1
|
Aslan C, Zolbanin NM, Faraji F, Jafari R. Exosomes for CRISPR-Cas9 Delivery: The Cutting Edge in Genome Editing. Mol Biotechnol 2024; 66:3092-3116. [PMID: 38012525 DOI: 10.1007/s12033-023-00932-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023]
Abstract
Gene mutation correction was challenging until the discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas). CRISPR is a new era for genome modification, and this technology has bypassed the limitations of previous methods such as zinc-finger nuclease and transcription activator-like effector nuclease. Currently, this method is becoming the method of choice for gene-editing purposes, especially therapeutic gene editing in diseases such as cardiovascular, neurological, renal, genetic, optical, and stem cell, as well as blood disorders and muscular degeneration. However, finding the optimum delivery system capable of carrying this large complex persists as the main challenge of this technology. Therefore, it would be ideal if the delivery vehicle could direct the introduction of editing functions to specific cells in a multicellular organism. Exosomes are membrane-bound vesicles with high biocompatibility and low immunogenicity; they offer the best and most reliable way to fill the CRISPR/Cas9 system delivery gap. This review presents the current evidence on the molecular mechanisms and challenges of CRISPR/Cas9-mediated genome modification. Also, the role of CRISPR/Cas9 in the development of treatment and diagnosis of numerous disorders, from malignancies to viral infections, has been discussed. Lastly, the focus is on new advances in exosome-delivery technologies that may play a role in CRISPR/Cas9 delivery for future clinical settings.
Collapse
Affiliation(s)
- Cynthia Aslan
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Hazrat-e Rasool General Hospital, Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Floor 3, Building No. 3, Niyayesh St, Sattar Khan St, Tehran, 1445613131, Iran.
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Clinical Research Institute, Urmia University of Medical Sciences, Shafa St., Ershad Blvd., P.O. Box: 1138, Urmia, 57147, Iran.
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Lin Z, Wang SH, Wei DY, Wang LM, Zhang ZW. PCSK9 E670G polymorphism increases risk of coronary artery disease in a Chinese Han population. J Int Med Res 2024; 52:300060519892177. [PMID: 31840538 PMCID: PMC11465380 DOI: 10.1177/0300060519892177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/01/2019] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Coronary artery disease (CAD) is the leading cause of morbidity and mortality in the world. The proprotein convertase subtilisin/kexin type 9 (PCSK9) E670G polymorphism has been reported to be associated with variability in levels of low density lipoprotein cholesterol, a risk factor for CAD. However, the relationship between PCSK9 E670G and CAD is still not fully elucidated. METHODS A total of 225 patients and 189 control subjects were recruited in this study. DNA was extracted from peripheral blood samples and was genotyped by mass array method. In addition, we also conducted a meta-analysis of case-control studies to elucidate the relationship of CAD and polymorphism. RESULTS The GG genotype of PCSK9 E670G was associated with a higher risk of CAD [odds ratio (OR) 2.994, 95% confidence interval (CI): 1.174-7.631], even adjusting for risk factors (OR 2.794, 95% CI: 1.215-7.460). Logistic regression analysis showed that the dominant genetic model increased the CAD risk (OR 2.313, 95% CI: 1.070-6.983) after adjusting the confounding factors. Meta-analysis results of 13 studies revealed that PCSK9 E670G polymorphism was correlated with CAD risk under different genetic models. CONCLUSION Our results demonstrated that PCSK9 E670G genotype was associated with a high risk of CAD.
Collapse
Affiliation(s)
- Zhang Lin
- Department of Cardiology, Fujian Provincial Geriatric Hospital, Fujian Provincial Hospital North Branch, Fujian, China
| | - Shi Hong Wang
- Department of Cardiology, Fujian Provincial Geriatric Hospital, Fujian Provincial Hospital North Branch, Fujian, China
| | - Da Yong Wei
- Department of Cardiology, Fujian Provincial Geriatric Hospital, Fujian Provincial Hospital North Branch, Fujian, China
| | - Lu Min Wang
- Department of Cardiology, Fujian Provincial Geriatric Hospital, Fujian Provincial Hospital North Branch, Fujian, China
| | - Zhong Wu Zhang
- Department of Cardiology, Fujian Provincial Geriatric Hospital, Fujian Provincial Hospital North Branch, Fujian, China
| |
Collapse
|
3
|
Dutka M, Zimmer K, Ćwiertnia M, Ilczak T, Bobiński R. The role of PCSK9 in heart failure and other cardiovascular diseases-mechanisms of action beyond its effect on LDL cholesterol. Heart Fail Rev 2024; 29:917-937. [PMID: 38886277 PMCID: PMC11306431 DOI: 10.1007/s10741-024-10409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a protein that regulates low-density lipoprotein (LDL) cholesterol metabolism by binding to the hepatic LDL receptor (LDLR), ultimately leading to its lysosomal degradation and an increase in LDL cholesterol (LDLc) levels. Treatment strategies have been developed based on blocking PCSK9 with specific antibodies (alirocumab, evolocumab) and on blocking its production with small regulatory RNA (siRNA) (inclisiran). Clinical trials evaluating these drugs have confirmed their high efficacy in reducing serum LDLc levels and improving the prognosis in patients with atherosclerotic cardiovascular diseases. Most studies have focused on the action of PCSK9 on LDLRs and the subsequent increase in LDLc concentrations. Increasing evidence suggests that the adverse cardiovascular effects of PCSK9, particularly its atherosclerotic effects on the vascular wall, may also result from mechanisms independent of its effects on lipid metabolism. PCSK9 induces the expression of pro-inflammatory cytokines contributing to inflammation within the vascular wall and promotes apoptosis, pyroptosis, and ferroptosis of cardiomyocytes and is thus involved in the development and progression of heart failure. The elimination of PCSK9 may, therefore, not only be a treatment for hypercholesterolaemia but also for atherosclerosis and other cardiovascular diseases. The mechanisms of action of PCSK9 in the cardiovascular system are not yet fully understood. This article reviews the current understanding of the mechanisms of PCSK9 action in the cardiovascular system and its contribution to cardiovascular diseases. Knowledge of these mechanisms may contribute to the wider use of PCSK9 inhibitors in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mieczysław Dutka
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland.
| | - Karolina Zimmer
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| | - Michał Ćwiertnia
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Tomasz Ilczak
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Rafał Bobiński
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| |
Collapse
|
4
|
Jaafar AK, Techer R, Chemello K, Lambert G, Bourane S. PCSK9 and the nervous system: a no-brainer? J Lipid Res 2023; 64:100426. [PMID: 37586604 PMCID: PMC10491654 DOI: 10.1016/j.jlr.2023.100426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
In the past 20 years, PCSK9 has been shown to play a pivotal role in LDL cholesterol metabolism and cardiovascular health by inducing the lysosomal degradation of the LDL receptor. PCSK9 was discovered by the cloning of genes up-regulated after apoptosis induced by serum deprivation in primary cerebellar neurons, but despite its initial identification in the brain, the precise role of PCSK9 in the nervous system remains to be clearly established. The present article is a comprehensive review of studies published or in print before July 2023 that have investigated the expression pattern of PCSK9, its effects on lipid metabolism as well as its putative roles specifically in the central and peripheral nervous systems, with a special focus on cerebrovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ali K Jaafar
- Laboratoire Inserm UMR 1188 DéTROI, Saint-Pierre, La Réunion, France
| | - Romuald Techer
- Laboratoire Inserm UMR 1188 DéTROI, Saint-Pierre, La Réunion, France
| | - Kévin Chemello
- Laboratoire Inserm UMR 1188 DéTROI, Saint-Pierre, La Réunion, France
| | - Gilles Lambert
- Laboratoire Inserm UMR 1188 DéTROI, Saint-Pierre, La Réunion, France; Faculté de Médecine, Université de La Réunion, Saint-Pierre, La Réunion, France.
| | - Steeve Bourane
- Laboratoire Inserm UMR 1188 DéTROI, Saint-Pierre, La Réunion, France
| |
Collapse
|
5
|
Bell AS, Wagner J, Rosoff DB, Lohoff FW. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in the central nervous system. Neurosci Biobehav Rev 2023; 149:105155. [PMID: 37019248 DOI: 10.1016/j.neubiorev.2023.105155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
The gene encoding proprotein convertase subtilisin/kexin type 9 (PCSK9) and its protein product have been widely studied for their role in cholesterol and lipid metabolism. PCSK9 increases the rate of metabolic degradation of low-density lipoprotein receptors, preventing the diffusion of low-density lipoprotein (LDL) from plasma into cells and contributes to high lipoprotein-bound cholesterol levels in the plasma. While most research has focused on the regulation and disease relevance of PCSK9 to the cardiovascular system and lipid metabolism, there is a growing body of evidence that PCSK9 plays a crucial role in pathogenic processes in other organ systems, including the central nervous system. PCSK9's impact on the brain is not yet fully understood, though several recent studies have sought to illuminate its impact on various neurodegenerative and psychiatric disorders, as well as its connection with ischemic stroke. Cerebral PCSK9 expression is low but is highly upregulated during disease states. Among others, PCSK9 is known to play a role in neurogenesis, neural cell differentiation, central LDL receptor metabolism, neural cell apoptosis, neuroinflammation, Alzheimer's Disease, Alcohol Use Disorder, and stroke. The PCSK9 gene contains several polymorphisms, including both gain-of-function and loss-of-function mutations which profoundly impact normal PCSK9 signaling and cholesterol metabolism. Gain-of-function mutations lead to persistent hypercholesterolemia and poor health outcomes, while loss-of-function mutations generally lead to hypocholesterolemia and may serve as a protective factor against diseases of the liver, cardiovascular system, and central nervous system. Recent genomic studies have sought to identify the end-organ effects of such mutations and continue to identify evidence of a much broader role for PCSK9 in extrahepatic organ systems. Despite this, there remain large gaps in our understanding of PCSK9, its regulation, and its effects on disease risk outside the liver. This review, which incorporates data from a wide range of scientific disciplines and experimental paradigms, is intended to describe PCSK9's role in the central nervous system as it relates to cerebral disease and neuropsychiatric disorders, and to examine the clinical potential of PCSK9 inhibitors and genetic variation in the PCSK9 gene on disease outcomes, including neurological and neuropsychiatric disease.
