1
|
Angage D, Chmielewski J, Maddumage JC, Hesping E, Caiazzo S, Lai KH, Yeoh LM, Menassa J, Opi DH, Cairns C, Puthalakath H, Beeson JG, Kvansakul M, Boddey JA, Wilson DW, Anders RF, Foley M. A broadly cross-reactive i-body to AMA1 potently inhibits blood and liver stages of Plasmodium parasites. Nat Commun 2024; 15:7206. [PMID: 39174515 PMCID: PMC11341838 DOI: 10.1038/s41467-024-50770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/19/2024] [Indexed: 08/24/2024] Open
Abstract
Apical membrane antigen-1 (AMA1) is a conserved malarial vaccine candidate essential for the formation of tight junctions with the rhoptry neck protein (RON) complex, enabling Plasmodium parasites to invade human erythrocytes, hepatocytes, and mosquito salivary glands. Despite its critical role, extensive surface polymorphisms in AMA1 have led to strain-specific protection, limiting the success of AMA1-based interventions beyond initial clinical trials. Here, we identify an i-body, a humanised single-domain antibody-like molecule that recognises a conserved pan-species conformational epitope in AMA1 with low nanomolar affinity and inhibits the binding of the RON2 ligand to AMA1. Structural characterisation indicates that the WD34 i-body epitope spans the centre of the conserved hydrophobic cleft in AMA1, where interacting residues are highly conserved among all Plasmodium species. Furthermore, we show that WD34 inhibits merozoite invasion of erythrocytes by multiple Plasmodium species and hepatocyte invasion by P. falciparum sporozoites. Despite a short half-life in mouse serum, we demonstrate that WD34 transiently suppressed P. berghei infections in female BALB/c mice. Our work describes the first pan-species AMA1 biologic with inhibitory activity against multiple life-cycle stages of Plasmodium. With improved pharmacokinetic characteristics, WD34 could be a potential immunotherapy against multiple species of Plasmodium.
Collapse
Affiliation(s)
- Dimuthu Angage
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Jill Chmielewski
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Janesha C Maddumage
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Eva Hesping
- Infectious Diseases & Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Sabrina Caiazzo
- Infectious Diseases & Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Keng Heng Lai
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Lee Ming Yeoh
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Joseph Menassa
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - D Herbert Opi
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, 3052, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Callum Cairns
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
- Department of Infectious Diseases, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Justin A Boddey
- Infectious Diseases & Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Robin F Anders
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Michael Foley
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia.
- AdAlta, Science Drive, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
2
|
Defining species-specific and conserved interactions of apical membrane protein 1 during erythrocyte invasion in malaria to inform multi-species vaccines. Cell Mol Life Sci 2023; 80:74. [PMID: 36847896 PMCID: PMC9969379 DOI: 10.1007/s00018-023-04712-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 03/01/2023]
Abstract
Plasmodium falciparum and P. vivax are the major causes of human malaria, and P. knowlesi is an important additional cause in SE Asia. Binding of apical membrane antigen 1 (AMA1) to rhoptry neck protein 2 (RON2) was thought to be essential for merozoite invasion of erythrocytes by Plasmodium spp. Our findings reveal that P. falciparum and P. vivax have diverged and show species-specific binding of AMA1 to RON2, determined by a β-hairpin loop in RON2 and specific residues in AMA1 Loop1E. In contrast, cross-species binding of AMA1 to RON2 is retained between P. vivax and P. knowlesi. Mutation of specific amino acids in AMA1 Loop1E in P. falciparum or P. vivax ablated RON2 binding without impacting erythrocyte invasion. This indicates that the AMA1-RON2-loop interaction is not essential for invasion and additional AMA1 interactions are involved. Mutations in AMA1 that disrupt RON2 binding also enable escape of invasion inhibitory antibodies. Therefore, vaccines and therapeutics will need to be broader than targeting only the AMA1-RON2 interaction. Antibodies targeting AMA1 domain 3 had greater invasion-inhibitory activity when RON2-loop binding was ablated, suggesting this domain is a promising additional target for vaccine development. Targeting multiple AMA1 interactions involved in invasion may enable vaccines that generate more potent inhibitory antibodies and address the capacity for immune evasion. Findings on specific residues for invasion function and species divergence and conservation can inform novel vaccines and therapeutics against malaria caused by three species, including the potential for cross-species vaccines.
Collapse
|
3
|
Rittipornlertrak A, Nambooppha B, Muenthaisong A, Punyapornwithaya V, Tiwananthagorn S, Chung YT, Tuvshintulga B, Sivakumar T, Yokoyama N, Sthitmatee N. Structural and immunological characterization of an epitope within the PAN motif of ectodomain I in Babesia bovis apical membrane antigen 1 for vaccine development. PeerJ 2021; 9:e11765. [PMID: 34316404 PMCID: PMC8288113 DOI: 10.7717/peerj.11765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Background Bovine babesiosis caused by Babesia bovis (B. bovis) has had a significant effect on the mobility and mortality rates of the cattle industry worldwide. Live-attenuated vaccines are currently being used in many endemic countries, but their wide use has been limited for a number of reasons. Although recombinant vaccines have been proposed as an alternative to live vaccines, such vaccines are not commercially available to date. Apical membrane antigen-1 (AMA-1) is one of the leading candidates in the development of a vaccine against diseases caused by apicomplexan parasite species. In Plasmodium falciparum (P. falciparum) AMA-1 (PfAMA-1), several antibodies against epitopes in the plasminogen, apple, and nematode (PAN) motif of PfAMA-1 domain I significantly inhibited parasite growth. Therefore, the purpose of this study was to predict an epitope from the PAN motif of domain I in the B. bovis AMA-1 (BbAMA-1) using a combination of linear and conformational B-cell epitope prediction software. The selected epitope was then bioinformatically analyzed, synthesized as a peptide (sBbAMA-1), and then used to immunize a rabbit. Subsequently, in vitro growth- and the invasion-inhibitory effects of the rabbit antiserum were immunologically characterized. Results Our results demonstrated that the predicted BbAMA-1 epitope was located on the surface-exposed α-helix of the PAN motif in domain I at the apex area between residues 181 and 230 with six polymorphic sites. Subsequently, sBbAMA-1 elicited antibodies capable of recognizing the native BbAMA-1 in immunoassays. Furthermore, anti-serum against sBbAMA-1 was immunologically evaluated for its growth- and invasion-inhibitory effects on B. bovis merozoites in vitro. Our results demonstrated that the rabbit anti-sBbAMA-1 serum at a dilution of 1:5 significantly inhibited (p < 0.05) the growth of B. bovis merozoites by approximately 50–70% on days 3 and 4 of cultivation, along with the invasion of merozoites by approximately 60% within 4 h of incubation when compared to the control groups. Conclusion Our results indicate that the epitope predicted from the PAN motif of BbAMA-1 domain I is neutralization-sensitive and may serve as a target antigen for vaccine development against bovine babesiosis caused by B. bovis.
Collapse
Affiliation(s)
| | - Boondarika Nambooppha
- Graduate School of Veterinary Sciences, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Anucha Muenthaisong
- Graduate School of Veterinary Sciences, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Saruda Tiwananthagorn
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Yang-Tsung Chung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taichung, Taiwan
| | - Bumduuren Tuvshintulga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Nattawooti Sthitmatee
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| |
Collapse
|
4
|
Dassah S, Adu B, Sirima SB, Mordmüller B, Ngoa UA, Atuguba F, Arthur FKN, Mensah BA, Kaddumukasa M, Bang P, Kremsner PG, Mategula D, Flach C, Milligan P, Theisen M. Extended follow-up of children in a phase2b trial of the GMZ2 malaria vaccine. Vaccine 2021; 39:4314-4319. [PMID: 34175127 DOI: 10.1016/j.vaccine.2021.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The GMZ2/alum candidate malaria vaccine had an efficacy of 14% (95% confidence interval [CI]: 3.6%, 23%) against clinical malaria over 6 months of follow-up in a phase2b multicentre trial in children 1-5 years of age. Here we report the extended follow up of safety and efficacy over 2 years. METHODS A total of 1849 (GMZ2 = 926, rabies = 923) children aged 12-60 months were randomized to receive intramuscularly, either 3 doses of 100 μg GMZ2/alum or 3 doses of rabies vaccine as control 28 days apart. The children were followed-up for 24 months for clinical malaria episodes and adverse events. The primary endpoint was documented fever with parasitaemia of at least 5000/μL. RESULTS There were 2,062 malaria episodes in the GMZ2/alum group and 2,115 in the rabies vaccine group in the intention-to-treat analysis, vaccine efficacy (VE) of 6.5% (95%: CI -1.6%, 14.0%). In children aged 1-2 years at enrolment, VE was 3.6% (95 %CI: -9.1%, 14.8%) in the first year and -4.1% (95 %CI: -18.7%, 87%) in the second year. In children aged 3-5 years at enrolment VE was 19.9% (95 %CI: 7.7%, 30.4%) in the first year and 6.3% (95 %CI: -10.2%, 20.3%) in the second year (interaction by year, P = 0.025, and by age group, P = 0.085). A total of 187 (GMZ2 = 91, rabies = 96) serious adverse events were recorded in 167 individuals over the entire period of the study. There were no GMZ2 vaccine related serious adverse events. CONCLUSIONS GMZ2/alum was well tolerated. Follow-up over 2 years confirmed a low level of vaccine efficacy with slightly higher efficacy in older children, which suggests GMZ2 may act in concert with naturally acquired immunity.
Collapse
Affiliation(s)
- Sylvester Dassah
- Navrongo Health Research Centre, Navrongo, Ghana; Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Sodiomon B Sirima
- National de Recherche et de Formation sur le Paludisme, Burkina Faso
| | | | - Ulysse Ateba Ngoa
- Institute of Tropical Medicine, University of Tübingen, Germany; Centre de Recherches Médicales de Lambaréné (CERMEL), Gabon
| | | | - Fareed K N Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Benedicta A Mensah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Peter Bang
- Department for Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Peter G Kremsner
- National de Recherche et de Formation sur le Paludisme, Burkina Faso; Institute of Tropical Medicine, University of Tübingen, Germany
| | - Donnie Mategula
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, UK
| | - Clare Flach
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, UK
| | - Paul Milligan
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, UK
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark.
| |
Collapse
|
5
|
Abstract
CpG Oligonucleotides (ODN) are immunomodulatory synthetic oligonucleotides specifically designed to stimulate Toll-like receptor 9. TLR9 is expressed on human plasmacytoid dendritic cells and B cells and triggers an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. This chapter reviews recent progress in understanding the mechanism of action of CpG ODN and provides an overview of human clinical trial results using CpG ODN to improve vaccines for the prevention/treatment of cancer, allergy, and infectious disease.
Collapse
Affiliation(s)
| | | | - Dennis M Klinman
- National Cancer Institute, NIH, Frederick, MD, USA.
- Leitman Klinman Consulting, Potomac, MD, USA.
| |
Collapse
|
6
|
Reverse immunodynamics: a new method for identifying targets of protective immunity. Sci Rep 2019; 9:2164. [PMID: 30770839 PMCID: PMC6377634 DOI: 10.1038/s41598-018-37288-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Despite a dramatic increase in our ability to catalogue variation among pathogen genomes, we have made far fewer advances in using this information to identify targets of protective immunity. Epidemiological models predict that strong immune selection can cause antigenic variants to structure into genetically discordant sets of antigenic types (e.g. serotypes). A corollary of this theory is that targets of immunity may be identified by searching for non-overlapping associations of amino acids among co-circulating antigenic variants. We propose a novel population genetics methodology that combines such predictions with phylogenetic analyses to identify genetic loci (epitopes) under strong immune selection. We apply this concept to the AMA-1 protein of the malaria parasite Plasmodium falciparum and find evidence of epitopes among certain regions of low variability which could render them ideal vaccine candidates. The proposed method can be applied to a myriad of multi-strain pathogens for which vast amounts of genetic data has been collected in recent years.
Collapse
|
7
|
Targets of complement-fixing antibodies in protective immunity against malaria in children. Nat Commun 2019; 10:610. [PMID: 30723225 PMCID: PMC6363798 DOI: 10.1038/s41467-019-08528-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies against P. falciparum merozoites fix complement to inhibit blood-stage replication in naturally-acquired and vaccine-induced immunity; however, specific targets of these functional antibodies and their importance in protective immunity are unknown. Among malaria-exposed individuals, we show that complement-fixing antibodies to merozoites are more strongly correlated with protective immunity than antibodies that inhibit growth quantified using the current reference assay for merozoite vaccine evaluation. We identify merozoite targets of complement-fixing antibodies and identify antigen-specific complement-fixing antibodies that are strongly associated with protection from malaria in a longitudinal study of children. Using statistical modelling, combining three different antigens targeted by complement-fixing antibodies could increase the potential protective effect to over 95%, and we identify antigens that were common in the most protective combinations. Our findings support antibody-complement interactions against merozoite antigens as important anti-malaria immune mechanisms, and identify specific merozoite antigens for further evaluation as vaccine candidates. Antibodies against Plasmodium falciparum merozoites that fix complement can inhibit blood-stage replication. Here, Reiling et al. show that complement-fixing antibodies strongly correlate with protective immunity in children, identify the merozoite targets, and predict antigen combinations that should result in strong protection.
