1
|
Sodagari HR, Sohail MN, Varga C. Temporal, regional, and demographic differences among antimicrobial-resistant domestic Campylobacter jejuni human infections across the United States, 2013-2019. Int J Antimicrob Agents 2025; 65:107467. [PMID: 39986401 DOI: 10.1016/j.ijantimicag.2025.107467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/10/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Human infections with antimicrobial-resistant Campylobacter jejuni increase morbidity, mortality, hospitalization, and treatment costs. Resistance to antimicrobials recommended to treat campylobacteriosis has increased in the United States, despite the mitigating efforts of public health authorities. This study analyzed publicly available antimicrobial resistance (AMR) monitoring data collected by the National Antimicrobial Resistance Monitoring System (NARMS) to assess temporal, regional, and demographic differences in AMR among domestically acquired C. jejuni infections across the United States between 2013 and 2019. Mann-Kendall tests evaluated trends in AMR throughout the study period. Poisson regression models assessed differences in resistance to each antimicrobial class among the years, age groups, and regions. Among the 7624 C. jejuni isolates, high resistance was identified against tetracyclines (n = 3504; 45.96%; 95% CI = 44.84-47.09), and quinolones (n = 2093; 27.45%; 95% CI = 26.45-28.47). An increasing trend in resistance to quinolones (P = 0.07) and a decreasing trend for tetracyclines (P = 0.036) were identified. The rate of isolates that showed resistance to all antimicrobial classes except tetracyclines was significantly higher in the state of Connecticut. Resistance rates for all antimicrobials except aminoglycosides were higher among the 20-39 year age group. Regions and age groups with the greatest AMR rates were identified, which warrants further studies to identify individual and area-level risk factors. To mitigate the burden of antimicrobial-resistant C. jejuni infections, health authorities should focus on regions and age groups with the highest risk.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Mohammad Nasim Sohail
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
2
|
Clemente SMDS, Santos SFD, Calaça PRDA, Soares MTCV, Silva WAD, Melo RPBD, Mota RA, Barros MR. Gene profile of virulence, antimicrobial resistance and action of enterocins in Campylobacter species isolated from broiler carcasses. Braz J Microbiol 2025; 56:237-250. [PMID: 39541060 PMCID: PMC11885213 DOI: 10.1007/s42770-024-01559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Campylobacteriosis is among the most reported zoonoses in the world, caused by species of Campylobacter, this disease is characterized by gastroenteritis in humans. The main species involved is Campylobacter jejuni, followed by Campylobacter coli. Contaminated chicken meat is often identified as an important source of infection related to human cases and Brazil is the largest exporter of chicken meat in the world, which makes the characterization of brazilian isolates crucial for the establishment of control measures. The objective was to evaluate the contamination of chilled and frozen carcasses sold in the Northeast of Brazil, by Campylobacter species, identify virulence genes, evaluate bacterial resistance to antibiotics and verify the antimicrobial action of the Crude Extract Containing Enterocins (CECE) produced by a probiotic strain of Enterococcus faecium. In this study, 12 chilled carcasses and 12 frozen carcasses were collected, sold retail in supermarkets. The following regions of the carcass were sampled: breast skin, wing skin, belly skin, neck skin, gizzard and liver. Samples of chicken carcasses were analyzed following ISO 10272-2 guidelines for the isolation of Campylobacter spp. The isolates were tested by PCR to identify genus, species C. jejuni, C. coli and C. lari and genes cdtA, cdtB, cdtC, sodB, dnaJ, cmeA, cmeB, cmeC. The assessment of susceptibility to antibiotics was carried out using the standard disk diffusion method and the antimicrobial activity of CECE was determined using the Minimum Inhibitory Concentration (MIC), the methodologies followed the recommendations and cutoff points according to EUCAST and CLSI. A total of 376 isolates of Campylobacter spp. were obtained, among these, 26 (7.0%) were positive for C. jejuni and no isolates were detected for C. coli and C. lari. The highest frequency of C. jejuni was obtained in chilled carcasses with 23 isolates (88.5%, p < 0.0001), in frozen carcasses three isolates were obtained (11.5%). The most frequency site of C. jejuni was the chest skin (7/27.0%), followed by skin of the wing (6/23.0%), skin of the cloaca (5/19.0%), gizzard (4/15.0%), skin of the neck (2/8.0%) and liver (2/8.0%), no significant differences were found between the sites sampled. The gene frequency was determined in: cdtA (3/11.5%), cdtB (3/11.5%), cdtC (5/19.0%), sodB (9/34.5%), dnaJ (3/11.5%), cmeA (4/15.0%), cmeB (4/15.0%) and cmeC (4/15.0%). The three efflux pump genes were amplified in four isolates (15.3%) and all tested genes were amplified in three isolates (11.5%). All C. jejuni isolates (26/100.0%) were found to be multiresistant to three or more classes of antimicrobials. The index of multiple resistance to antimicrobial drugs (IRMA) ranged from 0.4 to 1.0 among isolates of C. jejuni. The antimicrobial activity of CECE was able to inhibit at least 98.5% of the growth of all C. jejuni isolates. Therefore, chilled chicken carcasses present a greater risk of contamination than frozen carcasses, for this reason it is necessary to adopt practices that avoid cross-contamination during the preparation of chicken meat, in order to prevent campylobacteriosis. Furthermore, the presence of multiresistant and potentially virulent isolates highlights the need for further investigations to better understand the use of enterocins as alternative methods in the control of Campylobacter.
Collapse
Affiliation(s)
- Saruanna Millena Dos Santos Clemente
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil.
| | - Samuel Fernando Dos Santos
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil
| | - Priscilla Régia de Andrade Calaça
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil
| | - Maria Taciana Cavalcanti Vieira Soares
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil
| | - Webert Aurino da Silva
- Zootechnics Department, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil
| | - Renata Pimentel Bandeira de Melo
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil
| | - Rinaldo Aparecido Mota
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil
| | - Mércia Rodrigues Barros
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CP 52171-900, Brazil
| |
Collapse
|
3
|
Ortega-Sanz I, Rovira J, Melero B. Whole-genome comparative analysis of the genetic, virulence and antimicrobial resistance diversity of Campylobacter spp. from Spain. Int J Food Microbiol 2025; 427:110940. [PMID: 39447227 DOI: 10.1016/j.ijfoodmicro.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Whole-Genome Sequencing has the potential to be an effective method for surveillance of foodborne diseases. This study aims to determine the genetic relatedness and prevalence of virulence-associated genes and antimicrobial resistance determinants in 135 Campylobacter jejuni, seven Campylobacter coli and three Campylobacter lari isolates from the poultry supply chain and a hospital in Spain. The isolates showed a wide genetic diversity between and within species with Clonal Complex 21 the most frequent lineage found. Among species, C. jejuni showed the highest prevalence of virulence genes (287/333) in which a high occurring variability was observed in the capsule biosynthesis and transport, O-linked flagellar glycosylation and lipooligosaccharide biosynthesis loci, with a great impact of phase-variation that led to 72 different virulence gene patterns among all isolates. High prevalence (> 90 %) of blaOXA-type β-lactamase genes and mutations in DNA gyrase gene associated with fluoroquinolones resistance were observed, and at a frequency similar to the tet(O) gene in C. jejuni (93 %) and C. coli (86 %), both of which also harboured resistance determinants to aminoglycosides with a higher occurrence rate in C. coli (43 %), that was the only species in which mutations in the 23S ribosomal subunit conferring resistance to erythromycin were identified (43 %). The present study constitutes the largest genomic survey of Campylobacter isolates in Spain providing insight into the prevalence and diversity of the pathogen along the poultry supply chain in the country.
Collapse
Affiliation(s)
- Irene Ortega-Sanz
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain.
| |
Collapse
|
4
|
Fernández-Palacios P, Galán-Sánchez F, Casimiro-Soriguer CS, Jurado-Tarifa E, Arroyo F, Lara M, Chaves JA, Dopazo J, Rodríguez-Iglesias MA. Genotypic characterization and antimicrobial susceptibility of human Campylobacter jejuni isolates in Southern Spain. Microbiol Spectr 2024; 12:e0102824. [PMID: 39162511 PMCID: PMC11449230 DOI: 10.1128/spectrum.01028-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Campylobacter jejuni is the main cause of bacterial gastroenteritis and a public health problem worldwide. Little information is available on the genotypic characteristics of human C. jejuni in Spain. This study is based on an analysis of the resistome, virulome, and phylogenetic relationship, antibiogram prediction, and antimicrobial susceptibility of 114 human isolates of C. jejuni from a tertiary hospital in southern Spain from October 2020 to June 2023. The isolates were sequenced using Illumina technology, and a bioinformatic analysis was subsequently performed. The susceptibility of C. jejuni isolates to ciprofloxacin, tetracycline, and erythromycin was also tested. The resistance rates for each antibiotic were 90.3% for ciprofloxacin, 66.7% for tetracycline, and 0.88% for erythromycin. The fluoroquinolone resistance rate obtained is well above the European average (69.1%). CC-21 (n = 23), ST-572 (n = 13), and ST-6532 (n = 13) were the most prevalent clonal complexes (CCs) and sequence types (STs). In the virulome, the cadF, ciaB, and cdtABC genes were detected in all the isolates. A prevalence of 20.1% was obtained for the genes wlaN and cstIII, which are related to the pathogenesis of Guillain-Barré syndrome (GBS). The prevalence of the main antimicrobial resistance markers detected were CmeABC (92.1%), RE-cmeABC (7.9%), the T86I substitution in gyrA (88.9%), blaOXA-61 (72.6%), tet(O) (65.8%), and ant (6)-Ia (17.1%). High antibiogram prediction rates (>97%) were obtained, except for in the case of the erythromycin-resistant phenotype. This study contributes significantly to the knowledge of C. jejuni genomics for the prevention, treatment, and control of infections caused by this pathogen.IMPORTANCEDespite being the pathogen with the greatest number of gastroenteritis cases worldwide, Campylobacter jejuni remains a poorly studied microorganism. A sustained increase in fluoroquinolone resistance in human isolates is a problem when treating Campylobacter infections. The development of whole genome sequencing (WGS) techniques has allowed us to better understand the genotypic characteristics of this pathogen and relate them to antibiotic resistance phenotypes. These techniques complement the data obtained from the phenotypic analysis of C. jejuni isolates. The zoonotic transmission of C. jejuni through the consumption of contaminated poultry supports approaching the study of this pathogen through "One Health" approach. In addition, due to the limited information on the genomic characteristics of C. jejuni in Spain, this study provides important data and allows us to compare the results with those obtained in other countries.
