1
|
Carnec X, Borges-Cardoso V, Reynard S, Kowalski H, Gaillard JC, Mateo M, Armengaud J, Baize S. Targeting n-myristoyltransferases promotes a pan-Mammarenavirus inhibition through the degradation of the Z matrix protein. PLoS Pathog 2024; 20:e1012715. [PMID: 39625987 DOI: 10.1371/journal.ppat.1012715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/19/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024] Open
Abstract
Several Old World and New World Mammarenavirus are responsible for hemorrhagic fever in humans. These enveloped viruses have a bi-segmented ambisense RNA genome that encodes four proteins. All Mammarenavirus identified to date share a common dependency on myristoylation: the addition of the C14 myristic acid on the N-terminal G2 residue on two of their proteins. The myristoylation of the Z matrix protein is required for viral particle budding, while the myristoylation of the signal peptide to the envelope glycoproteins is important for the entry mechanism. Using Mopeia virus as a model, we characterized the interaction of the Z matrix protein with the N-Myristoyltransferases (NMT) 1 and 2, the two enzymes responsible for myristoylation in mammals. While both enzymes were capable to interact with Z, we showed that only NMT1 was important for the production of viral progeny, the endogenous expression of NMT2 being insufficient to make up for NMT1 in its absence. Using the high affinity inhibitors of NMTs, IMP1088 and DDD85646, we demonstrated a strong, dose dependent and specific inhibition at the nanomolar range for all Mammarenavirus tested, including the highly pathogenic Lassa, Machupo, Junin and Lujo viruses. Mechanistically, IMP1088 and DDD85646 blocked the interaction between Z and both NMTs, preventing myristoylation and further viral particle formation, egress and spread. Unexpectedly, we found that the matrix protein devoid of myristate, despite being fully translated, did not accumulate as the other viral proteins in infected cells but was instead degraded in a proteasome- and autophagy-independent manner. These molecules represent a new broad-spectrum class of inhibitors against Mammarenavirus.
Collapse
Affiliation(s)
- Xavier Carnec
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Virginie Borges-Cardoso
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Heinrich Kowalski
- Center for Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Jean-Charles Gaillard
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (LI2D), Service de Pharmacologie et Immunoanalyse (SPI), Commissariat à l'Energie Atomique et aux Energies Alternatives, Bagnols sur Cèze, France
| | - Mathieu Mateo
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (LI2D), Service de Pharmacologie et Immunoanalyse (SPI), Commissariat à l'Energie Atomique et aux Energies Alternatives, Bagnols sur Cèze, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
2
|
Dutuze MF, Clark SD, Del Piero F, Christofferson RC. Preliminary evidence that Bunyamwera virus causes severe disease characterized by systemic vascular and multiorgan necrosis in an immunocompromised mouse model. J Gen Virol 2024; 105:002040. [PMID: 39503743 PMCID: PMC11539936 DOI: 10.1099/jgv.0.002040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Bunyamwera virus (BUNV) is the prototypical member of the Bunyamwera serogroup within the Orthobunyvirus genus. BUNV is transmitted by mosquito vectors of the genera Culex, Aedes and Anopheles and has historically circulated in East Africa, though the transmission has been observed in Argentina. BUNV has been identified as an agent of human and animal disease and has also been misdiagnosed as other agents. BUNV is often thought to be an agent of mild febrile illness in humans, though it can cause abortions in ruminants and neurological disease in horses. Joint pain and gastritis have also been attributed to BUNV. There are limited data concerning the possible spectrum of disease and extent of pathogenesis of BUNV infection, and there are currently no therapeutics or vaccines available. Furthermore, options for animal models for Orthobunyaviruses in general - of which BUNV is the prototypical member - are limited. Eight mice deficient in the type I interferon response were infected with BUNV, and all developed overt disease. All mice developed detectable viraemia and clinical signs, including weight loss, hunched posture and lethargy. Three of the eight mice developed severe diseases, including vascular necrosis and necrosis in the liver, lungs, reproductive organs, bone marrow and spleen, as well as haemorrhages (n=1) and severe diffuse facial oedema (n=3), reminiscent of the pathology of Schmallenberg and the Arenaviruses Lassa and Lujo viruses. Thus, BUNV infection of IRF3/7 DKO mice could serve as a BSL-2 model for severe diseases of higher-risk group viruses, which often must be studied at BSL-4. Additionally, our results suggest that BUNV may have the ability to cause severe disease in immunocompromised hosts. Thus, further investigation into the potential spectrum of pathogenesis due to BUNV is important to prioritize for outbreak response, diagnostics and the development of countermeasures.