Collapse
|
8
|
Drew DR, Wilson DW, Elliott SR, Cross N, Terheggen U, Hodder AN, Siba PM, Chelimo K, Dent AE, Kazura JW, Mueller I, Beeson JG. A novel approach to identifying patterns of human invasion-inhibitory antibodies guides the design of malaria vaccines incorporating polymorphic antigens. BMC Med 2016; 14:144. [PMID: 27658419 PMCID: PMC5034621 DOI: 10.1186/s12916-016-0691-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The polymorphic nature of many malaria vaccine candidates presents major challenges to achieving highly efficacious vaccines. Presently, there is very little knowledge on the prevalence and patterns of functional immune responses to polymorphic vaccine candidates in populations to guide vaccine design. A leading polymorphic vaccine candidate against blood-stage Plasmodium falciparum is apical membrane antigen 1 (AMA1), which is essential for erythrocyte invasion. The importance of AMA1 as a target of acquired human inhibitory antibodies, their allele specificity and prevalence in populations is unknown, but crucial for vaccine design. METHODS P. falciparum lines expressing different AMA1 alleles were genetically engineered and used to quantify functional antibodies from two malaria-exposed populations of adults and children. The acquisition of AMA1 antibodies was also detected using enzyme-linked immunosorbent assay (ELISA) and competition ELISA (using different AMA1 alleles) from the same populations. RESULTS We found that AMA1 was a major target of naturally acquired invasion-inhibitory antibodies that were highly prevalent in malaria-endemic populations and showed a high degree of allele specificity. Significantly, the prevalence of inhibitory antibodies to different alleles varied substantially within populations and between geographic locations. Inhibitory antibodies to three specific alleles were highly prevalent (FVO and W2mef in Papua New Guinea; FVO and XIE in Kenya), identifying them for potential vaccine inclusion. Measurement of antibodies by standard or competition ELISA was not strongly predictive of allele-specific inhibitory antibodies. The patterns of allele-specific functional antibody responses detected with our novel assays may indicate that acquired immunity is elicited towards serotypes that are prevalent in each geographic location. CONCLUSIONS These findings provide new insights into the nature and acquisition of functional immunity to a polymorphic vaccine candidate and strategies to quantify functional immunity in populations to guide rational vaccine design.
Collapse
Affiliation(s)
- Damien R Drew
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Danny W Wilson
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Salenna R Elliott
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Nadia Cross
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Ulrich Terheggen
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony N Hodder
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | | | - Arlene E Dent
- Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - James G Beeson
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia. .,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia. .,Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
9
|
Safety and Immunogenicity of EBA-175 RII-NG Malaria Vaccine Administered Intramuscularly in Semi-Immune Adults: A Phase 1, Double-Blinded Placebo Controlled Dosage Escalation Study. PLoS One 2016; 11:e0163066. [PMID: 27644034 PMCID: PMC5028127 DOI: 10.1371/journal.pone.0163066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/29/2016] [Indexed: 02/03/2023] Open
Abstract
The erythrocyte binding antigen region II (EBA-175 RII) is a Plasmodium falciparum ligand that mediates erythrocyte invasion and is considered an important malaria vaccine candidate. A phase Ia trial in malaria naïve adults living in the United States found the recombinant non-glycosylated vaccine antigen, EBA-175 RII-NG adjuvanted with aluminium phosphate to be safe, immunogenic and capable of inducing biologically active antibodies that can inhibit parasite growth in vitro. The aim of the current study was to assess the safety and immunogenicity of this vaccine in malaria exposed semi-immune healthy adults living in a malaria endemic country, Ghana. In this double-blinded, placebo controlled, dose escalation phase I trial, eighteen subjects per group received ascending dose concentrations (5 μg, 20 μg or 80 μg) of the vaccine intramuscularly at 0, 1 and 6 months, while 6 subjects received placebo (normal saline). The primary end point was the number of subjects experiencing Grade 3 systemic or local adverse events within 14 days post-vaccination. Serious adverse events were assessed throughout the study period. Blood samples for immunological analyses were collected at days 0, 14, 28, 42, 180 and 194. A total of 52 subjects received three doses of the vaccine in the respective groups. No serious adverse events were reported. The majority of all adverse events reported were mild to moderate in severity, with local pain and tenderness being the most common. All adverse events, irrespective of severity, resolved without any sequelae. Subjects who received any of the EBA-175 RII-NG doses had high immunoglobulin G levels which moderately inhibited P. falciparum growth in vitro, compared to those in the placebo group. In conclusion, the EBA-175 RII-NG vaccine was safe, well tolerated and immunogenic in malaria semi-immune Ghanaian adults. Its further development is recommended.
Collapse
|
10
|
Thera MA, Coulibaly D, Kone AK, Guindo AB, Traore K, Sall AH, Diarra I, Daou M, Traore IM, Tolo Y, Sissoko M, Niangaly A, Arama C, Baby M, Kouriba B, Sissoko MS, Sagara I, Toure OB, Dolo A, Diallo DA, Remarque E, Chilengi R, Noor R, Sesay S, Thomas A, Kocken CH, Faber BW, Imoukhuede EB, Leroy O, Doumbo OK. Phase 1 randomized controlled trial to evaluate the safety and immunogenicity of recombinant Pichia pastoris-expressed Plasmodium falciparum apical membrane antigen 1 (PfAMA1-FVO [25-545]) in healthy Malian adults in Bandiagara. Malar J 2016; 15:442. [PMID: 27577237 PMCID: PMC5006270 DOI: 10.1186/s12936-016-1466-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 07/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The safety and immunogenicity of PfAMA1, adjuvanted with Alhydrogel(®) was assessed in malaria-experienced Malian adults. The malaria vaccine, PfAMA1-FVO [25-545] is a recombinant protein Pichia pastoris-expressed AMA-1 from Plasmodium falciparum FVO clone adsorbed to Alhydrogel(®), the control vaccine was tetanus toxoid produced from formaldehyde detoxified and purified tetanus toxin. METHODS A double blind randomized controlled phase 1 study enrolled and followed 40 healthy adults aged 18-55 years in Bandiagara, Mali, West Africa, a rural setting with intense seasonal transmission of P. falciparum malaria. Volunteers were randomized to receive either 50 µg of malaria vaccine or the control vaccine. Three doses of vaccine were given on Days 0, 28 and 56, and participants were followed for 1 year. Solicited symptoms were assessed for seven days and unsolicited symptoms for 28 days after each vaccination. Serious adverse events were assessed throughout the study. The titres of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed. RESULTS Commonest local solicited adverse events were the injection site pain and swelling more frequent in the PfAMA1 group. No vaccine related serious adverse events were reported. A significant 3.5-fold increase of anti-AMA-1 IgG antibodies was observed in malaria vaccine recipients four weeks after the third immunization compared to the control group. CONCLUSION The PfAMA1 showed a good safety profile. Most adverse events reported were of mild to moderate intensity. In addition, the vaccine induced a significant though short-lived increase in the anti-AMA1 IgG titres. Registered on www.clinicaltrials.gov with the number NCT00431808.
Collapse
Affiliation(s)
- Mahamadou A Thera
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali.
| | - Drissa Coulibaly
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K Kone
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Ando B Guindo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdourhamane H Sall
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Issa Diarra
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Modibo Daou
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Idrissa M Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mady Sissoko
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Charles Arama
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mounirou Baby
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Bourema Kouriba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mahamadou S Sissoko
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Ousmane B Toure
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amagana Dolo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Dapa A Diallo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Edmond Remarque
- Biomedical Primate Research Center (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| | - Roma Chilengi
- Center for Infectious Diseases Research in Zambia (CIDRZ), P.O. Box 34681, Lusaka, 10101, Zambia
| | - Ramadhani Noor
- African Malaria Network Trust (AMANET), P.O. Box 33207, Dar Es Salaam, Tanzania
| | - Sanie Sesay
- Medical Research Council, P.O. Box 273, Banjul, The Gambia
| | - Alan Thomas
- Biomedical Primate Research Center (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| | - Clemens H Kocken
- Biomedical Primate Research Center (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| | - Bart W Faber
- Biomedical Primate Research Center (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| | | | - Odile Leroy
- European Vaccine Initiative, European Vaccine Initiative, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies, Bamako, Mali
| |
Collapse
|
11
|
Addai-Mensah O, Seidel M, Amidu N, Maskus DJ, Kapelski S, Breuer G, Franken C, Owusu-Dabo E, Frempong M, Rakotozandrindrainy R, Schinkel H, Reimann A, Klockenbring T, Barth S, Fischer R, Fendel R. Acquired immune responses to three malaria vaccine candidates and their relationship to invasion inhibition in two populations naturally exposed to malaria. Malar J 2016; 15:65. [PMID: 26850066 PMCID: PMC4743426 DOI: 10.1186/s12936-016-1112-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/19/2016] [Indexed: 11/10/2022] Open
Abstract
Background Malaria still represents a major cause of morbidity and mortality predominantly in several developing countries, and remains a priority in many public health programmes. Despite the enormous gains made in control and prevention the development of an effective vaccine represents a persisting challenge. Although several parasite antigens including pre-erythrocytic antigens and blood stage antigens have been thoroughly investigated, the identification of solid immune correlates of protection against infection by Plasmodium falciparum or clinical malaria remains a major hurdle. In this study, an immuno-epidemiological survey was carried out between two populations naturally exposed to P. falciparum malaria to determine the immune correlates of protection. Methods Plasma samples of immune adults from two countries (Ghana and Madagascar) were tested for their reactivity against the merozoite surface proteins MSP1-19, MSP3 and AMA1 by ELISA. The antigens had been selected on the basis of cumulative evidence of their role in anti-malarial immunity. Additionally, reactivity against crude P. falciparum lysate was investigated. Purified IgG from these samples were furthermore tested in an invasion inhibition assay for their antiparasitic activity. Results Significant intra- and inter- population variation of the reactivity of the samples to the tested antigens were found, as well as a significant positive correlation between MSP1-19 reactivity and invasion inhibition (p < 0.05). Interestingly, male donors showed a significantly higher antibody response to all tested antigens than their female counterparts. In vitro invasion inhibition assays comparing the purified antibodies from the donors from Ghana and Madagascar did not show any statistically significant difference. Although in vitro invasion inhibition increased with breadth of antibody response, the increase was not statistically significant. Conclusions The findings support the fact that the development of semi-immunity to malaria is probably contingent on the development of antibodies to not only one, but a range of antigens and that invasion inhibition in immune adults may be a function of antibodies to various antigens. This supports strategies of vaccination including multicomponent vaccines as well as passive vaccination strategies with antibody cocktails.
Collapse
Affiliation(s)
- Otchere Addai-Mensah
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany. .,RWTH Aachen University, Institute for Molecular Biotechnology, Worringerweg 1, 52074, Aachen, Germany. .,Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Melanie Seidel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Nafiu Amidu
- Department of Biomedical Laboratory Science, School of Medicine and Health Science, University for Development Studies, Tamale, Ghana.
| | - Dominika J Maskus
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Gudrun Breuer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Carmen Franken
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Ellis Owusu-Dabo
- Kumasi Centre for Collaborative Research, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Margaret Frempong
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Raphaël Rakotozandrindrainy
- Laboratoire de Microbiologie et de Parasitologie, ESSAGRO-Faculté de Médecine, Université d'Antananarivo, Antananarivo, Madagascar.
| | - Helga Schinkel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Torsten Klockenbring
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany. .,Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Pauwelsstraße 20, 52074, Aachen, Germany. .,South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa.
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany. .,RWTH Aachen University, Institute for Molecular Biotechnology, Worringerweg 1, 52074, Aachen, Germany.
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany. .,RWTH Aachen University, Institute for Molecular Biotechnology, Worringerweg 1, 52074, Aachen, Germany. .,Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Pauwelsstraße 20, 52074, Aachen, Germany.
| |
Collapse
|
12
|
Abstract
There have been significant decreases in malaria mortality and morbidity in the last 10-15 years, and the most advanced pre-erythrocytic malaria vaccine, RTS,S, received a positive opinion from European regulators in July 2015. However, no blood-stage vaccine has reached a phase III trial. The first part of this review summarizes the pros and cons of various assays and models that have been and will be used to predict the efficacy of blood-stage vaccines. In the second part, blood-stage vaccine candidates that showed some efficacy in human clinical trials or controlled human malaria infection models are discussed. Then, candidates under clinical investigation are described in the third part, and other novel candidates and strategies are reviewed in the last part.
