1
|
Yosef DK, Ismail AS, Awil BS, Hassan HA, Hassan MA. Epidemiology of dengue fever in Somaliland: clinical features, and serological patterns from a retrospective study. BMC Infect Dis 2025; 25:179. [PMID: 39910527 PMCID: PMC11800544 DOI: 10.1186/s12879-025-10558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Dengue fever is a significant global public health concern. However, its epidemiology in Somaliland remains poorly characterized. This study aimed to provide comprehensive data on the clinical presentation, demographic characteristics, and serological patterns of dengue fever in Somaliland. METHODS A retrospective analysis was conducted on 1,410 suspected dengue cases from public hospital laboratories in Somaliland between January and September 2024. Demographic data, clinical symptoms, and results of rapid diagnostic tests for dengue NS1 antigen and IgM antibodies were analyzed. RESULTS Of the 1,410 suspected cases, 175 (12.41%) tested positive for dengue. The majority of the patients were male (60.57%) and aged 19-38 years (45.1%). Most cases were from urban areas (58.9%). Common symptoms included fever, vomiting, nausea (86.7%), GIT problems (86.12%) were the predominant symptom of patients. Serological testing revealed 84.57% NS1 positivity, 8.57% IgM positivity, and 6.85% positivity. The peak incidence was observed in June. Only 8.67% of the patients required hospitalization. Among these 8 cases (53.3%), as sever dengue and 7 (46.6%) were dengue with warning signs. CONCLUSION This study provides initial insights into the epidemiology of dengue in Somaliland, though further research is needed to establish robust baseline data, highlighting its prevalence, particularly in urban adults. These preliminary findings suggest a potential need for enhanced surveillance and public health measures, pending confirmation from larger studies to address the emerging arboviral diseases in this region.
Collapse
Affiliation(s)
- Dek Kahin Yosef
- School of Medical Laboratory Science and Department of Microbiology and Veterinary Public Health, University of Burao, Somaliland, Somalia.
- Jigjiga University, Burao, Ethiopia.
- Department of Microbiology and Veterinary Public Health, College of Veterinary Medicine, University of Burao, Burao, Somalia.
| | - Ahmed Saeed Ismail
- Department of Microbiology and Veterinary Public Health, College of Veterinary Medicine, University of Burao, Burao, Somalia
| | - Barwaqo Saleban Awil
- School of Nursing and Midwifery, College of Medical and Health Science, Edna Aden University, Hargeisa, Somalia
| | - Halima Ahmed Hassan
- Department of Microbiology and Veterinary Public Health, College of Veterinary Medicine, University of Burao, Burao, Somalia
| | - Mohamed Ahmed Hassan
- Department of Microbiology and Veterinary Public Health, College of Veterinary Medicine, University of Burao, Burao, Somalia
| |
Collapse
|
2
|
Islam J, Hu W. Rapid human movement and dengue transmission in Bangladesh: a spatial and temporal analysis based on different policy measures of COVID-19 pandemic and Eid festival. Infect Dis Poverty 2024; 13:99. [PMID: 39722072 DOI: 10.1186/s40249-024-01267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Rapid human movement plays a crucial role in the spatial dissemination of the dengue virus. Nevertheless, robust quantification of this relationship using both spatial and temporal models remains necessary. This study aims to explore the spatial and temporal patterns of dengue transmission under various human movement contexts. METHODS We obtained district-wise aggregated dengue incidence data from the Management Information System, Directorate General of Health Services of Bangladesh. The stringency index (SI), along with eight individual policy measures (from the Oxford Coronavirus Government Response Tracker database) and six mobility indices (as measured by Google's Community Mobility Reports) were obtained as human movement indicators. A multi-step correlative modelling approach, including various spatial and temporal models, was utilized to explore the associations of dengue incidence with the SI, fourteen human movement indices and the Eid festival. RESULTS The global Moran's I indicated significant spatial autocorrelation in dengue incidence during the pre-pandemic (Moran's I: 0.14, P < 0.05) and post-pandemic periods (Moran's I: 0.42, P < 0.01), while the pandemic period (2020-2022) showed weaker, non-significant spatial clustering (Moran's I: 0.07, P > 0.05). Following the pandemic, we identified the emergence of new dengue hotspots. We found a strong negative relationship between monthly dengue incidence and the SI (rspearman: - 0.62, P < 0.01). Through the selection of an optimal Seasonal autoregressive integrated moving average model, we observed that the closure of public transport (β = - 1.66, P < 0.10) and restrictions on internal movement (β = - 2.13, P < 0.10) were associated with the reduction of dengue incidence. Additionally, observed cases were substantially lower than predicted cases during the period from 2020 to 2022. By utilising additional time-series models, we were able to identify in 2023 a rise in dengue incidence associated with the Eid festival intervention, even after adjusting for important climate variables. CONCLUSIONS Overall, rapid human movement was found to be associated with increased dengue transmission in Bangladesh. Consequently, the implemention of effective mosquito control interventions prior to large festival periods is necessary for preventing the spread of the disease nationwide. We emphasize the necessity for developing advanced surveillance and monitoring networks to track real-time human movement patterns and dengue incidence.