Collapse
Affiliation(s)
| | | | - Carlos S Casimiro-Soriguer
- Plataforma Andaluza de Medicina Computacional, Fundación Pública Andaluza Progreso y Salud, Sevilla, Spain
| | - Estefanía Jurado-Tarifa
- Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Federico Arroyo
- UGC Microbiología, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - María Lara
- Plataforma Andaluza de Medicina Computacional, Fundación Pública Andaluza Progreso y Salud, Sevilla, Spain
| | - J Alberto Chaves
- Subdirección de Protección de la Salud, Consejería de Salud y Familias, Sevilla, Spain
| | - Joaquín Dopazo
- Plataforma Andaluza de Medicina Computacional, Fundación Pública Andaluza Progreso y Salud, Sevilla, Spain
| | - Manuel A Rodríguez-Iglesias
- UGC Microbiología, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
5
|
Ghatak S, Milton AAP, Das S, Momin KM, Srinivas K, Pyngrope DA, Priya GB. Campylobacter coli of porcine origin exhibits an open pan-genome within a single clonal complex: insights from comparative genomic analysis. Front Cell Infect Microbiol 2024; 14:1449856. [PMID: 39415896 PMCID: PMC11480030 DOI: 10.3389/fcimb.2024.1449856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Although Campylobacter spp., including Campylobacter coli, have emerged as important zoonotic foodborne pathogens globally, the understanding of the genomic epidemiology of C. coli of porcine origin is limited. Methods As pigs are an important reservoir of C. coli, we analyzed C. coli genomes that were isolated (n = 3) from pigs and sequenced (this study) them along with all other C. coli genomes for which pig intestines, pig feces, and pigs were mentioned as sources in the NCBI database up to January 6, 2023. In this paper, we report the pan-genomic features, the multi-locus sequence types, the resistome, virulome, and mobilome, and the phylogenomic analysis of these organisms that were obtained from pigs. Results and discussion Our analysis revealed that, in addition to having an open pan-genome, majority (63%) of the typeable isolates of C. coli of pig origin belonged to a single clonal complex, ST-828. The resistome of these C. coli isolates was predominated by the genes tetO (53%), blaOXA-193 (49%), and APH (3')-IIIa (21%); however, the virulome analysis revealed a core set of 37 virulence genes. Analysis of the mobile genetic elements in the genomes revealed wide diversity of the plasmids and bacteriophages, while 30 transposons were common to all genomes of C. coli of porcine origin. Phylogenomic analysis showed two discernible clusters comprising isolates originating from Japan and another set of isolates comprising mostly copies of a type strain stored in three different culture collections.
Collapse
Affiliation(s)
- Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | | | - Samir Das
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - Kasanchi M. Momin
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - Kandhan Srinivas
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - Daniel Aibor Pyngrope
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - G. Bhuvana Priya
- College of Agriculture (CAU, Imphal), Kyrdemkulai, Meghalaya, India
| |
Collapse
|
6
|
Montero L, Medina-Santana JL, Ishida M, Sauders B, Trueba G, Vinueza-Burgos C. Transmission of dominant strains of Campylobacter jejuni and Campylobacter coli between farms and retail stores in Ecuador: Genetic diversity and antimicrobial resistance. PLoS One 2024; 19:e0308030. [PMID: 39316598 PMCID: PMC11421796 DOI: 10.1371/journal.pone.0308030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/16/2024] [Indexed: 09/26/2024] Open
Abstract
Thermotolerant Campylobacter is an important zoonotic pathogen known for causing gastroenteritis in humans, with poultry as its primary reservoir. A total of 468 samples were collected, of which 335 were chicken carcass samples (representing the food component), and 133 were chicken caeca samples (representing the animal component). These samples underwent culture, with colonies examined under a microscope. Species identification was achieved through multiplex PCR. Additionally, antimicrobial susceptibility profiles were determined using the Kirby-Bauer method, testing for sensitivity to gentamicin, ciprofloxacin, tetracycline, and erythromycin. Additionally, 55 C. jejuni (62.5%) and 33 C. coli (37.5%) isolates were selected for whole genome sequencing (WGS). A High prevalence of Campylobacter was observed, with rates of 95.5% (n = 127, CI95%: 92.5% - 98.5%) in the animal component and 72.5% (n = 243, CI95%: 69.9% - 75.1%) in the food component. Specifically, C. jejuni was detected in 33.1% (n = 42) of poultry farms and 38.3% (n = 93) of chicken carcasses, while C. coli was found in 64.6% (n = 82) of poultry farms and 60.5% (n = 147) of chicken carcasses. Antimicrobials with the highest rates of resistance (67%-100%) were ciprofloxacin and tetracycline, in both animal and food component isolates. Erythromycin resistance was notable, ranging from 22% to 33%, with only two C. jejuni isolates from retail were resistant to gentamicin. Furthermore, multidrug resistance was identified in 23% (20 isolates) of the Campylobacter isolates. Genetic analysis revealed the presence of fourteen resistance genes in both C. jejuni and C. coli isolates, including tet(O), blaOXA-460, blaOXA-184, blaOXA-489, blaOXA-193, blaOXA-784, blaOXA-603, aph(3')-IIIa, aad9, aph(2'')-If, aadE-Cc, sat4, and ant(6)-Ia. Additionally, twenty-five plasmids were detected in the 88 Campylobacter isolates examined. Interestingly, most isolates also harbored genes encoding putative virulence factors associated with pathogenicity, invasion, adherence, and production of cytolethal distending toxin (cdt): cheV, cheA, cheW, cheY, flaA, flgR, flaC, flaD, flgB, flgC, ciaB, ciaC. The WGS analysis showed the presence of several cgSTs in both animal and food components, with nine of them widely disseminated between components. Moreover, C. coli and C. jejuni isolates from different sources presented less than 11 single nucleotide polymorphisms (SNPs), suggesting clonality (16 isolates). Further analysis using SNP tree demonstrated widespread distribution of certain C. jejuni and C. coli clones across multiple farms and retail stores. This study presents, for the first-time, insights into the clonality, plasmid diversity, virulence, and antimicrobial resistance (AMR) of thermotolerant Campylobacter strains originating from the Ecuadorian poultry industry. The identification of AMR genes associated with the main antibiotics used in the treatment of campylobacteriosis in humans, highlights the importance of the prudent use of antimicrobials in the poultry industry. Additionally, this research remarks the need for regional studies to understand the epidemiology of this pathogen.
Collapse
Affiliation(s)
- Lorena Montero
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - José L. Medina-Santana
- Unidad de investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central de Ecuador, Quito, Ecuador
| | - María Ishida
- Division of Food Laboratory, New York State Department of Agriculture and Markets, Albany, NY, United States of America
| | - Brian Sauders
- Division of Food Laboratory, New York State Department of Agriculture and Markets, Albany, NY, United States of America
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Christian Vinueza-Burgos
- Unidad de investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central de Ecuador, Quito, Ecuador
| |
Collapse
|
7
|
Middendorf PS, Wijnands LM, Boeren S, Zomer AL, Jacobs-Reitsma WF, den Besten HM, Abee T. Activation of the l-fucose utilization cluster in Campylobacter jejuni induces proteomic changes and enhances Caco-2 cell invasion and fibronectin binding. Heliyon 2024; 10:e34996. [PMID: 39220920 PMCID: PMC11365321 DOI: 10.1016/j.heliyon.2024.e34996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Most Campylobacter jejuni isolates carry the fucose utilization cluster (Cj0480c-Cj0489) that supports the metabolism of l-fucose and d-arabinose. In this study we quantified l-fucose and d-arabinose metabolism and metabolite production, and the impact on Caco-2 cell interaction and binding to fibronectin, using C. jejuni NCTC11168 and the closely related human isolate C. jejuni strain 286. When cultured with l-fucose and d-arabinose, both isolates showed increased survival and production of acetate, pyruvate and succinate, and the respective signature metabolites lactate and glycolic acid, in line with an overall upregulation of l-fucose cluster proteins. In vitro Caco-2 cell studies and fibronectin-binding experiments showed a trend towards higher invasion and a significantly higher fibronectin binding efficacy of C. jejuni NCTC11168 cells grown with l-fucose and d-arabinose, while no significant differences were found with C. jejuni 286. Both fibronectin binding proteins, CadF and FlpA, were detected in the two isolates, but were not significantly differentially expressed in l-fucose or d-arabinose grown cells. Comparative proteomics analysis linked the C. jejuni NCTC11168 phenotypes uniquely to the more than 135-fold upregulated protein Cj0608, putative TolC-like component MacC, which, together with the detected Cj0606 and Cj0607 proteins, forms the tripartite secretion system MacABC with putative functions in antibiotic resistance, cell envelope stress response and virulence in Gram negative pathogenic bacteria. Further studies are required to elucidate the role of the MacABC system in C. jejuni cell surface structure modulation and virulence.