Collapse
|
6
|
Ngqaneka T, Obikeze K, Magwebu ZE, Chauke CG. Proprotein convertase subtilisin/kexin type 9 genetic screening using the vervet (Chlorocebus aethiops) model. J Med Primatol 2023; 52:45-52. [PMID: 36222294 DOI: 10.1111/jmp.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The proprotein convertase subtilisin/kexin type 9 (PCSK9) gene has come to prominence due to its reported function in the clearance of low-density lipoprotein cholesterol. The vervet monkey (Chlorocebus aethiops) was utilized to study the genetics of PCSK9 gene. METHOD Sixteen vervet monkeys were selected to screen for possible PCSK9 polymorphisms and to determine gene expression. RESULTS Four PCSK9 sequence variants (T112T, R148S, H177N and G635G) were identified and three of these variants (H177N, R148S, and G635G) were categorized as loss of function mutations. A decline in gene expression levels was also observed in animals harboring these three variants. Although the selected variants might have affected the level of gene expression in the selected animals, individual variation was also noticed in some of these individuals with the G635G variant. CONCLUSION Based on the findings obtained from this study, it is suggestive that the activity of PCSK9 was hindered.
Collapse
Affiliation(s)
- Thobile Ngqaneka
- Primate Unit and Delft Animal Centre (PUDAC), South African Medical Research Council, Tygerberg, South Africa.,School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Kenechukwu Obikeze
- School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Zandisiwe E Magwebu
- Primate Unit and Delft Animal Centre (PUDAC), South African Medical Research Council, Tygerberg, South Africa
| | - Chesa G Chauke
- Primate Unit and Delft Animal Centre (PUDAC), South African Medical Research Council, Tygerberg, South Africa
| |
Collapse
|
7
|
Devi K, Bhargave A, Ahmad I, Yadav A, Gupta R. Association study of PCSK9 SNPs (rs505151 & rs562556) and their haplotypes with CVDs in Indian population. Ann Hum Biol 2023; 50:56-62. [PMID: 36695028 DOI: 10.1080/03014460.2023.2171121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) has emerged as the most prevalent cause of death in India. Pro-protein Convertase Subtilisin/Kexin Type 9 (PCSK9) gene has been found to be associated with lipid levels and a biomarker for susceptibility of CVD. AIM To study the association of PCSK9 SNPs rs505151 & rs562556 and their haplotypes with CVDs in the Indian population. SUBJECTS & METHODS The present study comprised of 102 angiographically proven CVD patients & 100 healthy subjects. To study polymorphism, Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) method was used. Biochemical parameters were analysed by enzymatic methods or automated analysers. Haplotype analysis was done using SHEsis software. RESULTS The dominant genetic model with an odds ratio (confidence interval) of 4.71 (2.59 - 8.5), (p value = .0001), shows the risk of CVDs. However, rs562556 (I474V) variant was not found to be associated with clinical parameters and risk of CVDs (p value >.05). Out of four haplotypes, H3 (G-A) was found to be associated with the CVDs (OR- 3.137, p value = .0001). CONCLUSION This study concludes that G allele of rs505151 SNP (PCSK9) and the H3 (G-A) haplotype of rs505151 & rs562556 were found to be risk factors for CVDs in the Indian population.
Collapse
Affiliation(s)
- Kiran Devi
- Department of Biochemistry, Kurukukshetra University, Kurukshetra, India
| | - Archna Bhargave
- Department of Biochemistry, Kurukukshetra University, Kurukshetra, India
| | - Imteyaz Ahmad
- Department of Biochemistry, Kurukukshetra University, Kurukshetra, India
| | - Anita Yadav
- Department of Biotechnology, Kurukukshetra University, Kurukshetra, India
| | - Ranjan Gupta
- Department of Biochemistry, Kurukukshetra University, Kurukshetra, India
| |
Collapse
|
8
|
Beltran RA, Zemeir KJ, Kimberling CR, Kneer MS, Mifflin MD, Broderick TL. Is a PCSK9 Inhibitor Right for Your Patient? A Review of Treatment Data for Individualized Therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16899. [PMID: 36554779 PMCID: PMC9779535 DOI: 10.3390/ijerph192416899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION In the United States, a significant amount of the population is affected by hyperlipidemia, which is associated with increased levels of serum low-density lipoprotein (LDL-C) and risk of cardiovascular disease. As of 2019, the guidelines set by the American College of Cardiology/American Heart Association advocate for the use of statins as the major contributor to lowering serum LDL-C. While proven to be effective, side effects, including muscle-related symptoms and new-onset diabetes mellitus, can make patients unable to tolerate statin therapy. Additionally, there is a subset of the population which does not approach a recommended LDL-C goal on statin treatment. Due to these findings, it was deemed necessary to review the literature of current statin-alternative lipid-lowering therapies. METHODS A systematic review of preclinical and clinical papers, and a current meta-analysis, was performed using PubMed and Google Scholar. Following the literature review, a meta-analysis was conducted using ProMeta 3. RESULTS Through systematic review and meta-analysis of the current literature, it is suggested that newer lipid-lowering therapies such as proprotein convertase subtilsin-kixen type 9 (PCSK9) inhibitors are a safe and effective statin alternative for the population with statin intolerance. PCSK9 inhibitors were shown to have no significant effect in causing myalgia in patients and showed no increase in adverse cardiovascular outcomes compared to a control of a current antilipemic medication regimen. DISCUSSION There are many statin-alternative therapies that should be investigated further as a potential replacement for patients with statin intolerance or as an addition for patients with statin resistance.
Collapse
Affiliation(s)
- Roman A. Beltran
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Kyle J. Zemeir
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Chase R. Kimberling
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Mary S. Kneer
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Michelle D. Mifflin
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Tom L. Broderick
- Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
9
|
Cuomo G, Cioffi G, Di Lorenzo A, Iannone FP, Cudemo G, Iannicelli AM, Pacileo M, D’Andrea A, Vigorito C, Iannuzzo G, Giallauria F. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors Use for Atherogenic Dyslipidemia in Solid Organ Transplant Patients. J Clin Med 2022; 11:3247. [PMID: 35683632 PMCID: PMC9180971 DOI: 10.3390/jcm11113247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
Dyslipidemia is a widespread risk factor in solid organ transplant patients, due to many reasons, such as the use of immunosuppressive drugs, with a consequent increase in cardiovascular diseases in this population. PCSK9 is an enzyme mainly known for its role in altering LDL levels, consequently increasing cardiovascular risk. Monoclonal antibody PCSK9 inhibitors demonstrated remarkable efficacy in the general population in reducing LDL cholesterol levels and preventing cardiovascular disease. In transplant patients, these drugs are still poorly used, despite having comparable efficacy to the general population and giving fewer drug interactions with immunosuppressants. Furthermore, there is enough evidence that PCSK9 also plays a role in other pathways, such as inflammation, which is particularly dangerous for graft survival. In this review, the current evidence on the function of PCSK9 and the use of its inhibitors will be discussed, particularly in transplant patients, in which they may provide additional benefits.
Collapse
Affiliation(s)
- Gianluigi Cuomo
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Giuseppe Cioffi
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Anna Di Lorenzo
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Francesca Paola Iannone
- Department of Clinical Medicine and Surgery, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (F.P.I.); (G.I.)
| | - Giuseppe Cudemo
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Anna Maria Iannicelli
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Mario Pacileo
- Unit of Cardiology and Intensive Care, Umberto I Hospital, 84014 Nocera Inferiore, Italy; (M.P.); (A.D.)
| | - Antonello D’Andrea
- Unit of Cardiology and Intensive Care, Umberto I Hospital, 84014 Nocera Inferiore, Italy; (M.P.); (A.D.)
| | - Carlo Vigorito
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (F.P.I.); (G.I.)
| | - Francesco Giallauria
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy; (G.C.); (G.C.); (A.D.L.); (G.C.); (A.M.I.); (C.V.)
| |
Collapse
|
10
|
Lütjohann D, Stellaard F, Bölükbasi B, Kerksiek A, Parhofer KG, Laufs U. Anti-PCSK 9 antibodies increase the ratios of the brain-specific oxysterol 24S-hydroxycholesterol to cholesterol and to 27-hydroxycholesterol in the serum. Br J Clin Pharmacol 2021; 87:4252-4261. [PMID: 33792095 DOI: 10.1111/bcp.14841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/28/2021] [Accepted: 03/15/2021] [Indexed: 11/27/2022] Open
Abstract
AIMS The serum ratios of the brain-specific oxysterol 24S-hydroxycholesterol (24S-OHC) to cholesterol and to 27-OHC reflect brain cholesterol turnover. We studied the effect of proprotein convertase subtilisin/kexin type 9 monoclonal antibodies (PCSK9ab) that enhance low-density lipoprotein receptor activity on serum cholesterol and oxysterol concentrations. METHODS Twenty-eight hypercholesterolaemic patients (15 males and 13 females) responding insufficiently to maximally tolerated statin and/or ezetimibe therapy were additionally subcutanously treated biweekly with either the PCSK9ab alirocumab (150 mg, n = 13) or evolocumab (140 mg, n = 15). Fasting serum cholesterol was measured by gas chromatography and the oxysterols 24S-OHC and 27-OHC using gas chromatography-mass spectrometry before, after 1-month (n = 28) and after 3-month (n = 13) treatment. RESULTS As expected, PCSK9ab treatment lowered serum cholesterol and oxysterol levels after 1 month. The serum ratio of 24S-OHC to cholesterol increased after 1 month by 17 ± 28% (mean ± standard deviation; 95% confidence interval [CI]: 5.8 to 28%; P < .01) and 24S-OHC to 27-OHC by 15 ± 39% (95% CI: 0.2 to 30%; P < .01). Within 3 months, 24S-OHC to cholesterol increased by 2.8 μg g-1 mo-1 (95% CI: 2.1 to 3.6; P < .01) and 24S-OHC to 27-OHC by 0.019 mo-1 (95% CI: 0.007 to 0.032; P < .01). CONCLUSION The serum ratios of 24S-OHC to cholesterol and to 27-OHC increased after treatment with PCSK9ab. We hypothesize that this is caused by a reduced entrance of 27-OHC into the brain, increased synthesis of brain cholesterol, increased production of 24S-OHC and its secretion across the blood-brain barrier.