Collapse
Affiliation(s)
- Jahirul Islam
- Ecosystem Change and Population Health Research Group, Centre for Immunology and Infection Control, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Wenbiao Hu
- Ecosystem Change and Population Health Research Group, Centre for Immunology and Infection Control, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
3
|
Zhuang M, Zhai L, Zhang H, Chen Q, Xiong R, Liu Y, Zhu F. Rural residents' Knowledge, Attitude, and Practice in relation to infection risk during the late stage of an epidemic: a cross-sectional study of COVID-19. Front Public Health 2024; 12:1450744. [PMID: 39697290 PMCID: PMC11652518 DOI: 10.3389/fpubh.2024.1450744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Background In the field of public health, the prevention and management of infectious diseases in rural regions have always been crucial. This study aims to analyze the factors influencing rural residents' Knowledge, Attitude, and Practices and their correlation with infection risk during the late stage of an epidemic, with a focus on the COVID-19 case. Methods A cross-sectional study was conducted in rural regions of China's Guangdong province, using a multi-stage sampling technique to select rural residents for a validated questionnaire survey in February 2023. Descriptive statistical method was used to describe the infection status of rural residents and Chi-Square Test was used to explore the influencing factors of Knowledge, Attitude and Practice in this population. Multivariable binary logistic regression analysis was conducted to determine the presence of a statistically significant association between explanatory variables and outcome variables at corresponding 95% CI. Results A total of 3,125 rural residents were investigated, of whom 805 had never been infected with COVID-19. The survey participants had an average score of 5.84 ± 1.419 for COVID-19 knowledge. (The total score range is from 0 to 8. A score greater than 6.4 indicates good knowledge acquisition.) Regarding the attitude and practice sections, the average scores were 23.68 ± 3.169 and 23.45 ± 5.030, respectively. (The total score range of both these sections is from 0 to 32. A score greater than 25.6 represents positive attitudes and good practices.) The reduction of COVID-19 risk is significantly associated with an increase in Knowledge scores (p trend < 0.01). In stratified analyses, the Knowledge, Attitudes, and Practices scores of residents in each region have varying degrees of correlation with the risk of SARS-CoV-2 infection. Conclusion Rural residents' Knowledge, Attitudes, and Practices on COVID-19 prevention and control requires improvement. Efforts to promote their' perceptions and habits regarding COVID-19 prevention and control are crucial in reducing the risk of infection.
