei mouse model using NVP-BGT226 parasite numbers were reduced to under the limits of detection by five consecutive days of treatment. Multiple sequence and structural alignment results indicated high similarities between mTOR and kinetoplastid TORs; the inhibitors are predicted to bind in a similar manner. Taken together, these results indicated that the TOR pathways of parasites have potential for the discovery of novel targets and new potent inhibitors.
Collapse
Affiliation(s)
- Trong-Nhat Phan
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463–400, Korea; (T.-N.P.); (K.-H.B.)
| | - Kyung-Hwa Baek
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463–400, Korea; (T.-N.P.); (K.-H.B.)
| | - Nakyung Lee
- Screening Development Platform, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463–400, Korea; (N.L.); (S.Y.B.); (D.S.)
| | - Soo Young Byun
- Screening Development Platform, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463–400, Korea; (N.L.); (S.Y.B.); (D.S.)
| | - David Shum
- Screening Development Platform, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463–400, Korea; (N.L.); (S.Y.B.); (D.S.)
| | - Joo Hwan No
- Leishmania Research Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463–400, Korea; (T.-N.P.); (K.-H.B.)
- Correspondence:
| |
Collapse
|
26
|
ImageJ for Partially and Fully Automated Analysis of Trypanosome Micrographs. Methods Mol Biol 2020. [PMID: 32221933 DOI: 10.1007/978-1-0716-0294-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Trypanosomes and related parasites such as Leishmania are unicellular parasites with a precise internal structure. This makes light microscopy a powerful tool for interrogating their biology-whether considering advance techniques for visualizing the precise localization of proteins within the cell or simply measuring parasite cell shape. Methods to partially or fully automate analysis and interpretation are extremely powerful and provide easier access to microscope images as a source of quantitative data. This chapter provides an introduction to these methods using ImageJ/FIJI, free and open source software for scientific image analysis. It provides an overview of how ImageJ handles images and introduces the ImageJ macro/scripting language for automated images, starting at a basic level and assuming no previous programming/scripting experience. It then outlines three methods using ImageJ for automated analysis of trypanosome micrographs: Semiautomated cropping and setting image contrast for presentation, automated analysis of cell properties from a light micrograph field of view, and example semiautomated tools for quantitative analysis of protein localization. These are not presented as strict methods, but are instead described in detail with the intention of furnishing the reader with the ability to "hack" the scripts for their own needs or write their own scripts for partially and fully automated quantitation of trypanosomes from light micrographs. Most of the methods described here are transferrable to other types of microscope image and other cell types.
Collapse
|
27
|
Paape D, Prendergast CT, Price HP, Doehl JSP, Smith DF. Genetic validation of Leishmania genes essential for amastigote survival in vivo using N-myristoyltransferase as a model. Parasit Vectors 2020; 13:132. [PMID: 32171322 PMCID: PMC7071782 DOI: 10.1186/s13071-020-3999-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/26/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Proving that specific genes are essential for the intracellular viability of Leishmania parasites within macrophages remains a challenge for the identification of suitable targets for drug development. This is especially evident in the absence of a robust inducible expression system or functioning RNAi machinery that works in all Leishmania species. Currently, if a target gene of interest in extracellular parasites can only be deleted from its genomic locus in the presence of ectopic expression from a wild type copy, it is assumed that this gene will also be essential for viability in disease-promoting intracellular parasites. However, functional essentiality must be proven independently in both life-cycle stages for robust validation of the gene of interest as a putative target for chemical intervention. METHODS Here, we have used plasmid shuffle methods in vivo to provide supportive genetic evidence that N-myristoyltransferase (NMT) is essential for Leishmania viability throughout the parasite life-cycle. Following confirmation of NMT essentiality in vector-transmitted promastigotes, a range of mutant parasites were used to infect mice prior to negative selection pressure to test the hypothesis that NMT is also essential for parasite viability in an established infection. RESULTS Ectopically-expressed NMT was only dispensable under negative selection in the presence of another copy. Total parasite burdens in animals subjected to negative selection were comparable to control groups only if an additional NMT copy, not affected by the negative selection, was expressed. CONCLUSIONS NMT is an essential gene in all parasite life-cycle stages, confirming its role as a genetically-validated target for drug development.