Collapse
Affiliation(s)
- Dieter Lütjohann
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Frans Stellaard
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Bediha Bölükbasi
- Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Anja Kerksiek
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Klaus G Parhofer
- Medizinische Klinik IV-Campus Großhadern, Klinikum der Universität München, Munich, Germany
| | - Ulrich Laufs
- Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg, Germany.,Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Zhou Y, Chen W, Lu M, Wang Y. Association Between Circulating Proprotein Convertase Subtilisin/Kexin Type 9 and Major Adverse Cardiovascular Events, Stroke, and All-Cause Mortality: Systemic Review and Meta-Analysis. Front Cardiovasc Med 2021; 8:617249. [PMID: 33738300 PMCID: PMC7960648 DOI: 10.3389/fcvm.2021.617249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9), a pivotal protein in low-density lipoprotein cholesterol metabolism, has been validated to be an established target for cardiovascular (CV) risk reduction. Nevertheless, prospective studies concerning the associations between circulating PCSK9 and the risk of CV events and mortality have yielded, so far, inconsistent results. Herein, we conducted a meta-analysis to evaluate the association systemically. Methods: Pertinent studies were identified from PubMed, EMBASE, and Cochrane Library database through July 2020. Longitudinal studies investigating the value of circulating PCSK9 for predicting major adverse cardiovascular events (MACEs) or stroke or all-cause mortally with risk estimates and 95% confidence intervals (CI) were included in the analyses. Dose-response meta-analysis was also applied to evaluate circulating PCSK9 and risk of MACEs in this study. Results: A total of 22 eligible cohorts comprising 28,319 participants from 20 eligible articles were finally included in the study. The pooled relative risk (RR) of MACEs for one standard deviation increase in baseline PCSK9 was 1.120 (95% CI, 1.056-1.189). When categorizing subjects into tertiles, the pooled RR for the highest tertile of baseline PCSK9 was 1.252 (95% CI, 1.104-1.420) compared with the lowest category. This positive association between PCSK9 level and risk of MACEs persisted in sensitivity and most of the subgroup analyses. Twelve studies were included in dose-response meta-analysis, and a linear association between PCSK9 concentration and risk of MACEs was observed (x2 test for non-linearity = 0.31, P non-linearity = 0.575). No significant correlation was found either on stroke or all-cause mortality. Conclusion: This meta-analysis added further evidence that high circulating PCSK9 concentration significantly associated with increased risk of MACEs, and a linear dose-response association was observed. However, available data did not suggest significant association either on stroke or all-cause mortality. Additional well-designed studies are warranted to further investigate the correlations between PCSK9 concentration and stroke and mortality.
Collapse
Affiliation(s)
- Yimo Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Meng Lu
- Department of Pharmacy, National Center of Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
12
|
Schlüter KD, Wolf A, Schreckenberg R. Coming Back to Physiology: Extra Hepatic Functions of Proprotein Convertase Subtilisin/Kexin Type 9. Front Physiol 2020; 11:598649. [PMID: 33364976 PMCID: PMC7750466 DOI: 10.3389/fphys.2020.598649] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Neuronal apoptosis regulated convertase-1 (NARC-1), now mostly known as proprotein convertase subtilisin/kexin type 9 (PCSK9), has received a lot of attention due to the fact that it is a key regulator of the low-density lipoprotein (LDL) receptor (LDL-R) and is therefore involved in hepatic LDL clearance. Within a few years, therapies targeting PCSK9 have reached clinical practice and they offer an additional tool to reduce blood cholesterol concentrations. However, PCSK9 is almost ubiquitously expressed in the body but has less well-understood functions and target proteins in extra hepatic tissues. As such, PCSK9 is involved in the regulation of neuronal survival and protein degradation, it affects the expression of the epithelial sodium channel (ENaC) in the kidney, it interacts with white blood cells and with cells of the vascular wall, and it modifies contractile activity of cardiomyocytes, and contributes to the regulation of cholesterol uptake in the intestine. Moreover, under stress conditions, signals from the kidney and heart can affect hepatic expression and thereby the plasma concentration of PCSK9 which then in turn can affect other target organs. Therefore, there is an intense relationship between the local (autocrine) and systemic (endocrine) effects of PCSK9. Although, PCSK9 has been recognized as a ubiquitously expressed modifier of cellular function and signaling molecules, its physiological role in different organs is not well-understood. The current review summarizes these findings.
Collapse
Affiliation(s)
| | - Annemarie Wolf
- Institute of Physiology, Justus-Liebig-University, Gießen, Germany
| | | |
Collapse
|
13
|
Guo Y, Yan B, Gui Y, Tang Z, Tai S, Zhou S, Zheng XL. Physiology and role of PCSK9 in vascular disease: Potential impact of localized PCSK9 in vascular wall. J Cell Physiol 2020; 236:2333-2351. [PMID: 32875580 DOI: 10.1002/jcp.30025] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/26/2022]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9), a member of the proprotein convertase family, is an important drug target because of its crucial role in lipid metabolism. Emerging evidence suggests a direct role of localized PCSK9 in the pathogenesis of vascular diseases. With this in our consideration, we reviewed PCSK9 physiology with respect to recent development and major studies (clinical and experimental) on PCSK9 functionality in vascular disease. PCSK9 upregulates low-density lipoprotein (LDL)-cholesterol levels by binding to the LDL-receptor (LDLR) and facilitating its lysosomal degradation. PCSK9 gain-of-function mutations have been confirmed as a novel genetic mechanism for familial hypercholesterolemia. Elevated serum PCSK9 levels in patients with vascular diseases may contribute to coronary artery disease, atherosclerosis, cerebrovascular diseases, vasculitis, aortic diseases, and arterial aging pathogenesis. Experimental models of atherosclerosis, arterial aneurysm, and coronary or carotid artery ligation also support PCSK9 contribution to inflammatory response and disease progression, through LDLR-dependent or -independent mechanisms. More recently, several clinical trials have confirmed that anti-PCSK9 monoclonal antibodies can reduce systemic LDL levels, total nonfatal cardiovascular events, and all-cause mortality. Interaction of PCSK9 with other receptor proteins (LDLR-related proteins, cluster of differentiation family members, epithelial Na+ channels, and sortilin) may underlie its roles in vascular disease. Improved understanding of PCSK9 roles and molecular mechanisms in various vascular diseases will facilitate advances in lipid-lowering therapy and disease prevention.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Binjie Yan
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Yu Gui
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Zhihan Tang
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Shi Tai
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
O'Connell EM, Lohoff FW. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in the Brain and Relevance for Neuropsychiatric Disorders. Front Neurosci 2020; 14:609. [PMID: 32595449 PMCID: PMC7303295 DOI: 10.3389/fnins.2020.00609] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has long been studied in the liver due to its regulation of plasma low-density lipoprotein cholesterol (LDL-C) and its causal role in familial hypercholesterolemia. Although PCSK9 was first discovered in cerebellar neurons undergoing apoptosis, its function in the central nervous system (CNS) is less clear. PCSK9 has been shown to be involved in neuronal differentiation, LDL receptor family metabolism, apoptosis, and inflammation in the brain, but in vitro and in vivo studies offer contradictory findings. PCSK9 expression in the adult brain is low but is highly upregulated during disease states. Cerebral spinal fluid (CSF) PCSK9 concentrations are correlated with neural tube defects and neurodegenerative diseases in human patients. Epigenetic studies reveal that chronic alcohol use may modulate methylation of the PCSK9 gene and genetic studies show that patients with gain-of-function PCSK9 variants have higher LDL-C and an increased risk of ischemic stroke. Early safety studies of the PCSK9 inhibitors evolocumab and alirocumab, used to treat hypercholesterolemia, hinted that PCSK9 inhibition may negatively impact cognition but more recent, longer-term clinical trials found no adverse neurocognitive events. The purpose of this review is to elucidate the role of PCSK9 in the brain, particularly its role in disease pathogenesis.
Collapse
Affiliation(s)
- Emma M O'Connell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Hsu LC, Hsu LS, Lee TH. RGS5 rs4657251 polymorphism is associated with small vessel occlusion stroke in Taiwan Han Chinese. J Chin Med Assoc 2020; 83:251-254. [PMID: 32080025 DOI: 10.1097/jcma.0000000000000250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The regulator of G-protein signaling protein 5 (RGS5) has been demonstrated to play a role in regulating blood pressure and cardiovascular function. Studies have shown that RGS5 polymorphisms exhibit susceptibility to hypertension. However, no study has yet been performed among stroke patients. METHODS To evaluate whether RGS5 rs4657251 is a susceptibility gene for stroke, we performed a case-control association study involving 714 large-artery atherosclerosis (LAA) patients, 383 small vessel occlusion (SVO) patients, 401 hypertensive intracranial hemorrhages (HICH), and 626 controls. The RGS5 rs4657251 polymorphism was analyzed through polymerase chain reaction. RESULTS The TC genotype was significantly higher in the SVO group compared with that in the control group (odds ratio [OR] = 1.34, 95% confidence interval [CI] = 1.02-1.76, p = 0.035). In addition, the dominant phenotype (TC + CC vs TT) was also significantly different between the SVO and the control groups (OR = 1.31, 95% CI = 1.01-1.70, p = 0.046). However, no association was found between RGS5 rs4657251 and LAA an HICH. After adjustment with gender, diabetes, smoking, cholesterol and low-density lipoprotein levels, RGS5 rs4657251 polymorphism remained an independent risk factor for SVO (OR = 1.49; 95% CI = 1.12-1.98) but not for LAA or HICH. CONCLUSION Our findings, obtained among Taiwan Han Chinese subjects, provide the first evidence that RGS5 rs4657251 polymorphism is an independent risk factor for SVO.
Collapse
Affiliation(s)
- Li-Chi Hsu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang-Ming University school of Medicine, Taipei, Taiwan, ROC
| | - Li-Sung Hsu
- Institutes of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Tsong-Hai Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Neurology and Stroke Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| |
Collapse
|
16
|
Rao AS, Lindholm D, Rivas MA, Knowles JW, Montgomery SB, Ingelsson E. Large-Scale Phenome-Wide Association Study of PCSK9 Variants Demonstrates Protection Against Ischemic Stroke. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002162. [PMID: 29997226 DOI: 10.1161/circgen.118.002162] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND PCSK9 inhibition is a potent new therapy for hypercholesterolemia and cardiovascular disease. Although short-term clinical trial results have not demonstrated major adverse effects, long-term data will not be available for some time. Genetic studies in large biobanks offer a unique opportunity to predict drug effects and provide context for the evaluation of future clinical trial outcomes. METHODS We tested the association of the PCSK9 missense variant rs11591147 with predefined phenotypes and phenome-wide, in 337 536 individuals of British ancestry in the UK Biobank, with independent discovery and replication. Using a Bayesian statistical method, we leveraged phenotype correlations to evaluate the phenome-wide impact of PCSK9 inhibition with higher power at a finer resolution. RESULTS The T allele of rs11591147 showed a protective effect on hyperlipidemia (odds ratio, 0.63±0.04; P=2.32×10-38), coronary heart disease (odds ratio, 0.73±0.09; P=1.05×10-6), and ischemic stroke (odds ratio, 0.61±0.18; P=2.40×10-3) and was associated with increased type 2 diabetes mellitus risk adjusted for lipid-lowering medication status (odds ratio, 1.24±0.10; P=1.98×10-7). We did not observe associations with cataracts, heart failure, atrial fibrillation, and cognitive dysfunction. Leveraging phenotype correlations, we observed evidence of a protective association with cerebral infarction and vascular occlusion. These results explore the effects of direct PCSK9 inhibition; off-target effects cannot be predicted using this approach. CONCLUSIONS This result represents the first genetic evidence in a large cohort for the protective effect of PCSK9 inhibition on ischemic stroke and corroborates exploratory evidence from clinical trials. PCSK9 inhibition was not associated with variables other than those related to LDL (low-density lipoprotein) cholesterol, atherosclerosis, and type 2 diabetes mellitus, suggesting that other effects are either small or absent.
