1
|
Moucaud B, Prince E, Ragot E, Renaud Y, Jagla K, Junion G, Soler C. Amalgam plays a dual role in controlling the number of leg muscle progenitors and regulating their interactions with the developing Drosophila tendon. PLoS Biol 2024; 22:e3002842. [PMID: 39374263 PMCID: PMC11486429 DOI: 10.1371/journal.pbio.3002842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/17/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024] Open
Abstract
Formation of functional organs requires cell-cell communication between different cell lineages and failure in this communication can result in severe developmental defects. Hundreds of possible interacting pairs of proteins are known, but identifying the interacting partners that ensure a specific interaction between 2 given cell types remains challenging. Here, we use the Drosophila leg model and our cell type-specific transcriptomic data sets to uncover the molecular mediators of cell-cell communication between tendon and muscle precursors. Through the analysis of gene expression signatures of appendicular muscle and tendon precursor cells, we identify 2 candidates for early interactions between these 2 cell populations: Amalgam (Ama) encoding a secreted protein and Neurotactin (Nrt) known to encode a membrane-bound protein. Developmental expression and function analyses reveal that: (i) Ama is expressed in the leg myoblasts, whereas Nrt is expressed in adjacent tendon precursors; and (ii) in Ama and Nrt mutants, myoblast-tendon cell-cell association is lost, leading to tendon developmental defects. Furthermore, we demonstrate that Ama acts downstream of the FGFR pathway to maintain the myoblast population by promoting cell survival and proliferation in an Nrt-independent manner. Together, our data pinpoint Ama and Nrt as molecular actors ensuring early reciprocal communication between leg muscle and tendon precursors, a prerequisite for the coordinated development of the appendicular musculoskeletal system.
Collapse
Affiliation(s)
- Blandine Moucaud
- GReD Institute, UMR CNRS 6293, INSERM U1103, University of Clermont-Auvergne, Clermont-Ferrand, France
| | - Elodie Prince
- GReD Institute, UMR CNRS 6293, INSERM U1103, University of Clermont-Auvergne, Clermont-Ferrand, France
| | - Elia Ragot
- GReD Institute, UMR CNRS 6293, INSERM U1103, University of Clermont-Auvergne, Clermont-Ferrand, France
| | - Yoan Renaud
- GReD Institute, UMR CNRS 6293, INSERM U1103, University of Clermont-Auvergne, Clermont-Ferrand, France
| | - Krzysztof Jagla
- GReD Institute, UMR CNRS 6293, INSERM U1103, University of Clermont-Auvergne, Clermont-Ferrand, France
| | - Guillaume Junion
- GReD Institute, UMR CNRS 6293, INSERM U1103, University of Clermont-Auvergne, Clermont-Ferrand, France
| | - Cedric Soler
- GReD Institute, UMR CNRS 6293, INSERM U1103, University of Clermont-Auvergne, Clermont-Ferrand, France
| |
Collapse
|
2
|
Anjum AA, Lin MJ, Jin L, Li GQ. Twist is required for muscle development of the adult legs in Henosepilachna vigintioctopunctata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22063. [PMID: 37920138 DOI: 10.1002/arch.22063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Although muscle development has been widely studied in Drosophila melanogaster, it was a great challenge to apply to developmental processes of other insect muscles. This study was focused on the functional characterization of a basic helix-loop-helix transcription factor gene twist in an herbivorous ladybird Henosepilachna vigintioctopunctata. Its transcript (Hvtwist) levels were detected in all developmental stages. RNA interference (RNAi)-aided knockdown of Hvtwist at the penultimate larval instar stage impaired pupation, and caused a deformed adult in the legs. The tarsi were malformed and did not support the bodies in an upright position. The climbing ability was impaired. Moreover, around 50% of the impaired adults had a malformed elytrum. In addition, they consumed less foliage and did not lay eggs. A hematoxylin-eosin staining of the leg demonstrated that the tibial extensor (TE) and the tibial flexor (TF) muscles were originated from the femurs while levator and depressor muscles of the tarsus (TL and TD) were located in the tibia in the control adults, in which tarsal segments were devoid of muscles. RNAi treatment specific to Hvtwist expression markedly impaired TE and TF muscles in the femurs, and prevented the development of TL and TD muscles in the tibia. Therefore, our findings demonstrate Twist plays a vital role in the myogenesis in H. vigintioctopunctata adult legs.
Collapse
Affiliation(s)
- Ahmad Ali Anjum
- Department of Entomology, Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meng-Jiao Lin
- Department of Entomology, Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Department of Entomology, Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Department of Entomology, Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Aase-Remedios ME, Janssen R, Leite DJ, Sumner-Rooney L, McGregor AP. Evolution of the Spider Homeobox Gene Repertoire by Tandem and Whole Genome Duplication. Mol Biol Evol 2023; 40:msad239. [PMID: 37935059 PMCID: PMC10726417 DOI: 10.1093/molbev/msad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/02/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Gene duplication generates new genetic material that can contribute to the evolution of gene regulatory networks and phenotypes. Duplicated genes can undergo subfunctionalization to partition ancestral functions and/or neofunctionalization to assume a new function. We previously found there had been a whole genome duplication (WGD) in an ancestor of arachnopulmonates, the lineage including spiders and scorpions but excluding other arachnids like mites, ticks, and harvestmen. This WGD was evidenced by many duplicated homeobox genes, including two Hox clusters, in spiders. However, it was unclear which homeobox paralogues originated by WGD versus smaller-scale events such as tandem duplications. Understanding this is a key to determining the contribution of the WGD to arachnopulmonate genome evolution. Here we characterized the distribution of duplicated homeobox genes across eight chromosome-level spider genomes. We found that most duplicated homeobox genes in spiders are consistent with an origin by WGD. We also found two copies of conserved homeobox gene clusters, including the Hox, NK, HRO, Irx, and SINE clusters, in all eight species. Consistently, we observed one copy of each cluster was degenerated in terms of gene content and organization while the other remained more intact. Focussing on the NK cluster, we found evidence for regulatory subfunctionalization between the duplicated NK genes in the spider Parasteatoda tepidariorum compared to their single-copy orthologues in the harvestman Phalangium opilio. Our study provides new insights into the relative contributions of multiple modes of duplication to the homeobox gene repertoire during the evolution of spiders and the function of NK genes.
Collapse
Affiliation(s)
| | - Ralf Janssen
- Department of Earth Sciences, Uppsala University, Uppsala, 752 36, Sweden
| | - Daniel J Leite
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Lauren Sumner-Rooney
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, 10115, Germany
| | - Alistair P McGregor
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
4
|
Liessem S, Held M, Bisen RS, Haberkern H, Lacin H, Bockemühl T, Ache JM. Behavioral state-dependent modulation of insulin-producing cells in Drosophila. Curr Biol 2023; 33:449-463.e5. [PMID: 36580915 DOI: 10.1016/j.cub.2022.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
Insulin signaling plays a pivotal role in metabolic control and aging, and insulin accordingly is a key factor in several human diseases. Despite this importance, the in vivo activity dynamics of insulin-producing cells (IPCs) are poorly understood. Here, we characterized the effects of locomotion on the activity of IPCs in Drosophila. Using in vivo electrophysiology and calcium imaging, we found that IPCs were strongly inhibited during walking and flight and that their activity rebounded and overshot after cessation of locomotion. Moreover, IPC activity changed rapidly during behavioral transitions, revealing that IPCs are modulated on fast timescales in behaving animals. Optogenetic activation of locomotor networks ex vivo, in the absence of actual locomotion or changes in hemolymph sugar levels, was sufficient to inhibit IPCs. This demonstrates that the behavioral state-dependent inhibition of IPCs is actively controlled by neuronal pathways and is independent of changes in glucose concentration. By contrast, the overshoot in IPC activity after locomotion was absent ex vivo and after starvation, indicating that it was not purely driven by feedforward signals but additionally required feedback derived from changes in hemolymph sugar concentration. We hypothesize that IPC inhibition during locomotion supports mobilization of fuel stores during metabolically demanding behaviors, while the rebound in IPC activity after locomotion contributes to replenishing muscle glycogen stores. In addition, the rapid dynamics of IPC modulation support a potential role of insulin in the state-dependent modulation of sensorimotor processing.
Collapse
Affiliation(s)
- Sander Liessem
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martina Held
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rituja S Bisen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hannah Haberkern
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Haluk Lacin
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Till Bockemühl
- Department of Biology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Jan M Ache
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
5
|
Moucaud B, Prince E, Jagla K, Soler C. Developmental origin of tendon diversity in Drosophila melanogaster. Front Physiol 2023; 14:1176148. [PMID: 37143929 PMCID: PMC10151533 DOI: 10.3389/fphys.2023.1176148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Myogenesis is a developmental process that is largely conserved in both Drosophila and higher organisms. Consequently, the fruit fly is an excellent in vivo model for identifying the genes and mechanisms involved in muscle development. Moreover, there is growing evidence indicating that specific conserved genes and signaling pathways govern the formation of tissues that connect the muscles to the skeleton. In this review, we present an overview of the different stages of tendon development, from the specification of tendon progenitors to the assembly of a stable myotendinous junction across three different myogenic contexts in Drosophila: larval, flight and leg muscle development. We underline the different aspects of tendon cell specification and differentiation in embryo and during metamorphosis that result into tendon morphological and functional diversity.