Collapse
Affiliation(s)
- Daniel Paape
- Centre for Immunology and Infection, Department of Biology, University of York, York, YO10 5DD UK
- Present Address: Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA UK
| | - Catriona T. Prendergast
- Centre for Immunology and Infection, Department of Biology, University of York, York, YO10 5DD UK
- Present Address: Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA UK
| | - Helen P. Price
- Centre for Immunology and Infection, Department of Biology, University of York, York, YO10 5DD UK
- Present Address: Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, ST5 5BG UK
| | - Johannes S. P. Doehl
- Centre for Immunology and Infection, Department of Biology, University of York, York, YO10 5DD UK
| | - Deborah F. Smith
- Centre for Immunology and Infection, Department of Biology, University of York, York, YO10 5DD UK
| |
Collapse
|
28
|
Sykes ML, Hilko DH, Kung LI, Poulsen SA, Avery VM. Investigation of pyrimidine nucleoside analogues as chemical probes to assess compound effects on the proliferation of Trypanosoma cruzi intracellular parasites. PLoS Negl Trop Dis 2020; 14:e0008068. [PMID: 32163414 PMCID: PMC7112222 DOI: 10.1371/journal.pntd.0008068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 04/01/2020] [Accepted: 01/15/2020] [Indexed: 02/05/2023] Open
Abstract
Trypanosoma cruzi parasites utilise de novo pyrimidine biosynthesis to produce DNA and survive within mammalian host cells. This pathway can be hijacked to assess the replication of intracellular parasites with the exogenous addition of a DNA specific probe. To identify suitable probe compounds for this application, a collection of pyrimidine nucleoside analogues was assessed for incorporation into T. cruzi intracellular amastigote DNA using image-based technology and script-based analysis. Associated mammalian cell toxicity of these compounds was also determined against both the parasite host cells (3T3 cells) and HEK293 cells. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) into parasite DNA was the most effective of the probes tested, with minimal growth inhibition observed following either two or four hours EdU exposure. EdU was subsequently utilised as a DNA probe, followed by visualisation with click chemistry to a fluorescent azide, to assess the impact of drugs and compounds with previously demonstrated activity against T. cruzi parasites, on parasite replication. The inhibitory profiles of these molecules highlight the benefit of this approach for identifying surviving parasites post-treatment in vitro and classifying compounds as either fast or slow-acting. F-ara-EdU resulted in <50% activity observed against T. cruzi amastigotes following 48 hours incubation, at 73 μM. Collectively, this supports the further development of pyrimidine nucleosides as chemical probes to investigate replication of the parasite T. cruzi. Chagas disease occurs within 21 countries in the Americas, causes over 10, 000 deaths per year and a further 25 million people are at risk of being infected. The cause of Chagas disease is Trypanosoma cruzi, a single celled protozoan parasite, which enters the bloodstream of a host by the bite of a “kissing bug”. In advanced disease stages, the parasite hides in heart and gut tissue and is difficult to treat. Identifying the replicative ability of these parasites is important to understanding Chagas disease progression and the effectiveness of compounds and drugs for treatment. By testing a panel of nucleoside analogues that may incorporate into DNA during synthesis, we developed an image-based method with a fluorescently-labelled DNA probe to identify replicating parasites. This method has effectively shown that drugs used to treat the parasite are able to clear intracellular infection, whilst a compound that was not efficacious in clinical trials leaves replicating T. cruzi behind. This methodology can be used to understand the action of further compounds and supports the identification of new, less toxic probes to assess intracellular parasite replication.
Collapse
Affiliation(s)
- Melissa Louise Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - David Hugh Hilko
- Chemical Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Livia Isabella Kung
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia.,Institute of Molecular Health Sciences, ETH Zurich, Switzerland
| | - Sally-Ann Poulsen
- Chemical Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Vicky Marie Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| |
Collapse
|
29
|
Comparative study of different forms of Jellein antimicrobial peptide on Leishmania parasite. Exp Parasitol 2019; 209:107823. [PMID: 31862270 DOI: 10.1016/j.exppara.2019.107823] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/23/2019] [Accepted: 12/12/2019] [Indexed: 01/16/2023]
Abstract
Typically, antimicrobial peptides (AMPs) are short positive charged peptides serving a key role in innate immunity as well as antimicrobial activity. Discovering novel therapeutic agents is considered as an undeniable demand due to increasing microbial species with antibiotic resistance. In this direction, the unique ability of AMPs to modulate immune responses highlighted them as novel drug candidates in the field of microbiology. Patients affected by leishmaniasis; a neglected tropical disease, confront serious problems for their treatment including resistance to common drugs as well as toxicity and high cost of therapy. So, there is a need for development of new drug candidates to control the diseases. Jellein, a peptide derived from royal jelly of honeybee has been shown to have promising effect against several bacterial and fungal species. In current study, anti-leishmanial effect of Jellein and its lauric acid conjugated form was investigated against two forms of Leishmania major (L. major) parasite. Moreover, cytotoxic effect of these peptides was studied in THP1 cell line and human Red Blood Cells (RBCs). Furthermore, the mechanism of action of peptides on L. major promastigotes was assessed through different methods. The results demonstrated that, conjugation of lauric acid to Jellein not only had no effect on the elevation of antimicrobial activity but also halted it completely. Moreover, Jellein caused a limitation in the number of L. major promastigotes by pore formation as well as changing the membrane potential rather than induction of apoptosis or activation of caspases.
Collapse
|
30
|
Portes JA, De Souza W. Development of an in vitro system to study the developmental stages of Toxoplasma gondii using a genetically modified strain expressing markers for tachyzoites and bradyzoites. Parasitol Res 2019; 118:3479-3489. [PMID: 31728720 DOI: 10.1007/s00436-019-06493-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
Abstract
Toxoplasma gondii, the agent of toxoplasmosis, is an intracellular parasite that can infect a wide range of vertebrate hosts. Toxoplasmosis causes severe damage to immunocompromised hosts and its treatment is mainly based on the combination of pyrimethamine and sulfadiazine, which causes relevant side effects primarily observed in AIDS patients, including bone marrow suppression and hematological toxicity (pyrimethamine) and/or hypersensitivity and allergic skin reactions (sulfadiazine). Thus, it is important to investigate new compounds against T. gondii, particularly those that may act on bradyzoites, which are present in cysts during the chronic disease phase. We propose an in vitro model to simultaneously study new candidate compounds against the two main causative stages of Toxoplasma infection in humans, using the EGS-DC strain that was modified from a type I/III strain (EGS), isolated from a case of human congenital toxoplasmosis in Brazil and engineered to express markers for both stages of development. One feature of this strain is that it presents tachyzoite and bradyzoite in the same culture system and in the same host cell under normal culture conditions. Additionally, this strain presents stage-specific fluorescent protein expression, allowing for easy identification of both stages, thus making this strain useful in different studies. HFF cells were infected and after 4 and 7 days post infection the cells were treated with 10 μM of pyrimethamine or atovaquone, for 48 or 72 h. We used high-throughput screening to quantify the extent of parasite infection. Despite a reduction in tachyzoite infection caused by both treatments, the atovaquone treatment reduced the bradyzoite infection while the pyrimethamine one increased it. Ultrastructural analysis showed that after treatment with both drugs, parasites displayed altered mitochondria. Fluorescence microscopy of cells labeled with MitoTracker CMXRos showed that the cysts present inside the cells lost their mitochondrial membrane potential. Our results indicate that this experimental model is adequate to simultaneously analyze new active compounds against tachyzoite and bradyzoite forms.