Collapse
Affiliation(s)
| | - Daniel Lindholm
- Stanford University School of Medicine, CA. Division of Cardiology, Department of Medical Sciences (D.L.).,Uppsala University, Sweden. Uppsala Clinical Research Center, Uppsala, Sweden (D.L.)
| | - Manuel A Rivas
- Stanford University, CA. Department of Biomedical Data Science (M.A.R.)
| | | | | | - Erik Ingelsson
- Stanford Cardiovascular Institute (E.I.) .,Division of Cardiology, Department of Medicine (J.W.K., E.I.)
| |
Collapse
|
17
|
Alkhalil M. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors, Reality or Dream in Managing Patients with Cardiovascular Disease. Curr Drug Metab 2019; 20:72-82. [PMID: 30112987 DOI: 10.2174/1389200219666180816141827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/28/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Statins have been a major keystone in the management of patients with atherosclerotic cardiovascular disease. The benefits of inhibiting HMG CoA reductase, via statins, were translated into reduction in LDL-c with proportionate decrease in cardiovascular events in response to the magnitude of LDL-c reduction. Despite major advances in pharmacological treatments, including the use of high-dose statins, there are urgent need to further reduce future cardiovascular risk. This is in particularly important since 1 out of 5 high-risk atherosclerotic patients who achieve low LDL-c return with a second cardiovascular event within five years. Although this residual risk post-statin is largely heterogeneous, lowering LDL-c beyond 'normal' or guidelines-recommended level using novel therapies has resulted in further reduction in cardiovascular events. OBJECTIVE The current review will discuss the use of PCSK9 inhibitors in patients with atherosclerotic disease. PCSK9 inhibitors are a new class of lipid-lowering drugs that are either fully human monoclonal antibodies (evolocumab and alirocumab) or humanised monoclonal antibodies (bococizumab) that effectively reduce LDL-c to unprecedented level. By blocking circulating PCSK9, these drugs would preserve LDL receptors and prevent them from cellular degradation. This process promotes recycling of LDL receptors back to hepatocytes surface, leading into further reduction of LDL-c. Combining PCSK9 inhibitors with statin have led into lower LDL-c, reduction in plaque volume and more importantly reduction in future cardiovascular events. CONCLUSION These drugs are very promising, nonetheless, the unselective approach of applying these monoclonal antibodies may not prove to be cost-effective and potentially exposing some patients to unnecessary side effects.
Collapse
Affiliation(s)
- Mohammad Alkhalil
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.,Cardiology Department, Royal Victoria Hospital, Belfast HSC Trust, Belfast, United Kingdom
| |
Collapse
|
18
|
Cholesterol and stroke: role of PCSK9 inhibitors. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2017.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Colesterol e ictus: papel de los inhibidores de la proproteína convertasa subtilisina/kexina tipo 9. Neurologia 2019; 34:198-203. [DOI: 10.1016/j.nrl.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/03/2017] [Accepted: 03/26/2017] [Indexed: 12/31/2022] Open
|
20
|
Reddy S, Kaur N, Singh J. A novel study to examine the association of PCSK9 rs505151 polymorphism and coronary artery disease in north Indian population. J Genet 2018; 97:1371-1378. [PMID: 30555085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There is a drastic increase in the number of people suffering from coronary artery disease (CAD) worldwide with Indians being no exception. Being a developing country and experiencing a dramatic shift in lifestyle and eating habits, urbanization and industrialization, all these factors have collectively predisposed the Indian population towards CAD and the prevalence data arequite alarming. Genetic studies have disclosed the role of genes in CAD susceptibility and severity. One such gene is proprotein convertase subtilisin/kexin type 9 (PCSK9) which is sought to modulate the cholesterol levels and hence, has implications in CAD. We aim to explore the association of PCSK9 A/G (rs505151) polymorphism and hence, the susceptibility towards CAD in the north Indian population. Five-hundred angiographically confirmed CAD patients and 500 healthy individuals as control were genotyped by polymerase chain reaction-restriction fragment length polymorphism. Statistical analysis revealed a significant association with the G allele with odds ratio (OR)=1.50, 95% confidence interval (CI)=1.22-1.85 and P=0.000. Also, a strong association was observedfor CAD risk with OR=1.590, 95% CI=1.106-2.284 and P=0.012. However, the homozygous GG mutant genotype was found to be completely absent from our population. Analysis of the dominant model also revealed an association with CAD risk. Our work demonstrated for the first time the association of PCSK9 A/G (rs505151) polymorphism with CAD risk in the north Indian population.
Collapse
Affiliation(s)
- S Reddy
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, India.
| | | | | |
Collapse
|
21
|
Reddy S, Kaur N, Singh J. A novel study to examine the association of PCSK9 rs505151 polymorphism and coronary artery disease in north Indian population. J Genet 2018. [DOI: 10.1007/s12041-018-1043-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
An D, Zhang J, Tang X, Gao P, Li Y, Wang Y, Zhu D. Association of ATP2B1 common variants with asymptomatic intracranial and extracranial large artery stenosis in hypertension patients. Clin Exp Hypertens 2018; 41:323-329. [PMID: 29902063 DOI: 10.1080/10641963.2018.1481421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS Genetic factors play an important role in the cervico-cerebral large-artery atherosclerotic stenosis (LAS), and ATP2B1 gene has been associated with the process of atherosclerosis disorders, such as coronary artery disease and arterial stiffness. But there is little information about the relationship between ATP2B1 gene and atherosclerosis in the intracranial arteries. We hereby investigated the association of common variants in ATP2B1 gene with LAS in asymptomatic Chinese hypertension patients. METHODS The stenosis of intracranial and extracranial arteries were evaluated in 899 subjects through computerized tomography angiography from the aortic arch to the skull base. A total of 11 ATP2B1 common variants were genotyped. Multivariate logistic regression was carried out in a dominant model with confounding factors adjusted. RESULTS rs17249754-A (OR = 0.43, p = 0.0002) and rs1401982-G (OR = 0.47, p = 0.0007) were associated with decreased susceptibility of concurrent extra and intracranial stenosis even after Bonferroni correction. These two minor alleles were also significantly associated with less stenotic arteries and moderate-to-severe stenosis. CONCLUSION rs17249754 and rs1401982 were associated with asymptomatic LAS in stroke-free Chinese hypertension patients and might benefit early recognition of LAS patients in clinical practice.
Collapse
Affiliation(s)
- Dewei An
- a Research Center for Hypertension Management and Prevention in Community, Shanghai Key Laboratory of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Institute of Hypertension, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jin Zhang
- a Research Center for Hypertension Management and Prevention in Community, Shanghai Key Laboratory of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Institute of Hypertension, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiaofeng Tang
- a Research Center for Hypertension Management and Prevention in Community, Shanghai Key Laboratory of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Institute of Hypertension, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Pingjin Gao
- a Research Center for Hypertension Management and Prevention in Community, Shanghai Key Laboratory of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Institute of Hypertension, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yan Li
- a Research Center for Hypertension Management and Prevention in Community, Shanghai Key Laboratory of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Institute of Hypertension, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yan Wang
- a Research Center for Hypertension Management and Prevention in Community, Shanghai Key Laboratory of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Institute of Hypertension, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Dingliang Zhu
- a Research Center for Hypertension Management and Prevention in Community, Shanghai Key Laboratory of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Institute of Hypertension, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
23
|
Hopewell JC, Malik R, Valdés-Márquez E, Worrall BB, Collins R, METASTROKE Collaboration of the ISGC. Differential effects of PCSK9 variants on risk of coronary disease and ischaemic stroke. Eur Heart J 2018; 39:354-359. [PMID: 29020353 PMCID: PMC5837489 DOI: 10.1093/eurheartj/ehx373] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/14/2016] [Accepted: 06/16/2017] [Indexed: 12/23/2022] Open
Abstract
Aims PCSK9 genetic variants that have large effects on low-density lipoprotein cholesterol (LDL-C) and coronary heart disease (CHD) have prompted the development of therapeutic PCSK9-inhibition. However, there is limited evidence that PCSK9 variants are associated with ischaemic stroke (IS). Methods and results Associations of the loss-of-function PCSK9 genetic variant (rs11591147; R46L), and five additional PCSK9 variants, with IS and IS subtypes (cardioembolic, large vessel, and small vessel) were estimated in a meta-analysis involving 10 307 IS cases and 19 326 controls of European ancestry. They were then compared with the associations of these variants with LDL-C levels (in up to 172 970 individuals) and CHD (in up to 60 801 CHD cases and 123 504 controls). The rs11591147 T allele was associated with 0.5 mmol/L lower LDL-C level (P = 9 × 10-143) and 23% lower CHD risk [odds ratio (OR): 0.77, 95% confidence interval (CI): 0.69-0.87, P = 7 × 10-6]. However, it was not associated with risk of IS (OR: 1.04, 95% CI: 0.84-1.28, P = 0.74) or IS subtypes. Information from additional PCSK9 variants also indicated consistently weaker effects on IS than on CHD. Conclusion PCSK9 genetic variants that confer life-long lower PCSK9 and LDL-C levels appear to have significantly weaker, if any, associations with risk of IS than with risk of CHD. By contrast, similar proportional reductions in risks of IS and CHD have been observed in randomized trials of therapeutic PCSK9-inhibition. These findings have implications for our understanding of when Mendelian randomization can be relied upon to predict the effects of therapeutic interventions.
Collapse
Affiliation(s)
- Jemma C Hopewell
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, BHF Centre for Research Excellence, Big Data Institute, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Rainer Malik
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Feodor-Lynen-Straße 17, 81377 Munich, Germany
| | - Elsa Valdés-Márquez
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, BHF Centre for Research Excellence, Big Data Institute, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | - Bradford B Worrall
- Department of Neurology, University of Virginia Health System, McKim Hall, Hospital Drive, Charlottesville, VA 22908, USA
| | - Rory Collins
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, BHF Centre for Research Excellence, Big Data Institute, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UK
| | | |
Collapse
|
24
|
Abstract
Significant advances in our understanding of transient ischemic attack (TIA) have taken place since it was first recognized as a major risk factor for stroke during the late 1950's. Recently, numerous studies have consistently shown that patients who have experienced a TIA constitute a heterogeneous population, with multiple causative factors as well as an average 5-10% risk of suffering a stroke during the 30 days that follow the index event. These two attributes have driven the most important changes in the management of TIA patients over the last decade, with particular attention paid to effective stroke risk stratification, efficient and comprehensive diagnostic assessment, and a sound therapeutic approach, destined to reduce the risk of subsequent ischemic stroke. This review is an outline of these changes, including a discussion of their advantages and disadvantages, and references to how new trends are likely to influence the future care of these patients.