Collapse
Affiliation(s)
- Manting Zhuang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Health Economics and Health Promotion Research Center, Guangzhou, China
| | - Lixiang Zhai
- Guangdong Health Economics and Health Promotion Research Center, Guangzhou, China
| | - Hui Zhang
- Guangdong Health Economics and Health Promotion Research Center, Guangzhou, China
| | - Qingsong Chen
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ran Xiong
- Guangdong Health Economics and Health Promotion Research Center, Guangzhou, China
| | - Yonghui Liu
- Guangdong Health Economics and Health Promotion Research Center, Guangzhou, China
| | - Fangyi Zhu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Health Economics and Health Promotion Research Center, Guangzhou, China
| |
Collapse
|
4
|
Trostle JA, Robbins C, Corozo Angulo B, Acevedo A, Coloma J, Eisenberg JNS. "Dengue fever is not just urban or rural: Reframing its spatial categorization.". Soc Sci Med 2024; 362:117384. [PMID: 39393331 DOI: 10.1016/j.socscimed.2024.117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Infectious diseases exploit niches that are often spatially defined as urban and/or rural. Yet spatial research on infectious diseases often fails to define "urban" and "rural" and how these contexts might influence their epidemiology. We use dengue fever, thought to be mostly an urban disease with rural foci, as a device to explore local definitions of urban and rural spaces and the impact of these spaces on dengue risk in the province of Esmeraldas, Ecuador. Ecuador, like many countries, only uses population size and administrative function to define urban and rural locales. Interviews conducted from 2019 to 2021 with 71 residents and 23 health personnel found that they identified the availability of basic services, extent of their control over their environment, and presence of underbrush and weeds (known in Ecuador as monte and maleza and conceptualized in this paper as natural disorder) as important links to their conceptions of space and dengue risk. This broader conceptualization of space articulated by local residents and professionals reflects a more sophisticated approach to characterizing dengue risk than using categories of urban and rural employed by the national census and government. Rather than this dichotomous category of space, dengue fever can be better framed for health interventions in terms of specific environmental features and assemblages of high-risk spaces. An understanding of how community members perceive risk enhances our ability to collaborate with them to develop optimal mitigation strategies.
Collapse
Affiliation(s)
- James A Trostle
- Anthropology Department, Trinity College, 300 Summit St, Hartford, CT, 06106, United states.
| | - Charlotte Robbins
- Departments of Environmental Science and Urban Studies, Trinity College, United states.
| | | | | | | | - Joseph N S Eisenberg
- School of Public Health, University of Michigan and Universidad San Francisco de Quito, Ecuador.
| |
Collapse
|
5
|
Tariq A, Khan A, Mutuku F, Ndenga B, Bisanzio D, Grossi-Soyster EN, Jembe Z, Maina P, Chebii P, Ronga C, Okuta V, LaBeaud AD. Understanding the factors contributing to dengue virus and chikungunya virus seropositivity and seroconversion among children in Kenya. PLoS Negl Trop Dis 2024; 18:e0012616. [PMID: 39565798 PMCID: PMC11578454 DOI: 10.1371/journal.pntd.0012616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
Dengue virus (DENV) and chikungunya virus (CHIKV) are causes of endemic febrile disease among Kenyan children. The exposure risk to these infections is highly multifactorial and linked to environmental factors and human behavior. We investigated relationships between household, socio-economic, demographic, and behavioral risk factors for DENV and CHIKV seropositivity and seroconversion in four settlements in Kenya. We prospectively followed a pediatric cohort of 3,445 children between 2014-2018. We utilized the Kaplan-Meier curves to describe the temporal patterns of seroconversion among tested participants. We employed logistic regression built using generalized linear mixed models, to identify potential exposure risk factors for DENV and CHIKV seroconversion and seropositivity. Overall, 5.2% children were seropositive for DENV, of which 59% seroconverted during the study period. The seroprevalence for CHIKV was 9.2%, of which 54% seroconverted. The fraction of seroconversions per year in the study cohort was <2% for both viruses. Multivariable analysis indicated that older age and the presence of water containers ((OR: 1.15 [95% CI: 1.10, 1.21]), (OR: 1.50 [95% CI: 1.07, 2.10])) increased the odds of DENV seropositivity, whereas higher wealth (OR: 0.83 [95% CI: 0.73, 0.96]) decreased the odds of DENV seropositivity. Multivariable analysis for CHIKV seropositivity showed older age and the presence of trash in the housing compound to be associated with increased odds of CHIKV seropositivity ((OR: 1.11[95% CI: 1.07, 1.15]), (OR: 1.34 [95% CI: 1.04, 1.73])), while higher wealth decreased the odds of CHIKV seropositivity (OR: 0.74[95% CI: 0.66, 0.83]). A higher wealth index (OR: 0.82 [95% CI: 0.69, 0.97]) decreased the odds of DENV seroconversion, whereas a higher age (OR: 1.08 [95% CI: 1.02, 1.15]) and the presence of water containers in the household (OR: 1.91[95% CI: 1.24, 2.95]) were significantly associated with increased odds of DENV seroconversion. Higher wealth was associated with decreased odds for CHIKV seroconversion (OR: 0.75 [95% CI: 0.66, 0.89]), whereas presence of water containers in the house (OR: 1.57 [95% CI: 1.11, 2.21]) was a risk factor for CHIKV seroconversion. Our study links ongoing CHIKV and DENV exposure to decreased wealth and clean water access, underscoring the need to combat inequity and poverty and further enhance ongoing surveillance for arboviruses in Kenya to decrease disease transmission. The study emphasizes the co-circulation of DENV and CHIKV and calls for strengthening the targeted control strategies of mosquito borne diseases in Kenya including vector control, environmental management, public education, community engagement and personal protection.