Collapse
Affiliation(s)
- J A Portes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, RJ, Brazil.,Centro de Ciências da Saúde-UFRJ, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, UFRJ, Av. Carlos Chagas Filho s/n, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - W De Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. .,Centro de Ciências da Saúde-UFRJ, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, UFRJ, Av. Carlos Chagas Filho s/n, Ilha do Fundão, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
31
|
Need for sustainable approaches in antileishmanial drug discovery. Parasitol Res 2019; 118:2743-2752. [DOI: 10.1007/s00436-019-06443-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
|
32
|
Route map for the discovery and pre-clinical development of new drugs and treatments for cutaneous leishmaniasis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 11:106-117. [PMID: 31320296 PMCID: PMC6904839 DOI: 10.1016/j.ijpddr.2019.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
Abstract
Although there have been significant advances in the treatment of visceral leishmaniasis (VL) and several novel compounds are currently in pre-clinical and clinical development for this manifestation of leishmaniasis, there have been limited advances in drug research and development (R & D) for cutaneous leishmaniasis (CL). Here we review the need for new treatments for CL, describe in vitro and in vivo assays, models and approaches taken over the past decade to establish a pathway for the discovery, and pre-clinical development of new drugs for CL. These recent advances include novel mouse models of infection using bioluminescent Leishmania, the introduction of PK/PD approaches to skin infection, and defined pre-clinical candidate profiles.
Collapse
|
33
|
Abstract
Abstract
Leishmaniasis is a group of zoonotic diseases caused by a trypanosomatid parasite mostly in impoverished populations of low-income countries. In their different forms, leishmaniasis is prevalent in more than 98 countries all over the world and approximately 360-million people are at risk. Since no vaccine is currently available to prevent any form of the disease, the control strategy of leishmaniasis mainly relies on early case detection followed by adequate pharmacological treatment that may improve the prognosis and can reduce transmission. A handful of compounds and formulations are available for the treatment of leishmaniasis in humans, but only few of them are currently in use since most of these agents are associated with toxicity problems such as nephrotoxicity and cardiotoxicity in addition to resistance problems. In recent decades, very few novel drugs, new formulations of standard drugs or combinations of them have been approved against leishmaniasis. This review highlights the current drugs and combinations that are used medical practice and recent advances in new treatments against leishmaniasis that were pointed out in the recent 2nd Conference, Global Challenges in Neglected Tropical Diseases, held in San Juan, Puerto Rico in June 2018, emphasizing the plethora of new families of molecules that are bridging the gap between preclinical and first-in-man trials in next future.
Collapse
|
34
|
Balaña-Fouce R, Pérez Pertejo MY, Domínguez-Asenjo B, Gutiérrez-Corbo C, Reguera RM. Walking a tightrope: drug discovery in visceral leishmaniasis. Drug Discov Today 2019; 24:1209-1216. [PMID: 30876846 DOI: 10.1016/j.drudis.2019.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/29/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022]
Abstract
The current commitment of the pharma industry, nongovernmental organizations and academia to find better treatments against neglected tropical diseases should end decades of challenge caused by these global scourges. The initial result of these efforts has been the introduction of enhanced combinations of drugs, currently in clinical use, or formulations thereof. Phenotypic screening based on intracellular parasite infections has been revealed as the first key tool of antileishmanial drug discovery, because most first-in-class drugs entering Phase I trials were discovered this way. The professional commitment among stakeholders has enabled the availability of a plethora of new chemical entities that fit the target product profile for these diseases. However, the rate of hit discovery in leishmaniasis is far behind that for other neglected diseases. This review defends the need to develop new screening methods that consider the part played not only by intracellular parasites but also by the host's immune system to generate disease-relevant assays and improve clinical outcomes.
Collapse
Affiliation(s)
- Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, E-24071 León, Spain
| | - M Yolanda Pérez Pertejo
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, E-24071 León, Spain
| | - Bárbara Domínguez-Asenjo
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, E-24071 León, Spain
| | - Camino Gutiérrez-Corbo
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, E-24071 León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, E-24071 León, Spain.
| |
Collapse
|
35
|
Zahedifard F, Lee H, No JH, Salimi M, Seyed N, Asoodeh A, Rafati S. Anti-leishmanial activity of Brevinin 2R and its Lauric acid conjugate type against L. major: In vitro mechanism of actions and in vivo treatment potentials. PLoS Negl Trop Dis 2019; 13:e0007217. [PMID: 30811391 PMCID: PMC6411200 DOI: 10.1371/journal.pntd.0007217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/11/2019] [Accepted: 02/05/2019] [Indexed: 12/18/2022] Open
Abstract
Leishmaniasis, as a major health problem in tropical and sub-tropical areas in the world, needs novel, safe, nontoxic and plausible therapeutic solutions for its control. As a part of innate immune system, natural antimicrobial peptides have a potential to be used as new generation of antibiotics especially after persistent resistance of conventional antimicrobial agents. Brevinin 2R, a member of Defensin families of host defense peptides, showed promising effects against bacterial and fungal infections as well as cancerous cell lines. In the current research, the anti-leishmanial effect of Brevinin 2R and its lauric acid conjugate was investigated against Leishmania major (L. major) parasite. The data revealed that, conjugation of fatty acid to Brevinin 2R, strengthen its effect on L. major promastigotes as well as toxicity and hemolytic effect. These peptides showed anitleishmanial activity through cell membrane disruption and changes in the electrical and mitochondrial membrane potential. No signs of apoptosis induction or caspase activation were detected. Despite its hemolytic and cytotoxic effect in in vitro conditions, lauric acid- Brevinin 2R (L- Brevinin 2R) did not show site specific adverse reactions in animal model. Treatment course with L- Brevinin 2R in the L. major infected mice exhibited decreased parasite load in the lymph nodes adjacent to the infected site despite cytokine production profile and footpad swelling data. Seeking novel drugs against leishmaniasis is a necessity due to inefficiency of current medications. Brevinin 2R, as a non-hemolytic natural antimicrobial peptide, was effective against vast majority of bacterial and fungal infections as well as cancerous cell lines. In this regard in the current study, the efficacy of Brevinin 2R and its lauric acid conjugate version were studied against L. major parasite growth inhibition at in vitro and in animal model. The results exhibited that, conjugation of fatty acid to Brevinin 2R exacerbated anti-leishmanial effect. L- Brevinin 2R resolved the promastigotes through membrane disruption and changes in the membrane and mitochondrial potential. Also, L- Brevinin 2R was able to limit successfully the parasite load in the lymph nodes of L. major infected animals.