Collapse
Affiliation(s)
- Kazutoyo Miura
- a Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Rockville , MD , USA
| |
Collapse
|
13
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Terheggen U, Drew DR, Hodder AN, Cross NJ, Mugyenyi CK, Barry AE, Anders RF, Dutta S, Osier FHA, Elliott SR, Senn N, Stanisic DI, Marsh K, Siba PM, Mueller I, Richards JS, Beeson JG. Limited antigenic diversity of Plasmodium falciparum apical membrane antigen 1 supports the development of effective multi-allele vaccines. BMC Med 2014; 12:183. [PMID: 25319190 PMCID: PMC4212128 DOI: 10.1186/s12916-014-0183-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/10/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Polymorphism in antigens is a common mechanism for immune evasion used by many important pathogens, and presents major challenges in vaccine development. In malaria, many key immune targets and vaccine candidates show substantial polymorphism. However, knowledge on antigenic diversity of key antigens, the impact of polymorphism on potential vaccine escape, and how sequence polymorphism relates to antigenic differences is very limited, yet crucial for vaccine development. Plasmodium falciparum apical membrane antigen 1 (AMA1) is an important target of naturally-acquired antibodies in malaria immunity and a leading vaccine candidate. However, AMA1 has extensive allelic diversity with more than 60 polymorphic amino acid residues and more than 200 haplotypes in a single population. Therefore, AMA1 serves as an excellent model to assess antigenic diversity in malaria vaccine antigens and the feasibility of multi-allele vaccine approaches. While most previous research has focused on sequence diversity and antibody responses in laboratory animals, little has been done on the cross-reactivity of human antibodies. METHODS We aimed to determine the extent of antigenic diversity of AMA1, defined by reactivity with human antibodies, and to aid the identification of specific alleles for potential inclusion in a multi-allele vaccine. We developed an approach using a multiple-antigen-competition enzyme-linked immunosorbent assay (ELISA) to examine cross-reactivity of naturally-acquired antibodies in Papua New Guinea and Kenya, and related this to differences in AMA1 sequence. RESULTS We found that adults had greater cross-reactivity of antibodies than children, although the patterns of cross-reactivity to alleles were the same. Patterns of antibody cross-reactivity were very similar between populations (Papua New Guinea and Kenya), and over time. Further, our results show that antigenic diversity of AMA1 alleles is surprisingly restricted, despite extensive sequence polymorphism. Our findings suggest that a combination of three different alleles, if selected appropriately, may be sufficient to cover the majority of antigenic diversity in polymorphic AMA1 antigens. Antigenic properties were not strongly related to existing haplotype groupings based on sequence analysis. CONCLUSIONS Antigenic diversity of AMA1 is limited and a vaccine including a small number of alleles might be sufficient for coverage against naturally-circulating strains, supporting a multi-allele approach for developing polymorphic antigens as malaria vaccines.
Collapse
Affiliation(s)
- Ulrich Terheggen
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia. .,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.
| | - Damien R Drew
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | | | - Nadia J Cross
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Cleopatra K Mugyenyi
- Centre for Geographic Medicine, Coast, Kenya Medical Research Institute, Kilifi, Kenya.
| | - Alyssa E Barry
- Walter and Eliza Hall Institute, Melbourne, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | - Faith H A Osier
- Centre for Geographic Medicine, Coast, Kenya Medical Research Institute, Kilifi, Kenya.
| | - Salenna R Elliott
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Nicolas Senn
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea. .,Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | - Danielle I Stanisic
- Walter and Eliza Hall Institute, Melbourne, Australia. .,Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.
| | - Kevin Marsh
- Centre for Geographic Medicine, Coast, Kenya Medical Research Institute, Kilifi, Kenya.
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Melbourne, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia. .,Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.
| | - Jack S Richards
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia. .,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia. .,Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| | - James G Beeson
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia. .,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia. .,Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
15
|
Nahrendorf W, Scholzen A, Bijker EM, Teirlinck AC, Bastiaens GJH, Schats R, Hermsen CC, Visser LG, Langhorne J, Sauerwein RW. Memory B-cell and antibody responses induced by Plasmodium falciparum sporozoite immunization. J Infect Dis 2014; 210:1981-90. [PMID: 24970846 PMCID: PMC4241945 DOI: 10.1093/infdis/jiu354] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Immunization of healthy volunteers during receipt of chemoprophylaxis with Plasmodium falciparum sporozoites (CPS-immunization) induces sterile protection from malaria. Antibody responses have long been known to contribute to naturally acquired immunity against malaria, but their association with sterile protection after whole sporozoite immunization is not well established. We therefore studied the induction and kinetics of malaria parasite antigen-specific antibodies and memory B-cells (MBCs) during CPS-immunization and their correlation with protection from challenge infection. Methods We assessed humoral reactivity to 9 antigens representing different stages of the life cycle of P. falciparum by performing standardized MBC enzyme-linked immunospot and enzyme-linked immunosorbent assays on peripheral blood mononuclear cells and plasma samples from 38 Dutch volunteers enrolled in 2 randomized controlled clinical trials. Results MBCs and antibodies recognizing pre-erythrocytic and cross-stage antigens were gradually acquired during CPS-immunization. The magnitude of these humoral responses did not correlate with protection but directly reflected parasite exposure in CPS-immunization and challenge. Conclusions Humoral responses to the malarial antigens circumsporozoite protein, liver-stage antigen-1, apical membrane antigen-1, and merozoite surface protein-1 do not to predict protection from challenge infection but can be used as sensitive marker of recent parasite exposure. Clinical Trials Registration NCT01236612 and NCT01218893.
Collapse
Affiliation(s)
- Wiebke Nahrendorf
- Department of Medical Microbiology, Radboud university medical center, Nijmegen Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Anja Scholzen
- Department of Medical Microbiology, Radboud university medical center, Nijmegen
| | - Else M Bijker
- Department of Medical Microbiology, Radboud university medical center, Nijmegen
| | - Anne C Teirlinck
- Department of Medical Microbiology, Radboud university medical center, Nijmegen
| | - Guido J H Bastiaens
- Department of Medical Microbiology, Radboud university medical center, Nijmegen
| | - Remko Schats
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Cornelus C Hermsen
- Department of Medical Microbiology, Radboud university medical center, Nijmegen
| | - Leo G Visser
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Jean Langhorne
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud university medical center, Nijmegen
| |
Collapse
|
16
|
Scheiermann J, Klinman DM. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine 2014; 32:6377-89. [PMID: 24975812 DOI: 10.1016/j.vaccine.2014.06.065] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/28/2014] [Accepted: 06/12/2014] [Indexed: 12/13/2022]
Abstract
Synthetic oligonucleotides (ODN) that express unmethylated "CpG motifs" trigger cells that express Toll-like receptor 9. In humans this includes plasmacytoid dendritic cells and B cells. CpG ODN induce an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. Their utility as vaccine adjuvants was evaluated in a number of clinical trials. Results indicate that CpG ODN improve antigen presentation and the generation of vaccine-specific cellular and humoral responses. This work provides an up-to-date overview of the utility of CpG ODN as adjuvants for vaccines targeting infectious agents and cancer.
Collapse
Affiliation(s)
- Julia Scheiermann
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick MD 21702, United States
| | - Dennis M Klinman
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick MD 21702, United States.
| |
Collapse
|
17
|
de Souza JB. Protective immunity against malaria after vaccination. Parasite Immunol 2014; 36:131-9. [PMID: 24188045 DOI: 10.1111/pim.12086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/29/2013] [Indexed: 11/28/2022]
Abstract
A good understanding of the immunological correlates of protective immunity is an important requirement for the development of effective vaccines against malaria. However, this concern has received little attention even in the face of two decades of intensive vaccine research. Here, we review the immune response to blood-stage malaria, with a particular focus on the type of vaccine most likely to induce the kind of response required to give strong protection against infection.
Collapse
Affiliation(s)
- J B de Souza
- Faculty of Infectious and Tropical Diseases, Department of Immunity and Infection, London School of Hygiene & Tropical Medicine, London, UK; Division of Infection & Immunity, University College London Medical School, London, UK
| |
Collapse
|
18
|
Wilson PT, Malhotra I, Mungai P, King CL, Dent AE. Transplacentally transferred functional antibodies against Plasmodium falciparum decrease with age. Acta Trop 2013; 128:149-53. [PMID: 23911334 DOI: 10.1016/j.actatropica.2013.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/17/2013] [Accepted: 07/21/2013] [Indexed: 11/16/2022]
Abstract
Transplacental transfer of antibodies from clinically malaria immune pregnant women to their fetuses is thought to provide passive protection against malaria during infancy. However, the presences and duration of functional antibodies against Plasmodium falciparum (Pf) in newborns has not been described. We used growth inhibition assays (GIA) to measure total anti-malaria functional antibodies present at birth and over the following year. Samples were drawn from cord blood (n=86) and in infants at six and 12 months of life (n=86 and 65 respectively). Three laboratory Pf strains (D10, W2mef, 3D7) and a field isolate (Msambweni 2006) were used in the assays. Median (ranges) GIA levels for cord plasma differed between laboratory parasite strains: D10, 0% (0-81); W2mef, 6% (0-80); 3D7, 18% (0-88); Msambweni 2006, 6% (0-43) (P<0.001, Wilcoxon signed-rank test). GIA levels against all Pf strains were found to decline in infants from birth to six months (P<0.01, Wilcoxon, signed-rank test). Functional antibodies as measured by GIA are transferred to the fetus and wane in the infants over time. Infant protection from clinical malaria disease may in part be mediated by these functional anti-malaria antibodies.
Collapse
Affiliation(s)
- Patrick T Wilson
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | |
Collapse
|
19
|
Le Port A, Cottrell G, Chandre F, Cot M, Massougbodji A, Garcia A. Importance of adequate local spatiotemporal transmission measures in malaria cohort studies: application to the relation between placental malaria and first malaria infection in infants. Am J Epidemiol 2013; 178:136-43. [PMID: 23752916 DOI: 10.1093/aje/kws452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
According to several studies, infants whose mothers had a malaria-infected placenta (MIP) at delivery are at increased risk of a first malaria infection. Immune tolerance caused by intrauterine contact with the parasite could explain this phenomenon, but it is also known that infants who are highly exposed to Anopheles mosquitoes infected with Plasmodium are at greater risk of contracting malaria. Consequently, local malaria transmission must be taken into account to demonstrate the immune tolerance hypothesis. From data collected between 2007 and 2010 on 545 infants followed from birth to age 18 months in southern Benin, we compared estimates of the effect of MIP on time to first malaria infection obtained through different Cox models. In these models, MIP was adjusted for either 1) "village-like" time-independent exposure variables or 2) spatiotemporal exposure prediction derived from local climatic, environmental, and behavioral factors. Only the use of exposure prediction improved the model's goodness of fit (Bayesian Information Criterion) and led to clear conclusions regarding the effect of placental infection, whereas the models using the village-like variables were less successful than the univariate model. This demonstrated clearly the benefit of adequately taking transmission into account in cohort studies of malaria.
Collapse
Affiliation(s)
- Agnès Le Port
- Institut de Recherche pour le Développement, Unité Mixte de Recherche 216, Mère et Enfant Face aux Infections Tropicales, 75270 Paris Cedex 6, France
| | | | | | | | | | | |
Collapse
|
20
|
Moreno-Pérez DA, Saldarriaga A, Patarroyo MA. Characterizing PvARP, a novel Plasmodium vivax antigen. Malar J 2013; 12:165. [PMID: 23688042 PMCID: PMC3662610 DOI: 10.1186/1475-2875-12-165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium vivax continues to be the most widely distributed malarial parasite species in tropical and sub-tropical areas, causing high morbidity indices around the world. Better understanding of the proteins used by the parasite during the invasion of red blood cells is required to obtain an effective vaccine against this disease. This study describes characterizing the P. vivax asparagine-rich protein (PvARP) and examines its antigenicity in natural infection. METHODS The target gene in the study was selected according to a previous in silico analysis using profile hidden Markov models which identified P. vivax proteins that play a possible role in invasion. Transcription of the arp gene in the P. vivax VCG-1 strain was here evaluated by RT-PCR. Specific human antibodies against PvARP were used to confirm protein expression by Western blot as well as its subcellular localization by immunofluorescence. Recognition of recombinant PvARP by sera from P. vivax-infected individuals was evaluated by ELISA. RESULTS VCG-1 strain PvARP is a 281-residue-long molecule, which is encoded by a single exon and has an N-terminal secretion signal, as well as a tandem repeat region. This protein is expressed in mature schizonts and is located on the surface of merozoites, having an apparent accumulation towards their apical pole. Sera from P. vivax-infected patients recognized the recombinant, thereby suggesting that this protein is targeted by the immune response during infection. CONCLUSIONS This study showed the characterization of PvARP and its antigenicity. Further assays orientated towards evaluating this antigen's functional importance during parasite invasion are being carried out.