Collapse
|
6
|
El Husseiny IM, El Kholy S, Mohamed AZ, Meshrif WS, Elbrense H. Alterations in biogenic amines levels associated with age-related muscular tissue impairment in Drosophila melanogaster. Saudi J Biol Sci 2022; 29:3739-3748. [PMID: 35844402 PMCID: PMC9280237 DOI: 10.1016/j.sjbs.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/19/2022] Open
Abstract
While holding on youth may be a universal wish, aging is a natural process associated with physical and physiological impairment in living organisms. Drosophila provides useful insights into aging-related events. Hence, this study was conducted to investigate the age-related changes in muscle function and architecture in relation to the biogenic amine titers. To achieve this aim, visceral and skeletal muscles performance was tested in newly-eclosed, sexually mature and old adult flies using climbing and gut motility assays. In addition, age-related ultrastructural alterations of muscular tissue were observed using transmission electron microscopy (TEM). The titer of selected biogenic amines was measured using high-performance liquid chromatography (HPLC). The results demonstrated that old flies were dramatically slower in upward movement than either newly-eclosed or sexually mature flies. Similarly, gut contraction rate was significantly lower in old flies than the sexually mature, although it was markedly higher than that in the newly-eclosed flies. In TEM examination, there were several ultrastructural changes in the midgut epithelium, legs and thorax muscles of old flies. Regarding biogenic amine titers, the old flies had significantly lower concentrations of octopamine, dopamine and serotonin than the sexually mature. We concluded that aging has adverse effects on muscular system function and ultrastructure, synchronized with biogenic amine titers changes. Our results highlighted the need for more researches on therapeutics that may balance the levels of age-related alterations in biogenic amines.
Collapse
Affiliation(s)
- Iman M. El Husseiny
- Department of Zoology, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Samar El Kholy
- Department of Zoology, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | | | - Wesam S. Meshrif
- Department of Zoology, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Hanaa Elbrense
- Department of Zoology, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| |
Collapse
|
7
|
Laurichesse Q, Moucaud B, Laddada L, Renaud Y, Jagla K, Soler C. Transcriptomic and Genetic Analyses Identify the Krüppel-Like Factor Dar1 as a New Regulator of Tube-Shaped Long Tendon Development. Front Cell Dev Biol 2021; 9:747563. [PMID: 34977007 PMCID: PMC8716952 DOI: 10.3389/fcell.2021.747563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
To ensure locomotion and body stability, the active role of muscle contractions relies on a stereotyped muscle pattern set in place during development. This muscle patterning requires a precise assembly of the muscle fibers with the skeleton via a specialized connective tissue, the tendon. Like in vertebrate limbs, Drosophila leg muscles make connections with specific long tendons that extend through different segments. During the leg disc development, cell precursors of long tendons rearrange and collectively migrate to form a tube-shaped structure. A specific developmental program underlies this unique feature of tendon-like cells in the Drosophila model. We provide for the first time a transcriptomic profile of leg tendon precursors through fluorescence-based cell sorting. From promising candidates, we identified the Krüppel-like factor Dar1 as a critical actor of leg tendon development. Specifically expressed in the leg tendon precursors, loss of dar1 disrupts actin-rich filopodia formation and tendon elongation. Our findings show that Dar1 acts downstream of Stripe and is required to set up the correct number of tendon progenitors.
Collapse
|
8
|
Kao SY, Nikonova E, Chaabane S, Sabani A, Martitz A, Wittner A, Heemken J, Straub T, Spletter ML. A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle. Cells 2021; 10:2505. [PMID: 34685485 PMCID: PMC8534295 DOI: 10.3390/cells10102505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/30/2022] Open
Abstract
The proper regulation of RNA processing is critical for muscle development and the fine-tuning of contractile ability among muscle fiber-types. RNA binding proteins (RBPs) regulate the diverse steps in RNA processing, including alternative splicing, which generates fiber-type specific isoforms of structural proteins that confer contractile sarcomeres with distinct biomechanical properties. Alternative splicing is disrupted in muscle diseases such as myotonic dystrophy and dilated cardiomyopathy and is altered after intense exercise as well as with aging. It is therefore important to understand splicing and RBP function, but currently, only a small fraction of the hundreds of annotated RBPs expressed in muscle have been characterized. Here, we demonstrate the utility of Drosophila as a genetic model system to investigate basic developmental mechanisms of RBP function in myogenesis. We find that RBPs exhibit dynamic temporal and fiber-type specific expression patterns in mRNA-Seq data and display muscle-specific phenotypes. We performed knockdown with 105 RNAi hairpins targeting 35 RBPs and report associated lethality, flight, myofiber and sarcomere defects, including flight muscle phenotypes for Doa, Rm62, mub, mbl, sbr, and clu. Knockdown phenotypes of spliceosome components, as highlighted by phenotypes for A-complex components SF1 and Hrb87F (hnRNPA1), revealed level- and temporal-dependent myofibril defects. We further show that splicing mediated by SF1 and Hrb87F is necessary for Z-disc stability and proper myofibril development, and strong knockdown of either gene results in impaired localization of kettin to the Z-disc. Our results expand the number of RBPs with a described phenotype in muscle and underscore the diversity in myofibril and transcriptomic phenotypes associated with splicing defects. Drosophila is thus a powerful model to gain disease-relevant insight into cellular and molecular phenotypes observed when expression levels of splicing factors, spliceosome components and splicing dynamics are altered.
Collapse
Affiliation(s)
- Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Sabrina Chaabane
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Albiona Sabani
- Department of Biology, University of Wisconsin at Madison, 1117 W. Johnson St., Madison, WI 53706, USA;
| | - Alexandra Martitz
- Molecular Nutrition Medicine, Else Kröner-Fresenius Center, Technical University of Munich, 85354 Freising, Germany;
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Jakob Heemken
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Tobias Straub
- Biomedical Center, Bioinformatics Core Facility, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany;
| | - Maria L. Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| |
Collapse
|
9
|
Drosophila, an Integrative Model to Study the Features of Muscle Stem Cells in Development and Regeneration. Cells 2021; 10:cells10082112. [PMID: 34440881 PMCID: PMC8394675 DOI: 10.3390/cells10082112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Muscle stem cells (MuSCs) are essential for muscle growth, maintenance and repair. Over the past decade, experiments in Drosophila have been instrumental in understanding the molecular and cellular mechanisms regulating MuSCs (also known as adult muscle precursors, AMPs) during development. A large number of genetic tools available in fruit flies provides an ideal framework to address new questions which could not be addressed with other model organisms. This review reports the main findings revealed by the study of Drosophila AMPs, with a specific focus on how AMPs are specified and properly positioned, how they acquire their identity and which are the environmental cues controlling their behavior and fate. The review also describes the recent identification of the Drosophila adult MuSCs that have similar characteristics to vertebrates MuSCs. Integration of the different levels of MuSCs analysis in flies is likely to provide new fundamental knowledge in muscle stem cell biology largely applicable to other systems.
Collapse
|
10
|
Kinold JC, Brenner M, Aberle H. Misregulation of Drosophila Sidestep Leads to Uncontrolled Wiring of the Adult Neuromuscular System and Severe Locomotion Defects. Front Neural Circuits 2021; 15:658791. [PMID: 34149366 PMCID: PMC8209334 DOI: 10.3389/fncir.2021.658791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Abstract
Holometabolic organisms undergo extensive remodelling of their neuromuscular system during metamorphosis. Relatively, little is known whether or not the embryonic guidance of molecules and axonal growth mechanisms are re-activated for the innervation of a very different set of adult muscles. Here, we show that the axonal attractant Sidestep (Side) is re-expressed during Drosophila metamorphosis and is indispensable for neuromuscular wiring. Mutations in side cause severe innervation defects in all legs. Neuromuscular junctions (NMJs) show a reduced density or are completely absent at multi-fibre muscles. Misinnervation strongly impedes, but does not completely abolish motor behaviours, including walking, flying, or grooming. Overexpression of Side in developing muscles induces similar innervation defects; for example, at indirect flight muscles, it causes flightlessness. Since muscle-specific overexpression of Side is unlikely to affect the central circuits, the resulting phenotypes seem to correlate with faulty muscle wiring. We further show that mutations in beaten path Ia (beat), a receptor for Side, results in similar weaker adult innervation and locomotion phenotypes, indicating that embryonic guidance pathways seem to be reactivated during metamorphosis.
Collapse
Affiliation(s)
- Jaqueline C Kinold
- Department of Biology, Institute for Functional Cell Morphology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marcel Brenner
- Department of Biology, Institute for Functional Cell Morphology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hermann Aberle
- Department of Biology, Institute for Functional Cell Morphology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
An insight on Drosophila myogenesis and its assessment techniques. Mol Biol Rep 2020; 47:9849-9863. [PMID: 33263930 DOI: 10.1007/s11033-020-06006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Movement assisted by muscles forms the basis of various behavioural traits seen in Drosophila. Myogenesis involves developmental processes like cellular specification, differentiation, migration, fusion, adherence to tendons and neuronal innervation in a series of coordinated event well defined in body space and time. Gene regulatory networks are switched on-off, fine tuning at the right developmental stage to assist each cellular event. Drosophila is a holometabolous organism that undergoes myogenesis waves at two developmental stages, and is ideal for comparative analysis of the role of genes and genetic pathways conserved across phyla. In this review we have summarized myogenic events from the embryo to adult focussing on the somatic muscle development during the early embryonic stage and then on indirect flight muscles (IFM) formation required for adult life, emphasizing on recent trends of analysing muscle mutants and advances in Drosophila muscle biology.
