1
|
Ajakaye OG, Enabulele EE, Balogun JB, Oyeyemi OT, Grigg ME. Extant interspecific hybridization among trematodes within the Schistosoma haematobium species complex in Nigeria. PLoS Negl Trop Dis 2024; 18:e0011472. [PMID: 38620029 PMCID: PMC11045100 DOI: 10.1371/journal.pntd.0011472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/25/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Natural interspecific hybridization between the human parasite (Schistosoma haematobium [Sh]) and bovine parasites (Schistosoma bovis [Sb], Schistosoma curassoni [Sc]) is increasingly reported in Africa. We developed a multi-locus PCR DNA-Seq strategy that amplifies two unlinked nuclear (transITS, BF) and two linked organellar genome markers (CO1, ND5) to genotype S. haematobium eggs collected from infected people in Ile Oluji/Oke Igbo, Ondo State (an agrarian community) and Kachi, Jigawa State (a pastoral community) in Southwestern and Northern Nigeria, respectively. PRINCIPAL FINDINGS Out of a total of 219 urine samples collected, 57 were positive for schistosomes. All patients from Jigawa state possessed an Sh mitochondrial genome and were infected with a genetic profile consistent with an Sh x Sb hybrid based on sequences obtained at CO1, ND5, transITS and BF nuclear markers. Whereas samples collected from Ondo state were more varied. Mitonuclear discordance was observed in all 17 patients, worms possessed an Sb mitochondrial genome but one of four different genetic profiles at the nuclear markers, either admixed (heterozygous between Sh x Sc or Sh x Sb) at both markers (n = 10), Sh at BF and admixed at transITS (Sh x Sc) (n = 5), admixed (Sh x Sc) at BF and homozygous Sc at transITS (n = 1) or homozygous Sh at BF and homozygous Sc at transITS (n = 1). SIGNIFICANCE Previous work suggested that zoonotic transmission of S. bovis in pastoral communities, where humans and animals share a common water source, is a driving factor facilitating interspecific hybridization. However, our data showed that all samples were hybrids, with greater diversity identified in Southwestern Nigeria, a non-pastoral site. Further, one patient possessed an S. bovis mitochondrial genome but was homozygous for S. haematobium at BF and homozygous for S. curassoni at transITS supporting at least two separate backcrosses in its origin, suggesting that interspecific hybridization may be an ongoing process.
Collapse
Affiliation(s)
- Oluwaremilekun G. Ajakaye
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda Maryland, United States of America
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Elisha E. Enabulele
- Disease Intervention and Prevention Program, Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Joshua B. Balogun
- Department of Biological Sciences Federal University, Dutse, Nigeria
| | - Oyetunde T. Oyeyemi
- Department of Biosciences and Biotechnology, University of Medical Sciences, Ondo, Nigeria
| | - Michael E. Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda Maryland, United States of America
| |
Collapse
|
2
|
Šmídová B, Majer M, Novák J, Revalová A, Horák P, Macháček T. The neurotropic schistosome vs experimental autoimmune encephalomyelitis: are there any winners? Parasitology 2024; 151:412-420. [PMID: 38443998 PMCID: PMC11044066 DOI: 10.1017/s0031182024000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
The incidences of multiple sclerosis have risen worldwide, yet neither the trigger nor efficient treatment is known. Some research is dedicated to looking for treatment by parasites, mainly by helminths. However, little is known about the effect of helminths that infect the nervous system. Therefore, we chose the neurotropic avian schistosome Trichobilharzia regenti, which strongly promotes M2 polarization and tissue repair in the central nervous system, and we tested its effect on the course of experimental autoimmune encephalomyelitis (EAE) in mice. Surprisingly, the symptoms of EAE tended to worsen after the infection with T. regenti. The infection did not stimulate tissue repair, as indicated by the similar level of demyelination. Eosinophils heavily infiltrated the infected tissue, and the microglia number increased as well. Furthermore, splenocytes from T. regenti-infected EAE mice produced more interferon (IFN)-γ than splenocytes from EAE mice after stimulation with myelin oligodendrocyte glycoprotein. Our research indicates that the combination of increased eosinophil numbers and production of IFN-γ tends to worsen the EAE symptoms. Moreover, the data highlight the importance of considering the direct effect of the parasite on the tissue, as the migrating parasite may further tissue damage and make tissue repair even more difficult.