Collapse
Affiliation(s)
- Darwin A Moreno-Pérez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No, 26-20, Bogotá, Colombia.
| | | | | |
Collapse
|
21
|
Xue LQ, Stacey KJ, Horne-Debets JM, Cridland JA, Fischer K, Narum D, Mackay F, Pierce SK, Wykes MN. Malaria infection alters the expression of B-cell activating factor resulting in diminished memory antibody responses and survival. Eur J Immunol 2012; 42:3291-301. [PMID: 22936176 PMCID: PMC4075050 DOI: 10.1002/eji.201242689] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/27/2012] [Accepted: 08/28/2012] [Indexed: 01/10/2023]
Abstract
Malaria is a major cause of morbidity worldwide with reports of over 200-500 million infected individuals and nearly 1 million deaths each year. Antibodies have been shown to play a critical role in controlling the blood stage of this disease; however, in malaria-endemic areas antibody immunity is slow to develop despite years of exposure to Plasmodium spp. the causative parasite. Using rodent Plasmodium yoelii YM, we provide evidence that malarial infections result in a decrease in the proportion of DCs that express the B-cell survival factor, BAFF, resulting in a decreased ability of these DCs to support memory B-cell differentiation into antibody secreting cells (ASCs) and/or the survival of ASCs. Further, compared with infected WT mice, ASC numbers were significantly increased in malaria-infected transgenic mice that either overexpressed BAFF or mice with BAFF-independent B-cell survival (B-cell-restricted TRAF3 deletion). Remarkably, BAFF-overexpressing mice were protected from lethal malaria infections, indicating the significance of the role BAFF plays in determining the outcome of malaria infections. These findings describe a previously unappreciated mechanism by which Plasmodium spp. can depress the generation of protective antibody responses.
Collapse
Affiliation(s)
- Liu Q. Xue
- The Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, Brisbane, Queensland, Australia 4029
| | - Katryn J. Stacey
- The University of Queensland, School of Chemistry and Molecular Biosciences, Queensland, Australia 4072
| | - Joshua M. Horne-Debets
- The Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, Brisbane, Queensland, Australia 4029
| | - Jasmyn A. Cridland
- The University of Queensland, School of Chemistry and Molecular Biosciences, Queensland, Australia 4072
| | - Katja Fischer
- The Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, Brisbane, Queensland, Australia 4029
| | - David Narum
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Twinbrook 1, Room 1115, 5640 Fishers Lane, Rockville, MD 20852
| | - Fabienne Mackay
- Department of Immunology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Central Clinical School, Alfred Hospital, Commercial Road, Melbourne, VIC 3004, Australia
| | - Susan K. Pierce
- Laboratory of Immunogenetics, NIAID, NIH, Twinbrook II,12441 Parklawn Drive, Rockville, MD 20852
| | - Michelle N. Wykes
- The Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, Brisbane, Queensland, Australia 4029
| |
Collapse
|
22
|
Cottrell G, Kouwaye B, Pierrat C, le Port A, Bouraïma A, Fonton N, Hounkonnou MN, Massougbodji A, Corbel V, Garcia A. Modeling the influence of local environmental factors on malaria transmission in Benin and its implications for cohort study. PLoS One 2012; 7:e28812. [PMID: 22238582 PMCID: PMC3251550 DOI: 10.1371/journal.pone.0028812] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/15/2011] [Indexed: 11/18/2022] Open
Abstract
Malaria remains endemic in tropical areas, especially in Africa. For the evaluation of new tools and to further our understanding of host-parasite interactions, knowing the environmental risk of transmission—even at a very local scale—is essential. The aim of this study was to assess how malaria transmission is influenced and can be predicted by local climatic and environmental factors. As the entomological part of a cohort study of 650 newborn babies in nine villages in the Tori Bossito district of Southern Benin between June 2007 and February 2010, human landing catches were performed to assess the density of malaria vectors and transmission intensity. Climatic factors as well as household characteristics were recorded throughout the study. Statistical correlations between Anopheles density and environmental and climatic factors were tested using a three-level Poisson mixed regression model. The results showed both temporal variations in vector density (related to season and rainfall), and spatial variations at the level of both village and house. These spatial variations could be largely explained by factors associated with the house's immediate surroundings, namely soil type, vegetation index and the proximity of a watercourse. Based on these results, a predictive regression model was developed using a leave-one-out method, to predict the spatiotemporal variability of malaria transmission in the nine villages. This study points up the importance of local environmental factors in malaria transmission and describes a model to predict the transmission risk of individual children, based on environmental and behavioral characteristics.
Collapse
Affiliation(s)
- Gilles Cottrell
- Institut de Recherche pour le Développement, Mère et Enfant Face aux Infections Tropicales, Cotonou, Benin.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tamminga C, Sedegah M, Regis D, Chuang I, Epstein JE, Spring M, Mendoza-Silveiras J, McGrath S, Maiolatesi S, Reyes S, Steinbeiss V, Fedders C, Smith K, House B, Ganeshan H, Lejano J, Abot E, Banania GJ, Sayo R, Farooq F, Belmonte M, Murphy J, Komisar J, Williams J, Shi M, Brambilla D, Manohar N, Richie NO, Wood C, Limbach K, Patterson NB, Bruder JT, Doolan DL, King CR, Diggs C, Soisson L, Carucci D, Levine G, Dutta S, Hollingdale MR, Ockenhouse CF, Richie TL. Adenovirus-5-vectored P. falciparum vaccine expressing CSP and AMA1. Part B: safety, immunogenicity and protective efficacy of the CSP component. PLoS One 2011; 6:e25868. [PMID: 22003411 PMCID: PMC3189219 DOI: 10.1371/journal.pone.0025868] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 09/12/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge. METHODOLOGY/PRINCIPAL FINDINGS NMRC-MV-Ad-PfC is an adenovirus vector encoding the Plasmodium falciparum 3D7 circumsporozoite protein (CSP). It is one component of a two-component vaccine NMRC-M3V-Ad-PfCA consisting of one adenovector encoding CSP and one encoding apical membrane antigen-1 (AMA1) that was evaluated for safety and immunogenicity in an earlier study (see companion paper, Sedegah et al). Fourteen Ad5 seropositive or negative adults received two doses of NMRC-MV-Ad-PfC sixteen weeks apart, at 1 x 1010 particle units per dose. The vaccine was safe and well tolerated. All volunteers developed positive ELISpot responses by 28 days after the first immunization (geometric mean 272 spot forming cells/million[sfc/m]) that declined during the following 16 weeks and increased after the second dose to levels that in most cases were less than the initial peak (geometric mean 119 sfc/m). CD8+ predominated over CD4+ responses, as in the first clinical trial. Antibody responses were poor and like ELISpot responses increased after the second immunization but did not exceed the initial peak. Pre-existing neutralizing antibodies (NAb) to Ad5 did not affect the immunogenicity of the first dose, but the fold increase in NAb induced by the first dose was significantly associated with poorer antibody responses after the second dose, while ELISpot responses remained unaffected. When challenged by the bite of P. falciparum-infected mosquitoes, two of 11 volunteers showed a delay in the time to patency compared to infectivity controls, but no volunteers were sterilely protected. SIGNIFICANCE The NMRC-MV-Ad-PfC vaccine expressing CSP was safe and well tolerated given as two doses, but did not provide sterile protection. TRIAL REGISTRATION ClinicalTrials.gov NCT00392015.
Collapse
Affiliation(s)
- Cindy Tamminga
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ellis RD, Sagara I, Doumbo O, Wu Y. Blood stage vaccines for Plasmodium falciparum: current status and the way forward. HUMAN VACCINES 2011; 6:627-34. [PMID: 20519960 DOI: 10.4161/hv.6.8.11446] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since the recent call for a shift from malaria control to eradication, the role of asexual blood stage vaccines for falciparum malaria, which are not expected to prevent infection, has become less clear. However, blood stage antigens remain likely to be a critical component of a highly effective malaria vaccine. The inclusion of a blood stage component in a multistage malaria vaccine would not only prevent disease caused by “leaky” pre-erythrocytic immunity, but would also protect against epidemics in newly vulnerable populations. Recent clinical results of blood stage vaccine candidates have shown strain specific and partial efficacy, although no protection against clinical outcomes has been demonstrated in experimental infection or field trials to date. The current status of Plasmodium falciparum blood stage vaccine development is summarized and the potential role of these vaccines in the changed malaria landscape is discussed. Alternative preclinical and clinical development paths will speed iterative development.
Collapse
Affiliation(s)
- Ruth D Ellis
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA.
| | | | | | | |
Collapse
|
25
|
Miura K, Perera S, Brockley S, Zhou H, Aebig JA, Moretz SE, Miller LH, Doumbo OK, Sagara I, Dicko A, Ellis RD, Long CA. Non-apical membrane antigen 1 (AMA1) IgGs from Malian children interfere with functional activity of AMA1 IgGs as judged by growth inhibition assay. PLoS One 2011; 6:e20947. [PMID: 21695140 PMCID: PMC3113848 DOI: 10.1371/journal.pone.0020947] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/13/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Apical membrane antigen 1 (AMA1) is one of the best-studied blood-stage malaria vaccine candidates. When an AMA1 vaccine was tested in a malaria naïve population, it induced functionally active antibodies judged by Growth Inhibition Assay (GIA). However, the same vaccine failed to induce higher growth-inhibitory activity in adults living in a malaria endemic area. Vaccination did induce functionally active antibodies in malaria-exposed children with less than 20% inhibition in GIA at baseline, but not in children with more than that level of baseline inhibition. METHODS Total IgGs were purified from plasmas collected from the pediatric trial before and after immunization and pools of total IgGs were made. Another set of total IgGs was purified from U.S. adults immunized with AMA1 (US-total IgG). From these total IgGs, AMA1-specific and non-AMA1 IgGs were affinity purified and the functional activity of these IgGs was evaluated by GIA. Competition ELISA was performed with the U.S.-total IgG and non-AMA1 IgGs from malaria-exposed children. RESULTS AMA1-specific IgGs from malaria-exposed children and U.S. vaccinees showed similar growth-inhibitory activity at the same concentrations. When mixed with U.S.-total IgG, non-AMA1 IgGs from children showed an interference effect in GIA. Interestingly, the interference effect was higher with non-AMA1 IgGs from higher titer pools. The non-AMA1 IgGs did not compete with anti-AMA1 antibody in U.S.-total IgG in the competition ELISA. CONCLUSION Children living in a malaria endemic area have a fraction of IgGs that interferes with the biological activity of anti-AMA1 antibody as judged by GIA. While the mechanism of interference is not resolved in this study, these results suggest it is not caused by direct competition between non-AMA1 IgG and AMA1 protein. This study indicates that anti-malaria IgGs induced by natural exposure may interfere with the biological effect of antibody induced by an AMA1-based vaccine in the target population.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (KM); (CAL)
| | - Suwani Perera
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sarah Brockley
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Hong Zhou
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joan A. Aebig
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Samuel E. Moretz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Louis H. Miller
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Alassane Dicko
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Ruth D. Ellis
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (KM); (CAL)
| |
Collapse
|
26
|
Badar A, DeFreitas S, McDonnell JM, Yahya N, Thakor D, Razavi R, Smith R, Sacks S, Mullen GED. Recombinant complement receptor 2 radiolabeled with [99mTc(CO)3]+: a potential new radiopharmaceutical for imaging activated complement. PLoS One 2011; 6:e18275. [PMID: 21494666 PMCID: PMC3071809 DOI: 10.1371/journal.pone.0018275] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 02/28/2011] [Indexed: 11/26/2022] Open
Abstract
We describe the design and synthesis of a new Tc-99m labeled bioconjugate for imaging activated complement, based on Short Consensus Repeats 1 and 2 of Complement Receptor 2 (CR2), the binding domain for C3d. To avoid non specific modification of CR2 and the potential for modifying lysine residues critical to the CR2/C3d contact surface, we engineered a new protein, recombinant CR2 (rCR2), to include the C-terminal sequence VFPLECHHHHHH, a hexahistidine tag (for site-specific radiolabeling with [(99m)Tc(CO)(3)(OH(2))(3)](+)). The protein was characterized by N-terminal sequencing, SDS-PAGE and size exclusion chromatography. To test the function of the recombinant CR2, binding to C3d was confirmed by enzyme-linked immunosorbent assay (ELISA). The function was further confirmed by binding of rCR2 to C3d(+) red blood cells (RBC) which were generated by deposition of human or rat C3d and analyzed by fluorescence microscopy and flow cytometry. The affinity of rCR2 for C3d(+), in presence of 150 mM NaCl, was measured using surface plasma resonance giving rise to a K(D)≈500 nM. Radiolabeling of rCR2 or an inactive mutant of rCR2 (K41E CR2) or an unrelated protein of a similar size (C2A) with [(99m)Tc(CO)(3)(OH(2))(3)](+) at gave radiochemical yields >95%. Site-specifically radiolabeled rCR2 bound to C3d to C3d(+) RBC. Binding of radiolabeled rCR2 to C3d was inhibited by anti-C3d and the radiolabeled inactive mutant K41E CR2 and C2A did not bind to C3d(+) RBCs. We conclude that rCR2-Tc(99m) has excellent radiolabeling, stability and C3d binding characteristics and warrants in vivo evaluation as an activated complement imaging agent.