Collapse
|
12
|
Muscle development : a view from adult myogenesis in Drosophila. Semin Cell Dev Biol 2020; 104:39-50. [DOI: 10.1016/j.semcdb.2020.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
|
13
|
Poovathumkadavil P, Jagla K. Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila. Cells 2020; 9:cells9061543. [PMID: 32630420 PMCID: PMC7349286 DOI: 10.3390/cells9061543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
In the fruit fly, Drosophila melanogaster, the larval somatic muscles or the adult thoracic flight and leg muscles are the major voluntary locomotory organs. They share several developmental and structural similarities with vertebrate skeletal muscles. To ensure appropriate activity levels for their functions such as hatching in the embryo, crawling in the larva, and jumping and flying in adult flies all muscle components need to be maintained in a functionally stable or homeostatic state despite constant strain. This requires that the muscles develop in a coordinated manner with appropriate connections to other cell types they communicate with. Various signaling pathways as well as extrinsic and intrinsic factors are known to play a role during Drosophila muscle development, diversification, and homeostasis. In this review, we discuss genetic control mechanisms of muscle contraction, development, and homeostasis with particular emphasis on the contractile unit of the muscle, the sarcomere.
Collapse
|
14
|
Vishal K, Lovato TL, Bragg C, Chechenova MB, Cripps RM. FGF signaling promotes myoblast proliferation through activation of wingless signaling. Dev Biol 2020; 464:1-10. [PMID: 32445643 PMCID: PMC7648665 DOI: 10.1016/j.ydbio.2020.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022]
Abstract
Indirect flight muscles (IFMs) are the largest muscles in Drosophila and are made up of hundreds of myonuclei. The generation of these giant muscles requires a large pool of wing disc associated adult muscle precursors (AMPs), however the factors that control proliferation to form this myoblast pool are incompletely known. Here, we examine the role of fibroblast growth factor (FGF) signaling in the proliferation of wing disc associated myoblasts. We find that the components of FGF signaling are expressed in myoblasts and surrounding epithelial cells of the wing disc. Next, we show that attenuation of FGF signaling results in a diminished myoblast pool. This reduction in the pool size is due to decreased myoblast proliferation. By contrast, activating the FGF signaling pathway increases the myoblast pool size and restores the proliferative capacity of FGF knockdown flies. Finally, our results demonstrate that the FGF receptor Heartless acts through up-regulating β-catenin/Armadillo signaling to promote myoblast proliferation. Our studies identify a novel role for FGF signaling during IFM formation and uncover the mechanism through which FGF coordinates with Wingless signaling to promote myoblast proliferation.
Collapse
Affiliation(s)
- Kumar Vishal
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - TyAnna L Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Chandler Bragg
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Maria B Chechenova
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Richard M Cripps
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
15
|
Jennings W, Hou M, Perterson D, Missiuna P, Thabane L, Tarnopolsky M, Samaan MC. Paraspinal muscle ladybird homeobox 1 (LBX1) in adolescent idiopathic scoliosis: a cross-sectional study. Spine J 2019; 19:1911-1916. [PMID: 31202838 DOI: 10.1016/j.spinee.2019.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Adolescent idiopathic scoliosis (AIS) is the leading cause of spinal deformity in adolescents globally. Recent evidence from genome-wide association studies has implicated variants in or near the ladybird homeobox 1 (LBX1) gene, encoding the ladybird homeobox 1 transcription factor, in AIS development. This gene plays a critical role in guiding embryonic neurogenesis and myogenesis and is vital in muscle mass determination. Despite the confirmation of the role for LBX1 gene variants in the development of AIS, the biological basis of LBX1 contribution to AIS remains mostly unknown. PURPOSE To investigate the potential role of LBX1 in driving spinal curving, curve laterality, and progression through muscle-based mechanisms in AIS patients by analyzing its gene and protein expression. STUDY DESIGN This is a cross-sectional study using clinical data and biological samples from the Immunometabolic CONnections to Scoliosis study (ICONS study). PATIENT SAMPLE Twenty-five patients with AIS provided informed consent. Paraspinal muscle biopsies from the maximal points of concavity and convexity for gene expression and protein analysis were obtained at the start of corrective spinal surgery. OUTCOME MEASURES The outcome measures included the detection of paraspinal muscle LBX1 mRNA abundance and LBX1 protein expression and the correlation of the latter with age, sex, and curve severity. METHODS The measurement of mRNA abundance was done using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, protein lysates from the biopsied muscle samples were probed with a monoclonal LBX1 antibody to compare the muscle protein levels on either side of the scoliotic curve by western blot. This study received funding from the Division of Orthopedics, Department of Surgery, McMaster University, Hamilton, Ontario, Canada ($39,900 CAN for 2 years). The authors have no conflicts of interest to disclose. RESULTS LBX1 mRNA abundance (concave 2.98±0.87, convex 3.40±1.10, p value 0.73) and protein expression (concave 1.20±0.13, convex 1.21±0.10, p value 0.43) were detected on both sides of the scoliotic curve at equivalent levels. The expression of LBX1 protein did not correlate with age (concave: correlation coefficient 0.32, p value 0.12; convex: correlation coefficient 0.08, p value 0.69), sex (concave: correlation coefficient -0.03, p value 0.08; convex: correlation coefficient 0.07, p value 0.72), or the severity of spinal curving measured using the Cobb angle (concave: correlation coefficient -0.16, p value 0.45; convex: correlation coefficient -0.08, p value 0.69). CONCLUSIONS LBX1 is expressed in erector spinae muscles, and its levels are equal in muscles on both sides of the scoliotic curve in AIS. The expression of LBX1 on the convex and concave sides of the scoliotic curve did not correlate with age, sex, or the severity of spinal curving. The molecular mechanisms by which LBX1contributes to the development and propagation of AIS need to be explored further in muscle and other tissues.
Collapse
Affiliation(s)
- William Jennings
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Maggie Hou
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Devin Perterson
- Division of Orthopedics, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Paul Missiuna
- Division of Orthopedics, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada; Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada; Centre for Evaluation of Medicines, St. Joseph's Health Care, Hamilton, Ontario, Canada; Biostatistics Unit, St Joseph's Healthcare-Hamilton, Hamilton, Ontario, Canada
| | - Mark Tarnopolsky
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - M Constantine Samaan
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
16
|
Primary myogenesis in the sand lizard (Lacerta agilis) limb bud. Dev Genes Evol 2019; 229:147-159. [PMID: 31214772 PMCID: PMC6867991 DOI: 10.1007/s00427-019-00635-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/02/2019] [Indexed: 11/23/2022]
Abstract
Our studies conducted on reptilian limb muscle development revealed, for the first time, early forelimb muscle differentiation at the morphological and molecular level. Sand lizard skeletal muscle differentiation in the early forelimb bud was investigated by light, confocal, and transmission electron microscopy as well as western blot. The early forelimb bud, filled with mesenchymal cells, is surrounded by monolayer epithelium cells. The immunocytochemical analysis revealed the presence of Pax3- and Lbx-positive cells in the vicinity of the ventro-lateral lip (VLL) of the dermomyotome, suggesting that VLL is the source of limb muscle progenitor cells. Furthermore, Pax3- and Lbx-positive cells were observed in the dorsal and ventral myogenic pools of the forelimb bud. Skeletal muscle development in the early limb bud is asynchronous, which is manifested by the presence of myogenic cells in different stages of differentiation: multinucleated myotubes with well-developed contractile apparatus, myoblasts, and mitotically active premyoblasts. The western blot analysis revealed the presence of MyoD and Myf5 proteins in all investigated developmental stages. The MyoD western blot analysis showed two bands corresponding to monomeric (mMyoD) and dimeric (dMyoD) fractions. Two separate bands were also detected in the case of Myf5. The observed bands were related to non-phosphorylated (Myf5) and phosphorylated (pMyf5) fractions of Myf5. Our investigations on sand lizard forelimb myogenesis showed that the pattern of muscle differentiation in the early forelimb bud shares many features with rodents and chicks.
Collapse
|
17
|
Laddada L, Jagla K, Soler C. Odd-skipped and Stripe act downstream of Notch to promote the morphogenesis of long appendicular tendons in Drosophila. Biol Open 2019; 8:bio.038760. [PMID: 30796048 PMCID: PMC6451353 DOI: 10.1242/bio.038760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multiple tissue interactions take place during the development of the limb musculoskeletal system. While appendicular myogenesis has been extensively studied, development of connective tissue associated with muscles has received less attention. In the developing Drosophila leg, tendon-like connective tissue arises from clusters of epithelial cells that invaginate into the leg cavity and then elongate to form internal tube-shape structures along which muscle precursors are distributed. Here we show that stripe-positive appendicular precursors of tendon-like connective tissue are set up among intersegmental leg joint cells expressing odd-skipped genes, and that Notch signaling is necessary and locally sufficient to trigger stripe expression. This study also finds that odd-skipped genes and stripe are both required downstream of Notch to promote morphogenesis of tube-shaped internal tendons of the leg. Summary: In this paper, we show that Notch promotes the tendon development by inducing Stripe expression in leg discs and that both Stripe and Odd-skipped are required to form tube-like tendons.