Collapse
Affiliation(s)
- Barbora Šmídová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Novák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Alena Revalová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Vondráček O, Mikeš L, Talacko P, Leontovyč R, Bulantová J, Horák P. Differential proteomic analysis of laser-microdissected penetration glands of avian schistosome cercariae with a focus on proteins involved in host invasion. Int J Parasitol 2022; 52:343-358. [PMID: 35218763 DOI: 10.1016/j.ijpara.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Schistosome invasive stages, cercariae, leave intermediate snail hosts, penetrate the skin of definitive hosts, and transform to schistosomula which migrate to the final location. During invasion, cercariae employ histolytic and other bioactive products of specialized holocrine secretory cells - postacetabular (PA) and circumacetabular (CA) penetration glands. Although several studies attempted to characterize protein composition of the in vitro-induced gland secretions in Schistosoma mansoni and Schistosoma japonicum, the results were somewhat inconsistent and dependent on the method of sample collection and processing. Products of both gland types mixed during their secretion did not allow localization of identified proteins to a particular gland. Here we compared proteomes of separately isolated cercarial gland cells of the avian schistosome Trichobilharzia szidati, employing laser-assisted microdissection and shotgun LC-MS/MS, thus obtaining the largest dataset so far of the representation and localization of cercarial penetration gland proteins. We optimized the methods of sample processing with cercarial bodies (heads) first. Alizarin-pre-stained, chemically non-fixed samples provided optimal results of MS analyses, and enabled us to distinguish PA and CA glands for microdissection. Using 7.5 x 106 μm3 sample volume per gland replicate, we identified 3347 peptides assigned to 792 proteins, from which 461 occurred in at least two of three replicates in either gland type (PA = 455, 40 exclusive; CA = 421, six exclusive; 60 proteins differed significantly in their abundance between the glands). Peptidases of five catalytic types accounted for ca. 8% and 6% of reliably identified proteins in PA and CA glands, respectively. Invadolysin, nardilysin, cathepsins B2 and L3, and elastase 2b orthologs were the major gland endopeptidases. Two cystatins and a serpin were highly abundant peptidase inhibitors in the glands. While PA glands generally had rich enzymatic equipment, CA glands were conspicuously abundant in venom allergen-like proteins.
Collapse
Affiliation(s)
- Oldřich Vondráček
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia.
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV Průmyslová 595, Vestec, Czechia
| | - Roman Leontovyč
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| |
Collapse
|
4
|
Cheng S, Zhu B, Luo F, Lin X, Sun C, You Y, Yi C, Xu B, Wang J, Lu Y, Hu W. Comparative transcriptome profiles of Schistosoma japonicum larval stages: Implications for parasite biology and host invasion. PLoS Negl Trop Dis 2022; 16:e0009889. [PMID: 35025881 PMCID: PMC8791509 DOI: 10.1371/journal.pntd.0009889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/26/2022] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Schistosoma japonicum is prevalent in Asia with a wide mammalian host range, which leads to highly harmful zoonotic parasitic diseases. Most previous transcriptomic studies have been performed on this parasite, but mainly focus on stages inside the mammalian host. Moreover, few larval transcriptomic data are available in public databases. Here we mapped the detailed transcriptome profiles of four S. japonicum larval stages including eggs, miracidia, sporocysts and cercariae, providing a comprehensive development picture outside of the mammalian host. By analyzing the stage-specific/enriched genes, we identified functional genes associated with the biological characteristic at each stage: e.g. we observed enrichment of genes necessary for DNA replication only in sporocysts, while those involved in proteolysis were upregulated in sporocysts and/or cercariae. This data indicated that miracidia might use leishmanolysin and neprilysin to penetrate the snail, while elastase (SjCE2b) and leishmanolysin might contribute to the cercariae invasion. The expression profile of stem cell markers revealed potential germinal cell conversion during larval development. Additionally, our analysis indicated that tandem duplications had driven the expansion of the papain family in S. japonicum. Notably, all the duplicated cathepsin B-like proteases were highly expressed in cercariae. Utilizing our 3rd version of S. japonicum genome, we further characterized the alternative splicing profiles throughout these four stages. Taken together, the present study provides compressive gene expression profiles of S. japonicum larval stages and identifies a set of genes that might be involved in intermediate and definitive host invasion.