Collapse
Affiliation(s)
- Adam Badar
- Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
- Division of Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Sarah DeFreitas
- Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - James M. McDonnell
- Randall Division of Cell & Molecular Biophysics, New Hunt's House, King's College London, London, United Kingdom
| | - Norhakim Yahya
- Randall Division of Cell & Molecular Biophysics, New Hunt's House, King's College London, London, United Kingdom
| | - David Thakor
- Division of Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Reza Razavi
- Division of Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Richard Smith
- Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Steven Sacks
- Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Gregory E. D. Mullen
- Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
- Division of Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
27
|
Miura K, Zhou H, Diouf A, Tullo G, Moretz SE, Aebig JA, Fay MP, Miller LH, Doumbo OK, Sagara I, Dicko A, Long CA, Ellis RD. Immunological responses against Plasmodium falciparum Apical Membrane Antigen 1 vaccines vary depending on the population immunized. Vaccine 2011; 29:2255-61. [PMID: 21277408 PMCID: PMC3046304 DOI: 10.1016/j.vaccine.2011.01.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/27/2010] [Accepted: 01/16/2011] [Indexed: 11/24/2022]
Abstract
Clinical development of malaria vaccines progresses from trials in malaria naïve adults to malaria exposed adults followed by malaria exposed children. It is not well known whether immune responses in non-target populations are predictive of those in target populations, particularly in African children. Therefore humoral responses in three different populations (U.S. adults, Malian adults and Malian children) were compared in this study. They were immunized with 80 μg of Apical Membrane Antigen 1 (AMA1)/alhydrogel on days 0 and 28. Sera were collected on days 0 and 42; antibody levels were determined by ELISA and the functionality of antibodies was evaluated by Growth Inhibition Assay. After immunization, there was no significant difference in antibody levels between the Malian children and the Malian adults, but U.S. adults showed lower antibody levels. Vaccination did not significantly change growth-inhibitory activity in Malian adults, but inhibition increased significantly in both U.S. adults and Malian children. Vaccine-induced inhibitory activity was reversed by pre-incubation with AMA1 protein, but pre-existing infection-induced inhibition was not. This study shows that humoral responses elicited by the AMA1 vaccine varied depending on the population, most likely reflecting different levels of previous malaria exposure. Thus predicting immune responses from non-target populations is not desirable.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Hong Zhou
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Gregory Tullo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Samuel E. Moretz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Joan A Aebig
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Michael P. Fay
- Biostatistics Research Branch, NIAID/NIH, 6700A Rockledge Drive, Bethesda, MD 20817 USA
| | - Louis H. Miller
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Alassane Dicko
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Ruth D. Ellis
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| |
Collapse
|
28
|
El Sahly HM, Patel SM, Atmar RL, Lanford TA, Dube T, Thompson D, Sim BKL, Long C, Keitel WA. Safety and immunogenicity of a recombinant nonglycosylated erythrocyte binding antigen 175 Region II malaria vaccine in healthy adults living in an area where malaria is not endemic. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1552-9. [PMID: 20702657 PMCID: PMC2952998 DOI: 10.1128/cvi.00082-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/24/2010] [Accepted: 07/28/2010] [Indexed: 11/20/2022]
Abstract
Erythrocyte binding antigen region II (EBA-175) is a conserved antigen of Plasmodium falciparum that is involved in binding of the parasite to the host's erythrocytes. We evaluated the safety and immunogenicity of a recombinant EBA-175 vaccine with aluminum phosphate adjuvant in healthy young adults living in the United States. Eighteen subjects/group received ascending doses (5, 20, 80, or 160 μg) of the vaccine at 0, 1, and 6 months; 8 subjects received placebo. Most of the injection site and systemic reactions were mild to moderate in intensity. After 2 or 3 doses of the vaccine at any concentration, antibody levels measured by enzyme-linked immunosorbent assay were significantly higher than those for the placebo group. Sera from subjects who received 3 doses of the vaccine at any concentration inhibited the growth of erythrocyte-stage P. falciparum at low levels compared to sera from placebo recipients or preimmune sera. In conclusion, the EBA-175 vaccine with adjuvant was safe and immunogenic in malaria-naïve subjects.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adolescent
- Adult
- Aluminum Compounds/administration & dosage
- Antibodies, Protozoan/blood
- Antigens, Protozoan/administration & dosage
- Antigens, Protozoan/adverse effects
- Antigens, Protozoan/immunology
- Enzyme-Linked Immunosorbent Assay
- Female
- Human Experimentation
- Humans
- Immunization, Secondary/methods
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/adverse effects
- Malaria Vaccines/immunology
- Malaria, Falciparum/prevention & control
- Male
- Phosphates/administration & dosage
- Placebos/administration & dosage
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/immunology
- Protozoan Proteins/administration & dosage
- Protozoan Proteins/adverse effects
- Protozoan Proteins/immunology
- United States
- Vaccination/methods
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/immunology
- Young Adult
Collapse
Affiliation(s)
- H M El Sahly
- Departments of Molecular Virology and Microbiology and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Allelic diversity and naturally acquired allele-specific antibody responses to Plasmodium falciparum apical membrane antigen 1 in Kenya. Infect Immun 2010; 78:4625-33. [PMID: 20732997 DOI: 10.1128/iai.00576-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Plasmodium falciparum apical membrane antigen 1 (AMA1) is a leading malaria vaccine candidate, extensive allelic diversity may compromise its vaccine potential. We have previously shown that naturally acquired antibodies to AMA1 were associated with protection from clinical malaria in this Kenyan population. To assess the impact of allelic diversity on naturally acquired immunity, we first sequenced the ectodomain-encoding region of P. falciparum ama1 from subjects with asymptomatic, mild, and severe malaria and measured allele frequency distributions. We then measured antibodies to three allelic AMA1 proteins (AMA1_3D7, AMA1_FVO, and AMA1_HB3) and used competition enzyme-linked immunosorbent assays (ELISAs) to analyze allele-specific antibodies. Seventy-eight unique haplotypes were identified from 129 alleles sampled. No clustering of allelic haplotypes with disease severity or year of sampling was observed. Differences in nucleotide frequencies in clinical (severe plus mild malaria) versus asymptomatic infections were observed at 16 polymorphic positions. Allele frequency distributions were indicative of balancing selection, with the strongest signature being identified in domain III (Tajima's D = 2.51; P < 0.05). Antibody reactivities to each of the three allelic AMA1 proteins were highly correlated (P < 0.001 for all pairwise comparisons). Although antibodies to conserved epitopes were abundant, 48% of selected children with anti-AMA1 IgG (n = 106) had detectable reactivity to allele-specific epitopes as determined by a competition ELISA. Antibodies to both conserved and allele-specific epitopes in AMA1 may contribute to clinical protection.
Collapse
|
30
|
Ouattara A, Mu J, Takala-Harrison S, Saye R, Sagara I, Dicko A, Niangaly A, Duan J, Ellis RD, Miller LH, Su XZ, Plowe CV, Doumbo OK. Lack of allele-specific efficacy of a bivalent AMA1 malaria vaccine. Malar J 2010; 9:175. [PMID: 20565971 PMCID: PMC2908102 DOI: 10.1186/1475-2875-9-175] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 06/21/2010] [Indexed: 12/03/2022] Open
Abstract
Background Extensive genetic diversity in vaccine antigens may contribute to the lack of efficacy of blood stage malaria vaccines. Apical membrane antigen-1 (AMA1) is a leading blood stage malaria vaccine candidate with extreme diversity, potentially limiting its efficacy against infection and disease caused by Plasmodium falciparum parasites with diverse forms of AMA1. Methods Three hundred Malian children participated in a Phase 2 clinical trial of a bivalent malaria vaccine that found no protective efficacy. The vaccine consists of recombinant AMA1 based on the 3D7 and FVO strains of P. falciparum adjuvanted with aluminum hydroxide (AMA1-C1). The gene encoding AMA1 was sequenced from P. falciparum infections experienced before and after immunization with the study vaccine or a control vaccine. Sequences of ama1 from infections in the malaria vaccine and control groups were compared with regard to similarity to the vaccine antigens using several measures of genetic diversity. Time to infection with parasites carrying AMA1 haplotypes similar to the vaccine strains with respect to immunologically important polymorphisms and the risk of infection with vaccine strain haplotypes were compared. Results Based on 62 polymorphic AMA1 residues, 186 unique ama1 haplotypes were identified among 315 ama1 sequences that were included in the analysis. Eight infections had ama1 sequences identical to 3D7 while none were identical to FVO. Several measures of genetic diversity showed that ama1 sequences in the malaria vaccine and control groups were comparable both at baseline and during follow up period. Pre- and post-immunization ama1 sequences in both groups all had a similar degree of genetic distance from FVO and 3D7 ama1. No differences were found in the time of first clinical episode or risk of infection with an AMA1 haplotype similar to 3D7 or FVO with respect to a limited set of immunologically important polymorphisms found in the cluster 1 loop of domain I of AMA1. Conclusion This Phase 2 trial of a bivalent AMA1 malaria vaccine found no evidence of vaccine selection or strain-specific efficacy, suggesting that the extreme genetic diversity of AMA1 did not account for failure of the vaccine to provide protection.
Collapse
Affiliation(s)
- Amed Ouattara
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, Bamako, Mali
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Persson KE. Erythrocyte invasion and functionally inhibitory antibodies in Plasmodium falciparum malaria. Acta Trop 2010; 114:138-43. [PMID: 19481996 DOI: 10.1016/j.actatropica.2009.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 05/19/2009] [Accepted: 05/22/2009] [Indexed: 11/26/2022]
Abstract
Malaria is a disease that kills several million people every year. P. falciparum merozoites invade new erythrocytes every 48 h, causing fever, anemia and cerebral malaria. Effective immunity against malaria develops slowly and only after repeated exposure. Antibodies are an important part of this immunity. However, the antigens that mediate immunity by inducing functionally imperative antibodies have not yet been identified. This review gives an overview of the erythrocyte invasion process, which has been described to include several different antigens. Invasion inhibitory antibodies can inhibit merozoite penetration of new erythrocytes, and different methods for measurement of the presence of functionally important antibodies have been employed. ELISA, Invasion inhibition assays and ADCI are some of the methods discussed.
Collapse
|
32
|
Tavaré R, Torres Martin De Rosales R, Blower PJ, Mullen GED. Efficient site-specific radiolabeling of a modified C2A domain of synaptotagmin I with [99mTc(CO)3]+: a new radiopharmaceutical for imaging cell death. Bioconjug Chem 2010; 20:2071-81. [PMID: 19874007 DOI: 10.1021/bc900160j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe the design and synthesis of a new Tc-99m labeled bioconjugate for cell-death imaging, based on C2A, the phosphatidylserine (PS)-binding domain of rat synaptotagmin I. Since several lysine residues in this protein are critical for PS binding, we engineered a new protein, C2AcH, to include the C-terminal sequence CKLAAALEHHHHHH, incorporating a free cysteine (for site-specific covalent modification) and a hexahistidine tag (for site-specific radiolabeling with [99mTc(CO)3(OH2)3]+). We also engineered a second derivative, C2Ac, in which the C-terminal sequence included only the C-terminal cysteine. These proteins were characterized by electrospray mass spectrometry, SDS/PAGE, and size exclusion chromatography and radiolabeled with [99mTc(CO)3(OH2)3]+. Conjugates of the proteins with the rhenium analogue [Re(CO)3(OH2)3]+ were also synthesized. Site-specific labeling was confirmed by performing a tryptic digest of rhenium tricarbonyl-labeled C2AcH, and only peptides containing the His-tag contained the [Re(CO)3]+. The labeled proteins were tested for binding to red blood cells (RBC) with exposed PS in a calcium dependent manner. Labeling 100 microg of C2AcH with [99mTc(CO)3(OH2)3]+ at 37 degrees C for 30 min gave a radiochemical yield of > 96%. However, C2AcH that had first been conjugated with fluorescein maleimide or iodoacetamide via the Cys residue gave only 50% and 83% radiochemical yield, respectively, after incubation for 30 min at 37 degrees C. Serum stability results indicated that >95% of radiolabeled C2AcH remained stable for at least 18 h at 37 degrees C. Site-specifically labeled C2AcH exhibited calcium-dependent binding to the PS on the RBC, whereas a nonspecifically modified derivative, C2AcH-B, in which lysines had been modified with benzyloxycarbonyloxy, did not. We conclude that (i) the combination of Cys and a His-tag greatly enhances the rate and efficiency of labeling with [99mTc(CO)3(OH2)3]+ compared to either the His-tag or the Cys alone, and this sequence deserves further evaluation as a radiolabeling tag; (ii) non-site-specific modification of C2A via lysine residues impairs target binding affinity; (iii) 99mTc-C2AcH has excellent radiolabeling, stability and PS binding characteristics and warrants in vivo evaluation as a cell-death imaging agent.