Collapse
Affiliation(s)
- Camilo R. Gomez
- Department of Neurology, Loyola University Medical Center, Maywood, IL, USA
| | - Michael J. Schneck
- Department of Neurology, Loyola University Medical Center, Maywood, IL, USA
| | - Jose Biller
- Department of Neurology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
25
|
Accelerated atherosclerosis development in C57Bl6 mice by overexpressing AAV-mediated PCSK9 and partial carotid ligation. J Transl Med 2017; 97:935-945. [PMID: 28504688 PMCID: PMC5563968 DOI: 10.1038/labinvest.2017.47] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 01/17/2023] Open
Abstract
Studying the role of a particular gene in atherosclerosis typically requires a time-consuming and often difficult process of generating double knockouts or transgenics on ApoE-/- or LDL receptor (LDLR)-/- background. Recently, it was reported that adeno-associated-virus-8 (AAV8)-mediated overexpression of PCSK9 (AAV8-PCSK9) rapidly induced hyperlipidemia. However, using this method in C57BL6 wild-type (C57) mice, it took ~3 months to develop atherosclerosis. Our partial carotid ligation model is used to rapidly develop atherosclerosis by inducing disturbed flow in the left common carotid artery within 2 weeks in ApoE-/- or LDLR-/- mice. Here, we combined these two approaches to develop an accelerated model of atherosclerosis in C57 mice. C57 mice were injected with AAV9-PCSK9 or AAV9-luciferase (control) and high-fat diet was initiated. A week later, partial ligation was performed. Compared to the control, AAV-PCSK9 led to elevated serum PCSK9, hypercholesterolemia, and rapid atherosclerosis development within 3 weeks as determined by gross plaque imaging, and staining with Oil-Red-O, Movat's pentachrome, and CD45 antibody. These plaque lesions were comparable to the atherosclerotic lesions that have been previously observed in ApoE-/- or LDLR-/- mice that were subjected to partial carotid ligation and high-fat diet. Next, we tested whether our method can be utilized to rapidly determine the role of a particular gene in atherosclerosis. Using eNOS-/- and NOX1-/y mice on C57 background, we found that the eNOS-/- mice developed more advanced lesions, while the NOX1-/y mice developed less atherosclerotic lesions as compared to the C57 controls. These results are consistent with the previous findings using double knockouts (eNOS-/-_ApoE-/- and NOX1-/y_ApoE-/-). AAV9-PCSK9 injection followed by partial carotid ligation is an effective and time-saving approach to rapidly induce atherosclerosis. This accelerated model is well-suited to quickly determine the role of gene(s) interest without generating double or triple knockouts.
Collapse
|
26
|
Hypercholesterolemia: The role of PCSK9. Arch Biochem Biophys 2017; 625-626:39-53. [DOI: 10.1016/j.abb.2017.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 01/06/2023]
|
27
|
Qiu C, Zeng P, Li X, Zhang Z, Pan B, Peng ZYF, Li Y, Ma Y, Leng Y, Chen R. What is the impact of PCSK9 rs505151 and rs11591147 polymorphisms on serum lipids level and cardiovascular risk: a meta-analysis. Lipids Health Dis 2017; 16:111. [PMID: 28606094 PMCID: PMC5469167 DOI: 10.1186/s12944-017-0506-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/30/2017] [Indexed: 12/17/2022] Open
Abstract
Background PCSK9 rs505151 and rs11591147 polymorphisms are identified as gain- and loss-of-function mutations, respectively. The effects of these polymorphisms on serum lipid levels and cardiovascular risk remain to be elucidated. Methods In this meta-analysis, we explored the association of PCSK9 rs505151 and rs11591147 polymorphisms with serum lipid levels and cardiovascular risk by calculating the standardized mean difference (SMD) and odds ratios (OR) with 95% confidence intervals (CI). Results Pooled results analyzed under a dominant genetic model indicated that the PCSK9 rs505151 G allele was related to higher levels of triglycerides (SMD: 0.14, 95% CI: 0.02 to 0.26, P = 0.021, I2 = 0) and low-density lipoproteins cholesterol (LDL-C) (SMD: 0.17, 95% CI: 0.00 to 0.35, P = 0.046, I2 = 75.9%) and increased cardiovascular risk (OR: 1.50, 95% CI: 1.19 to 1.89, P = 0.0006, I2 = 48%). The rs11591147 T allele was significantly associated with lower levels of total cholesterol (TC) and LDL-C (TC, SMD: -0.45, 95% CI: -0.57 to −0.32, P = 0.000, I2 = 0; LDL-C, SMD: -0.44, 95% CI: -0.55 to −0.33, P = 0.000, I2 = 0) and decreased cardiovascular risk (OR: 0.77, 95% CI: 0.60 to 0.98, P = 0.031, I2 = 59.9) in Caucasians. Conclusions This study indicates that the variant G allele of PCSK9 rs505151 confers increased triglyceride (TG) and LDL-C levels, as well as increased cardiovascular risk. Conversely, the variant T allele of rs11591147 protects carriers from cardiovascular disease susceptibility and lower TC and LDL-C levels in Caucasians. These findings provide useful information for researchers interested in the fields of PCSK9 genetics and cardiovascular risk prediction not only for designing future studies, but also for clinical and public health applications.
Collapse
Affiliation(s)
- Chengfeng Qiu
- Xiangya school of Pharmaceutical Sciences, Central South University, Changsha, China. .,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
| | - Pingyu Zeng
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohui Li
- Xiangya school of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhen Zhang
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Bingjie Pan
- Xiangya school of Pharmaceutical Sciences, Central South University, Changsha, China.,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhou Y F Peng
- Xiangya school of Pharmaceutical Sciences, Central South University, Changsha, China.,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yapei Li
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yeshuo Ma
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yiping Leng
- Xiangya school of Pharmaceutical Sciences, Central South University, Changsha, China.,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ruifang Chen
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
28
|
Jaworski K, Jankowski P, Kosior DA. PCSK9 inhibitors - from discovery of a single mutation to a groundbreaking therapy of lipid disorders in one decade. Arch Med Sci 2017; 13:914-929. [PMID: 28721159 PMCID: PMC5510512 DOI: 10.5114/aoms.2017.65239] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Hypercholesterolemia is one of the main risk factors for coronary heart disease and significantly contributes to the high mortality associated with cardiovascular diseases. Statin therapy represents the gold standard in the reduction of low-density lipoprotein cholesterol concentration. Nevertheless, many patients still cannot achieve the recommended target levels, due to either inadequate effectiveness or intolerance of these drugs. Monoclonal antibodies that inhibit proprotein convertase subtilisin/kexin type 9 (PCSK9) have emerged as a promising option in lipid-lowering treatment. After confirmation of their efficacy and safety in clinical trials, evolocumab and alirocumab received approval from the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) for introduction into clinical practice. In this review, we present a history of the development and mechanisms of action, as well as the results of the most important studies concerning PCSK9 inhibitors.
Collapse
Affiliation(s)
- Krzysztof Jaworski
- 2 Department of Coronary Artery Disease, Institute of Cardiology, Warsaw, Poland
| | - Piotr Jankowski
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Dariusz A. Kosior
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
29
|
A wild-type mouse-based model for the regression of inflammation in atherosclerosis. PLoS One 2017; 12:e0173975. [PMID: 28291840 PMCID: PMC5349694 DOI: 10.1371/journal.pone.0173975] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/01/2017] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis can be induced by the injection of a gain-of-function mutant of proprotein convertase subtilisin/kexin type 9 (PCSK9)-encoding adeno-associated viral vector (AAVmPCSK9), avoiding the need for knockout mice models, such as low-density lipoprotein receptor deficient mice. As regression of atherosclerosis is a crucial therapeutic goal, we aimed to establish a regression model based on AAVmPCSK9, which will eliminate the need for germ-line genetic modifications. C57BL6/J mice were injected with AAVmPCSK9 and were fed with Western diet for 16 weeks, followed by reversal of hyperlipidemia by a diet switch to chow and treatment with a microsomal triglyceride transfer protein inhibitor (MTPi). Sixteen weeks following AAVmPCSK9 injection, mice had advanced atherosclerotic lesions in the aortic root. Surprisingly, diet switch to chow alone reversed hyperlipidemia to near normal levels, and the addition of MTPi completely normalized hyperlipidemia. A six week reversal of hyperlipidemia, either by diet switch alone or by diet switch and MTPi treatment, was accompanied by regression of atherosclerosis as defined by a significant decrease of macrophages in the atherosclerotic plaques, compared to baseline. Thus, we have established an atherosclerosis regression model that is independent of the genetic background.
Collapse
|
30
|
Castilla-Guerra L, Fernandez-Moreno MC. PCSK9 inhibitors: A new era in stroke prevention? Eur J Intern Med 2017; 37:e44. [PMID: 27729189 DOI: 10.1016/j.ejim.2016.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Luis Castilla-Guerra
- Department of Internal Medicine, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain.
| | - M C Fernandez-Moreno
- Department of Neurology, Hospital de Valme, University of Seville, Seville, Spain
| |
Collapse
|
31
|
Kim JS, Kim YJ, Ahn SH, Kim BJ. Location of cerebral atherosclerosis: Why is there a difference between East and West? Int J Stroke 2016; 13:35-46. [PMID: 27145795 DOI: 10.1177/1747493016647736] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intracranial atherosclerosis is more prevalent in Asian patients, whereas extracranial atherosclerosis is more common in individuals from western countries. The reasons for this discrepancy remain unknown. We reviewed the relevant literature and discussed the currently available information. Although the study population, diagnostic modality, and risk factor definitions differ between studies, hypercholesterolemia is more correlated with extracranial atherosclerosis than intracranial atherosclerosis. The difference in hypercholesterolemia prevalence is one of the main reasons for racial differences. Intracranial arteries contain higher antioxidant level than extracranial arteries and may be more vulnerable to risk factors for antioxidant depletion (e.g., metabolic syndrome and diabetes mellitus). Intracranial arteries may be vulnerable to factors associated with hemodynamic stress (e.g., advanced, salt-retaining hypertension and arterial tortuosity) because of a smaller diameter, thinner media and adventitia, and fewer elastic medial fibers than extracranial arteries. Additionally, non-atherosclerotic arterial diseases (e.g., moyamoya disease) that commonly occur in the intracranial arteries of East Asians may contaminate the reports of intracranial atherosclerosis cases. Genes, including RNF 213 or those associated with high salt sensitivity, may also explain racial differences in atherosclerotic location. To understand racial differences, further well-designed studies on various risk and genetic factors should be performed in patients with cerebral atherosclerosis. Additionally, improvements in diagnostic accuracy via advancements in imaging technologies and increased genetic data will aid in the differentiation of atherosclerosis from non-atherosclerotic intracranial diseases.