Collapse
Affiliation(s)
- Farnaz Zahedifard
- Immunotherapy and Leishmania Vaccine Research Department, Pasteur Institute of Iran, Tehran, Iran
- Leishmania Research Lab, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Hyeryon Lee
- Leishmania Research Lab, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Joo Hwan No
- Leishmania Research Lab, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Mona Salimi
- Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Immunotherapy and Leishmania Vaccine Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sima Rafati
- Immunotherapy and Leishmania Vaccine Research Department, Pasteur Institute of Iran, Tehran, Iran
- * E-mail:
| |
Collapse
|
36
|
Rocha VPC, Quintino da Rocha C, Ferreira Queiroz E, Marcourt L, Vilegas W, Grimaldi GB, Furrer P, Allémann É, Wolfender JL, Soares MBP. Antileishmanial Activity of Dimeric Flavonoids Isolated from Arrabidaea brachypoda. Molecules 2018; 24:molecules24010001. [PMID: 30577423 PMCID: PMC6337281 DOI: 10.3390/molecules24010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
Leishmaniasis are diseases caused by parasites belonging to Leishmania genus. The treatment with pentavalent antimonials present high toxicity. Secondary line drugs, such as amphotericin B and miltefosine also have a narrow therapeutic index. Therefore, there is an urgent need to develop new drugs to treat leishmaniasis. Here, we present the in vitro anti-leishmanial activity of unusual dimeric flavonoids purified from Arrabidaea brachypoda. Three compounds were tested against Leishmana sp. Compound 2 was the most active against promastigotes. Quantifying the in vitro infected macrophages revealed that compound 2 was also the most active against intracellular amastigotes of L. amazonensis, without displaying host cell toxicity. Drug combinations presented an additive effect, suggesting the absence of interaction between amphotericin B and compound 2. Amastigotes treated with compound 2 demonstrated alterations in the Golgi and accumulation of vesicles inside the flagellar pocket. Compound 2-treated amastigotes presented a high accumulation of cytoplasmic vesicles and a myelin-like structure. When administered in L. amazonensis-infected mice, neither the oral nor the topical treatments were effective against the parasite. Based on the high in vitro activity, dimeric flavonoids can be used as a lead structure for the development of new molecules that could be useful for structure-active studies against Leishmania.
Collapse
Affiliation(s)
- Vinícius P C Rocha
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Avenida Waldemar Falcão, 121, Candeal⁻Salvador-BA 40296-710, Brazil.
| | | | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, 1, Rue Michel Servet, 1211 Geneva, Switzerland.
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, 1, Rue Michel Servet, 1211 Geneva, Switzerland.
| | - Wagner Vilegas
- UNESP-Campus Experimental do Litoral Paulista, Praça Infante Dom Henrique s/n°, Parque Bitaru, São Vicente⁻SP 11330-900, Brazil.
| | - Gabriela B Grimaldi
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Avenida Waldemar Falcão, 121, Candeal⁻Salvador-BA 40296-710, Brazil.
| | - Pascal Furrer
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, 1, Rue Michel Servet, 1211 Geneva, Switzerland.
| | - Éric Allémann
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, 1, Rue Michel Servet, 1211 Geneva, Switzerland.
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, 1, Rue Michel Servet, 1211 Geneva, Switzerland.
| | - Milena B P Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Avenida Waldemar Falcão, 121, Candeal⁻Salvador-BA 40296-710, Brazil.
| |
Collapse
|
37
|
Alcântara LM, Ferreira TCS, Gadelha FR, Miguel DC. Challenges in drug discovery targeting TriTryp diseases with an emphasis on leishmaniasis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:430-439. [PMID: 30293058 PMCID: PMC6195035 DOI: 10.1016/j.ijpddr.2018.09.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/24/2023]
Abstract
Tritryps diseases are devastating parasitic neglected infections caused by Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei subspecies. Together, these parasites affect more than 30 million people worldwide and cause high mortality and morbidity. Leishmaniasis comprises a complex group of diseases with clinical manifestation ranging from cutaneous lesions to systemic visceral damage. Antimonials, the first-choice drugs used to treat leishmaniasis, lead to high toxicity and carry significant contraindications limiting its use. Drug-resistant parasite strains are also a matter for increasing concern, especially in areas with very limited resources. The current scenario calls for novel and/or improvement of existing therapeutics as key research priorities in the field. Although several studies have shown advances in drug discovery towards leishmaniasis in recent years, key knowledge gaps in drug discovery pipelines still need to be addressed. In this review we discuss not only scientific and non-scientific bottlenecks in drug development, but also the central role of public-private partnerships for a successful campaign for novel treatment options against this devastating disease. Treatment options targeting TriTryp diseases are limited. Scientific and non-scientific bottlenecks need to be unveiled for the development of new treatments. Private and public sector partnership is key to allow advances in bench-to-bedside science.