Collapse
Affiliation(s)
- Lilia Laddada
- GReD Laboratory, Clermont-Auvergne University, INSERM U1103, CNRS UMR6293, 63000 Clermont-Ferrand, France
| | - Krzysztof Jagla
- GReD Laboratory, Clermont-Auvergne University, INSERM U1103, CNRS UMR6293, 63000 Clermont-Ferrand, France
| | - Cédric Soler
- GReD Laboratory, Clermont-Auvergne University, INSERM U1103, CNRS UMR6293, 63000 Clermont-Ferrand, France
| |
Collapse
|
18
|
Venkatasubramanian L, Guo Z, Xu S, Tan L, Xiao Q, Nagarkar-Jaiswal S, Mann RS. Stereotyped terminal axon branching of leg motor neurons mediated by IgSF proteins DIP-α and Dpr10. eLife 2019; 8:e42692. [PMID: 30714901 PMCID: PMC6391070 DOI: 10.7554/elife.42692] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
For animals to perform coordinated movements requires the precise organization of neural circuits controlling motor function. Motor neurons (MNs), key components of these circuits, project their axons from the central nervous system and form precise terminal branching patterns at specific muscles. Focusing on the Drosophila leg neuromuscular system, we show that the stereotyped terminal branching of a subset of MNs is mediated by interacting transmembrane Ig superfamily proteins DIP-α and Dpr10, present in MNs and target muscles, respectively. The DIP-α/Dpr10 interaction is needed only after MN axons reach the vicinity of their muscle targets. Live imaging suggests that precise terminal branching patterns are gradually established by DIP-α/Dpr10-dependent interactions between fine axon filopodia and developing muscles. Further, different leg MNs depend on the DIP-α and Dpr10 interaction to varying degrees that correlate with the morphological complexity of the MNs and their muscle targets.
Collapse
Affiliation(s)
- Lalanti Venkatasubramanian
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
- Department of NeuroscienceMortimer B. Zuckerman Mind Brain Behavior InstituteNew YorkUnited States
| | - Zhenhao Guo
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | - Shuwa Xu
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Liming Tan
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Qi Xiao
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Sonal Nagarkar-Jaiswal
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Richard S Mann
- Department of NeuroscienceMortimer B. Zuckerman Mind Brain Behavior InstituteNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| |
Collapse
|
19
|
GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila. Proc Natl Acad Sci U S A 2018; 115:E2115-E2124. [PMID: 29440493 PMCID: PMC5834679 DOI: 10.1073/pnas.1713869115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Inhibition is an important feature of the neuronal circuit, and in walking, it aids in controlling coordinated movement of legs, leg segments, and joints. Recent studies in Drosophila report the role of premotor inhibitory interneurons in regulation of larval locomotion. However, in adult walking, the identity and function of premotor interneurons are poorly understood. Here, we use genetic methods for targeted knockdown of inhibitory neurotransmitter receptors in leg motoneurons, combined with automated video recording methods we have developed for quantitative analysis of fly leg movements and walking parameters, to reveal the resulting slower walking speed and defects in walking parameters. Our results indicate that GABAergic premotor inhibition to leg motoneurons is required to control the normal walking behavior in adult Drosophila. Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila. Our findings indicate that targeted down-regulation of the GABAA receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila.
Collapse
|
20
|
Gunage RD, Dhanyasi N, Reichert H, VijayRaghavan K. Drosophila adult muscle development and regeneration. Semin Cell Dev Biol 2017; 72:56-66. [DOI: 10.1016/j.semcdb.2017.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/08/2017] [Accepted: 11/11/2017] [Indexed: 12/13/2022]
|
21
|
Deng S, Azevedo M, Baylies M. Acting on identity: Myoblast fusion and the formation of the syncytial muscle fiber. Semin Cell Dev Biol 2017; 72:45-55. [PMID: 29101004 DOI: 10.1016/j.semcdb.2017.10.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/25/2022]
Abstract
The study of Drosophila muscle development dates back to the middle of the last century. Since that time, Drosophila has proved to be an ideal system for studying muscle development, differentiation, function, and disease. As in humans, Drosophila muscle forms via a series of conserved steps, starting with muscle specification, myoblast fusion, attachment to tendon cells, interactions with motorneurons, and sarcomere and myofibril formation. The genes and mechanisms required for these processes share striking similarities to those found in humans. The highly tractable genetic system and imaging approaches available in Drosophila allow for an efficient interrogation of muscle biology and for application of what we learn to other systems. In this article, we review our current understanding of muscle development in Drosophila, with a focus on myoblast fusion, the process responsible for the generation of syncytial muscle cells. We also compare and contrast those genes required for fusion in Drosophila and vertebrates.
Collapse
Affiliation(s)
- Su Deng
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY 10065, United States
| | - Mafalda Azevedo
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY 10065, United States; Graduate Program in Basic and Applied Biology (GABBA), Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Mary Baylies
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY 10065, United States.
| |
Collapse
|
22
|
Anstead CA, Perry T, Richards S, Korhonen PK, Young ND, Bowles VM, Batterham P, Gasser RB. The Battle Against Flystrike - Past Research and New Prospects Through Genomics. ADVANCES IN PARASITOLOGY 2017; 98:227-281. [PMID: 28942770 DOI: 10.1016/bs.apar.2017.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Flystrike, or cutaneous myiasis, is caused by blow fly larvae of the genus Lucilia. This disease is a major problem in countries with large sheep populations. In Australia, Lucilia cuprina (Wiedemann, 1830) is the principal fly involved in flystrike. While much research has been conducted on L. cuprina, including physical, chemical, immunological, genetic and biological investigations, the molecular biology of this fly is still poorly understood. The recent sequencing, assembly and annotation of the draft genome and analyses of selected transcriptomes of L. cuprina have given a first global glimpse of its molecular biology and insights into host-fly interactions, insecticide resistance genes and intervention targets. The present article introduces L. cuprina, flystrike and associated issues, details past control efforts and research foci, reviews salient aspects of the L. cuprina genome project and discusses how the new genomic and transcriptomic resources for this fly might accelerate fundamental molecular research of L. cuprina towards developing new methods for the treatment and control of flystrike.
Collapse
Affiliation(s)
| | - Trent Perry
- The University of Melbourne, Parkville, VIC, Australia
| | | | | | - Neil D Young
- The University of Melbourne, Parkville, VIC, Australia
| | | | | | | |
Collapse
|
23
|
Adult Muscle Formation Requires Drosophila Moleskin for Proliferation of Wing Disc-Associated Muscle Precursors. Genetics 2017; 206:199-213. [PMID: 28249984 DOI: 10.1534/genetics.116.193813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/21/2017] [Indexed: 11/18/2022] Open
Abstract
Adult muscle precursor (AMP) cells located in the notum of the larval wing disc undergo rapid amplification and eventual fusion to generate the Drosophila melanogaster indirect flight muscles (IFMs). Here we find that loss of Moleskin (Msk) function in these wing disc-associated myoblasts reduces the overall AMP pool size, resulting in the absence of IFM formation. This myoblast loss is due to a decrease in the AMP proliferative capacity and is independent of cell death. In contrast, disruption of Msk during pupal myoblast proliferation does not alter the AMP number, suggesting that Msk is specifically required for larval AMP proliferation. It has been previously shown that Wingless (Wg) signaling maintains expression of the Vestigial (Vg) transcription factor in proliferating myoblasts. However, other factors that influence Wg-mediated myoblast proliferation are largely unknown. Here we examine the interactions between Msk and the Wg pathway in regulation of the AMP pool size. We find that a myoblast-specific reduction of Msk results in the absence of Vg expression and a complete loss of the Wg pathway readout β-catenin/Armadillo (Arm). Moreover, msk RNA interference knockdown abolishes expression of the Wg target Ladybird (Lbe) in leg disc myoblasts. Collectively, our results provide strong evidence that Msk acts through the Wg signaling pathway to control myoblast pool size and muscle formation by regulating Arm stability or nuclear transport.
Collapse
|
24
|
Lavergne G, Soler C, Zmojdzian M, Jagla K. Characterization of Drosophila Muscle Stem Cell-Like Adult Muscle Precursors. Methods Mol Biol 2017; 1556:103-116. [PMID: 28247346 DOI: 10.1007/978-1-4939-6771-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Uncovering how muscle stem cells behave in quiescent and activated states is central to understand the basic rules governing normal muscle development and regeneration in pathological conditions. Specification of mesodermal lineages including muscle stemlike adult muscle precursors (AMPs) has been extensively studied in Drosophila providing an attractive framework for investigating muscle stem cell properties. Restricted number of AMP cells, relative ease in following their behavior, and large number of genetic tools available make fruit fly an attractive model system for studying muscle stem cells. In this chapter, we describe the recently developed tools to visualize and target the body wall and imaginal AMPs.