Collapse
Affiliation(s)
- Shaoyun Cheng
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Bingkuan Zhu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Fang Luo
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Xiying Lin
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Chengsong Sun
- Anhui Provincial Institute of Parasitic Diseases, Hefei, China
| | - Yanmin You
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Cun Yi
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Jipeng Wang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Yan Lu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Wei Hu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
5
|
Kia Lashaki E, Gholami S, Fakhar M, Karamian M, Daryani A. Association between human cercarial dermatitis (HCD) and the occurrence of Trichibilarizia in duck and snail in main wetlands from Mazandaran Province, northern Iran. Parasite Epidemiol Control 2021; 13:e00211. [PMID: 33898795 PMCID: PMC8058552 DOI: 10.1016/j.parepi.2021.e00211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 11/26/2022] Open
Abstract
Background Avian schistosomes are considered as main causative agents of human cercarial dermatitis (HCD) in Iran. The study was conducted to determine bird schistosomes in their final and intermediate hosts, in main wetlands of Mazandaran. Methods A total of 255 domestic and wild ducks were collected and the infection of nasal tissues of five (Anas platyrhynchos domesticus, Aythya ferina, Cairina moschata, Anas platyrhynchos and Spatula clypeata) species were analyzed using morphological techniques. Also, 1687 freshwater snails were collected and surveyed by cercarial shedding and crushing tests. Detection of HCD was performed for the presence of clinical symptoms of itching and maculopapular rashs by physical examination. Results Of 255 ducks, in 41 (16%) infection with nasal Trichibilarizia spp. were recognized by observing eggs and/or adult worms. The most infected ducks were Anas clypeata and Anas platyrhynchos domesticus. Overall, 0.17% of snails were infected with avian schistosomes. Also, clinical examination of 951 rice farmers revealed that 588 (61.82%) of them were suffered from HCD. Conclusion Our data suggest that domestic ducks could play a prominent role as a reservoir host for establishing life cycle of Trichobilharzia in the area. Also, existence of domestic reservoir ducks and suitable snail hosts in ponds and paddy fields of this area, climate conditions of the wetlands in Mazandaran leads to a high incidence of HCD.
Collapse
Affiliation(s)
- Elham Kia Lashaki
- Molecular and Cell Biology Research Center, Department of Parasitology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shirzad Gholami
- Molecular and Cell Biology Research Center, Department of Parasitology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Karamian
- Zanjan University of Medical Sciences, Department of Medical Parasitology and Mycology, Zanjan, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Parasitology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Nesterenko MA, Starunov VV, Shchenkov SV, Maslova AR, Denisova SA, Granovich AI, Dobrovolskij AA, Khalturin KV. Molecular signatures of the rediae, cercariae and adult stages in the complex life cycles of parasitic flatworms (Digenea: Psilostomatidae). Parasit Vectors 2020; 13:559. [PMID: 33168070 PMCID: PMC7653818 DOI: 10.1186/s13071-020-04424-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 10/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background Parasitic flatworms (Trematoda: Digenea) represent one of the most remarkable examples of drastic morphological diversity among the stages within a life cycle. Which genes are responsible for extreme differences in anatomy, physiology, behavior, and ecology among the stages? Here we report a comparative transcriptomic analysis of parthenogenetic and amphimictic generations in two evolutionary informative species of Digenea belonging to the family Psilostomatidae. Methods In this study the transcriptomes of rediae, cercariae and adult worm stages of Psilotrema simillimum and Sphaeridiotrema pseudoglobulus, were sequenced and analyzed. High-quality transcriptomes were generated, and the reference sets of protein-coding genes were used for differential expression analysis in order to identify stage-specific genes. Comparative analysis of gene sets, their expression dynamics and Gene Ontology enrichment analysis were performed for three life stages within each species and between the two species. Results Reference transcriptomes for P. simillimum and S. pseudoglobulus include 21,433 and 46,424 sequences, respectively. Among 14,051 orthologous groups (OGs), 1354 are common and specific for two analyzed psilostomatid species, whereas 13 and 43 OGs were unique for P. simillimum and S. pseudoglobulus, respectively. In contrast to P. simillimum, where more than 60% of analyzed genes were active in the redia, cercaria and adult worm stages, in S. pseudoglobulus less than 40% of genes had such a ubiquitous expression pattern. In general, 7805 (36.41%) and 30,622 (65.96%) of genes were preferentially expressed in one of the analyzed stages of P. simillimum and S. pseudoglobulus, respectively. In both species 12 clusters of co-expressed genes were identified, and more than a half of the genes belonging to the reference sets were included into these clusters. Functional specialization of the life cycle stages was clearly supported by Gene Ontology enrichment analysis. Conclusions During the life cycles of the two species studied, most of the genes change their expression levels considerably, consequently the molecular signature of a stage is not only a unique set of expressed genes, but also the specific levels of their expression. Our results indicate unexpectedly high level of plasticity in gene regulation between closely related species. Transcriptomes of P. simillimum and S. pseudoglobulus provide high quality reference resource for future evolutionary studies and comparative analyses.![]()
Collapse
Affiliation(s)
- Maksim A Nesterenko
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia.