Collapse
Affiliation(s)
- M. Fausta Dutuze
- Rwanda Institute for Conservation Agriculture, Kigali, Rwanda
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Samantha D. Clark
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Fabio Del Piero
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
3
|
Nuñez IA, Crane A, Crozier I, Worwa G, Kuhn JH. Treatment of highly virulent mammarenavirus infections-status quo and future directions. Expert Opin Drug Discov 2024; 19:537-551. [PMID: 38606475 PMCID: PMC11069405 DOI: 10.1080/17460441.2024.2340494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Mammarenaviruses are negative-sense bisegmented enveloped RNA viruses that are endemic in Africa, the Americas, and Europe. Several are highly virulent, causing acute human diseases associated with high case fatality rates, and are considered to be significant with respect to public health impact or bioterrorism threat. AREAS COVERED This review summarizes the status quo of treatment development, starting with drugs that are in advanced stages of evaluation in early clinical trials, followed by promising candidate medical countermeasures emerging from bench analyses and investigational animal research. EXPERT OPINION Specific therapeutic treatments for diseases caused by mammarenaviruses remain limited to the off-label use of ribavirin and transfusion of convalescent sera. Progress in identifying novel candidate medical countermeasures against mammarenavirus infection has been slow in part because of the biosafety and biosecurity requirements. However, novel methodologies and tools have enabled increasingly efficient high-throughput molecular screens of regulatory-agency-approved small-molecule drugs and led to the identification of several compounds that could be repurposed for the treatment of infection with several mammarenaviruses. Unfortunately, most of them have not yet been evaluated in vivo. The most promising treatment under development is a monoclonal antibody cocktail that is protective against multiple lineages of the Lassa virus in nonhuman primate disease models.
Collapse
Affiliation(s)
- Ivette A. Nuñez
- Integrated Research Facility at Fort Detrick, Division of
Clinical Research, National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Fort Detrick, Frederick, MD21702, USA
| | - Anya Crane
- Integrated Research Facility at Fort Detrick, Division of
Clinical Research, National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Fort Detrick, Frederick, MD21702, USA
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick
National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, Division of
Clinical Research, National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Fort Detrick, Frederick, MD21702, USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of
Clinical Research, National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Fort Detrick, Frederick, MD21702, USA
| |
Collapse
|
4
|
Iyer K, Yan Z, Ross SR. Entry inhibitors as arenavirus antivirals. Front Microbiol 2024; 15:1382953. [PMID: 38650890 PMCID: PMC11033450 DOI: 10.3389/fmicb.2024.1382953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Arenaviruses belonging to the Arenaviridae family, genus mammarenavirus, are enveloped, single-stranded RNA viruses primarily found in rodent species, that cause severe hemorrhagic fever in humans. With high mortality rates and limited treatment options, the search for effective antivirals is imperative. Current treatments, notably ribavirin and other nucleoside inhibitors, are only partially effective and have significant side effects. The high lethality and lack of treatment, coupled with the absence of vaccines for all but Junín virus, has led to the classification of these viruses as Category A pathogens by the Centers for Disease Control (CDC). This review focuses on entry inhibitors as potential therapeutics against mammarenaviruses, which include both New World and Old World arenaviruses. Various entry inhibition strategies, including small molecule inhibitors and neutralizing antibodies, have been explored through high throughput screening, genome-wide studies, and drug repurposing. Notable progress has been made in identifying molecules that target receptor binding, internalization, or fusion steps. Despite promising preclinical results, the translation of entry inhibitors to approved human therapeutics has faced challenges. Many have only been tested in in vitro or animal models, and a number of candidates showed efficacy only against specific arenaviruses, limiting their broader applicability. The widespread existence of arenaviruses in various rodent species and their potential for their zoonotic transmission also underscores the need for rapid development and deployment of successful pan-arenavirus therapeutics. The diverse pool of candidate molecules in the pipeline provides hope for the eventual discovery of a broadly effective arenavirus antiviral.