Collapse
Affiliation(s)
- Guillaume Lavergne
- GReD (Genetics, Reproduction and Development laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Cedric Soler
- GReD (Genetics, Reproduction and Development laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Monika Zmojdzian
- GReD (Genetics, Reproduction and Development laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Krzysztof Jagla
- GReD (Genetics, Reproduction and Development laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 place Henri Dunant, 63000, Clermont-Ferrand, France.
| |
Collapse
|
25
|
Anstead CA, Batterham P, Korhonen PK, Young ND, Hall RS, Bowles VM, Richards S, Scott MJ, Gasser RB. A blow to the fly — Lucilia cuprina draft genome and transcriptome to support advances in biology and biotechnology. Biotechnol Adv 2016; 34:605-620. [DOI: 10.1016/j.biotechadv.2016.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/08/2016] [Accepted: 02/20/2016] [Indexed: 02/07/2023]
|
26
|
Simon E, Faucheux C, Zider A, Thézé N, Thiébaud P. From vestigial to vestigial-like: the Drosophila gene that has taken wing. Dev Genes Evol 2016; 226:297-315. [PMID: 27116603 DOI: 10.1007/s00427-016-0546-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/10/2016] [Indexed: 12/16/2022]
Abstract
The members of the vestigial-like gene family have been identified as homologs of the Drosophila vestigial, which is essential to wing formation. All members of the family are characterized by the presence of the TONDU domain, a highly conserved sequence that mediates their interaction with the transcription factors of the TEAD family. Mammals possess four vestigial-like genes that can be subdivided into two classes, depending on the number of Tondu domains present. While vestigial proteins have been studied in great depth in Drosophila, we still have sketchy knowledge of the functions of vestigial-like proteins in vertebrates. Recent studies have unveiled unexpected functions for some of these members and reveal the role they play in the Hippo pathway. Here, we present the current knowledge about vestigial-like family gene members and their functions, together with their identification in different taxa.
Collapse
Affiliation(s)
- Emilie Simon
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France
| | - Corinne Faucheux
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France
| | - Alain Zider
- Univ Paris Diderot, Sorbonne Paris Cité, IJM, UMR 7592 CNRS, F-75205, Paris, France
| | - Nadine Thézé
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France
| | - Pierre Thiébaud
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France.
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France.
- Univ. Bordeaux, INSERM U1035, 146 rue Léo Saignat, 33076, Bordeaux CEDEX, France.
| |
Collapse
|
27
|
Syed DS, Gowda SBM, Reddy OV, Reichert H, VijayRaghavan K. Glial and neuronal Semaphorin signaling instruct the development of a functional myotopic map for Drosophila walking. eLife 2016; 5:e11572. [PMID: 26926907 PMCID: PMC4805548 DOI: 10.7554/elife.11572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 02/28/2016] [Indexed: 12/29/2022] Open
Abstract
Motoneurons developmentally acquire appropriate cellular architectures that ensure connections with postsynaptic muscles and presynaptic neurons. In Drosophila, leg motoneurons are organized as a myotopic map, where their dendritic domains represent the muscle field. Here, we investigate mechanisms underlying development of aspects of this myotopic map, required for walking. A behavioral screen identified roles for Semaphorins (Sema) and Plexins (Plex) in walking behavior. Deciphering this phenotype, we show that PlexA/Sema1a mediates motoneuron axon branching in ways that differ in the proximal femur and distal tibia, based on motoneuronal birth order. Importantly, we show a novel role for glia in positioning dendrites of specific motoneurons; PlexB/Sema2a is required for dendritic positioning of late-born motoneurons but not early-born motoneurons. These findings indicate that communication within motoneurons and between glia and motoneurons, mediated by the combined action of different Plexin/Semaphorin signaling systems, are required for the formation of a functional myotopic map. DOI:http://dx.doi.org/10.7554/eLife.11572.001 Nerve cells enable us to both sense the world around us and to move about it. The nerves responsible for movement are called motor neurons. While one end of a motor neuron stimulates the muscle it is connected to, the other end receives signals from nerves in the spinal cord that relay messages about movement from the brain. Motor neuron connections in the spinal cord, or its equivalent in insects, the ventral nerve cord, are organized into an arrangement known as a myotopic map, which reflects the anatomical arrangement of the muscles in the body. Much remains to be learnt about how these maps form. Syed et al. have investigated how the myotopic map develops for motor neurons in the legs of fruit flies by reducing the function of chosen genes in the ventral nerve cord and asking how this affects the myotopic map. The experiments disrupted a signaling system called the Semaphorin signaling pathway that guides motor neurons to the right target muscle and consists of different receptor-signaling molecule pairs. By looking for flies with an abnormal walk and with disrupted motor neuron organization, Syed et al. identified receptor-signal pairs that guide motor neurons to different leg muscles. Specific receptor-signal pairs also guide the organisation of motor neurons in the ventral nerve cord. This guidance depends on when neurons are ‘born’. While a receptor-signal pair targets early born neurons to one leg muscle, the same receptor-signal pair regulates a different aspect of guidance in late-born neurons. Cells called glia, which are related to neurons, also help to position the connections of late-born motor neurons in the ventral nerve cord. Overall, the Semaphorin signaling system assists communication both within motor neurons and between glia cells and motor neurons during the formation of the myotopic map for leg motor neurons. These discoveries open new avenues of investigation into how else these cells communicate with each other to aid the development and organization of motor neurons. DOI:http://dx.doi.org/10.7554/eLife.11572.002
Collapse
Affiliation(s)
- Durafshan Sakeena Syed
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Swetha B M Gowda
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Manipal University, Manipal, India
| | - O Venkateswara Reddy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | | - K VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
28
|
Soler C, Laddada L, Jagla K. Coordinated Development of Muscles and Tendon-Like Structures: Early Interactions in the Drosophila Leg. Front Physiol 2016; 7:22. [PMID: 26869938 PMCID: PMC4740448 DOI: 10.3389/fphys.2016.00022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/15/2016] [Indexed: 11/13/2022] Open
Abstract
The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton) via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well-established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here, we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates) during the early steps of leg development, we affect the spatial localization of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes.
Collapse
Affiliation(s)
- Cedric Soler
- Genetics, Reproduction and Development Laboratory (GReD) Genetics, Reproduction and Development Laboratory, Institut National de la Santé et de la Recherche Médicale U1103, Centre National de la Recherche Scientifique UMR6293, Clermont University Clermont-Ferrand, France
| | - Lilia Laddada
- Genetics, Reproduction and Development Laboratory (GReD) Genetics, Reproduction and Development Laboratory, Institut National de la Santé et de la Recherche Médicale U1103, Centre National de la Recherche Scientifique UMR6293, Clermont University Clermont-Ferrand, France
| | - Krzysztof Jagla
- Genetics, Reproduction and Development Laboratory (GReD) Genetics, Reproduction and Development Laboratory, Institut National de la Santé et de la Recherche Médicale U1103, Centre National de la Recherche Scientifique UMR6293, Clermont University Clermont-Ferrand, France
| |
Collapse
|
29
|
Dobi KC, Schulman VK, Baylies MK. Specification of the somatic musculature in Drosophila. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:357-75. [PMID: 25728002 PMCID: PMC4456285 DOI: 10.1002/wdev.182] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/16/2015] [Accepted: 02/04/2015] [Indexed: 11/09/2022]
Abstract
The somatic muscle system formed during Drosophila embryogenesis is required for larvae to hatch, feed, and crawl. This system is replaced in the pupa by a new adult muscle set, responsible for activities such as feeding, walking, and flight. Both the larval and adult muscle systems are comprised of distinct muscle fibers to serve these specific motor functions. In this way, the Drosophila musculature is a valuable model for patterning within a single tissue: while all muscle cells share properties such as the contractile apparatus, properties such as size, position, and number of nuclei are unique for a particular muscle. In the embryo, diversification of muscle fibers relies first on signaling cascades that pattern the mesoderm. Subsequently, the combinatorial expression of specific transcription factors leads muscle fibers to adopt particular sizes, shapes, and orientations. Adult muscle precursors (AMPs), set aside during embryonic development, proliferate during the larval phases and seed the formation of the abdominal, leg, and flight muscles in the adult fly. Adult muscle fibers may either be formed de novo from the fusion of the AMPs, or are created by the binding of AMPs to an existing larval muscle. While less is known about adult muscle specification compared to the larva, expression of specific transcription factors is also important for its diversification. Increasingly, the mechanisms required for the diversification of fly muscle have found parallels in vertebrate systems and mark Drosophila as a robust model system to examine questions about how diverse cell types are generated within an organism.
Collapse
Affiliation(s)
- Krista C. Dobi
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Victoria K. Schulman
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Mary K. Baylies
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| |
Collapse
|
30
|
Lucilia cuprina genome unlocks parasitic fly biology to underpin future interventions. Nat Commun 2015; 6:7344. [PMID: 26108605 PMCID: PMC4491171 DOI: 10.1038/ncomms8344] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/29/2015] [Indexed: 01/20/2023] Open
Abstract
Lucilia cuprina is a parasitic fly of major economic importance worldwide. Larvae of this fly invade their animal host, feed on tissues and excretions and progressively cause severe skin disease (myiasis). Here we report the sequence and annotation of the 458-megabase draft genome of Lucilia cuprina. Analyses of this genome and the 14,544 predicted protein-encoding genes provide unique insights into the fly's molecular biology, interactions with the host animal and insecticide resistance. These insights have broad implications for designing new methods for the prevention and control of myiasis.