| | - Viktor V Starunov
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia.,Zoological Institute, Russian Academy of Sciences, Saint Petersburg, 199034, Russia
| | - Sergei V Shchenkov
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia
| | - Anna R Maslova
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia
| | - Sofia A Denisova
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia
| | - Andrey I Granovich
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia
| | - Andrey A Dobrovolskij
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia
| | - Konstantin V Khalturin
- Marine Genomics Unit, OIST, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| |
Collapse
|
7
|
Macháček T, Šmídová B, Pankrác J, Majer M, Bulantová J, Horák P. Nitric oxide debilitates the neuropathogenic schistosome Trichobilharzia regenti in mice, partly by inhibiting its vital peptidases. Parasit Vectors 2020; 13:426. [PMID: 32819437 PMCID: PMC7439556 DOI: 10.1186/s13071-020-04279-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Avian schistosomes, the causative agents of human cercarial dermatitis (or swimmer’s itch), die in mammals but the mechanisms responsible for parasite elimination are unknown. Here we examined the role of reactive nitrogen species, nitric oxide (NO) and peroxynitrite, in the immune response of mice experimentally infected with Trichobilharzia regenti, a model species of avian schistosomes remarkable for its neuropathogenicity. Methods Inducible NO synthase (iNOS) was localized by immunohistochemistry in the skin and the spinal cord of mice infected by T. regenti. The impact of iNOS inhibition by aminoguanidine on parasite burden and growth was then evaluated in vivo. The vulnerability of T. regenti schistosomula to NO and peroxynitrite was assessed in vitro by viability assays and electron microscopy. Additionally, the effect of NO on the activity of T. regenti peptidases was tested using a fluorogenic substrate. Results iNOS was detected around the parasites in the epidermis 8 h post-infection and also in the spinal cord 3 days post-infection (dpi). Inhibition of iNOS resulted in slower parasite growth 3 dpi, but the opposite effect was observed 7 dpi. At the latter time point, moderately increased parasite burden was also noticed in the spinal cord. In vitro, NO did not impair the parasites, but inhibited the activity of T. regenti cathepsins B1.1 and B2, the peptidases essential for parasite migration and digestion. Peroxynitrite severely damaged the surface tegument of the parasites and decreased their viability in vitro, but rather did not participate in parasite clearance in vivo. Conclusions Reactive nitrogen species, specifically NO, do not directly kill T. regenti in mice. NO promotes the parasite growth soon after penetration (3 dpi), but prevents it later (7 dpi) when also suspends the parasite migration in the CNS. NO-related disruption of the parasite proteolytic machinery is partly responsible for this effect. ![]()
Collapse
Affiliation(s)
- Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia.
| | - Barbora Šmídová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Pankrác
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia.,Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
8
|
Dvořáková H, Leontovyč R, Macháček T, O'Donoghue AJ, Šedo O, Zdráhal Z, Craik CS, Caffrey CR, Horák P, Mikeš L. Isoforms of Cathepsin B1 in Neurotropic Schistosomula of Trichobilharzia regenti Differ in Substrate Preferences and a Highly Expressed Catalytically Inactive Paralog Binds Cystatin. Front Cell Infect Microbiol 2020; 10:66. [PMID: 32175287 PMCID: PMC7054455 DOI: 10.3389/fcimb.2020.00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/07/2020] [Indexed: 11/13/2022] Open
Abstract
Schistosomula (the post-infective stages) of the neurotropic schistosome Trichobilharzia regenti possess multiple isoforms of cathepsin B1 peptidase (TrCB1.1-TrCB1.6) with involvement in nutrient digestion. The comparison of substrate preferences of TrCB1.1 and TrCB1.4 showed that TrCB1.4 had a very narrow substrate specificity and after processing it was less effective toward protein substrates when compared to TrCB1.1. Self-processing of both isoforms could be facilitated by sulfated polysaccharides due to a specific binding motif in the pro-sequence. Trans-activation by heterologous enzymes was also successfully employed. Expression profiling revealed a high level of transcription of genes encoding the enzymatically inactive paralogs TrCB1.5 and TrCB1.6. The transcription level of TrCB1.6 was comparable with that of TrCB1.1 and TrCB1.2, the most abundant active isoforms. Recombinant TrCB1.6wt, a wild type paralog with a Cys29-to-Gly substitution in the active site that renders the enzyme inactive, was processed by the active TrCB1 forms and by an asparaginyl endopeptidase. Although TrCB1.6wt lacked hydrolytic activity, endopeptidase, but not dipeptidase, activity could be restored by mutating Gly29 to Cys29. The lack of exopeptidase activity may be due to other mutations, such as His110-to-Asn in the occluding loop and Asp224-to-Gly in the main body of the mature TrCB1.6, which do not occur in the active isoforms TrCB1.1 and TrCB1.4 with exopeptidase activity. The catalytically active enzymes and the inactive TrCB1.6 paralog formed complexes with chicken cystatin, thus supporting experimentally the hypothesis that inactive paralogs could potentially regulate the activity of the active forms or protect them from being inhibited by host inhibitors. The effect on cell viability and nitric oxide production by selected immune cells observed for TrCB1.1 was not confirmed for TrCB1.6. We show here that the active isoforms of TrCB1 have different affinities for peptide substrates thereby facilitating diversity in protein-derived nutrition for the parasite. The inactive paralogs are unexpectedly highly expressed and one of them retains the ability to bind cystatins, likely due to specific mutations in the occluding loop and the enzyme body. This suggests a role in sequestration of inhibitors and protection of active cysteine peptidases.