Collapse
Affiliation(s)
- Richard Tavaré
- Division of Imaging Sciences, King's College London, St. Thomas' Hospital, London SE17EH, United Kingdom
| | | | | | | |
Collapse
|
33
|
Pierce MA, Ellis RD, Martin LB, Malkin E, Tierney E, Miura K, Fay MP, Marjason J, Elliott SL, Mullen GED, Rausch K, Zhu D, Long CA, Miller LH. Phase 1 safety and immunogenicity trial of the Plasmodium falciparum blood-stage malaria vaccine AMA1-C1/ISA 720 in Australian adults. Vaccine 2010; 28:2236-2242. [PMID: 20051276 DOI: 10.1016/j.vaccine.2009.12.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 12/04/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
A Phase 1 trial was conducted in malaria-naïve adults to evaluate the recombinant protein vaccine apical membrane antigen 1-Combination 1 (AMA1-C1) formulated in Montanide ISA 720 (SEPPIC, France), a water-in-oil adjuvant. Vaccinations were halted early due to a formulation issue unrelated to stability or potency. Twenty-four subjects (12 in each group) were enrolled and received 5 or 20 microg protein at 0 and 3 months and four subjects were enrolled and received one vaccination of 80 microg protein. After first vaccination, nearly all subjects experienced mild to moderate local reactions and six experienced delayed local reactions occurring at Day 9 or later. After the second vaccination, three subjects experienced transient grade 3 (severe) local reactions; the remainder experienced grade 1 or 2 local reactions. All related systemic reactogenicity was grade 1 or 2, except one instance of grade 3 malaise. Anti-AMA1-C1 antibody responses were dose dependent and seen following each vaccination, with mean antibody levels 2-3 fold higher in the 20 microg group compared to the 5 microg group at most time points. In vitro growth-inhibitory activity was a function of the anti-AMA1 antibody titer. AMA1-C1 formulated in ISA 720 is immunogenic in malaria-naïve Australian adults. It is reasonably tolerated, though some transient, severe, and late local reactions are seen.
Collapse
Affiliation(s)
- Mark A Pierce
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States
| | - Ruth D Ellis
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States.
| | - Laura B Martin
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States
| | - Elissa Malkin
- PATH Malaria Vaccine Initiative, Bethesda, MD, United States
| | - Eveline Tierney
- PATH Malaria Vaccine Initiative, Bethesda, MD, United States
| | - Kazutoyo Miura
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States
| | - Michael P Fay
- Biostatistics Research Branch, NIAID/NIH, Rockville, MD, United States
| | | | | | - Gregory E D Mullen
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States
| | - Kelly Rausch
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States
| | - Daming Zhu
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, United States
| | - Louis H Miller
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States
| |
Collapse
|
34
|
Humoral immune response to mixed PfAMA1 alleles; multivalent PfAMA1 vaccines induce broad specificity. PLoS One 2009; 4:e8110. [PMID: 19956619 PMCID: PMC2779588 DOI: 10.1371/journal.pone.0008110] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 11/04/2009] [Indexed: 11/19/2022] Open
Abstract
Apical Membrane Antigen 1 (AMA1), a merozoite protein essential for red cell invasion, is a candidate malaria vaccine component. Immune responses to AMA1 can protect in experimental animal models and antibodies isolated from AMA1-vaccinated or malaria-exposed humans can inhibit parasite multiplication in vitro. The parasite is haploid in the vertebrate host and the genome contains a single copy of AMA1, yet on a population basis a number of AMA1 molecular surface residues are polymorphic, a property thought to be primarily as a result of selective immune pressure. After immunisation with AMA1, antibodies more effectively inhibit strains carrying homologous AMA1 genes, suggesting that polymorphism may compromise vaccine efficacy. Here, we analyse induction of broad strain inhibitory antibodies with a multi-allele Plasmodium falciparum AMA1 (PfAMA1) vaccine, and determine the relative importance of cross-reactive and strain-specific IgG fractions by competition ELISA and in vitro parasite growth inhibition assays. Immunisation of rabbits with a PfAMA1 allele mixture yielded an increased proportion of antibodies to epitopes common to all vaccine alleles, compared to single allele immunisation. Competition ELISA with the anti-PfAMA1 antibody fraction that is cross-reactive between FVO and 3D7 AMA1 alleles showed that over 80% of these common antibodies were shared with other PfAMA1 alleles. Furthermore, growth inhibition assays revealed that for any PfAMA1 allele (FVO or 3D7), the cross-reactive fraction alone, on basis of weight, had the same functional capacity on homologous parasites as the total affinity-purified IgGs (cross-reactive+strain-specific). By contrast, the strain-specific IgG fraction of either PfAMA1 allele showed slightly less inhibition of red cell invasion by homologous strains. Thus multi-allele immunisation relatively increases the levels of antibodies to common allele epitopes. This explains the broadened cross inhibition of diverse malaria parasites, and suggests multi-allele approaches warrant further clinical investigation.
Collapse
|
35
|
In vitro growth-inhibitory activity and malaria risk in a cohort study in mali. Infect Immun 2009; 78:737-45. [PMID: 19917712 DOI: 10.1128/iai.00960-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunity to the asexual blood stage of Plasmodium falciparum is complex and likely involves several effector mechanisms. Antibodies are thought to play a critical role in malaria immunity, and a corresponding in vitro correlate of antibody-mediated immunity has long been sought to facilitate malaria vaccine development. The growth inhibition assay (GIA) measures the capacity of antibodies to limit red blood cell (RBC) invasion and/or growth of P. falciparum in vitro. In humans, naturally acquired and vaccine-induced P. falciparum-specific antibodies have growth-inhibitory activity, but it is unclear if growth-inhibitory activity correlates with protection from clinical disease. In a longitudinal study in Mali, purified IgGs, obtained from plasmas collected before the malaria season from 220 individuals aged 2 to 10 and 18 to 25 years, were assayed for growth-inhibitory activity. Malaria episodes were recorded by passive surveillance over the subsequent 6-month malaria season. Logistic regression showed that greater age (odds ratio [OR], 0.78; 95% confidence interval [95% CI], 0.63 to 0.95; P = 0.02) and growth-inhibitory activity (OR, 0.50; 95% CI, 0.30 to 0.85; P = 0.01) were significantly associated with decreased malaria risk in children. A growth-inhibitory activity level of 40% was determined to be the optimal cutoff for discriminating malaria-immune and susceptible individuals in this cohort, with a sensitivity of 97.0%, but a low specificity of 24.3%, which limited the assay's ability to accurately predict protective immunity and to serve as an in vitro correlate of antibody-mediated immunity. These data suggest that antibodies which block merozoite invasion of RBC and/or inhibit the intra-RBC growth of the parasite contribute to but are not sufficient for the acquisition of malaria immunity.
Collapse
|
36
|
A randomized and controlled Phase 1 study of the safety and immunogenicity of the AMA1-C1/Alhydrogel + CPG 7909 vaccine for Plasmodium falciparum malaria in semi-immune Malian adults. Vaccine 2009; 27:7292-8. [PMID: 19874925 DOI: 10.1016/j.vaccine.2009.10.087] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/09/2009] [Accepted: 10/15/2009] [Indexed: 11/23/2022]
Abstract
A double blind, randomized and controlled Phase 1 clinical trial was conducted to assess the safety and immunogenicity in malaria-exposed adults of the Plasmodium falciparum blood stage vaccine candidate Apical Membrane Antigen 1-Combination 1 (AMA1-C1)/Alhydrogel with and without the novel adjuvant CPG 7909. Participants were healthy adults 18-45 years old living in the village of Donéguébougou, Mali. A total of 24 participants received 2 doses one month apart of either 80 microg AMA1-C1/Alhydrogel or 80 microg AMA1-C1/Alhydrogel + 564 microg CPG 7909. The study started in October 2007 and completed follow up in May 2008. Both vaccines were well tolerated, with only mild local adverse events and no systemic adverse events judged related to vaccination. The difference in antibody responses were over 2-fold higher in the group receiving CPG 7909 for all time points after second vaccination and the differences are statistically significant (all p<0.05). This is the first use of the novel adjuvant CPG 7909 in a malaria-exposed population.
Collapse
|
37
|
Ellis RD, Mullen GED, Pierce M, Martin LB, Miura K, Fay MP, Long CA, Shaffer D, Saul A, Miller LH, Durbin AP. A Phase 1 study of the blood-stage malaria vaccine candidate AMA1-C1/Alhydrogel with CPG 7909, using two different formulations and dosing intervals. Vaccine 2009; 27:4104-9. [PMID: 19410624 PMCID: PMC2722923 DOI: 10.1016/j.vaccine.2009.04.077] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/20/2009] [Accepted: 04/25/2009] [Indexed: 12/31/2022]
Abstract
A Phase 1 study was conducted in 24 malaria naïve adults to assess the safety and immunogenicity of the recombinant protein vaccine apical membrane antigen 1-Combination 1 (AMA1-C1)/Alhydrogel with CPG 7909 in two different formulations (phosphate buffer and saline), and given at two different dosing schedules, 0 and 1 month or 0 and 2 months. Both formulations were well tolerated and frequency of local reactions and solicited adverse events was similar among the groups. Peak antibody levels in the groups receiving CPG 7909 in saline were not significantly different than those receiving CPG 7909 in phosphate. Peak antibody levels in the groups vaccinated at a 0,2 month interval were 2.52-fold higher than those vaccinated at a 0,1 month interval (p=0.037, 95% CI 1.03, 4.28). In vitro growth inhibition followed the antibody level: median inhibition was 51% (0,1 month interval) versus 85% (0,2 month interval) in antibody from samples taken 2 weeks post-second vaccination (p=0.056).
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Adolescent
- Adult
- Aluminum Hydroxide/administration & dosage
- Aluminum Hydroxide/pharmacology
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/immunology
- Chemistry, Pharmaceutical
- Female
- Humans
- Immunization Schedule
- Malaria/prevention & control
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/adverse effects
- Malaria Vaccines/immunology
- Male
- Membrane Proteins/immunology
- Middle Aged
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/pharmacology
- Plasmodium falciparum/immunology
- Protozoan Proteins/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/immunology
- Young Adult
Collapse
Affiliation(s)
- Ruth D Ellis
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook I, MD 20852, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sagara I, Dicko A, Ellis RD, Fay MP, Diawara SI, Assadou MH, Sissoko MS, Kone M, Diallo AI, Saye R, Guindo MA, Kante O, Niambele MB, Miura K, Mullen GE, Pierce M, Martin LB, Dolo A, Diallo DA, Doumbo OK, Miller LH, Saul A. A randomized controlled phase 2 trial of the blood stage AMA1-C1/Alhydrogel malaria vaccine in children in Mali. Vaccine 2009; 27:3090-8. [PMID: 19428923 PMCID: PMC2713037 DOI: 10.1016/j.vaccine.2009.03.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/26/2009] [Accepted: 03/05/2009] [Indexed: 11/18/2022]
Abstract
A double blind, randomized, controlled Phase 2 clinical trial was conducted to assess the safety, immunogenicity, and biologic impact of the vaccine candidate Apical Membrane Antigen 1-Combination 1 (AMA1-C1), adjuvanted with Alhydrogel. Participants were healthy children 2-3 years old living in or near the village of Bancoumana, Mali. A total of 300 children received either the study vaccine or the comparator. No impact of vaccination was seen on the primary endpoint, the frequency of parasitemia measured as episodes >3000/microL/day at risk. There was a negative impact of vaccination on the hemoglobin level during clinical malaria, and mean incidence of hemoglobin <8.5 g/dL, in the direction of lower hemoglobin in the children who received AMA1-C1, although these differences were not significant after correction for multiple tests. These differences were not seen in the second year of transmission.