Collapse
Affiliation(s)
- Pjotr S. Middendorf
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Lucas M. Wijnands
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Aldert L. Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
- WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, the Netherlands
| | | | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
8
|
Admasie A, Wei X, Johnson B, Burns L, Pawar P, Aurand-Cravens A, Voloshchuk O, Dudley EG, Sisay Tessema T, Zewdu A, Kovac J. Genomic diversity of Campylobacter jejuni and Campylobacter coli isolated from the Ethiopian dairy supply chain. PLoS One 2024; 19:e0305581. [PMID: 39159178 PMCID: PMC11332940 DOI: 10.1371/journal.pone.0305581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/31/2024] [Indexed: 08/21/2024] Open
Abstract
Campylobacteriosis outbreaks have previously been linked to dairy foods. While the genetic diversity of Campylobacter is well understood in high-income countries, it is largely unknown in low-income countries, such as Ethiopia. This study therefore aimed to conduct the first genomic characterization of Campylobacter isolates from the Ethiopian dairy supply chain to aid in future epidemiological studies. Fourteen C. jejuni and four C. coli isolates were whole genome sequenced using an Illumina platform. Sequences were analyzed using the bioinformatics tools in the GalaxyTrakr platform to identify MLST types, and single nucleotide polymorphisms, and infer phylogenetic relationships among the studied isolates. Assembled genomes were further screened to detect antimicrobial resistance and virulence gene sequences. Among 14 C. jejuni, ST 2084 and ST 51, which belong to the clonal complexes ST-353 and ST-443, respectively, were identified. Among the 4 sequenced C. coli isolates, two isolates belonged to ST 1628 and two to ST 830 from the clonal complex ST-828. The isolates of C. jejuni ST 2084 and ST 51 carried β-lactam resistance gene blaOXA-605, a fluoroquinolone resistance-associated mutation T86I in the gryA gene, and a macrolide resistance-associated mutation A103V in 50S L22. Only ST 2084 isolates carried the tetracycline resistance gene tetO. Conversely, all four C. coli ST 830 and ST 1628 isolates carried tetO, but only ST 1628 isolates also carried blaOXA-605. Lastly, C. jejuni ST 2084 isolates carried a total of 89 virulence genes, and ST 51 isolates carried up to 88 virulence genes. Among C. coli, ST 830 isolates carried 71 genes involved in virulence, whereas two ST 1628 isolates carried up to 82 genes involved in virulence. Isolates from all identified STs have previously been isolated from human clinical cases, demonstrating a potential food safety concern. This finding warrants further monitoring of Campylobacter in dairy foods in Ethiopia to better understand and manage the risks associated with Campylobacter contamination and transmission.
Collapse
Affiliation(s)
- Abera Admasie
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Xiaoyuan Wei
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| | - Beth Johnson
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Logan Burns
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Preeti Pawar
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Ashley Aurand-Cravens
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Olena Voloshchuk
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| | | | - Ashagrie Zewdu
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
9
|
Casimiro-Soriguer CS, Pérez-Florido J, Robles EA, Lara M, Aguado A, Rodríguez Iglesias MA, Lepe JA, García F, Pérez-Alegre M, Andújar E, Jiménez VE, Camino LP, Loruso N, Ameyugo U, Vazquez IM, Lozano CM, Chaves JA, Dopazo J. The integrated genomic surveillance system of Andalusia (SIEGA) provides a One Health regional resource connected with the clinic. Sci Rep 2024; 14:19200. [PMID: 39160186 PMCID: PMC11333592 DOI: 10.1038/s41598-024-70107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
The One Health approach, recognizing the interconnectedness of human, animal, and environmental health, has gained significance amid emerging zoonotic diseases and antibiotic resistance concerns. This paper aims to demonstrate the utility of a collaborative tool, the SIEGA, for monitoring infectious diseases across domains, fostering a comprehensive understanding of disease dynamics and risk factors, highlighting the pivotal role of One Health surveillance systems. Raw whole-genome sequencing is processed through different species-specific open software that additionally reports the presence of genes associated to anti-microbial resistances and virulence. The SIEGA application is a Laboratory Information Management System, that allows customizing reports, detect transmission chains, and promptly alert on alarming genetic similarities. The SIEGA initiative has successfully accumulated a comprehensive collection of more than 1900 bacterial genomes, including Salmonella enterica, Listeria monocytogenes, Campylobacter jejuni, Escherichia coli, Yersinia enterocolitica and Legionella pneumophila, showcasing its potential in monitoring pathogen transmission, resistance patterns, and virulence factors. SIEGA enables customizable reports and prompt detection of transmission chains, highlighting its contribution to enhancing vigilance and response capabilities. Here we show the potential of genomics in One Health surveillance when supported by an appropriate bioinformatic tool. By facilitating precise disease control strategies and antimicrobial resistance management, SIEGA enhances global health security and reduces the burden of infectious diseases. The integration of health data from humans, animals, and the environment, coupled with advanced genomics, underscores the importance of a holistic One Health approach in mitigating health threats.
Collapse
Affiliation(s)
- Carlos S Casimiro-Soriguer
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Javier Pérez-Florido
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Enrique A Robles
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - María Lara
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - Andrea Aguado
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | | | - José A Lepe
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
- Servicio de Microbiología, Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, 41013, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Federico García
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
- Servicio de Microbiología. Hospital Universitario San Cecilio, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs.GRANADA, 18012, Granada, Spain
| | - Mónica Pérez-Alegre
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC University of Seville University Pablo de Olavide, Seville, Spain
| | - Eloísa Andújar
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC University of Seville University Pablo de Olavide, Seville, Spain
| | - Victoria E Jiménez
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC University of Seville University Pablo de Olavide, Seville, Spain
| | - Lola P Camino
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC University of Seville University Pablo de Olavide, Seville, Spain
| | - Nicola Loruso
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo- Junta de Andalucía, Seville, Spain
| | - Ulises Ameyugo
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo- Junta de Andalucía, Seville, Spain
| | - Isabel María Vazquez
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo- Junta de Andalucía, Seville, Spain
| | - Carlota M Lozano
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo- Junta de Andalucía, Seville, Spain
| | - J Alberto Chaves
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo- Junta de Andalucía, Seville, Spain
| | - Joaquin Dopazo
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.
| |
Collapse
|
10
|
Hock L, Walczak C, Mosser J, Ragimbeau C, Cauchie HM. Exploring the Role of the Environment as a Reservoir of Antimicrobial-Resistant Campylobacter: Insights from Wild Birds and Surface Waters. Microorganisms 2024; 12:1621. [PMID: 39203463 PMCID: PMC11356556 DOI: 10.3390/microorganisms12081621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing global health challenge, compromising bacterial infection treatments and necessitating robust surveillance and mitigation strategies. The overuse of antimicrobials in humans and farm animals has made them hotspots for AMR. However, the spread of AMR genes in wildlife and the environment represents an additional challenge, turning these areas into new AMR hotspots. Among the AMR bacteria considered to be of high concern for public health, Campylobacter has been the leading cause of foodborne infections in the European Union since 2005. This study examines the prevalence of AMR genes and virulence factors in Campylobacter isolates from wild birds and surface waters in Luxembourg. The findings reveal a significant prevalence of resistant Campylobacter strains, with 12% of C. jejuni from wild birds and 37% of C. coli from surface waters carrying resistance genes, mainly against key antibiotics like quinolones and tetracycline. This study underscores the crucial role of the environment in the spread of AMR bacteria and genes, highlighting the urgent need for enhanced surveillance and control measures to curb AMR in wildlife and environmental reservoirs and reduce transmission risks to humans. This research supports One Health approaches to tackling antimicrobial resistance and protecting human, animal, and environmental health.
Collapse
Affiliation(s)
- Louise Hock
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, L-4422 Belvaux, Luxembourg; (C.W.); (H.-M.C.)
| | - Cécile Walczak
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, L-4422 Belvaux, Luxembourg; (C.W.); (H.-M.C.)
| | - Juliette Mosser
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, L-4422 Belvaux, Luxembourg; (C.W.); (H.-M.C.)
| | - Catherine Ragimbeau
- Epidemiology and Microbial Genomics, Laboratoire National de Santé (LNS), 1 Rue Louis Rech, L-3555 Dudelange, Luxembourg;
| | - Henry-Michel Cauchie
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, L-4422 Belvaux, Luxembourg; (C.W.); (H.-M.C.)
| |
Collapse
|
11
|
Phu DH, Wongtawan T, Wintachai P, Nhung NT, Yen NTP, Carrique-Mas J, Turni C, Omaleki L, Blackall PJ, Thomrongsuwannakij T. Molecular characterization of Campylobacter spp. isolates obtained from commercial broilers and native chickens in Southern Thailand using whole genome sequencing. Poult Sci 2024; 103:103485. [PMID: 38335668 PMCID: PMC10869288 DOI: 10.1016/j.psj.2024.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Chickens are the primary reservoirs of Campylobacter spp., mainly C. jejuni and C. coli, that cause human bacterial gastrointestinal infections. However, genomic characteristics and antimicrobial resistance of Campylobacter spp. in low- to middle-income countries need more comprehensive exploration. This study aimed to characterize 21 C. jejuni and 5 C. coli isolates from commercial broilers and native chickens using whole genome sequencing and compare them to 28 reference Campylobacter sequences. Among the 26 isolates, 13 sequence types (ST) were identified in C. jejuni and 5 ST in C. coli. The prominent ST was ST 2274 (5 isolates, 19.2%), followed by ST 51, 460, 2409, and 6455 (2 isolates in each ST, 7.7%), while all remaining ST (464, 536, 595, 2083, 6736, 6964, 8096, 10437, 828, 872, 900, 8237, and 13540) had 1 isolate per ST (3.8%). Six types of antimicrobial resistance genes (ant(6)-Ia, aph(3')-III, blaOXA, cat, erm(B), and tet(O)) and one point mutations in the gyrA gene (Threonine-86-Isoleucine) and another in the rpsL gene (Lysine-43-Arginine) were detected. The blaOXA resistance gene was present in all isolates, the gyrA mutations was in 95.2% of C. jejuni and 80.0% of C. coli, and the tet(O) resistance gene in 76.2% of C. jejuni and 80.0% of C. coli. Additionally, 203 virulence-associated genes linked to 16 virulence factors were identified. In terms of phenotypic resistance, the C. jejuni isolates were all resistant to ciprofloxacin, enrofloxacin, and nalidixic acid, with lower levels of resistance to tetracycline (76.2%), tylosin (52.3%), erythromycin (23.8%), azithromycin (22.2%), and gentamicin (11.1%). Most C. coli isolates were resistant to all tested antimicrobials, while 1 C. coli was pan-susceptible except for tylosin. Single-nucleotide polymorphisms concordance varied widely, with differences of up to 13,375 single-nucleotide polymorphisms compared to the reference Campylobacter isolates, highlighting genetic divergence among comparative genomes. This study contributes to a deeper understanding of the molecular epidemiology of Campylobacter spp. in Thai chicken production systems.