Collapse
Affiliation(s)
- Hana Dvořáková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Roman Leontovyč
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Anthony J. O'Donoghue
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Ondřej Šedo
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
9
|
Molecular evidence for distinct modes of nutrient acquisition between visceral and neurotropic schistosomes of birds. Sci Rep 2019; 9:1347. [PMID: 30718911 PMCID: PMC6362228 DOI: 10.1038/s41598-018-37669-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Trichobilharzia species are parasitic flatworms (called schistosomes or flukes) that cause important diseases in birds and humans, but very little is known about their molecular biology. Here, using a transcriptomics-bioinformatics-based approach, we explored molecular aspects pertaining to the nutritional requirements of Trichobilharzia szidati (‘visceral fluke’) and T. regenti (‘neurotropic fluke’) in their avian host. We studied the larvae of each species before they enter (cercariae) and as they migrate (schistosomules) through distinct tissues in their avian (duck) host. Cercariae of both species were enriched for pathways or molecules associated predominantly with carbohydrate metabolism, oxidative phosphorylation and translation of proteins linked to ribosome biogenesis, exosome production and/or lipid biogenesis. Schistosomules of both species were enriched for pathways or molecules associated with processes including signal transduction, cell turnover and motility, DNA replication and repair, molecular transport and/or catabolism. Comparative informatic analyses identified molecular repertoires (within, e.g., peptidases and secretory proteins) in schistosomules that can broadly degrade macromolecules in both T. szidati and T. regenti, and others that are tailored to each species to selectively acquire nutrients from particular tissues through which it migrates. Thus, this study provides molecular evidence for distinct modes of nutrient acquisition between the visceral and neurotropic flukes of birds.
Collapse
|
10
|
Ashrafi K, Nouroosta A, Sharifdini M, Mahmoudi MR, Rahmati B, Brant SV. Genetic diversity of an avian nasal schistosome causing cercarial dermatitis in the Black Sea-Mediterranean migratory route. Parasitol Res 2018; 117:3821-3833. [PMID: 30343420 DOI: 10.1007/s00436-018-6087-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/11/2018] [Indexed: 11/26/2022]
Abstract
This study is part of an effort to document the diversity of avian schistosomes in ducks and snails in Northern Iran, a major flyway (Black Sea/Mediterranean) for migratory birds and where cercarial dermatitis (CD) is prevalent in rice growing areas. CD is an allergic skin reaction from schistosome trematodes that emerge from aquatic snails. Most CD cases are reported from recreational swimmers or aquaculture farmers. Much of the work on the epidemiology of CD has focused in recreational waters in the Americas and Europe, with fewer studies in aquaculture, particularly in Iran. The artificial environment at aquaculture sites support dense populations of snails that are hosts to schistosomes, as well as domestic ducks. Thus, are domestic ducks reservoir hosts of species of Trichobilharzia, one of the main etiological agents of CD in Northern Iran? This study focused on a survey of domestic ducks for the presence of the nasal schistosome, T. regenti, that has been reported widely in Europe. Trichobilharzia regenti were found in domestic ducks in the Guilan Province of Iran based on morphological and molecular analyses. The presence of this species in Northern Iran indicates that the domestic duck can serve as a reservoir host for this species and that one of the local snail species is likely the intermediate host. The continued study and surveillance of this species is important because it is a neuropathic schistosome that can use a diversity of bird definitive hosts and Radix snails that are widespread across Eurasia.