Collapse
Affiliation(s)
- Jong S Kim
- Department of Neurology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Yeon-Jung Kim
- Department of Neurology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Sung-Ho Ahn
- Department of Neurology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Bum J Kim
- Department of Neurology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| |
Collapse
|
32
|
Ochoa E, Iriondo M, Manzano C, Fullaondo A, Villar I, Ruiz-Irastorza G, Zubiaga AM, Estonba A. LDLR and PCSK9 Are Associated with the Presence of Antiphospholipid Antibodies and the Development of Thrombosis in aPLA Carriers. PLoS One 2016; 11:e0146990. [PMID: 26820623 PMCID: PMC4731066 DOI: 10.1371/journal.pone.0146990] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/25/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction The identification of the genetic risk factors that could discriminate non- thrombotic from thrombotic antiphospholipid antibodies (aPLA) carriers will improve prognosis of these patients. Several human studies have shown the presence of aPLAs associated with atherosclerotic plaque, which is a known risk factor for thrombosis. Hence, in order to determine the implication of atherosclerosis in the risk of developing thrombosis in aPLA positive patients, we performed a genetic association study with 3 candidate genes, APOH, LDLR and PCSK9. Material & Methods For genetic association study we analyzed 190 aPLA carriers -100 with non-thrombotic events and 90 with thrombotic events- and 557 healthy controls. Analyses were performed by χ2 test and were corrected by false discovery rate. To evaluate the functional implication of the newly established susceptibility loci, we performed expression analyses in 86 aPLA carrier individuals (43 with thrombotic manifestations and 43 without it) and in 45 healthy controls. Results Our results revealed significant associations after correction in SNPs located in LDLR gene with aPLA carriers and thrombotic aPLA carriers, when compared with healthy controls. The most significant association in LDLR gene was found between SNP rs129083082 and aPLA carriers in recessive model (adjusted P-value = 2.55 x 10−3; OR = 2.18; 95%CI = 1.49–3.21). Furthermore, our work detected significant allelic association after correction between thrombotic aPLA carriers and healthy controls in SNP rs562556 located in PCSK9 gene (adjusted P-value = 1.03 x 10−2; OR = 1.60; 95%CI = 1.24–2.06). Expression level study showed significantly decreased expression level of LDLR gene in aPLA carriers (P-value <0.0001; 95%CI 0.16–2.10; SE 0.38–1.27) in comparison to the control group. Discussion Our work has identified LDLR gene as a new susceptibility gene associated with the development of thrombosis in aPLA carriers, describing for the first time the deregulation of LDLR expression in individuals with aPLAs. Besides, thrombotic aPLA carriers also showed significant association with PCSK9 gene, a regulator of LDLR plasma levels. These results highlight the importance of atherosclerotic processes in the development of thrombosis in patients with aPLA.
Collapse
Affiliation(s)
- Eguzkine Ochoa
- Department of Genetics, Physical Anthropology and Animal Physiology, School of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mikel Iriondo
- Department of Genetics, Physical Anthropology and Animal Physiology, School of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Carmen Manzano
- Department of Genetics, Physical Anthropology and Animal Physiology, School of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, School of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Irama Villar
- Autoimmune Disease Research Unit, Service of Internal Medicine, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Spain
| | - Guillermo Ruiz-Irastorza
- Autoimmune Disease Research Unit, Service of Internal Medicine, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Spain
| | - Ana M. Zubiaga
- Department of Genetics, Physical Anthropology and Animal Physiology, School of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
- * E-mail: ;
| | - Andone Estonba
- Department of Genetics, Physical Anthropology and Animal Physiology, School of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
- * E-mail: ;
| |
Collapse
|
33
|
Au A, Griffiths LR, Cheng KK, Wee Kooi C, Irene L, Keat Wei L. The Influence of OLR1 and PCSK9 Gene Polymorphisms on Ischemic Stroke: Evidence from a Meta-Analysis. Sci Rep 2015; 5:18224. [PMID: 26666837 PMCID: PMC4678327 DOI: 10.1038/srep18224] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/16/2015] [Indexed: 12/31/2022] Open
Abstract
Both OLR1 and PCSK9 genes are associated with atherosclerosis, cardiovascular disease and ischemic stroke. The overall prevalence of PCSK9 rs505151 and OLR1 rs11053646 variants in ischemic stroke were 0.005 and 0.116, respectively. However, to date, association between these polymorphisms and ischemic stroke remains inconclusive. Therefore, this first meta-analysis was carried out to clarify the presumed influence of these polymorphisms on ischemic stroke. All eligible case-control and cohort studies that met the search terms were retrieved in multiple databases. Demographic and genotyping data were extracted from each study, and the meta-analysis was performed using RevMan 5.3 and Metafor R 3.2.1. The pooled odd ratios (ORs) and 95% confidence intervals (CIs) were calculated using both fixed- and random-effect models. Seven case-control studies encompassing 1897 cases and 2119 controls were critically evaluated. Pooled results from the genetic models indicated that OLR1 rs11053646 dominant (OR = 1.33, 95% CI:1.11–1.58) and co-dominant models (OR = 1.24, 95% CI:1.02–1.51) were significantly associated with ischemic stroke. For the PCSK9 rs505151 polymorphism, the OR of co-dominant model (OR = 1.36, 95% CI:1.01–1.58) was found to be higher among ischemic stroke patients. In conclusion, the current meta-analysis highlighted that variant allele of OLR1 rs11053646 G > C and PCSK9 rs505151 A > G may contribute to the susceptibility risk of ischemic stroke.
Collapse
Affiliation(s)
- Anthony Au
- Institute of Bioproduct Development and Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81300 Johor, Malaysia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Kian-Kai Cheng
- Institute of Bioproduct Development and Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81300 Johor, Malaysia.,Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, 81300 Johor, Malaysia
| | - Cheah Wee Kooi
- Department of Medicine, Taiping Hospital, Jalan Tamingsari, 34000 Taiping, Perak, Malaysia
| | - Looi Irene
- Medical Department and Clinical Research Centre, Hospital Seberang Jaya, Jalan Tun Hussein Onn, 13700 Seberang Jaya, Pulau Pinang, Malaysia
| | - Loo Keat Wei
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia.,Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
34
|
Zhang L, Song K, Zhu M, Shi J, Zhang H, Xu L, Chen Y. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in lipid metabolism, atherosclerosis and ischemic stroke. Int J Neurosci 2015; 126:675-80. [PMID: 26040332 DOI: 10.3109/00207454.2015.1057636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9) is the ninth member of the proprotein convertase family. It is an important regulator of cholesterol metabolism. PCSK9 can bind to low-density lipoprotein receptors (LDLRs) and induce the degradation of these receptors through the endosome/lysosome pathway, thus decreasing the LDLR levels on the cell surface of hepatocytes, resulting in increased serum low-density lipoprotein cholesterol (LDL-C) concentrations. Recent studies have found that gene polymorphisms of PCSK9 are associated with hypercholesterolemia, risk of atherosclerosis, and ischemic stroke. Furthermore, monoclonal antibodies, peptide mimetics, small molecule inhibitors and gene silencing agents that are associated with PCSK9 are some of the newer pharmaceutical therapeutic strategies and approaches for lowering serum LDL-C levels. In this review, we will discuss recent advances in PCSK9 research, which show that PCSK9 is correlated with lipid metabolism, atherosclerosis, and, in particular, ischemic stroke. We will also discuss the current state of PCSK9 therapeutics and their potential in modulating these diseases.
Collapse
Affiliation(s)
- Lingling Zhang
- a Department of Neurology, Clinical Medical College , Yangzhou University , Yangzhou , Jiangsu 225001 , China
| | - Kangping Song
- a Department of Neurology, Clinical Medical College , Yangzhou University , Yangzhou , Jiangsu 225001 , China
| | - Mengting Zhu
- a Department of Neurology, Clinical Medical College , Yangzhou University , Yangzhou , Jiangsu 225001 , China
| | - Jinling Shi
- a Department of Neurology, Clinical Medical College , Yangzhou University , Yangzhou , Jiangsu 225001 , China
| | - Huijuan Zhang
- a Department of Neurology, Clinical Medical College , Yangzhou University , Yangzhou , Jiangsu 225001 , China
| | - Liang Xu
- a Department of Neurology, Clinical Medical College , Yangzhou University , Yangzhou , Jiangsu 225001 , China
| | - Yingzhu Chen
- a Department of Neurology, Clinical Medical College , Yangzhou University , Yangzhou , Jiangsu 225001 , China
| |
Collapse
|
35
|
Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Curr Atheroscler Rep 2015; 16:439. [PMID: 25052769 DOI: 10.1007/s11883-014-0439-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A decade after our discovery of the involvement of proprotein convertase subtilisin/kexin type 9 (PCSK9) in cholesterol metabolism through the identification of the first mutations leading to hypercholesterolemia, PCSK9 has become one of the most promising targets in cholesterol and cardiovascular diseases. This challenging work in the genetics of hypercholesterolemia paved the way for a plethora of studies around the world allowing the characterization of PCSK9, its expression, its impact on reducing the abundance of LDL receptor, and the identification of loss-of-function mutations in hypocholesterolemia. We highlight the different steps of this adventure and review the published clinical trials especially those with the anti-PCSK9 antibodies evolocumab (AMG 145) and alirocumab (SAR236553/REGN727), which are in phase III trials. The promising results in lowering LDL cholesterol levels raise hope that the PCSK9 adventure will lead, after the large and long-term ongoing phase III studies evaluating efficacy and safety, to a new anticholesterol pharmacological class.