Collapse
Affiliation(s)
- Doan Hoang Phu
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; Doctoral Program in Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Vietnam
| | - Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Nguyen Thi Nhung
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Vietnam
| | | | - Juan Carrique-Mas
- Food and Agriculture Organization of the United Nations, Ha Noi 10000, Vietnam
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Lida Omaleki
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Thotsapol Thomrongsuwannakij
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
12
|
Schiaffino F, Parker CT, Paredes Olortegui M, Pascoe B, Manzanares Villanueva K, Garcia Bardales PF, Mourkas E, Huynh S, Peñataro Yori P, Romaina Cachique L, Gray HK, Salvatierra G, Silva Delgado H, Sheppard SK, Cooper KK, Kosek MN. Genomic resistant determinants of multidrug-resistant Campylobacter spp. isolates in Peru. J Glob Antimicrob Resist 2024; 36:309-318. [PMID: 38272215 PMCID: PMC11092888 DOI: 10.1016/j.jgar.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVES Antimicrobial resistant (AMR) Campylobacter is a global health threat; however, there is limited information on genomic determinants of resistance in low- and middle-income countries. We evaluated genomic determinants of AMR using a collection of whole genome sequenced Campylobacter jejuni and C. coli isolates from Iquitos, Peru. METHODS Campylobacter isolates from two paediatric cohort studies enriched with isolates that demonstrated resistance to ciprofloxacin and azithromycin were sequenced and mined for AMR determinants. RESULTS The gyrA mutation leading to the Thr86Ile amino acid change was the only gyrA mutation associated with fluoroquinolone resistance identified. The A2075G mutation in 23S rRNA was present, but three other 23S rRNA mutations previously associated with macrolide resistance were not identified. A resistant-enhancing variant of the cmeABC efflux pump genotype (RE-cmeABC) was identified in 36.1% (35/97) of C. jejuni genomes and 17.9% (12/67) of C. coli genomes. Mutations identified in the CmeR-binding site, an inverted repeat sequence in the cmeABC promoter region that increases expression of the operon, were identified in 24/97 C. jejuni and 14/67 C. coli genomes. The presence of these variants, in addition to RE-cmeABC, was noted in 18 of the 24 C. jejuni and 9 of the 14 C. coli genomes. CONCLUSIONS Both RE-cmeABC and mutations in the CmeR-binding site were strongly associated with the MDR phenotype in C. jejuni and C. coli. This is the first report of RE-cmeABC in Peru and suggests it is a major driver of resistance to the principal therapies used to treat human campylobacteriosis in this setting.
Collapse
Affiliation(s)
- Francesca Schiaffino
- Division of Infectious Diseases, University of Virginia, Charlottesville, Virginia; Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru
| | - Craig T Parker
- Agricultural Research Service, U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Albany, California
| | | | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Evangelos Mourkas
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Steven Huynh
- Agricultural Research Service, U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Albany, California
| | - Pablo Peñataro Yori
- Division of Infectious Diseases, University of Virginia, Charlottesville, Virginia; Asociacion Benefica Prisma, Iquitos, Peru
| | | | - Hannah K Gray
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Guillermo Salvatierra
- School of Veterinary Medicine, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | | | - Samuel K Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Kerry K Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona; The BIO5 Institute, University of Arizona, Tucson, Arizona.
| | - Margaret N Kosek
- Division of Infectious Diseases, University of Virginia, Charlottesville, Virginia; Asociacion Benefica Prisma, Iquitos, Peru.
| |
Collapse
|
13
|
Garcia-Fernandez A, Janowicz A, Marotta F, Napoleoni M, Arena S, Primavilla S, Pitti M, Romantini R, Tomei F, Garofolo G, Villa L. Antibiotic resistance, plasmids, and virulence-associated markers in human strains of Campylobacter jejuni and Campylobacter coli isolated in Italy. Front Microbiol 2024; 14:1293666. [PMID: 38260875 PMCID: PMC10800408 DOI: 10.3389/fmicb.2023.1293666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
Campylobacteriosis, a prevalent foodborne gastrointestinal infection in Europe, is primarily caused by Campylobacter jejuni and Campylobacter coli, with rising global concerns over antimicrobial resistance in these species. This study comprehensively investigates 133 human-origin Campylobacter spp. strains (102 C. jejuni and 31 C. coli) collected in Italy from 2013 to 2021. The predominant Multilocus Sequence Typing Clonal complexes (CCs) were ST-21 CC and ST-206 CC in C. jejuni and ST-828 CC in C. coli. Ciprofloxacin and tetracycline resistance, mainly attributed to GyrA (T86I) mutation and tet(O) presence, were prevalent, while erythromycin resistance was associated with 23S rRNA gene mutation (A2075G), particularly in C. coli exhibiting multidrug-resistant pattern CipTE. Notable disparities in virulence factors among strains were observed, with C. jejuni exhibiting a higher abundance compared to C. coli. Notably, specific C. jejuni sequence types, including ST-21, ST-5018, and ST-1263, demonstrated significantly elevated counts of virulence genes. This finding underscores the significance of considering both the species and strain-level variations in virulence factor profiles, shedding light on potential differences in the pathogenicity and clinical outcomes associated with distinct C. jejuni lineages. Campylobacter spp. plasmids were classified into three groups comprising pVir-like and pTet-like plasmids families, exhibiting diversity among Campylobacter spp. The study underscores the importance of early detection through Whole Genome Sequencing to identify potential emergent virulence, resistance/virulence plasmids, and new antimicrobial resistance markers. This approach provides actionable public health data, supporting the development of robust surveillance programs in Italy.
Collapse
Affiliation(s)
| | - Anna Janowicz
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Francesca Marotta
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Maira Napoleoni
- Centro di Riferimento Regionale Patogeni Enterici, CRRPE, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, Perugia, Italy
| | - Sergio Arena
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Primavilla
- Centro di Riferimento Regionale Patogeni Enterici, CRRPE, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, Perugia, Italy
| | - Monica Pitti
- Centro di Riferimento per la Tipizzazione delle Salmonelle, CeRTiS, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Romina Romantini
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | | | - Giuliano Garofolo
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Laura Villa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
14
|
Cribb DM, Moffatt CRM, Wallace RL, McLure AT, Bulach D, Jennison AV, French N, Valcanis M, Glass K, Kirk MD. Genomic and clinical characteristics of campylobacteriosis in Australia. Microb Genom 2024; 10:001174. [PMID: 38214338 PMCID: PMC10868609 DOI: 10.1099/mgen.0.001174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
Campylobacter spp. are a common cause of bacterial gastroenteritis in Australia, primarily acquired from contaminated meat. We investigated the relationship between genomic virulence characteristics and the severity of campylobacteriosis, hospitalisation, and other host factors.We recruited 571 campylobacteriosis cases from three Australian states and territories (2018-2019). We collected demographic, health status, risk factors, and self-reported disease data. We whole genome sequenced 422 C. jejuni and 84 C. coli case isolates along with 616 retail meat isolates. We classified case illness severity using a modified Vesikari scoring system, performed phylogenomic analysis, and explored risk factors for hospitalisation and illness severity.On average, cases experienced a 7.5 day diarrhoeal illness with additional symptoms including stomach cramps (87.1 %), fever (75.6 %), and nausea (72.0 %). Cases aged ≥75 years had milder symptoms, lower Vesikari scores, and higher odds of hospitalisation compared to younger cases. Chronic gastrointestinal illnesses also increased odds of hospitalisation. We observed significant diversity among isolates, with 65 C. jejuni and 21 C. coli sequence types. Antimicrobial resistance genes were detected in 20.4 % of isolates, but multidrug resistance was rare (0.04 %). Key virulence genes such as cdtABC (C. jejuni) and cadF were prevalent (>90 % presence) but did not correlate with disease severity or hospitalisation. However, certain genes (e.g. fliK, Cj1136, and Cj1138) appeared to distinguish human C. jejuni cases from food source isolates.Campylobacteriosis generally presents similarly across cases, though some are more severe. Genotypic virulence factors identified in the literature to-date do not predict disease severity but may differentiate human C. jejuni cases from food source isolates. Host factors like age and comorbidities have a greater influence on health outcomes than virulence factors.
Collapse
Affiliation(s)
- Danielle M. Cribb
- National Centre for Epidemiology and Population Health, the Australian National University, Canberra, Australia
| | - Cameron R. M. Moffatt
- Queensland Health Forensic and Scientific Services, Coopers Plains, Brisbane, Australia
| | - Rhiannon L. Wallace
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, Agassiz, British Columbia, Canada
| | - Angus T. McLure
- National Centre for Epidemiology and Population Health, the Australian National University, Canberra, Australia
| | - Dieter Bulach
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Amy V. Jennison
- Queensland Health Forensic and Scientific Services, Coopers Plains, Brisbane, Australia
| | - Nigel French
- Tāwharau Ora|School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kathryn Glass
- National Centre for Epidemiology and Population Health, the Australian National University, Canberra, Australia
| | - Martyn D. Kirk
- National Centre for Epidemiology and Population Health, the Australian National University, Canberra, Australia
| |
Collapse
|
15
|
Li X, Xu X, Chen X, Li Y, Guo J, Gao J, Jiao X, Tang Y, Huang J. Prevalence and genetic characterization of Campylobacter from clinical poultry cases in China. Microbiol Spectr 2023; 11:e0079723. [PMID: 37847023 PMCID: PMC10714823 DOI: 10.1128/spectrum.00797-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/22/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE Campylobacter is a major cause of campylobacteriosis worldwide, and poultry is the main reservoir for its transmission. Campylobacter was generally considered to be a harmless commensal organism in poultry without pathogenic properties. However, it was proposed that a Campylobacter-like organism may be the cause of vibrionic hepatitis, which poses a significant public health risk. The occurrence and epidemiology of Campylobacter in healthy poultry have been studied systematically, but little is known about the epidemiology of Campylobacter isolates from diseased poultry in China. Therefore, this study determined the prevalence and molecular characterization of Campylobacter from diseased chickens, ducks, and geese in Yangzhou Veterinary Hospital between December 2016 and September 2017, which was critical for improving the diagnosis and prevention of Campylobacter infections.