Collapse
Affiliation(s)
- Laura M Alcântara
- Biology Institute, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Thalita C S Ferreira
- Biology Institute, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Fernanda R Gadelha
- Biology Institute, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Biology Institute, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
38
|
High-content imaging assay to evaluate Toxoplasma gondii infection and proliferation: A multiparametric assay to screen new compounds. PLoS One 2018; 13:e0201678. [PMID: 30157171 PMCID: PMC6115017 DOI: 10.1371/journal.pone.0201678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/19/2018] [Indexed: 01/26/2023] Open
Abstract
Toxoplasma gondii is an intracellular protozoan parasite widely distributed in animals and humans. Infection of host cells and parasite proliferation are essential steps in Toxoplasma pathology. The objective of this study was to develop and validate a novel automatic High Content Imaging (HCI) assay to study T. gondii infection and proliferation. We tested various fluorescent markers and strategies of image analysis to obtain an automated method providing results comparable to those from gold standard infection and proliferation assays. No significant difference was observed between the results obtained from the HCI assay and the standard assays (manual fluorescence microscopy and incorporation of [3H]-uracil). We developed here a robust and time-saving assay. This automated technology was then used to screen a library of compounds belonging to four classes of either natural compounds or synthetic derivatives. Inhibition of parasite proliferation and host cell toxicity were measured in the same assay and led to the identification of one hit, a thiosemicarbazone that allows important inhibition of Toxoplasma proliferation while being relatively safe for the host cells.
Collapse
|
39
|
Current Screening Methodologies in Drug Discovery for Selected Human Diseases. Mar Drugs 2018; 16:md16080279. [PMID: 30110923 PMCID: PMC6117650 DOI: 10.3390/md16080279] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/11/2018] [Indexed: 01/31/2023] Open
Abstract
The increase of many deadly diseases like infections by multidrug-resistant bacteria implies re-inventing the wheel on drug discovery. A better comprehension of the metabolisms and regulation of diseases, the increase in knowledge based on the study of disease-born microorganisms’ genomes, the development of more representative disease models and improvement of techniques, technologies, and computation applied to biology are advances that will foster drug discovery in upcoming years. In this paper, several aspects of current methodologies for drug discovery of antibacterial and antifungals, anti-tropical diseases, antibiofilm and antiquorum sensing, anticancer and neuroprotectors are considered. For drug discovery, two different complementary approaches can be applied: classical pharmacology, also known as phenotypic drug discovery, which is the historical basis of drug discovery, and reverse pharmacology, also designated target-based drug discovery. Screening methods based on phenotypic drug discovery have been used to discover new natural products mainly from terrestrial origin. Examples of the discovery of marine natural products are provided. A section on future trends provides a comprehensive overview on recent advances that will foster the pharmaceutical industry.
Collapse
|
40
|
Importance of secondary screening with clinical isolates for anti-leishmania drug discovery. Sci Rep 2018; 8:11765. [PMID: 30082744 PMCID: PMC6078976 DOI: 10.1038/s41598-018-30040-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
Abstract
The growing drug resistance (DR) raises major concerns for the control of visceral leishmaniasis (VL), a neglected disease lethal in 95 percent of the cases if left untreated. Resistance has rendered antimonials (SSG) obsolete in the Indian Sub-Continent (ISC) and the first miltefosine-resistant Leishmania donovani were isolated. New chemotherapeutic options are needed and novel compounds are being identified by high-throughput screening (HTS). HTS is generally performed with old laboratory strains such as LdBOB and we aimed here to validate the activity of selected compounds against recent clinical isolates. In this academic/industrial collaboration, 130 compounds from the GSK “Leishbox” were screened against one SSG-sensitive and one SSG-resistant strain of L. donovani recently isolated from ISC patients, using an intracellular assay of L. donovani-infected THP1-derived macrophages. We showed that only 45% of the compounds were active in both clinical isolates and LdBOB. There were also different compound efficiencies linked to the SSG susceptibility background of the strains. In addition, our results suggested that the differential susceptibility profiles were chemical series-dependent. In conclusion, we demonstrate the potential value of including clinical isolates (as well as resistant strains) in the HTS progression cascade.
Collapse
|
41
|
Gomes-Alves AG, Maia AF, Cruz T, Castro H, Tomás AM. Development of an automated image analysis protocol for quantification of intracellular forms of Leishmania spp. PLoS One 2018; 13:e0201747. [PMID: 30071097 PMCID: PMC6072083 DOI: 10.1371/journal.pone.0201747] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/20/2018] [Indexed: 11/18/2022] Open
Abstract
Leishmania parasites cause a set of neglected tropical diseases with considerable public health impact, the leishmaniases, which are often fatal if left untreated. Since current treatments for the leishmaniases exhibit high toxicity, low efficacy and prohibitive prices, many laboratories throughout the world are engaged in research for the discovery of novel chemotherapeutics. This entails the necessity of screening large numbers of compounds against the clinically relevant form of the parasite, the obligatory intracellular amastigote, a procedure that in many laboratories is still carried out by manual inspection. To overcome this well-known bottleneck in Leishmania drug development, several studies have recently attempted to automate this process. Here we implemented an image-based high content triage assay for Leishmania which has the added advantages of using primary macrophages instead of macrophage cell lines and of enabling identification of active compounds against parasite species developing both in small individual phagolysosomes (such as L. infantum) and in large communal vacuoles (such as L. amazonensis). The automated image analysis protocol is made available for IN Cell Analyzer systems, and, importantly, also for the open-source CellProfiler software, in this way extending its implementation to any laboratory involved in drug development as well as in other aspects of Leishmania research requiring analysis of in vitro infected macrophages.