Collapse
Affiliation(s)
| | | | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago, IL, United States
| |
Collapse
|
5
|
Karnam S, Huang Y, Nguyen N, Yeh S. Ophthalmic consequences of viral hemorrhagic fevers: Insights from the clinic and laboratory. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Viral hemorrhagic fevers (VHFs) are a diverse group of RNA virus-mediated systemic diseases with significant morbidity and mortality and represent a significant public health concern. Given the high systemic morbidity and mortality in a number of these entities, delays in diagnosis can lead to downstream public health consequences. Many viral hemorrhagic fevers have ophthalmic manifestations and ophthalmologists thus play a key role in disease recognition and the management of ocular complications associated with specific hemorrhagic fevers. This review summarizes the key ophthalmic consequences of viral hemorrhagic fevers, viral disease pathogenesis, disease findings, and areas of unmet research need.
Collapse
|
6
|
Islam E. Development of epitope-based chimeric protein as a vaccine against Lujo virus by utilizing immunoinformatic tools. Future Virol 2022. [DOI: 10.2217/fvl-2021-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Lujo is a modern zoonotic virus that is potentially fatal and spreads by bodily fluids. In this research, immunoinformatic tools are used to build a vaccine. Methodology: The epitopes of cytotoxic T-lymphocytes, helper T-lymphocytes and linear B-lymphocytes were predicted from the most antigenic protein. The designed vaccine's physiochemical properties and 3D structure have been forecasted. Low free energy and strong binding affinity estimated in molecular docking against toll-like receptor 4 (TLR4) and dynamic simulation. Furthermore, in silico cloning in the Escherichia coli K12 host system was performed for high level of expression. Conclusion: Finally, immune simulation was used to determine immune responses to the vaccine that was formulated confirming the developed vaccine as a good candidate against Lujo virus.
Collapse
Affiliation(s)
- Enayetul Islam
- Department of Genetic Engineering & Biotechnology, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
7
|
Molecular Mechanisms Underlying the Cellular Entry and Host Range Restriction of Lujo Virus. mBio 2021; 13:e0306021. [PMID: 35164564 PMCID: PMC8844913 DOI: 10.1128/mbio.03060-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Like other human-pathogenic arenaviruses, Lujo virus (LUJV) is a causative agent of viral hemorrhagic fever in humans. LUJV infects humans with high mortality rates, but the susceptibilities of other animal species and the molecular determinants of its host specificity remain unknown. We found that mouse- and hamster-derived cell lines (NIH 3T3 and BHK, respectively) were less susceptible to a replication-incompetent recombinant vesicular stomatitis virus (Indiana) pseudotyped with the LUJV glycoprotein (GP) (VSVΔG*-LUJV/GP) than were human-derived cell lines (HEK293T and Huh7). To determine the cellular factors involved in the differential susceptibilities between the human and mouse cell lines, we focused on the CD63 molecule, which is required for pH-activated GP-mediated membrane fusion during LUJV entry into host cells. The exogenous introduction of human CD63, but not mouse or hamster CD63, into BHK cells significantly increased susceptibility to VSVΔG*-LUJV/GP. Using chimeric human-mouse CD63 proteins, we found that the amino acid residues at positions 141 to 150 in the large extracellular loop (LEL) region of CD63 were important for the cellular entry of VSVΔG*-LUJV/GP. By site-directed mutagenesis, we further determined that a phenylalanine at position 143 in human CD63 was the key residue for efficient membrane fusion and VSVΔG*-LUJV/GP infection. Our data suggest that the interaction of LUJV GP with the LEL region of CD63 is essential for cell susceptibility to LUJV, thus providing new insights into the molecular mechanisms underlying the cellular entry of LUJV and the host range restriction of this virus. IMPORTANCE Lujo virus (LUJV) infects humans with high mortality rates, but the host range of LUJV remains unknown. We found that rodent-derived cell lines were less susceptible to LUJV infection than were human-derived cell lines, and the differential susceptibilities were determined by the difference of CD63, the intercellular receptor of LUJV. We further identified an amino acid residue on human CD63 important for efficient LUJV infection. These results suggest that the interaction between LUJV glycoprotein and CD63 is one of the important factors determining the host range of LUJV. Our findings on the CD63-regulated susceptibilities of the cell lines to LUJV infection provide important information for the development of anti-LUJV drugs as well as the identification of natural hosts of LUJV. Importantly, our data support a concept explaining the molecular mechanism underlying viral tropisms controlled by endosomal receptors.