Collapse
|
31
|
The homeodomain protein ladybird late regulates synthesis of milk proteins during pregnancy in the tsetse fly (Glossina morsitans). PLoS Negl Trop Dis 2014; 8:e2645. [PMID: 24763082 PMCID: PMC3998940 DOI: 10.1371/journal.pntd.0002645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/27/2013] [Indexed: 11/19/2022] Open
Abstract
Regulation of tissue and development specific gene expression patterns underlies the functional specialization of organs in multi-cellular organisms. In the viviparous tsetse fly (Glossina), the female accessory gland is specialized to generate nutrients in the form of a milk-like secretion to support growth of intrauterine larva. Multiple milk protein genes are expressed specifically in the female accessory gland and are tightly linked with larval development. Disruption of milk protein synthesis deprives developing larvae of nutrients and results in extended larval development and/or in abortion. The ability to cause such a disruption could be utilized as a tsetse control strategy. Here we identify and delineate the regulatory sequence of a major milk protein gene (milk gland protein 1:mgp1) by utilizing a combination of molecular techniques in tsetse, Drosophila transgenics, transcriptomics and in silico sequence analyses. The function of this promoter is conserved between tsetse and Drosophila. In transgenic Drosophila the mgp1 promoter directs reporter gene expression in a tissue and stage specific manner orthologous to that of Glossina. Analysis of the minimal required regulatory region of mgp1, and the regulatory regions of other Glossina milk proteins identified putative homeodomain protein binding sites as the sole common feature. Annotation and expression analysis of Glossina homeodomain proteins identified ladybird late (lbl) as being accessory gland/fat body specific and differentially expressed between lactating/non-lactating flies. Knockdown of lbl in tsetse resulted in a significant reduction in transcript abundance of multiple milk protein genes and in a significant loss of fecundity. The role of Lbl in adult reproductive physiology is previously unknown. These results suggest that Lbl is part of a conserved reproductive regulatory system that could have implications beyond tsetse to other vector insects such as mosquitoes. This system is critical for tsetse fecundity and provides a potential target for development of a reproductive inhibitor. Female tsetse flies (Diptera: Glossina) harbor and give birth to live young. To do this, they nourish their intrauterine larvae with milk secretions. This work focuses upon understanding the regulation of tsetse milk proteins, which are essential for fecundity and are expressed in a temporally and spatially specific manner by pregnant females. We identified the minimal upstream regulatory DNA sequence of the major milk protein gene mgp1, which confers tissue specific expression in the female accessory glands of reproductively active flies. This regulatory sequence functions similarly in transgenic fruit flies (Drosophila melanogaster) and drives expression of reporter gene products in the adult female accessory gland. Comparison of this regulatory sequence with sequences from other characterized milk proteins indicates that conserved homeodomain transcription factors may be responsible for regulating these genes. Analysis of Glossina homeodomain proteins identified an accessory gland/fat body specific factor, Ladybird late (lbl), which appears to regulate the expression of multiple milk proteins. Reduction of lbl levels interferes with milk protein gene expression, which in turn reduces Glossina fecundity. These results suggest that milk proteins in Glossina are regulated by a conserved regulatory system mediated in part by the homeodomain transcription factor lbl. Components of this system could provide a target for development of a tsetse reproductive inhibitor.
Collapse
|
32
|
Weitkunat M, Schnorrer F. A guide to study Drosophila muscle biology. Methods 2014; 68:2-14. [PMID: 24625467 DOI: 10.1016/j.ymeth.2014.02.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022] Open
Abstract
The development and molecular composition of muscle tissue is evolutionarily conserved. Drosophila is a powerful in vivo model system to investigate muscle morphogenesis and function. Here, we provide a short and comprehensive overview of the important developmental steps to build Drosophila body muscle in embryos, larvae and pupae. We describe key methods, including muscle histology, live imaging and genetics, to study these steps at various developmental stages and include simple behavioural assays to assess muscle function in larvae and adults. We list valuable antibodies and fly strains that can be used for these different methods. This overview should guide the reader to choose the best marker or the appropriate method to obtain high quality muscle morphogenesis data in Drosophila.
Collapse
Affiliation(s)
- Manuela Weitkunat
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
33
|
Transcriptional networks regulating the costamere, sarcomere, and other cytoskeletal structures in striated muscle. Cell Mol Life Sci 2013; 71:1641-56. [PMID: 24218011 DOI: 10.1007/s00018-013-1512-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
Abstract
Structural abnormalities in striated muscle have been observed in numerous transcription factor gain- and loss-of-function phenotypes in animal and cell culture model systems, indicating that transcription is important in regulating the cytoarchitecture. While most characterized cytoarchitectural defects are largely indistinguishable by histological and ultrastructural criteria, analysis of dysregulated gene expression in each mutant phenotype has yielded valuable information regarding specific structural gene programs that may be uniquely controlled by each of these transcription factors. Linking the formation and maintenance of each subcellular structure or subset of proteins within a cytoskeletal compartment to an overlapping but distinct transcription factor cohort may enable striated muscle to control cytoarchitectural function in an efficient and specific manner. Here we summarize the available evidence that connects transcription factors, those with established roles in striated muscle such as MEF2 and SRF, as well as other non-muscle transcription factors, to the regulation of a defined cytoskeletal structure. The notion that genes encoding proteins localized to the same subcellular compartment are coordinately transcriptionally regulated may prompt rationally designed approaches that target specific transcription factor pathways to correct structural defects in muscle disease.
Collapse
|
34
|
Abstract
Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
35
|
Abstract
Powered flight was first mastered by insects, many millions of years ago. Now, studies with the fruit fly Drosophila melanogaster reveal the critical role of a conserved transcription factor in programming the development of specialized flight muscles.
Collapse
Affiliation(s)
- Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore.
| | | |
Collapse
|
36
|
Oyallon J, Apitz H, Miguel-Aliaga I, Timofeev K, Ferreira L, Salecker I. Regulation of locomotion and motoneuron trajectory selection and targeting by the Drosophila homolog of Olig family transcription factors. Dev Biol 2012; 369:261-76. [PMID: 22796650 PMCID: PMC3464432 DOI: 10.1016/j.ydbio.2012.06.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 01/12/2023]
Abstract
During the development of locomotion circuits it is essential that motoneurons with distinct subtype identities select the correct trajectories and target muscles. In vertebrates, the generation of motoneurons and myelinating glia depends on Olig2, one of the five Olig family bHLH transcription factors. We investigated the so far unknown function of the single Drosophila homolog Oli. Combining behavioral and genetic approaches, we demonstrate that oli is not required for gliogenesis, but plays pivotal roles in regulating larval and adult locomotion, and axon pathfinding and targeting of embryonic motoneurons. In the embryonic nervous system, Oli is primarily expressed in postmitotic progeny, and in particular, in distinct ventral motoneuron subtypes. oli mediates axonal trajectory selection of these motoneurons within the ventral nerve cord and targeting to specific muscles. Genetic interaction assays suggest that oli acts as part of a conserved transcription factor ensemble including Lim3, Islet and Hb9. Moreover, oli is expressed in postembryonic leg-innervating motoneuron lineages and required in glutamatergic neurons for walking. Finally, over-expression of vertebrate Olig2 partially rescues the walking defects of oli-deficient flies. Thus, our findings reveal a remarkably conserved role of Drosophila Oli and vertebrate family members in regulating motoneuron development, while the steps that require their function differ in detail.
Collapse
Affiliation(s)
- Justine Oyallon
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, UK
| | | | | | | | | | | |
Collapse
|
37
|
Reim I, Hollfelder D, Ismat A, Frasch M. The FGF8-related signals Pyramus and Thisbe promote pathfinding, substrate adhesion, and survival of migrating longitudinal gut muscle founder cells. Dev Biol 2012; 368:28-43. [PMID: 22609944 DOI: 10.1016/j.ydbio.2012.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 04/17/2012] [Accepted: 05/04/2012] [Indexed: 01/04/2023]
Abstract
Fibroblast growth factors (FGFs) frequently fulfill prominent roles in the regulation of cell migration in various contexts. In Drosophila, the FGF8-like ligands Pyramus (Pyr) and Thisbe (Ths), which signal through their receptor Heartless (Htl), are known to regulate early mesodermal cell migration after gastrulation as well as glial cell migration during eye development. Herein, we show that Pyr and Ths also exert key roles during the long-distance migration of a specific sub-population of mesodermal cells that migrate from the caudal visceral mesoderm within stereotypic bilateral paths along the trunk visceral mesoderm toward the anterior. These cells constitute the founder myoblasts of the longitudinal midgut muscles. In a forward genetic screen for regulators of this morphogenetic process we identified loss of function alleles for pyr. We show that pyr and ths are expressed along the paths of migration in the trunk visceral mesoderm and endoderm and act largely redundantly to help guide the founder myoblasts reliably onto and along their substrate of migration. Ectopically-provided Pyr and Ths signals can efficiently re-rout the migrating cells, both in the presence and absence of endogenous signals. Our data indicate that the guidance functions of these FGFs must act in concert with other important attractive or adhesive activities of the trunk visceral mesoderm. Apart from their guidance functions, the Pyr and Ths signals play an obligatory role for the survival of the migrating cells. Without these signals, essentially all of these cells enter cell death and detach from the migration substrate during early migration. We present experiments that allowed us to dissect the roles of these FGFs as guidance cues versus trophic activities during the migration of the longitudinal visceral muscle founders.