Collapse
Affiliation(s)
- Keyhan Ashrafi
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Nouroosta
- Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Meysam Sharifdini
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Reza Mahmoudi
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Behnaz Rahmati
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara V Brant
- Museum of Southwestern Biology, Division of Parasites, Department of Biology, University of New Mexico, 1 University of New Mexico MSC03 2020, Albuquerque, New Mexico, 87131, USA.
| |
Collapse
|
11
|
Macháček T, Turjanicová L, Bulantová J, Hrdý J, Horák P, Mikeš L. Cercarial dermatitis: a systematic follow-up study of human cases with implications for diagnostics. Parasitol Res 2018; 117:3881-3895. [PMID: 30302587 DOI: 10.1007/s00436-018-6095-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022]
Abstract
Cercarial dermatitis (CD) is an allergic skin disease that rises in consequence of infection by invasive stages (cercariae) of trematodes of the family Schistosomatidae. CD has been considered a re-emerging disease, human cases have been reported from all continents, and tourism-threatening outbreaks occur even in frequented recreational areas. Although the symptoms of CD are generally known, the data on immune response in human patients are sporadic and incomprehensive. In the present study, we attempted to correlate the symptoms, personal history, and time course of CD in human patients with differential cell counts, dynamics of selected cytokines, and dynamics and quality of antibody response. By a systematic follow-up, we obtained a uniquely complex dataset from ten persons accidentally and concurrently infected by the same parasite species in the same locality. The onset of CD was significantly faster, and the symptoms were heavier in participants with a history of CD if compared to naive ones, who, however, also developed some of the symptoms. The repeatedly infected persons had elevated proportion of eosinophils 1 week post exposure (p.e.) and a stronger specific IgG but not IgM response, whereas specific IgE response was not observed. Increased serum levels of IL-4 occurred 1 and 3 week(s) p.e. in all participants. There was high variability in individual immunoblot patterns of IgG response, and no antigen with a universal diagnostic potential was confirmed. The presented analyses suggested that a complex approach can improve the accuracy of the diagnosis of CD, but component data should be interpreted carefully.
Collapse
Affiliation(s)
- Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Libuše Turjanicová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 12800, Prague 2, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.
| |
Collapse
|
12
|
Agents of swimmer's itch-dangerous minority in the Digenea invasion of Lymnaeidae in water bodies and the first report of Trichobilharzia regenti in Poland. Parasitol Res 2018; 117:3695-3704. [PMID: 30215139 PMCID: PMC6224017 DOI: 10.1007/s00436-018-6068-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/27/2018] [Indexed: 02/04/2023]
Abstract
Trichobilharzia spp. have been identified as a causative agent of swimmers’ itch, a skin disease provoked by contact with these digenean trematodes in water. These parasites have developed a number of strategies to invade vertebrates. Since we have little understanding of the behavior of these parasites inside the human body, the monitoring of their invasion in snail host populations is highly recommended. In our research, lymnaeid snails were collected from several Polish lakes for two vegetation seasons. The prevalence of bird schistosomes in snail host populations was significantly lower than that of other digenean species. We were the first to detect the presence of the snails emitted Trichobilharzia regenti (potentially the most dangerous nasal schistosome) in Poland. In addition, by sequencing partial rDNA genes, we confirmed the presence of the snails positive with Trichobilharzia szidati in Polish water bodies, showing that swimmer’s itch is more frequent during summer months and that large snails are more often infected with bird schistosomes than small ones.
Collapse
|
13
|
Li XH, DeMarco R, Neves LX, James SR, Newling K, Ashton PD, Cao JP, Wilson RA, Castro-Borges W. Microexon gene transcriptional profiles and evolution provide insights into blood processing by the Schistosoma japonicum esophagus. PLoS Negl Trop Dis 2018; 12:e0006235. [PMID: 29432451 PMCID: PMC5825161 DOI: 10.1371/journal.pntd.0006235] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/23/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Background Adult schistosomes have a well-developed alimentary tract comprising an oral sucker around the mouth, a short esophagus and a blind ending gut. The esophagus is not simply a muscular tube for conducting blood from the mouth to gut but is divided into compartments, surrounded by anterior and posterior glands, where processing of ingested blood is initiated. Self-cure of rhesus macaques from a Schistosoma japonicum infection appears to operate by blocking the secretory functions of these glands so that the worms cease feeding and slowly starve to death. Here we use subtractive RNASeq to characterise the genes encoding the principal secretory products of S. japonicum esophageal glands, preparatory to evaluating their relevance as targets of the self-cure process. Methodology/Principal findings The heads and a small portion of the rear end of male and female S. japonicum worms were separately enriched by microdissection, for mRNA isolation and library construction. The sequence reads were then assembled de novo using Trinity and those genes enriched more than