Collapse
|
8
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
9
|
Hewlett A, K. Murthy AR. Communicable Diseases and Emerging Pathogens: The Past, Present, and Future of High-Level Containment Care. BIOEMERGENCY PLANNING 2018. [PMCID: PMC7122591 DOI: 10.1007/978-3-319-77032-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
High-level containment care involves the management of patients with highly hazardous communicable diseases in specialized biocontainment units possessing a unique collection of engineering, administrative, and personnel controls. These controls are more stringent than those found in conventional airborne infection isolation rooms and provide additional safeguards against nosocomial disease transmission. Borne amidst a convergence of events in 1969, the employment of HLCC units was validated during the 2014–2016 Ebola virus disease outbreak, and the United States (as well as many other nations) is in the process of expanding its HLCC capacity. Beyond Ebola, however, the specific diseases that might warrant care in a HLCC unit remain unclear. We review here the fascinating history of HLCC and of biocontainment units and make recommendations regarding those highly hazardous communicable diseases that might optimally be managed in these units.
Collapse
Affiliation(s)
- Angela Hewlett
- Division of Infectious Diseases, Nebraska Biocontainment Unit, University of Nebraska Medical Center, Omaha, NE USA
| | - A. Rekha K. Murthy
- Division of Infectious Diseases, Department of Medical Affairs, Cedars-Sinai Medical Center, Los Angeles, CA USA
| |
Collapse
|
10
|
Fedeli C, Moreno H, Kunz S. Novel Insights into Cell Entry of Emerging Human Pathogenic Arenaviruses. J Mol Biol 2018; 430:1839-1852. [PMID: 29705070 DOI: 10.1016/j.jmb.2018.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/14/2022]
Abstract
Viral hemorrhagic fevers caused by emerging RNA viruses of the Arenavirus family are among the most devastating human diseases. Climate change, global trade, and increasing urbanization promote the emergence and re-emergence of these human pathogenic viruses. Emerging pathogenic arenaviruses are of zoonotic origin and reservoir-to-human transmission is crucial for spillover into human populations. Host cell attachment and entry are the first and most fundamental steps of every virus infection and represent major barriers for zoonotic transmission. During host cell invasion, viruses critically depend on cellular factors, including receptors, co-receptors, and regulatory proteins of endocytosis. An in-depth understanding of the complex interaction of a virus with cellular factors implicated in host cell entry is therefore crucial to predict the risk of zoonotic transmission, define the tissue tropism, and assess disease potential. Over the past years, investigation of the molecular and cellular mechanisms underlying host cell invasion of human pathogenic arenaviruses uncovered remarkable viral strategies and provided novel insights into viral adaptation and virus-host co-evolution that will be covered in the present review.