Collapse
Affiliation(s)
- Amna Tariq
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Palo Alto, California, United States of America
| | - Aslam Khan
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Palo Alto, California, United States of America
| | - Francis Mutuku
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Bryson Ndenga
- Centre for Global Health Research, Kenya, Medical Research Institute, Kisumu, Kenya
| | - Donal Bisanzio
- RTI International, Washington, D.C, United States of America
| | - Elysse N. Grossi-Soyster
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Palo Alto, California, United States of America
| | - Zainab Jembe
- Vector borne Disease control Unit, Msambweni County Referral Hospital, Msambweni, Kenya
| | - Priscilla Maina
- Vector borne Disease control Unit, Msambweni County Referral Hospital, Msambweni, Kenya
| | - Philip Chebii
- Vector borne Disease control Unit, Msambweni County Referral Hospital, Msambweni, Kenya
| | - Charles Ronga
- Centre for Global Health Research, Kenya, Medical Research Institute, Kisumu, Kenya
| | - Victoria Okuta
- Centre for Global Health Research, Kenya, Medical Research Institute, Kisumu, Kenya
| | - Angelle Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Palo Alto, California, United States of America
| |
Collapse
|
6
|
Ni H, Cai X, Ren J, Dai T, Zhou J, Lin J, Wang L, Wang L, Pei S, Yao Y, Xu T, Xiao L, Liu Q, Liu X, Guo P. Epidemiological characteristics and transmission dynamics of dengue fever in China. Nat Commun 2024; 15:8060. [PMID: 39277600 PMCID: PMC11401889 DOI: 10.1038/s41467-024-52460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024] Open
Abstract
China has experienced successive waves of dengue epidemics over the past decade. Nationwide data on 95,339 dengue cases, 89 surveillance sites for mosquito density and population mobility between 337 cities during 2013-20 were extracted. Weekly dengue time series including time trends and harmonic terms were fitted using seasonal regression models, and the amplitude and peak timing of the annual and semiannual cycles were estimated. A data-driven model-inference approach was used to simulate the epidemic at city-scale and estimate time-evolving epidemiological parameters. We found that the geographical distribution of dengue cases was expanding, and the main imported areas as well as external sources of imported cases changed. Dengue cases were predominantly concentrated in southern China and it exhibited an annual peak of activity, typically peaking in September. The annual amplitude of dengue epidemic varied with latitude (F = 19.62, P = 0.0001), mainly characterizing by large in southern cities and small in northern cities. The effective reproduction number Reff across cities is commonly greater than 1 in several specific months from July to November, further confirming the seasonal fluctuations and spatial heterogeneity of dengue epidemics. The results of this national study help to better informing interventions for future dengue epidemics in China.
Collapse
Affiliation(s)
- Haobo Ni
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Xiaoyan Cai
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Jiarong Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tingting Dai
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Jiayi Zhou
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Jiumin Lin
- Department of Hepatology and Infectious Diseases, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Li Wang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lingxi Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Sen Pei
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Yunchong Yao
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Ting Xu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Lina Xiao
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- Department of Vector Control, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, Xinjiang, China.
| | - Xiaobo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- Department of Vector Control, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, Xinjiang, China.
| | - Pi Guo
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China.