eightfold in the head preparation were subjected to detailed bioinformatics analysis. Of the 62 genes selected from the male heads, more than one third comprised MEGs encoding secreted or membrane-anchored proteins. Database searching using conserved motifs revealed that the MEG-4 and MEG-8/9 families had counterparts in the bird schistosome Trichobilharzia regenti, indicating an ancient association with blood processing. A second group of MEGs, including a MEG-26 family, encoded short peptides with amphipathic properties that most likely interact with ingested host cell membranes to destabilise them. A number of lysosomal hydrolases, two protease inhibitors, a secreted VAL and a putative natterin complete the line-up. There was surprisingly little difference between expression patterns in males and females despite the latter processing much more blood. Significance/Conclusions The mixture of approximately 40 proteins specifically secreted by the esophageal glands is responsible for initiating blood processing in the adult worm esophagus. They comprise the potential targets for the self-cure process in the rhesus macaque, and thus represent a completely new cohort of secreted proteins that can be investigated as vaccine candidates. Schistosomes are parasitic flatworms inhabiting the human bloodstream, surrounded by and feeding on humoral and cellular components of the immune system. They are normally long-lived but the rhesus macaque is able to mount a self-cure response directed against the esophageal secretions of the adult Schistosoma japonicum so that they stop feeding and slowly starve to death. The worm esophagus is a short tube connecting mouth to gut surrounded by anterior and posterior glands and our aim in this study was to identify the genes encoding the gland secretions. For this purpose we isolated the messenger RNA from both male and female worm heads and tails and obtained many millions of sequences. These were assembled into gene coding sequences using bioinformatics and then genes differentially expressed in the head region were identified by a subtraction process. We then focused on those genes encoding proteins with a leader sequence indicating their secretory status. The result is an inventory of approximately 40 genes; some encode protein binding motifs while others encode a short helix with a hydrophobic face, which may interact with host cell membranes. Genes encoding enzymes, protease inhibitors and a venom-like protein were also found. These proteins are being evaluated for their interactions with the antibodies generated by macaques during the self-cure process.
Collapse
Affiliation(s)
- Xiao-Hong Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, Sao Carlos, Brasil
| | - Leandro X. Neves
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brasil
| | - Sally R. James
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, York, United Kingdom
| | - Katherine Newling
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, York, United Kingdom
| | - Peter D. Ashton
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, York, United Kingdom
| | - Jian-Ping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - R. Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
- * E-mail:
| | - William Castro-Borges
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brasil
| |
Collapse
|
14
|
Cuesta-Astroz Y, Oliveira FSD, Nahum LA, Oliveira G. Helminth secretomes reflect different lifestyles and parasitized hosts. Int J Parasitol 2017; 47:529-544. [PMID: 28336271 DOI: 10.1016/j.ijpara.2017.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Helminths cause a number of medical and agricultural problems and are a major cause of parasitic infections in humans, animals and plants. Comparative analysis of helminth genes and genomes are important to understand the genomic biodiversity and evolution of parasites and their hosts in terms of different selective pressures in their habitats. The interactions between the infective organisms and their hosts are mediated in large part by secreted proteins, known collectively as the "secretome". Proteins secreted by parasites are able to modify a host's environment and modulate their immune system. The composition and function of this set of proteins varies depending on the ecology, lifestyle and environment of an organism. The present study aimed to predict, in silico, the secretome in 44 helminth species including Nematoda (31 species) and Platyhelminthes (13 species) and, understand the diversity and evolution of secretomes. Secretomes from plant helminths range from 7.6% (943 proteins) to 13.9% (2,077 proteins) of the filtered proteome with an average of 10.2% (1,412 proteins) and from free-living helminths range from 4.4% (870 proteins) to 13% (3,121 proteins) with an average of 9.8% (2,126 proteins), respectively, and thus are considerably larger secretomes in relation to animal helminth secretomes which range from 4.2% (431 proteins) to 11.8% (2,419 proteins) of the proteomes, with an average of 7.1% (804 proteins). Across 44 secretomes in different helminth species, we found five conserved domains: (i) PF00014 (Kunitz/Bovine pancreatic trypsin inhibitor domain), (ii) PF00046 (Homeobox domain), (iii) PF00188 (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins), (iv) PF00085 (Thioredoxin) and (v) PF07679 (Immunoglobulin I-set domain). Our results detected secreted proteins associated with invasion, infection, adhesion and immunoregulation processes as protease inhibitors and cytokines, among other functions. In summary, this study will contribute towards the understanding of host-parasite interactions and possibly identify new molecular targets for the treatment or diagnosis of helminthiases.