Collapse
Affiliation(s)
- Issaka Sagara
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry BP 1805 Bamako, University of Bamako, Mali, Tel/Fax:+223-2022-8109
| | - Alassane Dicko
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry BP 1805 Bamako, University of Bamako, Mali, Tel/Fax:+223-2022-8109
| | - Ruth D. Ellis
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook I, Room 1119 5640 Fishers Lane, Rockville MD 20852, MD, USA, Tel: +1-301-435-3064 Fax: +1-301-480-1962
| | - Michael P. Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sory I. Diawara
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry BP 1805 Bamako, University of Bamako, Mali, Tel/Fax:+223-2022-8109
| | - Mahamadoun H. Assadou
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry BP 1805 Bamako, University of Bamako, Mali, Tel/Fax:+223-2022-8109
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry BP 1805 Bamako, University of Bamako, Mali, Tel/Fax:+223-2022-8109
| | - Mamady Kone
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry BP 1805 Bamako, University of Bamako, Mali, Tel/Fax:+223-2022-8109
| | - Abdoulbaki I. Diallo
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry BP 1805 Bamako, University of Bamako, Mali, Tel/Fax:+223-2022-8109
| | - Renion Saye
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry BP 1805 Bamako, University of Bamako, Mali, Tel/Fax:+223-2022-8109
| | - Merepen A. Guindo
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry BP 1805 Bamako, University of Bamako, Mali, Tel/Fax:+223-2022-8109
| | - Ousmane Kante
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry BP 1805 Bamako, University of Bamako, Mali, Tel/Fax:+223-2022-8109
| | - Mohamed B. Niambele
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry BP 1805 Bamako, University of Bamako, Mali, Tel/Fax:+223-2022-8109
| | - Kazutoyo Miura
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook I, Room 1119 5640 Fishers Lane, Rockville MD 20852, MD, USA, Tel: +1-301-435-3064 Fax: +1-301-480-1962
| | - Gregory E.D. Mullen
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook I, Room 1119 5640 Fishers Lane, Rockville MD 20852, MD, USA, Tel: +1-301-435-3064 Fax: +1-301-480-1962
- The Rayne Institute, Division of Imaging Sciences, School of Medicine, King's College London, 4 Floor, Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK, Tel: +44 (0) 207 1888371, Fax: + 44 (0) 20 7188 5442
| | - Mark Pierce
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook I, Room 1119 5640 Fishers Lane, Rockville MD 20852, MD, USA, Tel: +1-301-435-3064 Fax: +1-301-480-1962
- Cookeville Regional Medical Center, 142 W. Fifth St., Cookeville, TN 38506
| | - Laura B. Martin
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook I, Room 1119 5640 Fishers Lane, Rockville MD 20852, MD, USA, Tel: +1-301-435-3064 Fax: +1-301-480-1962
- Novartis Vaccines Institute for Global Health S.r.l., Siena, Italy
| | - Amagana Dolo
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry BP 1805 Bamako, University of Bamako, Mali, Tel/Fax:+223-2022-8109
| | - Dapa A. Diallo
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry BP 1805 Bamako, University of Bamako, Mali, Tel/Fax:+223-2022-8109
| | - Ogobara K Doumbo
- Malaria Research and Training Center, Faculty of Medicine Pharmacy and Dentistry BP 1805 Bamako, University of Bamako, Mali, Tel/Fax:+223-2022-8109
| | - Louis H Miller
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook I, Room 1119 5640 Fishers Lane, Rockville MD 20852, MD, USA, Tel: +1-301-435-3064 Fax: +1-301-480-1962
| | - Allan Saul
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook I, Room 1119 5640 Fishers Lane, Rockville MD 20852, MD, USA, Tel: +1-301-435-3064 Fax: +1-301-480-1962
- Novartis Vaccines Institute for Global Health S.r.l., Siena, Italy
| |
Collapse
|
39
|
Anti-apical-membrane-antigen-1 antibody is more effective than anti-42-kilodalton-merozoite-surface-protein-1 antibody in inhibiting plasmodium falciparum growth, as determined by the in vitro growth inhibition assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:963-8. [PMID: 19439523 DOI: 10.1128/cvi.00042-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apical membrane antigen 1 (AMA1) and the 42-kDa merozoite surface protein 1 (MSP1(42)) are leading malaria vaccine candidates. Several preclinical and clinical trials have been conducted, and an in vitro parasite growth inhibition assay has been used to evaluate the biological activities of the resulting antibodies. In a U.S. phase 1 trial with AMA1-C1/Alhydrogel plus CPG 7909, the vaccination elicited anti-AMA1 immunoglobulin G (IgG) which showed up to 96% inhibition. However, antibodies induced by MSP1(42)-C1/Alhydrogel plus CPG 7909 vaccine showed less than 32% inhibition in vitro. To determine whether anti-MSP1(42) IgG had less growth-inhibitory activity than anti-AMA1 IgG in vitro, the amounts of IgG that produced 50% inhibition of parasite growth (Ab(50)) were compared for rabbit and human antibodies. The Ab(50)s of rabbit and human anti-MSP1(42) IgGs were significantly higher (0.21 and 0.62 mg/ml, respectively) than those of anti-AMA1 IgGs (0.07 and 0.10 mg/ml, respectively) against 3D7 parasites. Ab(50) data against FVO parasites also demonstrated significant differences. We further investigated the Ab(50)s of mouse and monkey anti-AMA1 IgGs and showed that there were significant differences between the species (mouse, 0.28 mg/ml, and monkey, 0.14 mg/ml, against 3D7 parasites). Although it is unknown whether growth-inhibitory activity in vitro reflects protective immunity in vivo, this study showed that the Ab(50) varies with both antigen and species. Our data provide a benchmark for antibody levels for future AMA1- or MSP1(42)-based vaccine development efforts in preclinical and clinical trials.
Collapse
|
40
|
|
41
|
Prediction of merozoite surface protein 1 and apical membrane antigen 1 vaccine efficacies against Plasmodium chabaudi malaria based on prechallenge antibody responses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 16:293-302. [PMID: 19116303 DOI: 10.1128/cvi.00230-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For the development of blood-stage malaria vaccines, there is a clear need to establish in vitro measures of the antibody-mediated and the cell-mediated immune responses that correlate with protection. In this study, we focused on establishing correlates of antibody-mediated immunity induced by immunization with apical membrane antigen 1 (AMA1) and merozoite surface protein 1(42) (MSP1(42)) subunit vaccines. To do so, we exploited the Plasmodium chabaudi rodent model, with which we can immunize animals with both protective and nonprotective vaccine formulations and allow the parasitemia in the challenged animals to peak. Vaccine formulations were varied with regard to the antigen dose, the antigen conformation, and the adjuvant used. Prechallenge antibody responses were evaluated by enzyme-linked immunosorbent assay and were tested for a correlation with protection against nonlethal P. chabaudi malaria, as measured by a reduction in the peak level of parasitemia. The analysis showed that neither the isotype profile nor the avidity of vaccine-induced antibodies correlated with protective efficacy. However, high titers of antibodies directed against conformation-independent epitopes were associated with poor vaccine performance and may limit the effectiveness of protective antibodies that recognize conformation-dependent epitopes. We were able to predict the efficacies of the P. chabaudi AMA1 (PcAMA1) and P. chabaudi MSP1(42) (PcMSP1(42)) vaccines only when the prechallenge antibody titers to both refolded and reduced/alkylated antigens were considered in combination. The relative importance of these two measures of vaccine-induced responses as predictors of protection differed somewhat for the PcAMA1 and the PcMSP1(42) vaccines, a finding confirmed in our final immunization and challenge study. A similar approach to the evaluation of vaccine-induced antibody responses may be useful during clinical trials of Plasmodium falciparum AMA1 and MSP1(42) vaccines.
Collapse
|
42
|
Miura K, Zhou H, Moretz SE, Diouf A, Thera MA, Dolo A, Doumbo O, Malkin E, Diemert D, Miller LH, Mullen GE, Long CA. Comparison of biological activity of human anti-apical membrane antigen-1 antibodies induced by natural infection and vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:8776-83. [PMID: 19050299 PMCID: PMC2788747 DOI: 10.4049/jimmunol.181.12.8776] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vaccines represent a significant potential means of decreasing global morbidity and mortality due to malaria. Clinical trials in the United States with Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) showed that the vaccine induced biologically active Abs judged by an in vitro parasite growth inhibition assay (GIA). However, the same vaccine in Malian adults did not increase biological activity, although it elevated ELISA titers. Because GIA has been used to evaluate the biological activity of Abs induced by blood stage malarial vaccine candidates, we explored this discrepancy in this study. We affinity purified AMA1-specific Abs from both U.S. vaccinees and nonvaccinated individuals living in a malaria-endemic area of Mali and performed ELISA and GIA. Both AMA1-specifc Abs induced by vaccination (U.S.) and by natural infection (Mali) have comparable biological activity in GIA when the ELISA titer is normalized. However, a fraction of Malians' IgG that did not bind to AMA1 protein (Mali-non-AMA1 IgG) reduced the biological activity of the AMA1 Abs from U.S. vaccinees; in contrast, U.S.-non-AMA1 IgGs did not show a reduction of the biological activity. Further investigation revealed that the reduction was due to malaria-specific IgGs in the Mali-non-AMA1 IgGs. The fact that both U.S.- and Mali-AMA1-specific Abs showed comparable biological activity supports further development of AMA1-based vaccines. However, the reduction of biological activity of AMA1-specific Ab by other malaria-specific IgGs likely explains the limited effect on growth-inhibitory activity of Abs induced by AMA1 vaccination in Malian adults and may complicate efforts to develop a blood stage malaria vaccine.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Hong Zhou
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Samuel E. Moretz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mahamadou A Thera
- Malaria Research and Training Center, Department of Hematology and Parasitology, Univ. of Bamako, Bamako, Mali
| | - Amagana Dolo
- Malaria Research and Training Center, Department of Hematology and Parasitology, Univ. of Bamako, Bamako, Mali
| | - Ogobara Doumbo
- Malaria Research and Training Center, Department of Hematology and Parasitology, Univ. of Bamako, Bamako, Mali
| | - Elissa Malkin
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - David Diemert
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Louis H. Miller
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Gregory E.D. Mullen
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
43
|
Narum DL, Nguyen V, Zhang Y, Glen J, Shimp RL, Lambert L, Ling IT, Reiter K, Ogun SA, Long C, Holder AA, Herrera R. Identification and characterization of the Plasmodium yoelii PyP140/RON4 protein, an orthologue of Toxoplasma gondii RON4, whose cysteine-rich domain does not protect against lethal parasite challenge infection. Infect Immun 2008; 76:4876-82. [PMID: 18710865 PMCID: PMC2573347 DOI: 10.1128/iai.01717-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 08/03/2008] [Indexed: 11/20/2022] Open
Abstract
Previously, we identified a Plasmodium yoelii YM 140-kDa merozoite protein, designated PyP140, which formed a complex with apical membrane antigen 1 (AMA1). Furthermore, we produced a nonprotective monoclonal antibody (MAb), 48F8, that immunoprecipitated metabolically labeled PyP140 and localized the protein to the merozoite's apical end and, less frequently, to the merozoite surface, as observed by immunofluorescence assay (IFA). Here, using MAb 48F8, we have identified the pyp140 gene by screening a P. yoelii lambda-Zap cDNA expression library. The pyp140 cDNA covers approximately 90% of the putative open reading frame (ORF) of PY02159 from the P. yoelii NL genome sequencing project. Analysis of the complete gene identified the presence of two introns. The ORF encodes a 102,407-Da protein with an amino-terminal signal sequence, a series of three unique types of repeats, and a cysteine-rich region. The binding site of MAb 48F8 was also identified. A BLAST search with the deduced amino acid sequence shows significant similarity with the Toxoplasma gondii RON4 protein and the Plasmodium falciparum RON4 protein, and the sequence is highly conserved in other Plasmodium species. We produced the cysteine-rich domain of PyP140/RON4 by using the Pichia pastoris expression system and characterized the recombinant protein biochemically and biophysically. BALB/c mice immunized with the protein formulated in oil-in-water adjuvants produced antibodies that recognize parasitized erythrocytes by IFA and native PyP140/RON4 by immunoblotting but failed to protect against a lethal P. yoelii YM infection. Our results show that PyP140/RON4 is located within the rhoptries or micronemes. It may associate in part with AMA1, but the conserved cysteine-rich domain does not appear to elicit inhibitory antibodies, a finding that is supported by the marked sequence conservation in this protein within Plasmodium spp., suggesting that it is not under immune pressure.
Collapse
Affiliation(s)
- David L Narum
- Malaria Vaccine Development Branch, NIH, 5640 Fishers Lane, Twinbrook I, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
McCallum FJ, Persson KEM, Mugyenyi CK, Fowkes FJI, Simpson JA, Richards JS, Williams TN, Marsh K, Beeson JG. Acquisition of growth-inhibitory antibodies against blood-stage Plasmodium falciparum. PLoS One 2008; 3:e3571. [PMID: 18958278 PMCID: PMC2570221 DOI: 10.1371/journal.pone.0003571] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 10/07/2008] [Indexed: 11/18/2022] Open
Abstract
Background Antibodies that inhibit the growth of blood-stage Plasmodium falciparum may play an important role in acquired and vaccine-induced immunity in humans. However, the acquisition and activity of these antibodies is not well understood. Methods We tested dialysed serum and purified immunoglobulins from Kenyan children and adults for inhibition of P. falciparum blood-stage growth in vitro using different parasite lines. Serum antibodies were measured by ELISA to blood-stage parasite antigens, extracted from P. falciparum schizonts, and to recombinant merozoite surface protein 1 (42 kDa C-terminal fragment, MSP1-42). Results Antibodies to blood-stage antigens present in schizont protein extract and to recombinant MSP1-42 significantly increased with age and were highly correlated. In contrast, growth-inhibitory activity was not strongly associated with age and tended to decline marginally with increasing age and exposure, with young children demonstrating the highest inhibitory activity. Comparison of growth-inhibitory activity among samples collected from the same population at different time points suggested that malaria transmission intensity influenced the level of growth-inhibitory antibodies. Antibodies to recombinant MSP1-42 were not associated with growth inhibition and high immunoglobulin G levels were poorly predictive of inhibitory activity. The level of inhibitory activity against different isolates varied. Conclusions Children can acquire growth-inhibitory antibodies at a young age, but once they are acquired they do not appear to be boosted by on-going exposure. Inhibitory antibodies may play a role in protection from early childhood malaria.