Collapse
Affiliation(s)
- Ana G. Gomes-Alves
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- CEB – Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal
| | - André F. Maia
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Tânia Cruz
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Helena Castro
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana M. Tomás
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
42
|
Weng HB, Chen HX, Wang MW. Innovation in neglected tropical disease drug discovery and development. Infect Dis Poverty 2018; 7:67. [PMID: 29950174 PMCID: PMC6022351 DOI: 10.1186/s40249-018-0444-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Neglected tropical diseases (NTDs) are closely related to poverty and affect over a billion people in developing countries. The unmet treatment needs cause high mortality and disability thereby imposing a huge burden with severe social and economic consequences. Although coordinated by the World Health Organization, various philanthropic organizations, national governments and the pharmaceutical industry have been making efforts in improving the situation, the control of NTDs is still inadequate and extremely difficult today. The lack of safe, effective and affordable medicines is a key contributing factor. This paper reviews the recent advances and some of the challenges that we are facing in the fight against NTDs. MAIN BODY In recent years, a number of innovations have demonstrated propensity to promote drug discovery and development for NTDs. Implementation of multilateral collaborations leads to continued efforts and plays a crucial role in drug discovery. Proactive approaches and advanced technologies are urgently needed in drug innovation for NTDs. However, the control and elimination of NTDs remain a formidable task as it requires persistent international cooperation to make sustainable progresses for a long period of time. Some currently employed strategies were proposed and verified to be successful, which involve both mechanisms of 'Push' which aims at cutting the cost of research and development for industry and 'Pull' which aims at increasing market attractiveness. Coupled to this effort should be the exercise of shared responsibility globally to reduce risks, overcome obstacles and maximize benefits. Since NTDs are closely associated with poverty, it is absolutely essential that the stakeholders take concerted and long-term measures to meet multifaceted challenges by alleviating extreme poverty, strengthening social intervention, adapting climate changes, providing effective monitoring and ensuring timely delivery. CONCLUSIONS The ongoing endeavor at the global scale will ultimately benefit the patients, the countries they are living and, hopefully, the manufacturers who provide new preventive, diagnostic and therapeutic products.
Collapse
Affiliation(s)
- Hong-Bo Weng
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Hai-Xia Chen
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Ming-Wei Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203 China
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 189 Guoshoujing Road, Pudong New District, Shanghai, 201203 China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210 China
| |
Collapse
|
43
|
Ayotte Y, Bilodeau F, Descoteaux A, LaPlante SR. Fragment-Based Phenotypic Lead Discovery: Cell-Based Assay to Target Leishmaniasis. ChemMedChem 2018; 13:1377-1386. [PMID: 29722149 DOI: 10.1002/cmdc.201800161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/20/2018] [Indexed: 12/24/2022]
Abstract
A rapid and practical approach for the discovery of new chemical matter for targeting pathogens and diseases is described. Fragment-based phenotypic lead discovery (FPLD) combines aspects of traditional fragment-based lead discovery (FBLD), which involves the screening of small-molecule fragment libraries to target specific proteins, with phenotypic lead discovery (PLD), which typically involves the screening of drug-like compounds in cell-based assays. To enable FPLD, a diverse library of fragments was first designed, assembled, and curated. This library of soluble, low-molecular-weight compounds was then pooled to expedite screening. Axenic cultures of Leishmania promastigotes were screened, and single hits were then tested for leishmanicidal activity against intracellular amastigote forms in infected murine bone-marrow-derived macrophages without evidence of toxicity toward mammalian cells. These studies demonstrate that FPLD can be a rapid and effective means to discover hits that can serve as leads for further medicinal chemistry purposes or as tool compounds for identifying known or novel targets.
Collapse
Affiliation(s)
- Yann Ayotte
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - François Bilodeau
- NMX Research and Solutions Inc., 500 boulevard Cartier, Laval, Québec, H7V 5B7, Canada
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Steven R LaPlante
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
44
|
Sarkar A, Khan YA, Laranjeira-Silva MF, Andrews NW, Mittra B. Quantification of Intracellular Growth Inside Macrophages is a Fast and Reliable Method for Assessing the Virulence of Leishmania Parasites. J Vis Exp 2018. [PMID: 29608175 DOI: 10.3791/57486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The lifecycle of Leishmania, the causative agent of leishmaniasis, alternates between promastigote and amastigote stages inside the insect and vertebrate hosts, respectively. While pathogenic symptoms of leishmaniasis can vary widely, from benign cutaneous lesions to highly fatal visceral disease forms depending on the infective species, all Leishmania species reside inside host macrophages during the vertebrate stage of their lifecycle. Leishmania infectivity is therefore directly related to its ability to invade, survive and replicate within parasitophorous vacuoles (PVs) inside macrophages. Thus, assessing the parasite's ability to replicate intracellularly serves as a dependable method for determining virulence. Studying leishmaniasis development using animal models is time-consuming, tedious and often difficult, particularly with the pathogenically important visceral forms. We describe here a methodology to follow the intracellular development of Leishmania in bone marrow-derived macrophages (BMMs). Intracellular parasite numbers are determined at 24 h intervals for 72 - 96 h following infection. This method allows for a reliable determination of the effects of various genetic factors on Leishmania virulence. As an example, we show how a single allele deletion of the Leishmania Mitochondrial Iron Transporter gene (LMIT1) impairs the ability of the Leishmania amazonensis mutant strain LMIT1/ΔLmit1 to grow inside BMMs, reflecting a drastic reduction in virulence compared to wild-type. This assay also allows precise control of experimental conditions, which can be individually manipulated to analyze the influence of various factors (nutrients, reactive oxygen species, etc.) on the host-pathogen interaction. Therefore, the appropriate execution and quantification of BMM infection studies provide a non-invasive, rapid, economical, safe and reliable alternative to conventional animal model studies.