Collapse
Affiliation(s)
- Ingolf Reim
- University of Erlangen-Nuremberg, Department of Biology, Division of Developmental Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | | | | | | |
Collapse
|
38
|
Lou Q, He J, Hu L, Yin Z. Role of lbx2 in the noncanonical Wnt signaling pathway for convergence and extension movements and hypaxial myogenesis in zebrafish. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1024-32. [PMID: 22406073 DOI: 10.1016/j.bbamcr.2012.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/05/2012] [Accepted: 02/23/2012] [Indexed: 11/29/2022]
Abstract
It has been suggested that mouse lbx1 is essential for directing hypaxial myogenic precursor cell migration. In zebrafish, the expression of lbx1a, lbx1b, and lbx2 has been observed in pectoral fin buds. It has also been shown that knocking down endogenous lbx2 in zebrafish embryos diminishes myoD expression in the pectoral fin bud. However, downstream lbxs signals remain largely unexplored. Here, we describe a previously unknown function of zebrafish lbx2 (lbx2) during convergent extension (CE) movements. The abrogation of the lbx2 function by two non-overlapping morpholino oligonucleotides (MOs) resulted in the defective convergence and extension movements in morphants during gastrulation. Our transplantation studies further demonstrated that the overexpression of lbx2 autonomously promotes CE movements. Expression of wnt5b is significantly reduced in lbx2 morphants. We have demonstrated that application of the wnt5b MO, a dominant-negative form of disheveled (Dvl) and a chemical inhibitor of Rho-associated kinase Y27632 in zebrafish embryos have effects reminiscent that are of the CE and hypaxial myogenesis defects observed in lbx2 morphants. Moreover, the CE and hypaxial mesoderm defects seen in lbx2 morphants can be rescued by co-injection with wnt5b or RhoA mRNA. However, this reduced level of active RhoA and hypaxial myogenesis defects in the embryos injected with the dominant-negative form of Dvl mRNA cannot be effectively restored by co-injection with lbx2 mRNA. Our results suggest that the key noncanonical Wnt signaling components Wnt5, Dvl, and RhoA are downstream effectors involved in the regulative roles of lbx2 in CE movement and hypaxial myogenesis during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Qiyong Lou
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan Hubei, 430072, PR China
| | | | | | | |
Collapse
|
39
|
Role of zebrafish lbx2 in embryonic lateral line development. PLoS One 2011; 6:e29515. [PMID: 22216300 PMCID: PMC3245281 DOI: 10.1371/journal.pone.0029515] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 11/29/2011] [Indexed: 11/19/2022] Open
Abstract
Background The zebrafish ladybird homeobox homologous gene 2 (lbx2) has been suggested to play a key role in the regulation of hypaxial myogenic precursor cell migration. Unlike their lbx counterparts in mammals, the function of teleost lbx genes beyond myogenesis during embryonic development remains unexplored. Principal Findings Abrogation of lbx2 function using a specific independent morpholino oligonucleotide (MO) or truncated lbx2 mRNA with an engrailed domain deletion (lbx2eh-) resulted in defective formation of the zebrafish posterior lateral line (PLL). Migration of the PLL primordium was altered and accompanied by increased cell death in the primordium of lbx2-MO-injected embryos. A decreased number of muscle pioneer cells and impaired expression pattern of sdf1a in the horizontal myoseptum was observed in lbx2 morphants. Significance Injection of lbx2 MO or lbx2eh- mRNA resulted in defective PPL formation and altered sdf1a expression, confirming an important function for lbx2 in sdf1a-dependent migration. In addition, the disassociation of PPL nerve extension with PLL primordial migration in some lbx2 morphants suggests that pathfinding of the PLL primordium and the lateral line nerve may be regulated independently.
Collapse
|
40
|
Schönbauer C, Distler J, Jährling N, Radolf M, Dodt HU, Frasch M, Schnorrer F. Spalt mediates an evolutionarily conserved switch to fibrillar muscle fate in insects. Nature 2011; 479:406-9. [PMID: 22094701 DOI: 10.1038/nature10559] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/13/2011] [Indexed: 11/09/2022]
Abstract
Flying insects oscillate their wings at high frequencies of up to 1,000 Hz and produce large mechanical forces of 80 W per kilogram of muscle. They utilize a pair of perpendicularly oriented indirect flight muscles that contain fibrillar, stretch-activated myofibres. In contrast, all other, more slowly contracting, insect body muscles have a tubular muscle morphology. Here we identify the transcription factor Spalt major (Salm) as a master regulator of fibrillar flight muscle fate in Drosophila. salm is necessary and sufficient to induce fibrillar muscle fate. salm switches the entire transcriptional program from tubular to fibrillar fate by regulating the expression and splicing of key sarcomeric components specific to each muscle type. Spalt function is conserved in insects evolutionarily separated by 280 million years. We propose that Spalt proteins switch myofibres from tubular to fibrillar fate during development, a function potentially conserved in the vertebrate heart--a stretch-activated muscle sharing features with insect flight muscle.
Collapse
Affiliation(s)
- Cornelia Schönbauer
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Schmitteckert S, Ziegler C, Kartes L, Rolletschek A. Transcription factor lbx1 expression in mouse embryonic stem cell-derived phenotypes. Stem Cells Int 2011; 2011:130970. [PMID: 21941564 PMCID: PMC3175398 DOI: 10.4061/2011/130970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/10/2011] [Indexed: 11/28/2022] Open
Abstract
Transcription factor Lbx1 is known to play a role
in the migration of muscle progenitor cells in limb
buds and also in neuronal determination processes. In
addition, involvement of Lbx1 in cardiac neural crest-related cardiogenesis was postulated. Here, we used
mouse embryonic stem (ES) cells which have the
capacity to develop into cells of all three primary
germ layers. During in vitro
differentiation, ES cells recapitulate cellular
developmental processes and gene expression patterns
of early embryogenesis. Transcript analysis revealed a
significant upregulation of Lbx1 at
the progenitor cell stage. Immunofluorescence staining
confirmed the expression of Lbx1 in skeletal muscle
cell progenitors and GABAergic neurons. To verify the
presence of Lbx1 in cardiac cells, triple
immunocytochemistry of ES cell-derived cardiomyocytes
and a quantification assay were performed at different
developmental stages. Colabeling of Lbx1 and cardiac
specific markers troponin T, α-actinin, GATA4,
and Nkx2.5 suggested a potential role in early
myocardial development.
Collapse
Affiliation(s)
- Stefanie Schmitteckert
- Institute for Biological Interfaces 1, Karlsruhe Institute of Technology (KIT) Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | |
Collapse
|
42
|
Regulation and functions of the lms homeobox gene during development of embryonic lateral transverse muscles and direct flight muscles in Drosophila. PLoS One 2010; 5:e14323. [PMID: 21179520 PMCID: PMC3002276 DOI: 10.1371/journal.pone.0014323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/16/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Patterning and differentiation of developing musculatures require elaborate networks of transcriptional regulation. In Drosophila, significant progress has been made into identifying the regulators of muscle development and defining their interactive networks. One major family of transcription factors involved in these processes consists of homeodomain proteins. In flies, several members of this family serve as muscle identity genes to specify the fates of individual muscles, or groups thereof, during embryonic and/or adult muscle development. Herein, we report on the expression and function of a new Drosophila homeobox gene during both embryonic and adult muscle development. METHODOLOGY/PRINCIPAL FINDINGS The newly described homeobox gene, termed lateral muscles scarcer (lms), which has yet uncharacterized orthologs in other invertebrates and primitive chordates but not in vertebrates, is expressed exclusively in subsets of developing muscle tissues. In embryos, lms is expressed specifically in the four lateral transverse (LT) muscles and their founder cells in each hemisegment, whereas in larval wing imaginal discs, it is expressed in myoblasts that develop into direct flight muscles (DFMs), which are important for proper wing positioning. We have analyzed the regulatory inputs of various other muscle identity genes with overlapping or complementary expression patterns towards the cell type specific regulation of lms expression. Further we demonstrate that lms null mutants exhibit reduced numbers of embryonic LT muscles, and null mutant adults feature held-out-wing phenotypes. We provide a detailed description of the pattern and morphology of the direct flight muscles in the wild type and lms mutant flies by using the recently-developed ultramicroscopy and show that, in the mutants, all DFMs are present and present normal morphologies. CONCLUSIONS/SIGNIFICANCE We have identified the homeobox gene lms as a new muscle identity gene and show that it interacts with various previously-characterized muscle identity genes to regulate normal formation of embryonic lateral transverse muscles. In addition, the direct flight muscles in the adults require lms for reliably exerting their functions in controlling wing postures.