Collapse
Affiliation(s)
- Fiona J. McCallum
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Cleopatra K. Mugyenyi
- Kenya Medical Research Institute, CGMRC/Wellcome Trust Collaborative Program, Kilifi, Kenya
| | - Freya J. I. Fowkes
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Julie A. Simpson
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Carlton, Victoria, Australia
| | - Jack S. Richards
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Thomas N. Williams
- Kenya Medical Research Institute, CGMRC/Wellcome Trust Collaborative Program, Kilifi, Kenya
| | - Kevin Marsh
- Kenya Medical Research Institute, CGMRC/Wellcome Trust Collaborative Program, Kilifi, Kenya
| | - James G. Beeson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
45
|
Antibody-mediated growth inhibition of Plasmodium falciparum: relationship to age and protection from parasitemia in Kenyan children and adults. PLoS One 2008; 3:e3557. [PMID: 18958285 PMCID: PMC2570335 DOI: 10.1371/journal.pone.0003557] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/09/2008] [Indexed: 12/01/2022] Open
Abstract
Background Antibodies that impair Plasmodium falciparum merozoite invasion and intraerythrocytic development are one of several mechanisms that mediate naturally acquired immunity to malaria. Attempts to correlate anti-malaria antibodies with risk of infection and morbidity have yielded inconsistent results. Growth inhibition assays (GIA) offer a convenient method to quantify functional antibody activity against blood stage malaria. Methods A treatment-time-to-infection study was conducted over 12-weeks in a malaria holoendemic area of Kenya. Plasma collected from healthy individuals (98 children and 99 adults) before artemether-lumefantrine treatment was tested by GIA in three separate laboratories. Results Median GIA levels varied with P. falciparum line (D10, 8.8%; 3D7, 34.9%; FVO, 51.4% inhibition). The magnitude of growth inhibition decreased with age in all P. falciparum lines tested with the highest median levels among children <4 years compared to adults (e.g. 3D7, 45.4% vs. 30.0% respectively, p = 0.0003). Time-to-infection measured by weekly blood smears was significantly associated with level of GIA controlling for age. Upper quartile inhibition activity was associated with less risk of infection compared to individuals with lower levels (e.g. 3D7, hazard ratio = 1.535, 95% CI = 1.012–2.329; p = 0.0438). Various GIA methodologies had little effect on measured parasite growth inhibition. Conclusion Plasma antibody-mediated growth inhibition of blood stage P. falciparum decreases with age in residents of a malaria holoendemic area. Growth inhibition assay may be a useful surrogate of protection against infection when outcome is controlled for age.
Collapse
|
46
|
Malkin E, Hu J, Li Z, Chen Z, Bi X, Reed Z, Dubovsky F, Liu J, Wang Q, Pan X, Chen T, Giersing B, Xu Y, Kang X, Gu J, Shen Q, Tucker K, Tierney E, Pan W, Long C, Cao Z. A phase 1 trial of PfCP2.9: an AMA1/MSP1 chimeric recombinant protein vaccine for Plasmodium falciparum malaria. Vaccine 2008; 26:6864-73. [PMID: 18930094 DOI: 10.1016/j.vaccine.2008.09.081] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/18/2008] [Accepted: 09/26/2008] [Indexed: 11/16/2022]
Abstract
Apical Membrane Antigen 1 (AMA1) and Merozoite Surface Protein 1 (MSP1) were produced as a recombinant fusion protein and formulated with the adjuvant Montanide ISA 720 with the aim of replicating the structure present in the parasite protein. A previous trial with this construct demonstrated the vaccine was safe and immunogenic but was associated with injection site reactogenicity. This Phase 1a dose-escalating, double blind, randomized, controlled trial of PfCP2.9/Montanide ISA 720 was conducted to evaluate alternative dose levels and vaccination schedules, with a pre-formulated vaccine that had undergone more in-depth and frequent quality control and stability analysis. The trial was conducted in seventy healthy Chinese malaria-naïve volunteers between January 2006 and January 2007. The objective was to assess the safety, reactogenicity and immunogenicity of 5, 20 and 50microg of PfCP2.9/ISA 720 under 2 different schedules. The most common adverse event was injection site tenderness (53%). The frequency and severity of adverse events was similar in both vaccination schedules. Antibody responses were induced and remained elevated throughout the study in volunteers receiving vaccine (p<0.001). Although high antibody titers as measured by ELISA to the PfCP2.9 immunogen were observed, biological function of these antibodies was not reflected by the in vitro inhibition of parasite growth, and there was limited recognition of fixed parasites in an immunofluorescence assay. At all three dose levels and both schedules, this formulation of PfCP2.9/ISA 720 is well tolerated, safe and immunogenic; however no functional activity against the parasite was observed.
Collapse
|
47
|
Abstract
The demonstration of efficacy of two candidate malaria vaccines in children living in malaria-endemic areas, namely RTS,S from the circumsporozoite protein that reduced infection and clinical malaria in Mozambique, and an asexual blood-stage vaccine combining MSP1/MSP2/RESA that reduced parasite density in Papua New Guinea, allows one to believe that a malaria vaccine will be available for the fight against malaria in the next decade. Even if long-lasting impregnated bednets and indoor residual spraying have proven to be effective in reducing malaria transmission, these interventions may not be sufficient in the long-run since they rely on too few compounds and are, thus, vulnerable to the emergence of resistance. New tools, such as malaria vaccines, may, therefore, provide an added value to achieve the goal of local elimination and subsequent eradication of malaria. A promising candidate for that purpose would be a highly efficacious multicomponent vaccine that includes at least a sexual-stage antigen, the appropriate initial setting would be an area with low endemicity and limited population exchange, and the most suitable mode of delivery would be mass vaccination. For nonimmune populations, such as travelers visiting malaria-endemic areas, the usefulness of the first generation of malaria vaccine(s) will be limited, since the level of protection that is foreseen is unlikely to achieve that of malaria chemoprophylaxis. Only long-term travelers, expatriates and soldiers might realistically benefit from a pre-erythrocytic and/or blood-stage vaccine with an intermediate level of efficacy.
Collapse
|
48
|
Mullen GED, Ellis RD, Miura K, Malkin E, Nolan C, Hay M, Fay MP, Saul A, Zhu D, Rausch K, Moretz S, Zhou H, Long CA, Miller LH, Treanor J. Phase 1 trial of AMA1-C1/Alhydrogel plus CPG 7909: an asexual blood-stage vaccine for Plasmodium falciparum malaria. PLoS One 2008; 3:e2940. [PMID: 18698359 PMCID: PMC2491586 DOI: 10.1371/journal.pone.0002940] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 07/14/2008] [Indexed: 11/18/2022] Open
Abstract
Background Apical Membrane Antigen 1 (AMA1), a polymorphic merozoite surface protein, is a leading blood-stage malaria vaccine candidate. This is the first reported use in humans of an investigational vaccine, AMA1-C1/Alhydrogel, with the novel adjuvant CPG 7909. Methods A phase 1 trial was conducted at the University of Rochester with 75 malaria-naive volunteers to assess the safety and immunogenicity of the AMA1-C1/Alhydrogel+CPG 7909 malaria vaccine. Participants were sequentially enrolled and randomized within dose escalating cohorts to receive three vaccinations on days 0, 28 and 56 of either 20 µg of AMA1-C1/Alhydrogel®+564 µg CPG 7909 (n = 15), 80 µg of AMA1-C1/Alhydrogel® (n = 30), or 80 µg of AMA1-C1/Alhydrogel+564 µg CPG 7909 (n = 30). Results Local and systemic adverse events were significantly more likely to be of higher severity with the addition of CPG 7909. Anti-AMA1 immunoglobulin G (IgG) were detected by enzyme-linked immunosorbent assay (ELISA), and the immune sera of volunteers that received 20 µg or 80 µg of AMA1-C1/Alhydrogel+CPG 7909 had up to 14 fold significant increases in anti-AMA1 antibody concentration compared to 80 µg of AMA1-C1/Alhydrogel alone. The addition of CPG 7909 to the AMA1-C1/Alhydrogel vaccine in humans also elicited AMA1 specific immune IgG that significantly and dramatically increased the in vitro growth inhibition of homologous parasites to levels as high as 96% inhibition. Conclusion/Significance The safety profile of the AMA1-C1/Alhydrogel+CPG 7909 malaria vaccine is acceptable, given the significant increase in immunogenicity observed. Further clinical development is ongoing. Trial Registration ClinicalTrials.gov NCT00344539
Collapse
Affiliation(s)
- Gregory E. D. Mullen
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (GEDM); (RDE)
| | - Ruth D. Ellis
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (GEDM); (RDE)
| | - Kazutoyo Miura
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Elissa Malkin
- PATH Malaria Vaccine Initiative, Bethesda, Maryland, United States of America
| | - Caroline Nolan
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Mhorag Hay
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Michael P. Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Allan Saul
- Novartis Vaccines Institute for Global Health S.r.l. (NVGH), Siena, Italy
| | - Daming Zhu
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kelly Rausch
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Samuel Moretz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Hong Zhou
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Louis H. Miller
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - John Treanor
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
49
|
Dicko A, Sagara I, Ellis RD, Miura K, Guindo O, Kamate B, Sogoba M, Niambelé MB, Sissoko M, Baby M, Dolo A, Mullen GED, Fay MP, Pierce M, Diallo DA, Saul A, Miller LH, Doumbo OK. Phase 1 study of a combination AMA1 blood stage malaria vaccine in Malian children. PLoS One 2008; 3:e1563. [PMID: 18270560 PMCID: PMC2216433 DOI: 10.1371/journal.pone.0001563] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Accepted: 12/27/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Apical Membrane Antigen-1 (AMA1) is one of the leading blood stage malaria vaccine candidates. AMA1-C1/Alhydrogel consists of an equal mixture of recombinant AMA1 from FVO and 3D7 clones of P. falciparum, adsorbed onto Alhydrogel. A Phase 1 study in semi-immune adults in Mali showed that the vaccine was safe and immunogenic, with higher antibody responses in those who received the 80 microg dose. The aim of this study was to assess the safety and immunogenicity of this vaccine in young children in a malaria endemic area. DESIGN This was a Phase 1 dose escalating study in 36 healthy children aged 2-3 years started in March 2006 in Donéguébougou, Mali. Eighteen children in the first cohort were randomized 2 ratio 1 to receive either 20 microg AMA1-C1/Alhydrogel or Haemophilus influenzae type b Hiberix vaccine. Two weeks later 18 children in the second cohort were randomized 2 ratio 1 to receive either 80 microg AMA1-C1/Alhydrogel or Haemophilus influenzae type b Hiberix vaccine. Vaccinations were administered on Days 0 and 28 and participants were examined on Days 1, 2, 3, 7, and 14 after vaccination and then about every two months. Results to Day 154 are reported in this manuscript. RESULTS Of 36 volunteers enrolled, 33 received both vaccinations. There were 9 adverse events related to the vaccination in subjects who received AMA1-C1 vaccine and 7 in those who received Hiberix. All were mild to moderate. No vaccine-related serious or grade 3 adverse events were observed. There was no increase in adverse events with increasing dose of vaccine or number of immunizations. In subjects who received the test vaccine, antibodies to AMA1 increased on Day 14 and peaked at Day 42, with changes from baseline significantly different from subjects who received control vaccine. CONCLUSION AMA-C1 vaccine is well tolerated and immunogenic in children in this endemic area although the antibody response was short lived. TRIAL REGISTRATION Clinicaltrials.gov NCT00341250.
Collapse
Affiliation(s)
- Alassane Dicko
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Ruth D. Ellis
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kazutoyo Miura
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ousmane Guindo
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Beh Kamate
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Moussa Sogoba
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Mohamed Balla Niambelé
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Mady Sissoko
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Mounirou Baby
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Amagana Dolo
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Gregory E. D. Mullen
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael P. Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark Pierce
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dapa A. Diallo
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
| | - Allan Saul
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Louis H. Miller
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- *E-mail: (LHM); (OKD)
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Bamako, Mali
- *E-mail: (LHM); (OKD)
| |
Collapse
|