Collapse
Affiliation(s)
- Amrita Sarkar
- Department of Cell Biology and Molecular Genetics, University of Maryland
| | - Yousuf A Khan
- Department of Cell Biology and Molecular Genetics, University of Maryland
| | | | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland
| | - Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland;
| |
Collapse
|
45
|
Eren RO, Kopelyanskiy D, Moreau D, Chapalay JB, Chambon M, Turcatti G, Lye LF, Beverley SM, Fasel N. Development of a semi-automated image-based high-throughput drug screening system. Front Biosci (Elite Ed) 2018; 10:242-253. [PMID: 28930616 PMCID: PMC5735416 DOI: 10.2741/e820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We previously reported that the innate sensing of the endosymbiont Leishmania RNA virus 1 (LRV1) within Leishmania (Viannia) guyanensis through Toll-like receptor 3, worsens the pathogenesis of parasite infection in mice. The presence of LRV1 has been associated with the failure of first-line treatment in patients infected with LRV1 containing -L. guyanensis and -L. braziliensis parasites. Here, we established a semi-automated image-based high-throughput drug screening (HTDS) protocol to measure parasiticidal activity of the Prestwick chemical library in primary murine macrophages infected with LRV1-containing L. guyanensis. The two-independent screens generated 14 hit compounds with over sixty-nine percent reduction in parasite growth compared to control, at a single dose in both screens. Our screening strategy offers great potential in the search for new drugs and accelerates the discovery rate in the field of drug repurposing against Leishmania. Moreover, this technique allows the concomitant assessment of the effect of drug toxicity on host cell number.
Collapse
Affiliation(s)
- Remzi Onur Eren
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Dmitry Kopelyanskiy
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Dimitri Moreau
- Access Platform Swiss National Centre of Competence in Research (NCCR), University of Geneva, 1211 Geneva, Switzerland
| | - Julien Bortoli Chapalay
- Biomolecular Screening Facility, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marc Chambon
- Biomolecular Screening Facility, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lon-Fye Lye
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Stephen M Beverley
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland,
| |
Collapse
|
46
|
Antileishmanial and antitrypanosomal drug identification. Emerg Top Life Sci 2017; 1:613-620. [PMID: 33525851 DOI: 10.1042/etls20170103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023]
Abstract
Although the treatments for human African trypanosomiasis (HAT), leishmaniasis and Chagas disease (CD) still rely on drugs developed several decades ago, there has been significant progress in the identification, development and use of novel drugs and formulations. Notably, there are now two drugs in clinical trial for HAT, fexinidazole and acoziborole; the liposomal amphotericin B formulation AmBisome has become an essential tool for both treatment and control of visceral leishmaniasis; and antifungal triazoles, posoconazole and ravuconazole, together with fexinidazole, have reached clinical trials for CD. Several other novel and diverse candidates are moving through the pipeline; sustained funding for their clinical development will now be the key to bring new safe, oral, shorter-course treatments to the clinic.
Collapse
|
47
|
Antileishmanial Efficacy and Pharmacokinetics of DB766-Azole Combinations. Antimicrob Agents Chemother 2017; 62:AAC.01129-17. [PMID: 29061761 DOI: 10.1128/aac.01129-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/18/2017] [Indexed: 01/04/2023] Open
Abstract
Given the limitations of current antileishmanial drugs and the utility of oral combination therapy for other infections, developing an oral combination against visceral leishmaniasis should be a high priority. In vitro combination studies with DB766 and antifungal azoles against intracellular Leishmania donovani showed that posaconazole and ketoconazole, but not fluconazole, enhanced DB766 potency. Pharmacokinetic analysis of DB766-azole combinations in uninfected Swiss Webster mice revealed that DB766 exposure was increased by higher posaconazole and ketoconazole doses, while DB766 decreased ketoconazole exposure. In L. donovani-infected BALB/c mice, DB766-posaconazole combinations given orally for 5 days were more effective than DB766 or posaconazole alone. For example, 81% ± 1% (means ± standard errors) inhibition of liver parasite burden was observed for 37.5 mg/kg of body weight DB766 plus 15 mg/kg posaconazole, while 37.5 mg/kg DB766 and 15 mg/kg posaconazole administered as monotherapy gave 40% ± 5% and 21% ± 3% inhibition, respectively. Combination index (CI) analysis indicated that synergy or moderate synergy was observed in six of nine combined dose groups, while the other three were nearly additive. Liver concentrations of DB766 and posaconazole increased in almost all combination groups compared to monotherapy groups, although many increases were not statistically significant. For DB766-ketoconazole combinations evaluated in this model, two were antagonistic, one displayed synergy, and one was nearly additive. These data indicate that the efficacy of DB766-posaconazole and DB766-ketoconazole combinations in vivo is influenced in part by the pharmacokinetics of the combination, and that the former combination deserves further consideration in developing new treatment strategies against visceral leishmaniasis.
Collapse
|
48
|
Ortiz D, Guiguemde WA, Hammill JT, Carrillo AK, Chen Y, Connelly M, Stalheim K, Elya C, Johnson A, Min J, Shelat A, Smithson DC, Yang L, Zhu F, Guy RK, Landfear SM. Discovery of novel, orally bioavailable, antileishmanial compounds using phenotypic screening. PLoS Negl Trop Dis 2017; 11:e0006157. [PMID: 29287089 PMCID: PMC5764437 DOI: 10.1371/journal.pntd.0006157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/11/2018] [Accepted: 12/09/2017] [Indexed: 12/20/2022] Open
Abstract
Leishmaniasis is a parasitic infection that afflicts approximately 12 million people worldwide. There are several limitations to the approved drug therapies for leishmaniasis, including moderate to severe toxicity, growing drug resistance, and the need for extended dosing. Moreover, miltefosine is currently the only orally available drug therapy for this infection. We addressed the pressing need for new therapies by pursuing a two-step phenotypic screen to discover novel, potent, and orally bioavailable antileishmanials. First, we conducted a high-throughput screen (HTS) of roughly 600,000 small molecules for growth inhibition against the promastigote form of the parasite life cycle using the nucleic acid binding dye SYBR Green I. This screen identified approximately 2,700 compounds that inhibited growth by over 65% at a single point concentration of 10 μM. We next used this 2700 compound focused library to identify compounds that were highly potent against the disease-causing intra-macrophage amastigote form and exhibited limited toxicity toward the host macrophages. This two-step screening strategy uncovered nine unique chemical scaffolds within our collection, including two previously described antileishmanials. We further profiled two of the novel compounds for in vitro absorption, distribution, metabolism, excretion, and in vivo pharmacokinetics. Both compounds proved orally bioavailable, affording plasma exposures above the half-maximal effective concentration (EC50) concentration for at least 12 hours. Both compounds were efficacious when administered orally in a murine model of cutaneous leishmaniasis. One of the two compounds exerted potent activity against trypanosomes, which are kinetoplastid parasites related to Leishmania species. Therefore, this compound could help control multiple parasitic diseases. The promising pharmacokinetic profile and significant in vivo efficacy observed from our HTS hits highlight the utility of our two-step phenotypic screening strategy and strongly suggest that medicinal chemistry optimization of these newly identified scaffolds will lead to promising candidates for an orally available anti-parasitic drug.