Collapse
Affiliation(s)
- Chiara Fedeli
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Héctor Moreno
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne CH-1011, Switzerland.
| |
Collapse
|
11
|
Karnad DR, Richards GA, Silva GS, Amin P. Tropical diseases in the ICU: A syndromic approach to diagnosis and treatment. J Crit Care 2018; 46:119-126. [PMID: 29625787 DOI: 10.1016/j.jcrc.2018.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/23/2022]
Abstract
Tropical infections form 20-30% of ICU admissions in tropical countries. Diarrheal diseases, malaria, dengue, typhoid, rickettsial diseases and leptospirosis are common causes of critical illness. Overlapping clinical features makes initial diagnosis challenging. A systematic approach involving (1) history of specific continent or country of travel, (2) exposure to specific environments (forests or farms, water sports, consumption of exotic foods), (3) incubation period, and (4) pattern of organ involvement and subtle differences in manifestations help in differential diagnosis and choice of initial empiric therapy. Fever, rash, hypotension, thrombocytopenia and mild derangement of liver function tests is seen in a majority of patients. Organ failure may lead to shock, respiratory distress, renal failure, hepatitis, coma, seizures, cardiac arrhythmias or hemorrhage. Diagnosis in some conditions is made by peripheral blood smear examination, antigen detection or detection of microbial nucleic acid by PCR. Tests that detect specific IgM antibody become positive only in the second week of illness. Initial therapy is often empiric; a combination of intravenous artesunate, ceftriaxone and either doxycycline or azithromycin would cover a majority of the treatable syndromes. Additional antiviral or antiprotozoal medications are required for some specific syndromes. Involving a physician specializing in tropical or travel medicine is helpful.
Collapse
Affiliation(s)
| | - Guy A Richards
- Division of Critical Care, Charlotte Maxeke Hospital and Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Gisele Sampaio Silva
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo and Programa Integrado de Neurologia and Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Pravin Amin
- Bombay Hospital Institute of Medical Sciences, Mumbai, India.
| |
Collapse
|
12
|
Abstract
Lujo virus (LUJV) is an arenavirus that emerged in 2008 associated with a cluster of human cases of severe hemorrhagic fever. In this issue of Cell Host & Microbe, Raaben et al. (2017) identify neuropilin (NRP)-2 as cell surface receptor and the tetraspannin protein CD63 as intracellular entry factor for LUJV.
Collapse
Affiliation(s)
- Stefan Kunz
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
13
|
Rojek A, Carson G, Kato Y, Horby PW, Leblebicioglu H. Viral Hemorrhagic Fevers. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Sizikova TE, Lebedev VN, Syromyatnikova SI, Borisevich SV. [Lujo hemorrhagic fever]. Vopr Virusol 2017; 62:149-153. [PMID: 29733163 DOI: 10.18821/0507-4088-2017-62-4-149-153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 12/28/2022]
Abstract
Lujo hemorrhagic fever (LHF) is a viral disease accompanied with fever, headache, vomiting, diarrhea, arthralgia, myalgia and numerous signs of hemorrhagic syndrome. LHF causes a clinical syndrome remarkably similar to Lassa hemorrhagic fever. The first case of LHF occurred in Johannesburg, South Africa, in 2008. There was a secondary transmission from the index patient to four healthcare workers. Four of the five patients died. The etiologic agent of LHF is Lujo virus (LUJV) belonging to Arenavirus genus of the Arenaviridae Family. Virus Lujo is the second pathogenic arenavirus, after Lassa virus, to be recognized in Africa during the last 40 years. Data about epidemiology, clinical characteristics and diagnostics of LHF, properties of Lujo virus (according to phylogenetic analysis), and recommended precautions for preventing secondary transmission are considered in this paper.