Collapse
Affiliation(s)
- Xiaofei Li
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiangxiang Xu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyi Chen
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, Jiangsu, China
| | - Yunlu Li
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, Jiangsu, China
| | - Jiale Guo
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, Jiangsu, China
| | - Jie Gao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, Jiangsu, China
| | - Yuanyue Tang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, Jiangsu, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, Jiangsu, China
| |
Collapse
|
16
|
Marotta F, Janowicz A, Romantini R, Di Marcantonio L, Di Timoteo F, Romualdi T, Zilli K, Barco L, D’Incau M, Mangone I, Cito F, Di Domenico M, Pomilio F, Ricci L, Garofolo G. Genomic and Antimicrobial Surveillance of Campylobacter Population in Italian Poultry. Foods 2023; 12:2919. [PMID: 37569189 PMCID: PMC10418777 DOI: 10.3390/foods12152919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Campylobacter is one of the most common foodborne diseases worldwide with increasing rates of antibiotic resistance. Most cases of campylobacteriosis can be traced back to the consumption of poultry meat. Despite many efforts to reduce contamination in farms and in slaughterhouses, the persistence of this pathogen in poultry products remains a problem. This study aimed to evaluate the genetic diversity and antibiotic resistance of 542 C. jejuni and C. coli in Italian poultry, in the framework of two National Monitoring Programs. Genomes were screened for antibiotic resistance, virulence determinants and contextualized within a global collection of C. jejuni. ST2116, ST2863 and ST 832 were the most prevalent and significantly associated with Italian poultry. A worrying increase in resistance to quinolones, fluoroquinolones and tetracycline was observed in C. jejuni, while an increased occurrence of multidrug resistant (MDR) strains and strains resistant to macrolides was detected in C. coli. Low resistance rates were found for aminoglycosides. Molecular resistance determinants were consistent with the phenotypic resistance for tetracycline and quinolones. In silico analysis revealed 119 genes associated with virulence factors, with a notably higher prevalence of some genes in ST2863 genomes. This study highlights the increased resistance to macrolides and the emergence of MDR strains for C. coli, the genetic basis of AMR and the predominance of two genotypes among Campylobacter strains isolated from the Italian poultry farms.
Collapse
Affiliation(s)
- Francesca Marotta
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale Teramo, Via Campo Boario 1, 64100 Teramo, Italy; (F.M.); (A.J.); (L.D.M.); (F.D.T.); (T.R.); (K.Z.); (I.M.); (F.C.); (M.D.D.); (F.P.); (L.R.); (G.G.)
| | - Anna Janowicz
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale Teramo, Via Campo Boario 1, 64100 Teramo, Italy; (F.M.); (A.J.); (L.D.M.); (F.D.T.); (T.R.); (K.Z.); (I.M.); (F.C.); (M.D.D.); (F.P.); (L.R.); (G.G.)
| | - Romina Romantini
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale Teramo, Via Campo Boario 1, 64100 Teramo, Italy; (F.M.); (A.J.); (L.D.M.); (F.D.T.); (T.R.); (K.Z.); (I.M.); (F.C.); (M.D.D.); (F.P.); (L.R.); (G.G.)
| | - Lisa Di Marcantonio
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale Teramo, Via Campo Boario 1, 64100 Teramo, Italy; (F.M.); (A.J.); (L.D.M.); (F.D.T.); (T.R.); (K.Z.); (I.M.); (F.C.); (M.D.D.); (F.P.); (L.R.); (G.G.)
| | - Federica Di Timoteo
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale Teramo, Via Campo Boario 1, 64100 Teramo, Italy; (F.M.); (A.J.); (L.D.M.); (F.D.T.); (T.R.); (K.Z.); (I.M.); (F.C.); (M.D.D.); (F.P.); (L.R.); (G.G.)
| | - Teresa Romualdi
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale Teramo, Via Campo Boario 1, 64100 Teramo, Italy; (F.M.); (A.J.); (L.D.M.); (F.D.T.); (T.R.); (K.Z.); (I.M.); (F.C.); (M.D.D.); (F.P.); (L.R.); (G.G.)
| | - Katiuscia Zilli
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale Teramo, Via Campo Boario 1, 64100 Teramo, Italy; (F.M.); (A.J.); (L.D.M.); (F.D.T.); (T.R.); (K.Z.); (I.M.); (F.C.); (M.D.D.); (F.P.); (L.R.); (G.G.)
| | - Lisa Barco
- Italian National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, 35020 Padua, Italy;
| | - Mario D’Incau
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna “Bruno Ubertini”, 25124 Brescia, Italy;
| | - Iolanda Mangone
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale Teramo, Via Campo Boario 1, 64100 Teramo, Italy; (F.M.); (A.J.); (L.D.M.); (F.D.T.); (T.R.); (K.Z.); (I.M.); (F.C.); (M.D.D.); (F.P.); (L.R.); (G.G.)
| | - Francesca Cito
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale Teramo, Via Campo Boario 1, 64100 Teramo, Italy; (F.M.); (A.J.); (L.D.M.); (F.D.T.); (T.R.); (K.Z.); (I.M.); (F.C.); (M.D.D.); (F.P.); (L.R.); (G.G.)
| | - Marco Di Domenico
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale Teramo, Via Campo Boario 1, 64100 Teramo, Italy; (F.M.); (A.J.); (L.D.M.); (F.D.T.); (T.R.); (K.Z.); (I.M.); (F.C.); (M.D.D.); (F.P.); (L.R.); (G.G.)
| | - Francesco Pomilio
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale Teramo, Via Campo Boario 1, 64100 Teramo, Italy; (F.M.); (A.J.); (L.D.M.); (F.D.T.); (T.R.); (K.Z.); (I.M.); (F.C.); (M.D.D.); (F.P.); (L.R.); (G.G.)
| | - Lucilla Ricci
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale Teramo, Via Campo Boario 1, 64100 Teramo, Italy; (F.M.); (A.J.); (L.D.M.); (F.D.T.); (T.R.); (K.Z.); (I.M.); (F.C.); (M.D.D.); (F.P.); (L.R.); (G.G.)
| | - Giuliano Garofolo
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale Teramo, Via Campo Boario 1, 64100 Teramo, Italy; (F.M.); (A.J.); (L.D.M.); (F.D.T.); (T.R.); (K.Z.); (I.M.); (F.C.); (M.D.D.); (F.P.); (L.R.); (G.G.)
| |
Collapse
|
17
|
Katz A, Porte L, Weitzel T, Varela C, Muñoz-Rehbein C, Ugalde JA, Grim C, González-Escalona N, Blondel CJ, Bravo V. Whole-genome sequencing reveals changes in genomic diversity and distinctive repertoires of T3SS and T6SS effector candidates in Chilean clinical Campylobacter strains. Front Cell Infect Microbiol 2023; 13:1208825. [PMID: 37520433 PMCID: PMC10374022 DOI: 10.3389/fcimb.2023.1208825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
Campylobacter is the leading cause of bacterial gastroenteritis worldwide and an emerging and neglected pathogen in South America. This zoonotic pathogen colonizes the gastrointestinal tract of a wide range of mammals and birds, with poultry as the most important reservoir for human infections. Apart from its high morbidity rates, the emergence of resistant strains is of global concern. The aims of this work were to determine genetic diversity, presence of antimicrobial resistance determinants and virulence potential of Campylobacter spp. isolated from patients with acute gastrointestinal disease at 'Clinica Alemana', Santiago de Chile. The study considered the isolation of Campylobacter spp., from stool samples during a 20-month period (January 2020 to September 2021). We sequenced (NextSeq, Illumina) and performed an in-depth analysis of the genome sequences of 88 Campylobacter jejuni and 2 Campylobacter coli strains isolated from clinical samples in Chile. We identified a high genetic diversity among C. jejuni strains and the emergence of prevalent clonal complexes, which were not identified in our previous reports. While ~40% of strains harbored a mutation in the gyrA gene associated with fluoroquinolone resistance, no macrolide-resistance determinants were detected. Interestingly, gene clusters encoding virulence factors such as the T6SS or genes associated with long-term sequelae such as Guillain-Barré syndrome showed lineage-relatedness. In addition, our analysis revealed a high degree of variability regarding the presence of fT3SS and T6SS effector proteins in comparison to type strains 81-176, F38011, and NCTC 11168 and 488. Our study provides important insights into the molecular epidemiology of this emerging foodborne pathogen. In addition, the differences observed regarding the repertoire of fT3SS and T6SS effector proteins could have an impact on the pathogenic potential and transmissibility of these Latin American isolates, posing another challenge in characterizing the infection dynamics of this emergent and neglected bacterial pathogen.
Collapse
Affiliation(s)
- Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena Porte
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Thomas Weitzel
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Carmen Varela
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Cristina Muñoz-Rehbein
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Juan A. Ugalde
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Christopher Grim
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Narjol González-Escalona
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Carlos J. Blondel
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Verónica Bravo
- Centro de Investigaciones Biomédicas y Aplicadas (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
18
|
Buzzanca D, Kerkhof PJ, Alessandria V, Rantsiou K, Houf K. Arcobacteraceae comparative genome analysis demonstrates genome heterogeneity and reduction in species isolated from animals and associated with human illness. Heliyon 2023; 9:e17652. [PMID: 37449094 PMCID: PMC10336517 DOI: 10.1016/j.heliyon.2023.e17652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
The Arcobacteraceae family groups Gram-negative bacterial species previously included in the family Campylobacteraceae. These species of which some are considered foodborne pathogens, have been isolated from different environmental niches and hosts. They have been isolated from various types of foods, though predominantly from food of animal origin, as well as from stool of humans with enteritis. Their different abilities to survive in different hosts and environments suggest an evolutionary pressure with consequent variation in their genome content. Moreover, their different physiological and genomic characteristics led to the recent proposal to create new genera within this family, which is however criticized due to the lack of discriminatory features and biological and clinical relevance. Aims of the present study were to assess the Arcobacteraceae pangenome, and to characterize existing similarities and differences in 20 validly described species. For this, analysis has been conducted on the genomes of the corresponding type strains obtained by Illumina sequencing, applying several bioinformatic tools. Results of the present study do not support the proposed division into different genera and revealed the presence of pangenome partitions with numbers comparable to other Gram-negative bacteria genera, such as Campylobacter. Different gene class compositions in animal and human-associated species are present, including a higher percentage of virulence-related gene classes such as cell motility genes. The adaptation to environmental and/or host conditions of some species was identified by the presence of specific genes. Furthermore, a division into pathogenic and non-pathogenic species is suggested, which can support future research on food safety and public health.