Collapse
Affiliation(s)
- Diana Ortiz
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - W. Armand Guiguemde
- Department of Chemical Biology and Theraputics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jared T. Hammill
- Department of Chemical Biology and Theraputics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Angela K. Carrillo
- Department of Chemical Biology and Theraputics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yizhe Chen
- Department of Chemical Biology and Theraputics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michele Connelly
- Department of Chemical Biology and Theraputics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kayla Stalheim
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Carolyn Elya
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Alex Johnson
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jaeki Min
- Department of Chemical Biology and Theraputics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anang Shelat
- Department of Chemical Biology and Theraputics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - David C. Smithson
- Department of Chemical Biology and Theraputics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Lei Yang
- Department of Chemical Biology and Theraputics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Fangyi Zhu
- Department of Chemical Biology and Theraputics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - R. Kiplin Guy
- Department of Chemical Biology and Theraputics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Scott M. Landfear
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
49
|
Torrie LS, Brand S, Robinson DA, Ko EJ, Stojanovski L, Simeons FRC, Wyllie S, Thomas J, Ellis L, Osuna-Cabello M, Epemolu O, Nühs A, Riley J, MacLean L, Manthri S, Read KD, Gilbert IH, Fairlamb AH, De Rycker M. Chemical Validation of Methionyl-tRNA Synthetase as a Druggable Target in Leishmania donovani. ACS Infect Dis 2017; 3:718-727. [PMID: 28967262 PMCID: PMC5663395 DOI: 10.1021/acsinfecdis.7b00047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Methionyl-tRNA synthetase
(MetRS) has been chemically validated as a drug target in the kinetoplastid
parasite Trypanosoma brucei. In the present study,
we investigate the validity of this target in the related trypanosomatid Leishmania donovani. Following development of a robust high-throughput
compatible biochemical assay, a compound screen identified DDD806905
as a highly potent inhibitor of LdMetRS (Ki of 18 nM). Crystallography revealed this compound
binds to the methionine pocket of MetRS with enzymatic studies confirming
DDD806905 displays competitive inhibition with respect to methionine
and mixed inhibition with respect to ATP binding. DDD806905 showed
activity, albeit with different levels of potency, in various Leishmania cell-based viability assays, with on-target activity
observed in both Leishmania promastigote cell assays
and a Leishmania tarentolae in vitro translation
assay. Unfortunately, this compound failed to show efficacy in an
animal model of leishmaniasis. We investigated the potential causes
for the discrepancies in activity observed in different Leishmania cell assays and the lack of efficacy in the animal model and found
that high protein binding as well as sequestration of this dibasic
compound into acidic compartments may play a role. Despite medicinal
chemistry efforts to address the dibasic nature of DDD806905 and analogues,
no progress could be achieved with the current chemical series. Although
DDD806905 is not a developable antileishmanial compound, MetRS remains
an attractive antileishmanial drug target.
Collapse
Affiliation(s)
- Leah S. Torrie
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Stephen Brand
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - David A. Robinson
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Eun Jung Ko
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Laste Stojanovski
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Frederick R. C. Simeons
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Susan Wyllie
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - John Thomas
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Lucy Ellis
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Maria Osuna-Cabello
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Ola Epemolu
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Andrea Nühs
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Jennifer Riley
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Lorna MacLean
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Sujatha Manthri
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Kevin D. Read
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Ian H. Gilbert
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alan H. Fairlamb
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Manu De Rycker
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
50
|
Zulfiqar B, Jones AJ, Sykes ML, Shelper TB, Davis RA, Avery VM. Screening a Natural Product-Based Library against Kinetoplastid Parasites. Molecules 2017; 22:E1715. [PMID: 29023425 PMCID: PMC6151456 DOI: 10.3390/molecules22101715] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
Kinetoplastid parasites cause vector-borne parasitic diseases including leishmaniasis, human African trypanosomiasis (HAT) and Chagas disease. These Neglected Tropical Diseases (NTDs) impact on some of the world's lowest socioeconomic communities. Current treatments for these diseases cause severe toxicity and have limited efficacy, highlighting the need to identify new treatments. In this study, the Davis open access natural product-based library was screened against kinetoplastids (Leishmania donovani DD8, Trypanosoma brucei brucei and Trypanosoma cruzi) using phenotypic assays. The aim of this study was to identify hit compounds, with a focus on improved efficacy, selectivity and potential to target several kinetoplastid parasites. The IC50 values of the natural products were obtained for L. donovani DD8, T. b. brucei and T. cruzi in addition to cytotoxicity against the mammalian cell lines, HEK-293, 3T3 and THP-1 cell lines were determined to ascertain parasite selectivity. Thirty-one compounds were identified with IC50 values of ≤ 10 µM against the kinetoplastid parasites tested. Lissoclinotoxin E (1) was the only compound identified with activity across all three investigated parasites, exhibiting IC50 values < 5 µM. In this study, natural products with the potential to be new chemical starting points for drug discovery efforts for kinetoplastid diseases were identified.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Amy J Jones
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Melissa L Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Todd B Shelper
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Rohan A Davis
- Natural Product Chemistry, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|