Collapse
|
43
|
Guruharsha KG, Ruiz-Gomez M, Ranganath HA, Siddharthan R, VijayRaghavan K. The complex spatio-temporal regulation of the Drosophila myoblast attractant gene duf/kirre. PLoS One 2009; 4:e6960. [PMID: 19742310 PMCID: PMC2734059 DOI: 10.1371/journal.pone.0006960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/09/2009] [Indexed: 12/18/2022] Open
Abstract
A key early player in the regulation of myoblast fusion is the gene dumbfounded (duf, also known as kirre). Duf must be expressed, and function, in founder cells (FCs). A fixed number of FCs are chosen from a pool of equivalent myoblasts and serve to attract fusion-competent myoblasts (FCMs) to fuse with them to form a multinucleate muscle-fibre. The spatial and temporal regulation of duf expression and function are important and play a deciding role in choice of fibre number, location and perhaps size. We have used a combination of bioinformatics and functional enhancer deletion approaches to understand the regulation of duf. By transgenic enhancer-reporter deletion analysis of the duf regulatory region, we found that several distinct enhancer modules regulate duf expression in specific muscle founders of the embryo and the adult. In addition to existing bioinformatics tools, we used a new program for analysis of regulatory sequence, PhyloGibbs-MP, whose development was largely motivated by the requirements of this work. The results complement our deletion analysis by identifying transcription factors whose predicted binding regions match with our deletion constructs. Experimental evidence for the relevance of some of these TF binding sites comes from available ChIP-on-chip from the literature, and from our analysis of localization of myogenic transcription factors with duf enhancer reporter gene expression. Our results demonstrate the complex regulation in each founder cell of a gene that is expressed in all founder cells. They provide evidence for transcriptional control—both activation and repression—as an important player in the regulation of myoblast fusion. The set of enhancer constructs generated will be valuable in identifying novel trans-acting factor-binding sites and chromatin regulation during myoblast fusion in Drosophila. Our results and the bioinformatics tools developed provide a basis for the study of the transcriptional regulation of other complex genes.
Collapse
Affiliation(s)
- K. G. Guruharsha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore, India
| | - Mar Ruiz-Gomez
- Centro de Biologia Molecular Severo Ochoa, CSIC and UAM, Cantoblanco, Madrid, Spain
| | - H. A. Ranganath
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore, India
| | - Rahul Siddharthan
- Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India
| | - K. VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- * E-mail:
| |
Collapse
|
44
|
Soler C, Taylor MV. The Him gene inhibits the development of Drosophila flight muscles during metamorphosis. Mech Dev 2009; 126:595-603. [DOI: 10.1016/j.mod.2009.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 01/25/2023]
|
45
|
Ochi H, Westerfield M. Lbx2 regulates formation of myofibrils. BMC DEVELOPMENTAL BIOLOGY 2009; 9:13. [PMID: 19216761 PMCID: PMC2656488 DOI: 10.1186/1471-213x-9-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 02/12/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Skeletal muscle differentiation requires assembly of contractile proteins into organized myofibrils. The Drosophila ladybird homeobox gene (lad) functions in founder cells of the segmental border muscle to promote myoblast fusion and muscle shaping. Tetrapods have two homologous genes (Lbx). Lbx1 functions in migration and/or proliferation of hypaxial myoblasts, whereas the function of Lbx2 is poorly understood. RESULTS To elucidate the role of Lbx in vertebrate myogenesis, we examined Lbx function in zebrafish. Zebrafish lbx2 transcripts appear in newly formed paraxial mesoderm and become restricted to adaxial cells, precursors of slow muscle. Slow muscles lose lbx2 expression as they differentiate, while a subset of differentiating fast muscle cells transiently expresses lbx2. Fin and hyoid muscle express lbx2 later. In contrast, lbx1b expression first appears lateral to the somites at late segmentation stages and is later restricted to fin muscle. Morpholino knockdown of Lbx1b and Lbx2 suppresses hypaxial muscle development. Moreover, knockdown of Lbx2 results in malformation of muscle fibers and reduced fusion of fast precursors, although no obvious effects on induction or specification are observed. Expression of myofilament genes, including actin and myosin, requires the engrailed repressor domain of Lbx2. CONCLUSION Our results elucidate a new function of Lbx2 as a regulator of myofibril formation.
Collapse
Affiliation(s)
- Haruki Ochi
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Monte Westerfield
- Developmental Genomics Research Group, Nara Institute of Science and Technology, 8916-5 Takayama Ikoma Nara 630-0192, Japan
| |
Collapse
|
46
|
Beermann A, Schröder R. Sites of Fgf signalling and perception during embryogenesis of the beetle Tribolium castaneum. Dev Genes Evol 2008; 218:153-67. [PMID: 18392877 DOI: 10.1007/s00427-007-0192-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 10/16/2007] [Indexed: 12/13/2022]
Abstract
The development of multicellular embryos depends on coordinated cell-to-cell signalling events. Among the numerous cell-signalling pathways, fibroblast growth factors (FGFs) are involved in important processes during embryogenesis, such as mesoderm formation during gastrulation and growth. In vertebrates, the Fgf superfamily consists of 22 family members, whereas only few FGFs are contained in the less complex genomes of insects and worms. In the recently sequenced genome of the beetle Tribolium, we identified four Fgf family members representing three subfamilies. Tribolium has Fgf1 genes that are absent in Drosophila but known from vertebrates. By phylogenetic analysis and microsynteny to Drosophila, we further classify Tc-fgf 8 as an ancestor of pyramus and thisbe, the fly Fgf8 genes. Tc-fgf8 expression in the growth zone suggests an involvement in mesoderm formation. In the embryonic head, expression of Tc-fgf8 subdivides the brain into a larger anterior and a smaller posterior region. The Fgf Tc-branchless is expressed in the embryonic tracheal placodes and in various gland-like structures. The expression patterns of the only Tribolium Fgf receptor and the adaptor molecule Downstream-of-Fgfr are largely congruent with Tc-Fgf8 and Tc-bnl. Thus, in contrast to Drosophila, only one Fgf receptor canalises Fgf signalling in different tissues in Tribolium. Our findings significantly advance our understanding of the evolution of Fgf signalling in insects.
Collapse
Affiliation(s)
- Anke Beermann
- Department of Animal Genetics, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | |
Collapse
|
47
|
Genetic control of muscle development: learning from Drosophila. J Muscle Res Cell Motil 2008; 28:397-407. [PMID: 18347920 DOI: 10.1007/s10974-008-9133-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 03/04/2008] [Indexed: 01/06/2023]
Abstract
Muscle development involves a complex sequence of time and spatially regulated cellular events leading to the formation of highly specialised syncytial muscle cells displaying a common feature, the capacity of contraction. Analyses of mechanisms controlling muscle development reveals that the main steps of muscle formation including myogenic determination, diversification of muscle precursors, myoblast fusion and terminal differentiation involve the actions of evolutionarily conserved genes. Thus dissecting the genetic control of muscle development in simple model organisms appears to be an attractive way to get insights into core genetic cascade that orchestrate myogenesis. In this respect, particularly insightful have been data generated using Drosophila as a model system. Notably, the interplay between intrinsic and extrinsic cues that determine the early myogenic decisions leading to the specification of muscle progenitors and those controlling myoblasts fusion are much better characterised in Drosophila than in vertebrate species. Also, adult Drosophila myogenesis, which leads to the formation of vertebrate-like multi-fibre muscles, emerges as a particularly well-adapted system to study normal and aberrant muscle development.
Collapse
|
48
|
Junion G, Bataillé L, Jagla T, Da Ponte JP, Tapin R, Jagla K. Genome-wide view of cell fate specification: ladybird acts at multiple levels during diversification of muscle and heart precursors. Genes Dev 2008; 21:3163-80. [PMID: 18056427 DOI: 10.1101/gad.437307] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Correct diversification of cell types during development ensures the formation of functional organs. The evolutionarily conserved homeobox genes from ladybird/Lbx family were found to act as cell identity genes in a number of embryonic tissues. A prior genetic analysis showed that during Drosophila muscle and heart development ladybird is required for the specification of a subset of muscular and cardiac precursors. To learn how ladybird genes exert their cell identity functions we performed muscle and heart-targeted genome-wide transcriptional profiling and a chromatin immunoprecipitation (ChIP)-on-chip search for direct Ladybird targets. Our data reveal that ladybird not only contributes to the combinatorial code of transcription factors specifying the identity of muscle and cardiac precursors, but also regulates a large number of genes involved in setting cell shape, adhesion, and motility. Among direct ladybird targets, we identified bric-a-brac 2 gene as a new component of identity code and inflated encoding alphaPS2-integrin playing a pivotal role in cell-cell interactions. Unexpectedly, ladybird also contributes to the regulation of terminal differentiation genes encoding structural muscle proteins or contributing to muscle contractility. Thus, the identity gene-governed diversification of cell types is a multistep process involving the transcriptional control of genes determining both morphological and functional properties of cells.
Collapse
Affiliation(s)
- Guillaume Junion
- Institut National de la Santé et de la Recherche Médicale U384, 63000 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|