Collapse
Affiliation(s)
- T E Sizikova
- 48th Central Scientific Research Institute, Sergiev Posad, 141306, Russian Federation
| | - V N Lebedev
- 48th Central Scientific Research Institute, Sergiev Posad, 141306, Russian Federation
| | - S I Syromyatnikova
- 48th Central Scientific Research Institute, Sergiev Posad, 141306, Russian Federation
| | - S V Borisevich
- 48th Central Scientific Research Institute, Sergiev Posad, 141306, Russian Federation
| |
Collapse
|
15
|
Simulundu E, Mweene AS, Changula K, Monze M, Chizema E, Mwaba P, Takada A, Ippolito G, Kasolo F, Zumla A, Bates M. Lujo viral hemorrhagic fever: considering diagnostic capacity and preparedness in the wake of recent Ebola and Zika virus outbreaks. Rev Med Virol 2016; 26:446-454. [PMID: 27593704 PMCID: PMC7169100 DOI: 10.1002/rmv.1903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022]
Abstract
Lujo virus is a novel Old World arenavirus identified in Southern Africa in 2008 as the cause of a viral hemorrhagic fever (VHF) characterized by nosocomial transmission with a high case fatality rate of 80% (4/5 cases). Whereas this outbreak was limited, the unprecedented Ebola virus disease outbreak in West Africa, and recent Zika virus disease epidemic in the Americas, has brought into acute focus the need for preparedness to respond to rare but potentially highly pathogenic outbreaks of zoonotic or arthropod‐borne viral infections. A key determinant for effective control of a VHF outbreak is the time between primary infection and diagnosis of the index case. Here, we review the Lujo VHF outbreak of 2008 and discuss how preparatory measures with respect to developing diagnostic capacity might be effectively embedded into existing national disease control networks, such as those for human immunodeficiency virus, tuberculosis, and malaria.
Collapse
Affiliation(s)
- Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Katendi Changula
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Mwaka Monze
- University Teaching Hospital & National Virology Reference Laboratory, Lusaka, Zambia
| | | | | | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.,Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Guiseppe Ippolito
- Lazzaro Spallanzani National Institute for Infectious Diseases, IRCCS, Rome, Italy
| | - Francis Kasolo
- World Health Organization, WHO Africa, Brazzaville, Republic of Congo
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, University College London, UK.,University of Zambia - University College London Research & Training Programme (www.unza-uclms.org), University Teaching Hospital, Lusaka, Zambia
| | - Matthew Bates
- Department of Infection, Division of Infection and Immunity, University College London, UK.,University of Zambia - University College London Research & Training Programme (www.unza-uclms.org), University Teaching Hospital, Lusaka, Zambia.,HerpeZ (www.herpez.org), University Teaching Hospital, Lusaka, Zambia
| |
Collapse
|
16
|
Oestereich L, Lüdtke A, Ruibal P, Pallasch E, Kerber R, Rieger T, Wurr S, Bockholt S, Pérez-Girón JV, Krasemann S, Günther S, Muñoz-Fontela C. Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever. PLoS Pathog 2016; 12:e1005656. [PMID: 27191716 PMCID: PMC4871546 DOI: 10.1371/journal.ppat.1005656] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/02/2016] [Indexed: 02/07/2023] Open
Abstract
Lassa fever (LASF) is a highly severe viral syndrome endemic to West African countries. Despite the annual high morbidity and mortality caused by LASF, very little is known about the pathophysiology of the disease. Basic research on LASF has been precluded due to the lack of relevant small animal models that reproduce the human disease. Immunocompetent laboratory mice are resistant to infection with Lassa virus (LASV) and, to date, only immunodeficient mice, or mice expressing human HLA, have shown some degree of susceptibility to experimental infection. Here, transplantation of wild-type bone marrow cells into irradiated type I interferon receptor knockout mice (IFNAR-/-) was used to generate chimeric mice that reproduced important features of severe LASF in humans. This included high lethality, liver damage, vascular leakage and systemic virus dissemination. In addition, this model indicated that T cell-mediated immunopathology was an important component of LASF pathogenesis that was directly correlated with vascular leakage. Our strategy allows easy generation of a suitable small animal model to test new vaccines and antivirals and to dissect the basic components of LASF pathophysiology.