Collapse
|
36
|
Fruchart JC. PCSK9: The functional relevance of fenofibrate–statin combination therapy to reduce residual cardiovascular risk. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ijdm.2010.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Jeenduang N, Porntadavity S, Wanmasae S. Combined PCSK9 and APOE polymorphisms are genetic risk factors associated with elevated plasma lipid levels in a Thai population. Lipids 2015; 50:543-53. [PMID: 25899039 DOI: 10.1007/s11745-015-4017-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/27/2015] [Indexed: 11/25/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) and apolipoprotein E (ApoE) play a key role in the regulation of lipid metabolism. We aimed to investigate the effects of PCSK9 (R46L, I474V, and E670G) and APOE polymorphisms on lipid levels in a Southern Thai population. A total of 495 participants (307 urban, 188 rural) were recruited for the study. Anthropometric and biochemical variables were evaluated. PCSK9 and APOE polymorphisms were analyzed using PCR-RFLP. The 46L urban male carriers had significantly higher diastolic blood pressure (DBP) and fasting blood sugar compared with non-carriers. In contrast, the 46L urban female carriers had significantly lower total cholesterol (TC) and LDL-C levels compared with non-carriers. The 474V rural female carriers had significantly lower HDL-C levels than non-carriers. The 670G urban female carriers showed significantly higher TC and LDL-C levels compared with non-carriers. APOE4 carriers had increased TC and LDL-C levels relative to APOE3 carriers in the urban males. APOE2 carriers had decreased TC and/or LDL-C levels compared with APOE3 carriers in urban males and females. A significant trend of increased TC and LDL-C levels was observed in non-APOE4-PCSK9 670EE carriers to APOE4-PCSK9 670EG carriers in urban subjects. In summary, R46L, I474V, and E670G may be genetic risk factors for cardiovascular disease (CVD) in urban males, rural females, and urban females, respectively. In contrast, R46L had a favorable lipid profiles that may protect against CVD in urban females. The combination of PCSK9 E670G and APOE polymorphisms may represent an independent factor for the determination of lipid levels.
Collapse
Affiliation(s)
- Nutjaree Jeenduang
- School of Allied Health Sciences and Public Health, Walailak University, 222 Thaiburi, Thasala, Nakhon Si Thammarat, 80161, Thailand,
| | | | | |
Collapse
|
38
|
Abstract
The rising global prevalence of diabetes mellitus is accompanied by an increasing burden of morbidity and mortality that is attributable to the complications of chronic hyperglycaemia. These complications include blindness, renal failure and cardiovascular disease. Current therapeutic options for chronic hyperglycaemia reduce, but do not eradicate, the risk of these complications. Success in defining new preventative and therapeutic strategies hinges on an improved understanding of the molecular processes involved in the development of these complications. This Review explores the role of human genetics in delivering such insights, and describes progress in characterizing the sequence variants that influence individual predisposition to diabetic kidney disease, retinopathy, neuropathy and accelerated cardiovascular disease. Numerous risk variants for microvascular complications of diabetes have been reported, but very few have shown robust replication. Furthermore, only limited evidence exists of a difference in the repertoire of risk variants influencing macrovascular disease between those with and those without diabetes. Here, we outline the challenges associated with the genetic analysis of diabetic complications and highlight ongoing efforts to deliver biological insights that can drive translational benefits.
Collapse
|
39
|
Cui CJ, Li S, Li JJ. PCSK9 and its modulation. Clin Chim Acta 2015; 440:79-86. [PMID: 25444750 DOI: 10.1016/j.cca.2014.10.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/21/2014] [Accepted: 10/31/2014] [Indexed: 12/22/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), a newly-recognized protein, plays a key role in regulating cholesterol homeostasis. PCSK9 reduces hepatic low-density lipoprotein receptors (LDLRs) thereby increasing LDL-cholesterol (LDL-C). Recently, biologic and genetic research proposed several approaches to inhibit or reduce PCSK9 to improve lipid profile and cardiovascular performance in patients with dyslipidemia, particularly hypercholesterolemia. Of note, PCSK9 is a secreted protein under tight control by multiple modulators. Therefore, elucidating the factors that influence PCSK9 would enhance our understanding of PCSK9 and potentially day-to-day management of these patients at high cardiovascular risk. This review will focus on genetic variants, physiologic processes, pharmacologic agents and pathologic conditions related to PCSK9 in order to assess current and future therapeutic strategies targeting this molecule.
Collapse
Affiliation(s)
- Chuan-Jue Cui
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beilishi Road 167, Beijing 100037, PR China
| | - Sha Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beilishi Road 167, Beijing 100037, PR China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beilishi Road 167, Beijing 100037, PR China.
| |
Collapse
|
40
|
Roche-Molina M, Sanz-Rosa D, Cruz FM, García-Prieto J, López S, Abia R, Muriana FJ, Fuster V, Ibáñez B, Bernal JA. Induction of Sustained Hypercholesterolemia by Single Adeno-Associated Virus–Mediated Gene Transfer of Mutant hPCSK9. Arterioscler Thromb Vasc Biol 2015; 35:50-9. [DOI: 10.1161/atvbaha.114.303617] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marta Roche-Molina
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - David Sanz-Rosa
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Francisco M. Cruz
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Jaime García-Prieto
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Sergio López
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Rocío Abia
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Francisco J.G. Muriana
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Valentín Fuster
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Borja Ibáñez
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| | - Juan A. Bernal
- From the Cardiovascular Development and Repair Department (M.R.-M., F.M.C., J.A.B.), and Epidemiology, Atherothrombosis and Imaging Department (D.S.-R., J.G.-P., V.F., B.I.), Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain (S.L., R.A., F.J.G.M.); The Zena and Michael a Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY (V.F.); and Cardiovascular Institute
| |
Collapse
|
41
|
Han D, Ma J, Zhang X, Cai J, Li J, Tuerxun T, Hao C, Du L, Lei J. Correlation of PCSK9 gene polymorphism with cerebral ischemic stroke in Xinjiang Han and Uygur populations. Med Sci Monit 2014; 20:1758-67. [PMID: 25266949 PMCID: PMC4189717 DOI: 10.12659/msm.892091] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Cerebral ischemic stroke (CIS) is a major cause of morbidity and mortality. Its main pathological basis is atherosclerosis (AS); in turn, the main risk factor in AS is dyslipidemia. Human proprotein convertase subtilisin/kexin9 (PCSK9) plays a key role in regulating plasma low-density lipoprotein (LDL) cholesterol levels. We sought to assess the association between PCSK9 and CIS in Chinese Han and Uygur populations. Material/Methods We selected 408 CIS patients and 348 control subjects and used a single-base terminal extension (SNaPshot) method to detect the genotypes of the 20 single-nucleotide polymorphisms (SNPs) in PCSK9. Results Distribution of SNP8 (rs529787) genotypes showed a significant difference between CIS and control participants (P=0.049). However, when analyzing Han and Uygur populations separately, we found that only Han subjects showed distribution of SNP1 (rs1711503), SNP2 (rs2479408), and SNP8 (rs529787) alleles that was significantly different between CIS and control participants (P=0.028, P=0.013, P=0.006, respectively), and distribution of SNP2 (rs2479408) in the dominant model (CC vs. CG + GG) was significantly different between CIS and control participants (P=0.013), even after adjustment for covariates (OR: 75.262, 95% confidence interval [CI]: 7.232–783.278, P<0.001). Distribution of the 2 haplotypes (A-C and G-C) (rs1711503 and rs2479408) was significantly different between CIS and control participants (both, P=0.011). Conclusions Both rs1711503 and rs2479408 of PCSK9 genes were associated with CIS in the Han population of China. A-C haplotype may be a genetic marker of CIS risk in this population.
Collapse
Affiliation(s)
- Dengfeng Han
- Department of Neurology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China (mainland)
| | - Jianhua Ma
- Department of Neurology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China (mainland)
| | - Xiaoning Zhang
- Department of Neurology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China (mainland)
| | - Jian Cai
- Department of Neurology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China (mainland)
| | - Jinlan Li
- Department of Neurology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China (mainland)
| | - Tuerhong Tuerxun
- Department of Neurology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China (mainland)
| | - Chenguang Hao
- Department of Neurology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China (mainland)
| | - Lei Du
- Department of Neurology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China (mainland)
| | - Jing Lei
- Department of Neurology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China (mainland)
| |
Collapse
|
42
|
Effect of E670G Polymorphism in PCSK9 Gene on the Risk and Severity of Coronary Heart Disease and Ischemic Stroke in a Tunisian Cohort. J Mol Neurosci 2014; 53:150-7. [PMID: 24599757 DOI: 10.1007/s12031-014-0238-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/13/2014] [Indexed: 01/06/2023]
Abstract
The association of E670G (rs505151) polymorphism in PCSK9 gene with an increased risk of coronary artery disease (CAD) and ischemic stroke (IS) was reported in previous studies. We investigated the effect of the E670G (rs505151) on the risk of CAD and IS in a Tunisian cohort. Genotyping of the PCSK9 E670G was performed using polymerase chain reaction (PCR)-based restriction fragment length polymorphism (RFLP) and then confirmed by direct sequencing. The frequency of the 670G allele was significantly higher in the CAD than in the no-CAD subgroup (0.132 vs. 0.068, p = 0.030). As expected, the incidence of E670G was significantly important in IS subgroup than control group (0.122 vs. 0.073, p = 0.032). Furthermore in CAD patients, the 670G carriers showed significantly increased plasma total cholesterol and LDL-cholesterol levels compared to E670 carriers (6.78 [6.47-7.00] vs. 4.92 [4.02-5.46] mmol/l, p < 0.0001 and 4.60 [4.00-5.04] vs. 3.00 [2.22-3.70] mmol/l p = 0.001, respectively). The risk and severity of CAD were significantly increased in 670G carriers between no-CAD subgroup and CAD patients presenting a stenosis ≥50 % in two or three major coronary arteries (0.068 vs. 0.198, p = 0.001, OR = 3.39 [1.55-7.37]). The E670G polymorphism of the PCSK9 gene is mainly associated with a increased risk and severity of CAD and IS in Tunisian cohort.
Collapse
|
43
|
Rhainds D, Arsenault BJ, Tardif JC. PCSK9 inhibition and LDL cholesterol lowering: the biology of an attractive therapeutic target and critical review of the latest clinical trials. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.12.74] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
44
|
Huang Y, Ballinger DG, Stokowski R, Beilharz E, Robinson JG, Liu S, Robinson RD, Henderson VW, Rossouw JE, Prentice RL. Exploring the interaction between SNP genotype and postmenopausal hormone therapy effects on stroke risk. Genome Med 2012; 4:57. [PMID: 22794791 PMCID: PMC3580413 DOI: 10.1186/gm358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/27/2012] [Accepted: 07/13/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified several genomic regions that are associated with stroke risk, but these provide an explanation for only a small fraction of familial stroke aggregation. Genotype by environment interactions may contribute further to such an explanation. The Women's Health Initiative (WHI) clinical trial found increased stroke risk with postmenopausal hormone therapy (HT) and provides an efficient setting for evaluating genotype-HT interaction on stroke risk. METHODS We examined HT by genotype interactions for 392 SNPs selected from candidate gene studies, and 2,371 SNPs associated with changes in blood protein concentrations after hormone therapy, in analyses that included 2,045 postmenopausal women who developed stroke during WHI clinical trial and observational study follow-up and one-to-one matched controls. A two-stage procedure was implemented where SNPs passing the first stage screening based on marginal association with stroke risk were tested in the second stage for interaction with HT using case-only analysis. RESULTS The two-stage procedure identified two SNPs, rs2154299 and rs12194855, in the coagulation factor XIII subunit A (F13A1) region and two SNPs, rs630431 and rs560892, in the proprotein convertase subtilisin kexin 9 (PCSK9) region, with an estimated false discovery rate <0.05 based on interaction tests. Further analyses showed significant stroke risk interaction between these F13A1 SNPs and estrogen plus progestin (E+P) treatment for ischemic stroke and for ischemic and hemorrhagic stroke combined, and suggested interactions between PCSK9 SNPs with either E+P or estrogen-alone treatment. CONCLUSIONS Genotype by environment interaction information may help to define genomic regions relevant to stroke risk. Two-stage analysis among postmenopausal women generates novel hypotheses concerning the F13A1 and PCSK9 genomic regions and the effects of hormonal exposures on postmenopausal stroke risk for subsequent independent validation.