| |
Collapse
|
7
|
Hossain K, Chowdhury S, Shanta IS, Hossain MS, Ghosh PK, Alam MS. Spatio-temporal patterns of dengue in Bangladesh during 2019 to 2023: Implications for targeted control strategies. PLoS Negl Trop Dis 2024; 18:e0012503. [PMID: 39302980 PMCID: PMC11446421 DOI: 10.1371/journal.pntd.0012503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/02/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Dengue, a viral infection transmitted by Aedes species mosquitoes, presents a substantial global public health concern, particularly in tropical regions. In Bangladesh, where dengue prevalence is noteworthy, accurately mapping the distribution of high-risk and low-risk areas and comprehending the clustering of dengue cases throughout the year is essential for the development of effective risk-based prevention and control strategies. Our objective was to identify dengue hotspots and temporal patterns over the years across Bangladesh in the years 2019-2023 excluding year 2020. METHODS A sequential spatial analysis was employed for each year to identify high-risk areas for dengue cases. Choropleth graphs were used to visualize the geographic distribution of dengue incidence rates per million population across the areas. Monthly distribution analysis was performed to identify temporal trends over the year 2022 and 2023. Additionally, the global Moran's I test was used to assess the overall geographical pattern. Subsequently, Anselin local Moran's I test was employed to identified clustering and hotspots of dengue incidences. RESULTS Dengue cases in Bangladesh exhibited a significant increase from 2019 to 2023 (excluding 2020 data), with a cumulative total of 513,344 reported cases. Dhaka city initially bore substantial burden, accounting for over half (51%) of the 101,354 cases in 2019. The case fatality rate also demonstrated a steadily rise, reaching 0.5% in 2023 with 321,179 cases (a five-fold increase compare to 2022). Interestingly, the proportion of cases in Dhaka city decreased from 51% in 2019 to 34% in 2023. Notably, the southeast and central regions of Bangladesh showed the highest dengue rates, persisting throughout the study period. Cases were concentrated in urban regions, with Dhaka exhibiting the highest caseload in most years, followed by Manikganj in 2023. A distinct temporal shift in dengue transmission was observed in 2023, when the peak incidence occurred three months earlier in July with complete geographic coverage (all the 64 districts) compared to the peak in October 2022 (covering 95%, 61 districts). Positive global autocorrelation analysis revealed spatial dependence, with more stable trends in 2023 compared to previous years. Several districts like, Bagerhat, Barisal, and Faridpur remained persistent hotspots or emerged as new hotspots in 2023. Conversely, districts like Dinajpur, Gaibandha, Nilphamari, Rangpur and Sylhet consistently exhibited low caseloads, categorized as dengue coldspots throughout most of the years. Jhalokati in 2019 and Gopalganj in 2022, both initially classified as low-incidence district surrounded by high-incidence districts, emerged as hotspots in 2023. CONCLUSION This study sheds light on the spatiotemporal dynamics of dengue transmission in Bangladesh, particularly by identifying hotspots and clustering patterns. These insights offer valuable information for designing and implementing targeted public health interventions and control strategies. Furthermore, the observed trends highlight the need for adaptable strategies to address the region's evolving nature of dengue transmission effectively.
Collapse
Affiliation(s)
- Kamal Hossain
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Sukanta Chowdhury
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Ireen Sultana Shanta
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Mohammad Sharif Hossain
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Probir Kumar Ghosh
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| | - Mohammad Shafiul Alam
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
8
|
Marczell K, García E, Roiz J, Sachdev R, Towle P, Shen J, Sruamsiri R, da Silva BM, Hanley R. The macroeconomic impact of a dengue outbreak: Case studies from Thailand and Brazil. PLoS Negl Trop Dis 2024; 18:e0012201. [PMID: 38829895 PMCID: PMC11175482 DOI: 10.1371/journal.pntd.0012201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Dengue is spreading in (sub)tropical areas, and half of the global population is at risk. The macroeconomic impact of dengue extends beyond healthcare costs. This study evaluated the impact of dengue on gross domestic product (GDP) based on approaches tailored to two dengue-endemic countries, Thailand and Brazil, from the tourism and workforce perspectives, respectively. FINDINGS Because the tourism industry is a critical economic sector for Thailand, lost tourism revenues were estimated to analyze the impact of a dengue outbreak. An input-output model estimated that the direct effects (on international tourism) and indirect effects (on suppliers) of dengue on tourism reduced overall GDP by 1.43 billion US dollars (USD) (0.26%) in the outbreak year 2019. The induced effect (reduced employee income/spending) reduced Thailand's GDP by 375 million USD (0.07%). Overall, lost tourism revenues reduced Thailand's GDP by an estimated 1.81 billion USD (0.33%) in 2019 (3% of annual tourism revenue). An inoperability input-output model was used to analyze the effect of workforce absenteeism on GDP due to a dengue outbreak in Brazil. This model calculates the number of lost workdays associated with ambulatory and hospitalized dengue. Input was collected from state-level epidemiological and economic data for 2019. An estimated 22.4 million workdays were lost in the employed population; 39% associated with the informal sector. Lost workdays due to dengue reduced Brazil's GDP by 876 million USD (0.05%). CONCLUSIONS The economic costs of dengue outbreaks far surpass the direct medical costs. Dengue reduces overall GDP and inflicts national economic losses. With a high proportion of the population lacking formal employment in both countries and low income being a barrier to seeking care, dengue also poses an equity challenge. A combination of public health measures, like vector control and vaccination, against dengue is recommended to mitigate the broader economic impact of dengue.