Collapse
Affiliation(s)
- Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Anja Lüdtke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Hamburg, Germany
| | - Paula Ruibal
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Hamburg, Germany
| | - Elisa Pallasch
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Romy Kerber
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Toni Rieger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Stephanie Wurr
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Sabrina Bockholt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - José V. Pérez-Girón
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Hamburg, Germany
| | - Susanne Krasemann
- Institute for Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
17
|
Abstract
Viral haemorrhagic fevers (VHFs) are currently at the forefront of the world's attention due to the recent Zaire ebola virus epidemic in West Africa. This epidemic has highlighted the frailty of the world's public health response mechanisms and demonstrated the potential risks to nations around the world of imported cases of epidemic diseases. While imported cases in children are less likely, the potential for such a scenario remains. It is therefore essential that paediatricians are aware of and prepared for potential imported cases of tropical diseases, VHFs being of particular importance due to their propensity to cause nosocomial spread. Examining the four families of viruses--Filoviridae, Arenaviridae, Bunyaviridae and Flaviviridae--we describe the different types of VHFs, with emphasis on differentiation from other diseases through detailed history-taking, their presentation and management from a paediatric perspective.
Collapse
Affiliation(s)
| | - Surjo De
- Imported Fever Service, Public Health England, Porton Down, Wiltshire, UK
| | | |
Collapse
|
18
|
A Molecular Sensor To Characterize Arenavirus Envelope Glycoprotein Cleavage by Subtilisin Kexin Isozyme 1/Site 1 Protease. J Virol 2015; 90:705-14. [PMID: 26512085 DOI: 10.1128/jvi.01751-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/14/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Arenaviruses are emerging viruses including several causative agents of severe hemorrhagic fevers in humans. The advent of next-generation sequencing technology has greatly accelerated the discovery of novel arenavirus species. However, for many of these viruses, only genetic information is available, and their zoonotic disease potential remains unknown. During the arenavirus life cycle, processing of the viral envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) is crucial for productive infection. The ability of newly emerging arenaviruses to hijack human SKI-1/S1P appears, therefore, to be a requirement for efficient zoonotic transmission and human disease potential. Here we implement a newly developed cell-based molecular sensor for SKI-1/S1P to characterize the processing of arenavirus GPC-derived target sequences by human SKI-1/S1P in a quantitative manner. We show that only nine amino acids flanking the putative cleavage site are necessary and sufficient to accurately recapitulate the efficiency and subcellular location of arenavirus GPC processing. In a proof of concept, our sensor correctly predicts efficient processing of the GPC of the newly emergent pathogenic Lujo virus by human SKI-1/S1P and defines the exact cleavage site. Lastly, we employed our sensor to show efficient GPC processing of a panel of pathogenic and nonpathogenic New World arenaviruses, suggesting that GPC cleavage represents no barrier for zoonotic transmission of these pathogens. Our SKI-1/S1P sensor thus represents a rapid and robust test system for assessment of the processing of putative cleavage sites derived from the GPCs of newly discovered arenavirus by the SKI-1/S1P of humans or any other species, based solely on sequence information. IMPORTANCE Arenaviruses are important emerging human pathogens that can cause severe hemorrhagic fevers with high mortality in humans. A crucial step in productive arenavirus infection of human cells is the processing of the viral envelope glycoprotein by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). In order to break the species barrier during zoonotic transmission and cause severe disease in humans, newly emerging arenaviruses must be able to hijack human SKI-1/S1P efficiently. Here we implement a newly developed cell-based molecular sensor for human SKI-1/S1P to characterize the processing of arenavirus glycoproteins in a quantitative manner. We further use our sensor to correctly predict efficient processing of the glycoprotein of the newly emergent pathogenic Lujo virus by human SKI-1/S1P. Our sensor thus represents a rapid and robust test system with which to assess whether the glycoprotein of any newly emerging arenavirus can be efficiently processed by human SKI-1/S1P, based solely on sequence information.
Collapse
|
19
|
Schieffelin J. Treatment of Arenavirus Infections. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2015. [DOI: 10.1007/s40506-015-0058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|