Collapse
Affiliation(s)
- Davide Buzzanca
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, Belgium
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Pieter-Jan Kerkhof
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, Belgium
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, Belgium
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Karel Lodewijk Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
19
|
Ju C, Ma Y, Zhang B, Zhou G, Wang H, Yu M, He J, Duan Y, Zhang M. Prevalence, genomic characterization and antimicrobial resistance of Campylobacter spp. isolates in pets in Shenzhen, China. Front Microbiol 2023; 14:1152719. [PMID: 37323906 PMCID: PMC10267384 DOI: 10.3389/fmicb.2023.1152719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
The prevalence of Campylobacter spp.in pets is a potential concern for human health. However, little is known about the pet-related Campylobacter spp. in China. A total of 325 fecal samples were collected from dogs, cats, and pet foxes. Campylobacter spp. were isolated by culture, and MALDI-TOF MS was used to identify 110 Campylobacter spp. isolates in total. C. upsaliensis (30.2%, 98/325), C. helveticus (2.5%, 8/325), and C. jejuni (1.2%, 4/325) were the three found species. In dogs and cats, the prevalence of Campylobacter spp. was 35.0% and 30.1%, respectively. A panel of 11 antimicrobials was used to evaluate the antimicrobial susceptibility by the agar dilution method. Among C. upsaliensis isolates, ciprofloxacin had the highest rate of resistance (94.9%), followed by nalidixic acid (77.6%) and streptomycin (60.2%). Multidrug resistance (MDR) was found in 55.1% (54/98) of the C. upsaliensis isolates. Moreover, 100 isolates, including 88 C. upsaliensis, 8 C. helveticus, and 4 C. jejuni, had their whole genomes sequenced. By blasting the sequence against the VFDB database, virulence factors were identified. In total, 100% of C. upsaliensis isolates carried the cadF, porA, pebA, cdtA, cdtB, and cdtC genes. The flaA gene was present in only 13.6% (12/88) of the isolates, while the flaB gene was absent. By analyzing the sequence against the CARD database, we found that 89.8% (79/88) of C. upsaliensis isolates had antibiotic target alteration in the gyrA gene conferring resistance to fluoroquinolone, 36.4% (32/88) had the aminoglycoside resistance gene, and 19.3% (17/88) had the tetracycline resistance gene. The phylogenetic analysis using the K-mer tree method obtained two major clades among the C. upsaliensis isolates. All eight isolates in subclade 1 possessed the gyrA gene mutation, the aminoglycoside and tetracycline resistance genes, and were phenotypically resistant to six classes of antimicrobials. It has been established that pets are a significant source of Campylobacter spp. strains and a reservoir for them. This study is the first to have documented the presence of Campylobacter spp. in pets in Shenzhen, China. In this study, C. upsaliensis of subclade 1 required additional attention due to its broad MDR phenotype and relatively high flaA gene prevalence.
Collapse
Affiliation(s)
- Changyan Ju
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Yanping Ma
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Bi Zhang
- Clinic, IVC Shenzhen Animal Hospital, Shenzhen, China
| | - Guilan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hairui Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Muhua Yu
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Jiaoming He
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Yongxiang Duan
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Maojun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
20
|
Concha-Toloza M, Lopez-Cantillo M, Molina-Mora JA, Collado L. Genomic Characterization of Antibiotic-Resistant Campylobacterales Isolated from Chilean Poultry Meat. Antibiotics (Basel) 2023; 12:917. [PMID: 37237819 PMCID: PMC10215856 DOI: 10.3390/antibiotics12050917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Due to the lack of knowledge about Campylobacterales in the Chilean poultry industry, the objective of this research was to know the prevalence, resistance, and genotypes of Campylobacter, Arcobacter and Helicobacter in 382 samples of chicken meat purchased in Valdivia, Chile. The samples were analyzed using three isolation protocols. Resistance to four antibiotics was evaluated by phenotypic methods. Genomic analyses were performed on selected resistant strains to detect resistance determinants and their genotypes. A total of 59.2% of the samples were positive. Arcobacter butzleri (37.4%) was the most prevalent species, followed by Campylobacter jejuni (19.6%), C. coli (11.3%), A. cryaerophilus (3.7%) and A. skirrowii (1.3%). Helicobacter pullorum (14%) was detected by PCR in a subset of samples. Campylobacter jejuni was resistant to ciprofloxacin (37.3%) and tetracycline (20%), while C. coli and A. butzleri were resistant to ciprofloxacin (55.8% and 2.8%), erythromycin (16.3% and 0.7%) and tetracycline (4.7% and 2.8%), respectively. Molecular determinants were consistent with phenotypic resistance. The genotypes of C. jejuni (CC-21, CC-48, CC-49, CC-257, CC-353, CC-443, CC-446 and CC-658) and C. coli (CC-828) coincided with genotypes of Chilean clinical strains. These findings suggest that besides C. jejuni and C. coli, chicken meat could play a role in the transmission of other pathogenic and antibiotic-resistant Campylobacterales.
Collapse
Affiliation(s)
- Macarena Concha-Toloza
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Mónica Lopez-Cantillo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Jose Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales (CIET) & Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Luis Collado
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
| |
Collapse
|
21
|
Zhang D, Zhang X, Lyu B, Tian Y, Huang Y, Lin C, Yan H, Jia L, Qu M, Wang Q. Genomic Analysis and Antimicrobial Resistance of Campylobacter jejuni Isolated from Diarrheal Patients - Beijing Municipality, China, 2019-2021. China CDC Wkly 2023; 5:424-433. [PMID: 37275268 PMCID: PMC10235816 DOI: 10.46234/ccdcw2023.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/07/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Campylobacter jejuni (C. jejuni) is the leading cause of human bacterial gastroenteritis worldwide and has a major impact on global public health. The objective of the present study was to conduct whole genome sequencing (WGS) to determine the genetic diversity, virulence factors, and determinants of antimicrobial resistance of C. jejuni during a 3-year surveillance period in Beijing, China. Methods A total of 184 clinical isolates were obtained from sentinel hospital surveillance between 2019 and 2021. Antimicrobial susceptibility testing was conducted using the agar dilution method. WGS was employed to characterize the 184 C. jejuni strains. Results Multilocus sequence typing analysis revealed high genetic diversity among the 184 C. jejuni strains, identifying 71 sequence types (STs) and 19 clonal complexes (CCs). The most prevalent ST was ST760 (6.5%), and the most common CC was CC21 (24.5%), consisting of 11 STs. High resistance rates were observed for ciprofloxacin (76.6%), nalidixic acid (76.1%), and tetracycline (71.2%). A total of 77 C. jejuni isolates (41.8%) exhibited multidrug resistance with 43 resistance patterns. Virulome analysis disclosed the differential distribution of virulence factors related to adherence, colonization, chemotaxis, as well as lipo-oligosaccharide and capsular polysaccharide biosynthesis. Resistome analysis demonstrated widespread resistance to quinolones and tetracycline, but low rates of macrolides resistance. The phylogeny, based on whole genome single nucleotide polymorphisms, indicated a high degree of clonality and grouped the C. jejuni strains into six clades. Closely related isolates that were part of a genetic cluster mostly shared a homogenous clonal complex. Conclusions The present study emphasizes the rising resistance to quinolones and tetracycline, as well as the virulence potential and diverse genotypes identified among C. jejuni strains isolated from diarrheal patients in Beijing.
Collapse
Affiliation(s)
- Daitao Zhang
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Xin Zhang
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Bing Lyu
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Yi Tian
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Ying Huang
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Changying Lin
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Hanqiu Yan
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Lei Jia
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Mei Qu
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Santos LS, Rossi DA, Braz RF, Fonseca BB, Guidotti–Takeuchi M, Alves RN, Beletti ME, Almeida-Souza HO, Maia LP, Santos PDS, de Souza JB, de Melo RT. Roles of viable but non-culturable state in the survival of Campylobacter jejuni. Front Cell Infect Microbiol 2023; 13:1122450. [PMID: 37056707 PMCID: PMC10086134 DOI: 10.3389/fcimb.2023.1122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Despite being considered fragile and fastidious, Campylobacter jejuni is the most prevalent cause of foodborne bacterial gastroenteritis, and chicken meat is considered the main vehicle of transmission to humans. This agent can survive adverse conditions in the form of biofilms, but extreme stress (nutritional, oxidative and thermal) promotes the acquisition of a state called viable but not culturable (VBNC). The emergence of this pathogen worldwide and the recent international requirements in its control instigated us to qualitatively and quantitatively estimate the time required for the acquisition of the VBNC form in 27 strains of C. jejuni, characterize morphological aspects, determine its adaptive and invasive potential and perform comparative metabolomic evaluation. Extreme stress promoted the complete acquisition of the VBNC form in a mean time of 26 days. Starting from an average initial count of 7.8 log CFU/mL, the first four days determined the greatest average reduction of the culturable form of 3.2 log CFU/mL. The scanning and transmission image analyses showed a transition from the typical viable form (VT) to the VBNC form, with initial acquisition of the straight rod shape, followed by loss of the flagella and subdivision into two to 11 imperfect cocci arranged in a chain and rich in cellular content, until their individual release. RT-PCR identified the presence of ciaB and p19 transcripts in the 27 cultivable C. jejuni strains, a character maintained in the VBNC form only for p19 and in 59.3% (16/27) of the VBNC strains for the ciaB gene. The average inoculation of 1.8 log CFU/mL of C. jejuni VBNC into primary chicken embryo hepatocyte cells promoted the occurrence of apoptosis processes significantly after 24 hours of contact by one of the strains tested. In C. jejuni VBNC, we detected higher expression of metabolites linked to protective and adaptation mechanisms and of volatile organic precursor compounds indicative of metabolism interruption. The oscillations in the time of acquisition of the VBNC form together with the presence of transcripts for ciaB and p19, the identification of cell lysis and metabolites that ensure the maintenance of the pathogen alert to the fact that C. jejuni VBNC remains virulent and adapted to stress, which makes evident the potential danger of this latent form, which is not detectable by official methodologies.