Collapse
Affiliation(s)
- Yesid Cuesta-Astroz
- Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG 30190-002, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Francislon Silva de Oliveira
- Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG 30190-002, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Laila Alves Nahum
- Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG 30190-002, Brazil; Faculdade Promove de Tecnologia, Belo Horizonte, MG 30130-180, Brazil
| | - Guilherme Oliveira
- Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG 30190-002, Brazil; Instituto Tecnológico Vale, Belém, PA 66055-090, Brazil.
| |
Collapse
|
15
|
Nitric oxide and cytokine production by glial cells exposed in vitro to neuropathogenic schistosome Trichobilharzia regenti. Parasit Vectors 2016; 9:579. [PMID: 27842570 PMCID: PMC5109812 DOI: 10.1186/s13071-016-1869-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/02/2016] [Indexed: 11/10/2022] Open
Abstract
Background Helminth neuroinfections represent a serious health problem, but host immune mechanisms in the nervous tissue often remain undiscovered. This study aims at in vitro characterization of the response of murine astrocytes and microglia exposed to Trichobilharzia regenti which is a neuropathogenic schistosome migrating through the central nervous system of vertebrate hosts. Trichobilharzia regenti infects birds and mammals in which it may cause severe neuromotor impairment. This study was focused on astrocytes and microglia as these are immunocompetent cells of the nervous tissue and their activation was recently observed in T. regenti-infected mice. Results Primary astrocytes and microglia were exposed to several stimulants of T. regenti origin. Living schistosomulum-like stages caused increased secretion of IL-6 in astrocyte cultures, but no changes in nitric oxide (NO) production were noticed. Nevertheless, elevated parasite mortality was observed in these cultures. Soluble fraction of the homogenate from schistosomulum-like stages stimulated NO production by both astrocytes and microglia, and IL-6 and TNF-α secretion in astrocyte cultures. Similarly, recombinant cathepsins B1.1 and B2 triggered IL-6 and TNF-α release in astrocyte and microglia cultures, and NO production in astrocyte cultures. Stimulants had no effect on production of anti-inflammatory cytokines IL-10 or TGF-β1. Conclusions Both astrocytes and microglia are capable of production of NO and proinflammatory cytokines IL-6 and TNF-α following in vitro exposure to various stimulants of T. regenti origin. Astrocytes might be involved in triggering the tissue inflammation in the early phase of T. regenti infection and are proposed to participate in destruction of migrating schistosomula. However, NO is not the major factor responsible for parasite damage. Both astrocytes and microglia can be responsible for the nervous tissue pathology and maintaining the ongoing inflammation since they are a source of NO and proinflammatory cytokines which are released after exposure to parasite antigens. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1869-7) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Li BW, McNulty SN, Rosa BA, Tyagi R, Zeng QR, Gu KZ, Weil GJ, Mitreva M. Conservation and diversification of the transcriptomes of adult Paragonimus westermani and P. skrjabini. Parasit Vectors 2016; 9:497. [PMID: 27619014 PMCID: PMC5020434 DOI: 10.1186/s13071-016-1785-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/31/2016] [Indexed: 12/30/2022] Open
Abstract
Background Paragonimiasis is an important and widespread neglected tropical disease. Fifteen Paragonimus species are human pathogens, but two of these, Paragonimus westermani and P. skrjabini, are responsible for the bulk of human disease. Despite their medical and economic significance, there is limited information on the gene content and expression of Paragonimus lung flukes. Results The transcriptomes of adult P. westermani and P. skrjabini were studied with deep sequencing technology. Approximately 30 million reads per species were assembled into 21,586 and 25,825 unigenes for P. westermani and P. skrjabini, respectively. Many unigenes showed homology with sequences from other food-borne trematodes, but 1,217 high-confidence Paragonimus-specific unigenes were identified. Analyses indicated that both species have the potential for aerobic and anaerobic metabolism but not de novo fatty acid biosynthesis and that they may interact with host signaling pathways. Some 12,432 P. westermani and P. skrjabini unigenes showed a clear correspondence in bi-directional sequence similarity matches. The expression of shared unigenes was mostly well correlated, but differentially expressed unigenes were identified and shown to be enriched for functions related to proteolysis for P. westermani and microtubule based motility for P. skrjabini. Conclusions The assembled transcriptomes of P. westermani and P. skrjabini, inferred proteins, and extensive functional annotations generated for this project (including identified primary sequence similarities to various species, protein domains, biological pathways, predicted proteases, molecular mimics and secreted proteins, etc.) represent a valuable resource for hypothesis driven research on these medically and economically important species. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1785-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ben-Wen Li
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha N McNulty
- The McDonnell Genome Institute at Washington University, St. Louis, MO, USA
| | - Bruce A Rosa
- The McDonnell Genome Institute at Washington University, St. Louis, MO, USA
| | - Rahul Tyagi
- The McDonnell Genome Institute at Washington University, St. Louis, MO, USA
| | - Qing Ren Zeng
- Department of Parasitology, Xiang-Ya School of Medicine, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Kong-Zhen Gu
- Department of Parasitology, Xiang-Ya School of Medicine, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Gary J Weil
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Makedonka Mitreva
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA. .,The McDonnell Genome Institute at Washington University, St. Louis, MO, USA.
| |
Collapse
|