Collapse
Affiliation(s)
- Ying Huang
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Dennis G Ballinger
- Complete Genomics, Inc, 2071 Stierlin Court, Mountain View, CA 94043, USA
| | - Renee Stokowski
- Aria Diagnostics, 5945 Optical Court, San Jose, CA 95138, USA
| | - Erica Beilharz
- Complete Genomics, Inc, 2071 Stierlin Court, Mountain View, CA 94043, USA
| | - Jennifer G Robinson
- Departments of Epidemiology and Medicine, University of Iowa, 200 Medicine Admin. Bldg, Iowa City, IA 52242, USA
| | - Simin Liu
- School of Public Health, University of California at Los Angeles, 650 Charles E Young Dr. South, Los Angeles, CA 90095, USA
| | - Randal D Robinson
- School of Medicine, UT Heath Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Victor W Henderson
- Health Research & Policy (Epidemiology) and Neurology & Neurological Sciences, Stanford School of Medicine, 450 Serra Mall, Stanford, CA 94305, USA
| | - Jacques E Rossouw
- Women's Health Initiative Project Office, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Bethesda, MD 20892, USA
| | - Ross L Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| |
Collapse
|
45
|
Wu CY, Tang ZH, Jiang L, Li XF, Jiang ZS, Liu LS. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem 2011; 359:347-58. [PMID: 21847580 DOI: 10.1007/s11010-011-1028-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/05/2011] [Indexed: 12/21/2022]
Abstract
This paper investigated the effects of ox-LDL on PCSK9, and the molecular mechanisms of PCSK9 siRNA-inhibited apoptosis induced by ox-LDL in human umbilical vein endothelial cells (HUVECs), to clarify the role of PCSK9 in atherosclerogenesis. HUVECs were incubated with ox-LDL for 24 h. The apoptosis was observed by Hoechst 33258 staining. The expression of PCSK9, LOX-1 mRNAs and proteins was detected by RT-PCR, western blot, respectively. The PCSK9 siRNAs labeled with fluorescence were transfected into HUVECs by Lipofectamine 2000. After transfection for 24 h, cells were treated with ox-LDL for 24 h, HUVECs apoptosis transfected siRNA was detected by Hoechst 33258 staining and flow cytometer. The expression of Bcl-2, Bax, caspase3, 8, 9 was detected by western blot. The activity of caspase3, 9 was detected by kits. Our results showed that apoptosis of HUVECs and the expressions of PCSK9 and LOX-1 were upregulated secondary to induction by ox-LDL in a concentration-dependent manner. However, ox-LDL-induced HUVEC apoptosis and PCSK9 expression, but not LOX-1 expression, were significantly reduced by PCSK9 siRNA. These results demonstrate a linkage between HUVEC apoptosis and PCSK9 expression. Furthermore, we detected the possible pathway involved in apoptotic regulation by PCSK9 siRNA; our results showed that the expression of Bcl-2 decreased, whereas that of Bax increased. In addition, ox-LDL enhanced the activity of caspase9 and then caspase3. Pretreatment of HUVECs with PCSK9 siRNA blocked these effects of ox-LDL. These findings suggest that ox-LDL-induced HUVECs apoptosis could be inhibited by PCSK9 siRNA, in which Bcl/Bax-caspase9-caspase3 pathway maybe was involved through reducing the Bcl-2/Bax ratio and inhibited the activation of both caspase9 and 3.
Collapse
Affiliation(s)
- Chun-Yan Wu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, Hunan, China
| | | | | | | | | | | |
Collapse
|
46
|
Cariou B, Le May C, Costet P. Clinical aspects of PCSK9. Atherosclerosis 2011; 216:258-65. [PMID: 21596380 DOI: 10.1016/j.atherosclerosis.2011.04.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) is a circulating protein that impairs LDL clearance by promoting the LDL receptor (LDLR) degradation. PCSK9 has emerged as a new pharmacological target for hypercholesterolemia, and different PCSK9 inhibitors are now evaluated in clinical trials. Here, we propose an overview of the clinical perspectives of PCSK9. First, we describe the clinical features of patients with PCSK9 mutations, and how these variations impact the cardiovascular risk. Then, we extensively discuss the potential role of circulating PCSK9 as a new biomarker of lipid metabolism. Indeed, many studies conducted in healthy and type 2 diabetic patients have tested the association of circulating PCSK9 with LDL-cholesterol as well as with multiple metabolic parameters. The overall picture of the clinical relevance of circulating PCSK9 is complicated by the effect of nutritional status and hypolipidemic drugs such as statins, fibrates, ezetimibe on plasma PCSK9 concentrations. Finally, we present a brief overview of the available therapeutic strategies to inhibit PCSK9.
Collapse
Affiliation(s)
- Bertrand Cariou
- INSERM, UMR915, L'Institut du Thorax, F-44000 Nantes, France.
| | | | | |
Collapse
|
47
|
The influence of PCSK9 polymorphisms on serum low-density lipoprotein cholesterol and risk of atherosclerosis. Curr Atheroscler Rep 2010; 12:308-15. [PMID: 20623344 DOI: 10.1007/s11883-010-0123-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pro-protein-convertase-subtilisin-kexin-9 (PCSK9) enhances the degradation of the low-density lipoprotein receptor (LDLR) that plays a major role in cholesterol homeostasis. Recent advances have revealed a large number of genetic variants of PCSK9 that may modulate plasma cholesterol levels either positively or negatively, therefore influencing the risk of atherosclerosis. Recognition of these mutants may have clinical implication in assessing severity of disease, prognosis, or response to drug therapy. PCSK9's expression, secretion, and plasma levels maybe modulated by the proprotein convertase furin, by natural inhibitors (annexin-A2), or influenced by lipid-altering agents such as statins, fibrates, ezetimibe, and berberine. It is now a prime target for therapy, prompting the development of various approaches to reduce its LDLR degrading activity, including antibody neutralization, anti-sense oligonucleotides such as phosphorothioates, locked nucleic acids, and RNA interference, and eventually small molecule inhibitors. Which one will be clinically applicable will depend on long-term effects, cost, and ease of administration.
Collapse
|
48
|
Abifadel M, Pakradouni J, Collin M, Samson-Bouma ME, Varret M, Rabès JP, Boileau C. Strategies for proprotein convertase subtilisin kexin 9 modulation: a perspective on recent patents. Expert Opin Ther Pat 2010; 20:1547-71. [PMID: 20849207 DOI: 10.1517/13543776.2010.518615] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Proprotein convertase subtilisin kexin 9 (PCSK9) is a new actor discovered in 2003 that is implicated in autosomal dominant hypercholesterolemia, cholesterol homeostasis and coronary heart disease. It has been shown to degrade the low-density lipoprotein (LDL) receptor independently of its catalytic activity. Several pharmacological strategies to reduce PCSK9 are being thoroughly investigated. AREAS COVERED IN THIS REVIEW This article reviews all different strategies that are presently pursued to modulate the functional activity of PCSK9 which is a prime target for controlling LDL-cholesterol. It also provides a briefing of all the patents up to July 2010 from various organizations including pharmaceutical companies and academic institutions that have been submitted and/or approved. WHAT THE READER WILL GAIN This review is addressed to researchers from academia and pharmaceutical companies who are engaged in PCSK9 research/cholesterol regulation and in the development of cholesterol lowering drugs. Readers will gain an up-to-date overview of the different strategies that have been investigated to reduce PCSK9 including antisense technology and specific antibodies. TAKE HOME MESSAGE Clinical trials have been launched using RNA interference approaches to reduce PCSK9 expression or specific antibodies targeting and inhibiting PCSK9 interaction with the LDL receptor. They constitute very promising approaches to reducing cholesterol levels and coronary heart disease.
Collapse
Affiliation(s)
- Marianne Abifadel
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR698, Hemostasis, Bio-Engineering and Cardiovascular Remodelling, Hôpital Bichat-Claude Bernard, 46 Rue Henri Huchard, 75877 Paris Cedex 18, France.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
In this review, we discuss the genetic factors in both the aetiology and treatment of ischaemic stroke. We discuss candidate gene association studies, family linkage studies and the more recent whole genome association studies and whole genome expression studies. We also briefly discuss genetic testing for stroke risk and genetic analysis of treatment complications.
Collapse
Affiliation(s)
- M Matarin
- Laboratory of Neurogenetics, NIA/NIH, Bethesda, MD, USA
| | | | | | | |
Collapse
|
50
|
Abifadel M, Rabès JP, Devillers M, Munnich A, Erlich D, Junien C, Varret M, Boileau C. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat 2009; 30:520-9. [PMID: 19191301 DOI: 10.1002/humu.20882] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypercholesterolemia is one of the major causes of coronary heart disease (CHD). The genes encoding the low-density lipoprotein receptor and its ligand apolipoprotein B, have been the two genes classically implicated in autosomal dominant hypercholesterolemia (ADH). Our discovery in 2003 of the first mutations of the proprotein convertase subtilisin kexin 9 gene (PCSK9) causing ADH shed light on an unknown actor in cholesterol metabolism that since then has been extensively investigated. Several PCSK9 variants have been identified, some of them are gain-of-function mutations causing hypercholesterolemia by a reduction of low-density lipoprotein (LDL) receptor levels; while others are loss-of-function variants associated with a reduction of LDL-cholesterol (LDL-C) levels and a decreased risk of CHD. In this review, we focus on reported variants, and their biological, clinical, and functional relevance. We also highlight the spectrum of hypercholesterolemia or hypobetalipoproteinemia phenotypes that are already associated with mutations in PCSK9. Finally, we present future prospects concerning this therapeutic target that might constitute a new approach to reduce cholesterol levels and CHD, and enhance the effectiveness of other lipid-lowering drugs.
Collapse
Affiliation(s)
- Marianne Abifadel
- Institut Nationale de la Santé et de la Recherche Médicale (INSERM), U781, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|