Collapse
Affiliation(s)
- Leticia Silva Santos
- Laboratory of Molecular Epidemiology, Federal University of Uberlandia, Uberlandia, Brazil
| | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Federal University of Uberlandia, Uberlandia, Brazil
| | | | | | | | | | | | | | - Larissa Prado Maia
- Biotechnology Institute, Federal University of Uberlandia, Uberlandia, Brazil
| | | | | | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlandia, Uberlandia, Brazil
- *Correspondence: Roberta Torres de Melo,
| |
Collapse
|
23
|
Porte L, Pérez C, Barbé M, Varela C, Vollrath V, Legarraga P, Weitzel T. Campylobacter spp. Prevalence in Santiago, Chile: A Study Based on Molecular Detection in Clinical Stool Samples from 2014 to 2019. Pathogens 2023; 12:pathogens12030504. [PMID: 36986425 PMCID: PMC10057968 DOI: 10.3390/pathogens12030504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Campylobacter spp. is an emerging cause of infectious diarrhea worldwide. In South American countries such as Chile, its prevalence is underestimated due to inadequate detection methods. Gastrointestinal multiplex PCR panels (GMP) permit rapid and sensitive detection of bacterial pathogens and provide important epidemiological information. This study aimed to analyze Campylobacter epidemiology using the results of molecular methods and to compare molecular detection results to those of culture methods. We performed a retrospective, descriptive analysis of Campylobacter spp. detected in clinical stool samples between 2014-2019 by GMP and culture. Within 16,582 specimens examined by GMP, Campylobacter was the most prevalent enteropathogenic bacteria (8.5%), followed by Salmonella spp. (3.9%), Shigella spp./enteroinvasive Escherichia coli (EIEC) (1.9%), and Yersinia enterocolitica (0.8%). The highest Campylobacter prevalence occurred in 2014/2015. Campylobacteriosis affected more males (57.2%) and adults from 19-65 years (47.9%) and showed a bimodal seasonality with summer and winter peaks. In 11,251 routine stool cultures, Campylobacter spp. was detected in 4.6%, mostly C. jejuni (89.6%). Among 4533 samples tested by GMP and culture in parallel, GMP showed a superior sensitivity (99.1% versus 50%, respectively). The study suggests that Campylobacter spp. is the most frequent bacterial enteropathogen in Chile.
Collapse
Affiliation(s)
- Lorena Porte
- Laboratorio Clínico, Clínica Alemana, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile
| | - Caricia Pérez
- Laboratorio Clínico, Clínica Alemana, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile
| | - Mario Barbé
- Facultad de Medicina Clínica Alemana, Instituto de Ciencias e Innovación en Medicina (ICIM), Universidad del Desarrollo, Santiago 7610507, Chile
| | - Carmen Varela
- Laboratorio Clínico, Clínica Alemana, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile
| | - Valeska Vollrath
- Laboratorio Clínico, Clínica Alemana, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile
| | - Paulette Legarraga
- Laboratorio Clínico, Clínica Alemana, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile
| | - Thomas Weitzel
- Laboratorio Clínico, Clínica Alemana, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7650568, Chile
- Facultad de Medicina Clínica Alemana, Instituto de Ciencias e Innovación en Medicina (ICIM), Universidad del Desarrollo, Santiago 7610507, Chile
| |
Collapse
|
24
|
Portes AB, Panzenhagen P, Pereira dos Santos AM, Junior CAC. Antibiotic Resistance in Campylobacter: A Systematic Review of South American Isolates. Antibiotics (Basel) 2023; 12:antibiotics12030548. [PMID: 36978415 PMCID: PMC10044704 DOI: 10.3390/antibiotics12030548] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
In recent years, Campylobacter has become increasingly resistant to antibiotics, especially those first-choice drugs used to treat campylobacteriosis. Studies in South America have reported cases of antibiotic-resistant Campylobacter in several countries, mainly in Brazil. To understand the current frequency of antibiotic-resistant Campylobacter in humans, farm animals, and food of animal origin in South America, we systematically searched for different studies that have reported Campylobacter resistance. The most commonly reported species were C. jejuni and C. coli. Resistance to ciprofloxacin was found to be ubiquitous in the isolates. Nalidixic acid and tetracycline showed a significantly expressed resistance. Erythromycin, the antibiotic of first choice for the treatment of campylobacteriosis, showed a low rate of resistance in isolates but was detected in almost all countries. The main sources of antibiotic-resistant Campylobacter isolates were food of animal origin and farm animals. The results demonstrate that resistant Campylobacter isolates are disseminated from multiple sources linked to animal production in South America. The level of resistance that was identified may compromise the treatment of campylobacteriosis in human and animal populations. In this way, we are here showing all South American communities the need for the constant surveillance of Campylobacter resistance and the need for the strategic use of antibiotics in animal production. These actions are likely to decrease future difficulties in the treatment of human campylobacteriosis.
Collapse
Affiliation(s)
- Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene and Technological Processing (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Correspondence:
| | - Anamaria Mota Pereira dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene and Technological Processing (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene and Technological Processing (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
25
|
Bunduruș IA, Balta I, Ștef L, Ahmadi M, Peț I, McCleery D, Corcionivoschi N. Overview of Virulence and Antibiotic Resistance in Campylobacter spp. Livestock Isolates. Antibiotics (Basel) 2023; 12:antibiotics12020402. [PMID: 36830312 PMCID: PMC9952398 DOI: 10.3390/antibiotics12020402] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Campylobacter remains the most prevalent foodborne pathogen bacterium responsible for causing gastroenteritis worldwide. Specifically, this pathogen colonises a ubiquitous range of environments, from poultry, companion pets and livestock animals to humans. The bacterium is uniquely adaptable to various niches, leading to complicated gastroenteritis and, in some cases, difficult to treat due to elevated resistance to certain antibiotics. This increased resistance is currently detected via genomic, clinical or epidemiological studies, with the results highlighting worrying multi-drug resistant (MDR) profiles in many food and clinical isolates. The Campylobacter genome encodes a rich inventory of virulence factors offering the bacterium the ability to influence host immune defences, survive antimicrobials, form biofilms and ultimately boost its infection-inducing potential. The virulence traits responsible for inducing clinical signs are not sufficiently defined because several populations have ample virulence genes with physiological functions that reflect their pathogenicity differences as well as a complement of antimicrobial resistance (AMR) systems. Therefore, exhaustive knowledge of the virulence factors associated with Campylobacter is crucial for collecting molecular insights into the infectivity processes, which could pave the way for new therapeutical targets to combat and control the infection and mitigate the spread of MDR bacteria. This review provides an overview of the spread and prevalence of genetic determinants associated with virulence and antibiotic resistance from studies performed on livestock animals. In addition, we have investigated the relevant coincidental associations between the prevalence of the genes responsible for pathogenic virulence, horizontal gene transfer (HGT) and transmissibility of highly pathogenic Campylobacter strains.
Collapse
Affiliation(s)
- Iulia Adelina Bunduruș
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Lavinia Ștef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Mirela Ahmadi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Ioan Peț
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - David McCleery
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Correspondence: (D.M.); (N.C.)
| | - Nicolae Corcionivoschi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Correspondence: (D.M.); (N.C.)
| |
Collapse
|
26
|
Buiatte ABG, de Melo RT, Peres PABM, Bastos CM, Grazziotin AL, Armendaris Rodriguez PM, Barreto F, Rossi DA. Virulence, antimicrobial resistance, and dissemination of Campylobacter coli isolated from chicken carcasses in Brazil. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Talukdar PK, Crockett TM, Gloss LM, Huynh S, Roberts SA, Turner KL, Lewis STE, Herup-Wheeler TL, Parker CT, Konkel ME. The bile salt deoxycholate induces Campylobacter jejuni genetic point mutations that promote increased antibiotic resistance and fitness. Front Microbiol 2022; 13:1062464. [PMID: 36619995 PMCID: PMC9812494 DOI: 10.3389/fmicb.2022.1062464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative damage to DNA is a significant source of mutations in living organisms. While DNA damage must be repaired to maintain the integrity of the genome and cell survival, errors made during DNA repair may contribute to evolution. Previous work has revealed that Campylobacter jejuni growth in the presence of bile salt deoxycholate (DOC) causes an increase in reactive oxygen species and the occurrence of 8-oxo-deoxyguanosine (8-oxo-dG) DNA lesions. The fundamental goal of this project was to determine if C. jejuni growth in a medium containing DOC contributes to DNA mutations that provide a fitness advantage to the bacterium. Co-culture experiments revealed that C. jejuni growth in a DOC-supplemented medium increases the total number of ciprofloxacin-resistant isolates compared to C. jejuni grown in the absence of DOC. We recovered two individual isolates grown in a medium with DOC that had a point mutation in the gene encoding the EptC phosphoethanolamine transferase. Transformants harboring the EptC variant protein showed enhanced resistance to the antimicrobial agent polymyxin B and DOC when compared to an eptC deletion mutant or the isolate complemented with a wild-type copy of the gene. Finally, we found that the base excision repair (BER), homologous recombination repair (HRR), and nucleotide excision repair (NER) are involved in general oxidative damage repair in C. jejuni but that the BER pathway plays the primary role in the repair of the 8-oxo-dG lesion. We postulate that bile salts drive C. jejuni mutations (adaptations) and enhance bacterial fitness in animals.