Collapse
Affiliation(s)
| | | | | | | | - Philip Towle
- Takeda Pharmaceuticals International AG, Singapore
| | - Jing Shen
- Takeda International AG, Zürich, Switzerland
| | | | | | | |
Collapse
|
9
|
Carrazco-Montalvo A, Gutiérrez-Pallo D, Arévalo V, Ponce P, Rodríguez-Polit C, Alarcón D, Echeverría-Garcés G, Coloma J, Nipaz V, Cevallos V. Whole Genome Sequencing of DENV-2 isolated from Aedes aegypti mosquitoes in Esmeraldas, Ecuador. Genomic epidemiology of genotype III Southern Asian-American in the country. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579255. [PMID: 38370752 PMCID: PMC10871324 DOI: 10.1101/2024.02.06.579255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Ecuador is a tropical country reporting Dengue virus (DENV) outbreaks with areas of hyperendemic viral transmission. Entomo-virological surveillance and monitoring effort conducted in the Northwestern border province of Esmeraldas in April 2022, five pools of female Aedes aegypti mosquitoes from a rural community tested positive for DENV serotype 2 by RT-qPCR. One pool was sequenced by Illumina MiSeq, and it corresponded to genotype III Southern Asian-American. Comparison with other genomes revealed genetic similarity to a human DENV genome sequenced in 2021, also from Esmeraldas. Potential introduction events to the country could have originated from Colombia, considering the vicinity of the collection sites to the neighboring country and high human movement. The inclusion of genomic information complements entomo-virological surveillance, providing valuable insights into genetic variants. This contribution enhances our understanding of Dengue virus (DENV) epidemiology in rural areas and guides evidence-based decisions for surveillance and interventions.
Collapse
Affiliation(s)
- Andrés Carrazco-Montalvo
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática (GENSBIO), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Diana Gutiérrez-Pallo
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática (GENSBIO), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Valentina Arévalo
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Patricio Ponce
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Cristina Rodríguez-Polit
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática (GENSBIO), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Damaris Alarcón
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática (GENSBIO), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática (GENSBIO), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Victoria Nipaz
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Varsovia Cevallos
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| |
Collapse
|
10
|
Kuno G. Mechanisms of Yellow Fever Transmission: Gleaning the Overlooked Records of Importance and Identifying Problems, Puzzles, Serious Issues, Surprises and Research Questions. Viruses 2024; 16:84. [PMID: 38257784 PMCID: PMC10820296 DOI: 10.3390/v16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
In viral disease research, few diseases can compete with yellow fever for the volume of literature, historical significance, richness of the topics and the amount of strong interest among both scientists and laypersons. While the major foci of viral disease research shifted to other more pressing new diseases in recent decades, many critically important basic tasks still remain unfinished for yellow fever. Some of the examples include the mechanisms of transmission, the process leading to outbreak occurrence, environmental factors, dispersal, and viral persistence in nature. In this review, these subjects are analyzed in depth, based on information not only in old but in modern literatures, to fill in blanks and to update the current understanding on these topics. As a result, many valuable facts, ideas, and other types of information that complement the present knowledge were discovered. Very serious questions about the validity of the arbovirus concept and some research practices were also identified. The characteristics of YFV and its pattern of transmission that make this virus unique among viruses transmitted by Ae. aegypti were also explored. Another emphasis was identification of research questions. The discovery of a few historical surprises was an unexpected benefit.
Collapse
Affiliation(s)
- Goro Kuno
- Formerly at the Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|