Collapse
Affiliation(s)
- Prabhat K. Talukdar
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Torin M. Crockett
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Lisa M. Gloss
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Steven Huynh
- Produce Safety and Microbiology, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Steven A. Roberts
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Kyrah L. Turner
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sebastien T. E. Lewis
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Tristin L. Herup-Wheeler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Craig T. Parker
- Produce Safety and Microbiology, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States,*Correspondence: Craig T. Parker, ✉
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States,Michael E. Konkel, ✉
| |
Collapse
|
28
|
Lopez-Cantillo M, Opazo-Capurro A, Lopez-Joven C, Vidal-Veuthey B, Collado L. Campylobacter jejuni and Other Emerging Campylobacteraceae in Retail Beef Liver - An Underestimated Potential Source? Lett Appl Microbiol 2022; 75:1505-1514. [PMID: 36000196 DOI: 10.1111/lam.13816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Bovine by-products, such as liver, could be an underestimated source of Campylobacter jejuni. Therefore, our aims were to evaluate the occurrence of C. jejuni and other Campylobacteraceae in retail beef liver and characterize their antibiotic resistance (ciprofloxacin, tetracycline, erythromycin, and gentamicin) and potential genetic relationship by flagellin gene Restriction Fragment Length Polymorphism (flaA-RFLP) and Multilocus Sequence Typing (MLST) with clinical strains. Seventy-six out of 206 samples (36.9%) were positive for Campylobacter and related organisms. Arcobacter butzleri was the most frequently isolated species (21.8%), followed by C. jejuni (9.7%), C. fetus (7.8%) and C. coli (1%). The C. jejuni strains showed resistance to tetracycline (17.2%) or ciprofloxacin (6.9%), with only one strain resistant to both antibiotics. Meanwhile, 8.3% of ciprofloxacin resistance was observed in C. fetus. The other species showed no resistance. Most of the clonal complexes (CC) in which the C. jejuni genotypes were grouped (CC-21, 42, 48 and 52), coincided with genotypes of clinical strains previously reported in Chile. As such, this study provides evidence that beef liver could be an underestimated route for resistant C. jejuni to humans. Further studies should assess whether this food could play a role in the transmission of other emerging Campylobacteraceae such as those reported here.
Collapse
Affiliation(s)
- Mónica Lopez-Cantillo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Andrés Opazo-Capurro
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carmen Lopez-Joven
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Boris Vidal-Veuthey
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Collado
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
29
|
Middendorf PS, Jacobs-Reitsma WF, Zomer AL, den Besten HMW, Abee T. Comparative Analysis of L-Fucose Utilization and Its Impact on Growth and Survival of Campylobacter Isolates. Front Microbiol 2022; 13:872207. [PMID: 35572645 PMCID: PMC9100392 DOI: 10.3389/fmicb.2022.872207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Campylobacter jejuni and Campylobacter coli were previously considered asaccharolytic, but are now known to possess specific saccharide metabolization pathways, including L-fucose. To investigate the influence of the L-fucose utilization cluster on Campylobacter growth, survival and metabolism, we performed comparative genotyping and phenotyping of the C. jejuni reference isolate NCTC11168 (human isolate), C. jejuni Ca1352 (chicken meat isolate), C. jejuni Ca2426 (sheep manure isolate), and C. coli Ca0121 (pig manure isolate), that all possess the L-fucose utilization cluster. All isolates showed enhanced survival and prolonged spiral cell morphology in aging cultures up to day seven in L-fucose-enriched MEMα medium (MEMαF) compared to MEMα. HPLC analysis indicated L-fucose utilization linked to acetate, lactate, pyruvate and succinate production, confirming the activation of the L-fucose pathway in these isolates and its impact on general metabolism. Highest consumption of L-fucose by C. coli Ca0121 is conceivably linked to its enhanced growth performance up to day 7, reaching 9.3 log CFU/ml compared to approximately 8.3 log CFU/ml for the C. jejuni isolates. Genetic analysis of the respective L-fucose clusters revealed several differences, including a 1 bp deletion in the Cj0489 gene of C. jejuni NCTC11168, causing a frameshift in this isolate resulting in two separate genes, Cj0489 and Cj0490, while no apparent phenotype could be linked to the presumed frameshift in this isolate. Additionally, we found that the L-fucose cluster of C. coli Ca0121 was most distant from C. jejuni NCTC11168, but confirmation of links to L-fucose metabolism associated phenotypic traits in C. coli versus C. jejuni isolates requires further studies.
Collapse
Affiliation(s)
- Pjotr S. Middendorf
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | - Aldert L. Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
- WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, Netherlands
| | - Heidy M. W. den Besten
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- Heidy M. W. den Besten,
| | - Tjakko Abee
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- *Correspondence: Tjakko Abee,
| |
Collapse
|
30
|
Quino W, Caro-Castro J, Hurtado V, Flores-León D, Gonzalez-Escalona N, Gavilan RG. Genomic Analysis and Antimicrobial Resistance of Campylobacter jejuni and Campylobacter coli in Peru. Front Microbiol 2022; 12:802404. [PMID: 35087501 PMCID: PMC8787162 DOI: 10.3389/fmicb.2021.802404] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 01/22/2023] Open
Abstract
Campylobacter is the leading cause of human bacterial gastroenteritis worldwide and has a major impact on global public health. Whole Genome Sequencing (WGS) is a powerful tool applied in the study of foodborne pathogens. The objective of the present study was to apply WGS to determine the genetic diversity, virulence factors and determinants of antimicrobial resistance of the populations of C. jejuni and C. coli in Peru. A total of 129 Campylobacter strains (108 C. jejuni and 21 C. coli) were sequenced using Illumina Miseq platform. In silico MLST analysis identified a high genetic diversity among those strains with 30 sequence types (STs), several of them within 11 clonal complexes (CC) for C. jejuni, while the strains of C. coli belonged to a single CC with 8 different STs. Phylogeny analysis showed that Peruvian C. jejuni strains were divided into 2 clades with 5 populations, while C. coli formed a single clade with 4 populations. Furthermore, in silico analyses showed the presence of several genes associated with adherence, colonization and invasion among both species: cadF (83.7%), jlpA (81.4%), racR (100%), dnaJ (83.7%), pebA (83.7%), pldA (82.1%), porA (84.5%), ceuE (82.9%), ciaB (78.3%), iamB (86.8%), and flaC (100%). The majority (82.9%) of the Campylobacter strains carried the cdtABC operon which code for cytolethal distending toxin (CDT). Half of them (50.4%) carried genes associated with the presence of T6SS, while the frequency of genes associated with T4SS were relatively low (11.6%). Genetic markers associated with resistance to quinolones, tetracycline (tetO, tetW/N/W), beta-lactamases (blaoxa–61), macrolides (A2075G in 23S rRNA) were found in 94.5, 21.7, 66.7, 6.2, 69.8, and 18.6% of strains, respectively. The cmeABC multidrug efflux operon was present in 78.3% of strains. This study highlights the importance of using WGS in the surveillance of emerging pathogens associated with foodborne diseases, providing genomic information on genetic diversity, virulence mechanisms and determinants of antimicrobial resistance. The description of several Campylobacter genotypes having many virulence factors and resistance to quinolones and tetracyclines circulating in Peru provides important information which helps in the monitoring, control and prevention strategies of this emerging pathogen in our country.
Collapse
Affiliation(s)
- Willi Quino
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Peru
| | - Junior Caro-Castro
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Peru
| | - Verónica Hurtado
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Peru
| | - Diana Flores-León
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Peru.,Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Ronnie G Gavilan
- Laboratorio de Referencia Nacional de Enteropatógenos, Instituto Nacional de Salud, Lima, Peru.,Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| |
Collapse
|
31
|
Genome sequence of a multidrug-resistant Campylobacter coli strain isolated from a newborn with severe diarrhea in Lebanon. Folia Microbiol (Praha) 2022; 67:319-328. [PMID: 34997523 DOI: 10.1007/s12223-021-00921-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/18/2021] [Indexed: 11/04/2022]
Abstract
A multidrug-resistant (MDR) Campylobacter coli (C. coli) strain was isolated from a 2-month-old newborn who suffered from severe diarrhea in Lebanon. Here, whole-genome sequencing (WGS) analysis was deployed to determine the genetic basis of antimicrobial resistance and virulence in the C. coli isolate and to identify its epidemiological background (sequence type). The identity of the isolate was confirmed using API® Campy, MALDI-TOF, and 16S rRNA gene sequencing analysis. The antimicrobial susceptibility phenotype was determined using the disk diffusion assay. Our analysis showed that resistance to macrolide and quinolone was potentially associated with the presence of multiple point mutations in antibiotic targets on the chromosomal DNA. Furthermore, tetracycline and aminoglycoside resistance were encoded by genes on a pTet plasmid. The blaOXA-61, which is associated with beta-lactam resistance, was also detected in the C. coli genome. A set of 30 genes associated with the virulence in C. coli was detected using WGS analysis. MLST analysis classified the isolate as belonging to a new sequence type (ST-9588), a member of ST-828 complex which is mainly associated with humans and chickens. Taking together, this study provides the first WGS analysis of Campylobacter isolated from Lebanon. The detection of a variety of AMR and virulence determinants strongly emphasizes the need for studying the burden of Campylobacter in Lebanon and the Middle East and North Africa (MENA) region, where information on campylobacteriosis is scant.
Collapse
|
32
|
Panzenhagen P, Portes AB, dos Santos AMP, Duque SDS, Conte Junior CA. The Distribution of Campylobacter jejuni Virulence Genes in Genomes Worldwide Derived from the NCBI Pathogen Detection Database. Genes (Basel) 2021; 12:1538. [PMID: 34680933 PMCID: PMC8535712 DOI: 10.3390/genes12101538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) is responsible for 80% of human campylobacteriosis and is the leading cause of gastroenteritis globally. The relevant public health risks of C. jejuni are caused by particular virulence genes encompassing its virulome. We analyzed 40,371 publicly available genomes of C. jejuni deposited in the NCBI Pathogen Detection Database, combining their epidemiologic metadata with an in silico bioinformatics analysis to increase our current comprehension of their virulome from a global perspective. The collection presented a virulome composed of 126 identified virulence factors that were grouped in three clusters representing the accessory, the softcore, and the essential core genes according to their prevalence within the genomes. The multilocus sequence type distribution in the genomes was also investigated. An unexpected low prevalence of the full-length flagellin flaA and flaB locus of C. jejuni genomes was revealed, and an essential core virulence gene repertoire prevalent in more than 99.99% of genomes was identified. Altogether, this is a pioneer study regarding Campylobacter jejuni that has compiled a significant amount of data about the Multilocus Sequence Type and virulence factors concerning their global prevalence and distribution over this database.
Collapse
Affiliation(s)
- Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Anamaria M. P. dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Sheila da Silva Duque
- Collection of Campylobacter, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil; (A.B.P.); (A.M.P.d.S.); (C.A.C.J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|