1
|
Sever B, Otsuka M, Fujita M, Ciftci H. A Review of FDA-Approved Anti-HIV-1 Drugs, Anti-Gag Compounds, and Potential Strategies for HIV-1 Eradication. Int J Mol Sci 2024; 25:3659. [PMID: 38612471 PMCID: PMC11012182 DOI: 10.3390/ijms25073659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is an enormous global health threat stemming from human immunodeficiency virus (HIV-1) infection. Up to now, the tremendous advances in combination antiretroviral therapy (cART) have shifted HIV-1 infection from a fatal illness into a manageable chronic disorder. However, the presence of latent reservoirs, the multifaceted nature of HIV-1, drug resistance, severe off-target effects, poor adherence, and high cost restrict the efficacy of current cART targeting the distinct stages of the virus life cycle. Therefore, there is an unmet need for the discovery of new therapeutics that not only bypass the limitations of the current therapy but also protect the body's health at the same time. The main goal for complete HIV-1 eradication is purging latently infected cells from patients' bodies. A potential strategy called "lock-in and apoptosis" targets the budding phase of the life cycle of the virus and leads to susceptibility to apoptosis of HIV-1 infected cells for the elimination of HIV-1 reservoirs and, ultimately, for complete eradication. The current work intends to present the main advantages and disadvantages of United States Food and Drug Administration (FDA)-approved anti-HIV-1 drugs as well as plausible strategies for the design and development of more anti-HIV-1 compounds with better potency, favorable pharmacokinetic profiles, and improved safety issues.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Türkiye;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Bioengineering Sciences, Izmir Katip Celebi University, Izmir 35620, Türkiye
| |
Collapse
|
2
|
Comparative Pharmacokinetics of a Dual Inhibitor of HIV-1, NBD-14189, in Rats and Dogs with a Proof-of-Concept Evaluation of Antiviral Potency in SCID-hu Mouse Model. Viruses 2022; 14:v14102268. [PMID: 36298823 PMCID: PMC9611370 DOI: 10.3390/v14102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
We earlier reported substantial progress in designing gp120 antagonists. Notably, we discovered that NBD-14189 is not only the most active gp120 antagonist but also shows antiviral activity against HIV-1 Reverse Transcriptase (RT). We also confirmed its binding to HIV-1 RT by X-ray crystallography. The dual inhibition is highly significant because, intriguingly, this compound bridges the dNTP and NNRTI-binding sites and inhibits the polymerase activity of isolated RT in the enzymatic assay. This novel finding is expected to lead to new avenues in designing a novel class of HIV-1 dual inhibitors. Therefore, we needed to advance this inhibitor to preclinical assessment. To this end, we report the pharmacokinetics (PK) study of NBD-14189 in rats and dogs. Subsequently, we assessed the toxicity and therapeutic efficacy in vivo in the SCID-hu Thy/Liv mouse model. The PK data indicated a favorable half-life (t1/2) and excellent oral bioavailability (%F = 61%). NBD-14189 did not show any measurable toxicity in the mice, and treatment reduced HIV replication at 300 mg/kg per day in the absence of clear evidence of protection from HIV-mediated human thymocyte depletion. The data indicated the potential of this inhibitor as an anti-HIV-1 agent and needs to be assessed in a non-human primate (NHP) model.
Collapse
|
3
|
Guo J, Liu J. Effect of white mange mixture in a murine model of psoriasis. Exp Ther Med 2019; 18:881-887. [PMID: 31384318 DOI: 10.3892/etm.2019.7641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/22/2019] [Indexed: 11/05/2022] Open
Abstract
Psoriasis is an autoimmune disease with periods of remission or aggravation. Until now, no effective treatment has been developed. The aim of this study was to assess the effect of the traditional Chinese medicine white mange mixture in a murine model of vaginal psoriasis. Female mice (n=70) were randomly divided into seven groups as follows: negative control group, positive control group, acitretin group, Xiaoying granule group, high-dose white mange mixture group, medium-dose white mange mixture group, and low-dose white mange mixture group. After vaginal psoriasis mouse model design, the inhibition of keratinocyte (KC) cell proliferating cell nuclear antigen (PCNA) was achieved by SP immunohistochemical method, spleen T lymphocyte apoptosis detection was assessed by using electron microscopy and granulocyte colony stimulating factor (GM-CSF) levels were detected by ELISA method. According to our results, T lymphocyte nucleus appearance in the negative control group was normal whereas in all the doses of white mange mixture the nucleus significantly showed apoptotic trend. Compared with the negative control group, the amount of GM-CSF in the serum of the model was significantly increased (P<0.01) while administration of white mange mixture in different doses decreased the GM-CSF content significantly (P<0.01). White mange mixture can significantly inhibit vaginal psoriasis in a mouse model by decreasing the amount of epithelium KC cell PCNA and production of the inflammatory cytokines GM-CSF in serum.
Collapse
Affiliation(s)
- Jiangtao Guo
- Pharmaceutical College, Guiyang University of Chinese Medicine, Guiyang, Guizhou 550025, P.R. China
| | - Jie Liu
- Pharmaceutical College, Guiyang University of Chinese Medicine, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
4
|
Insight into the mechanism of action of EP-39, a bevirimat derivative that inhibits HIV-1 maturation. Antiviral Res 2019; 164:162-175. [PMID: 30825471 DOI: 10.1016/j.antiviral.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/15/2022]
Abstract
Maturation of human immunodeficiency virus type 1 (HIV-1) particles is a key step for viral infectivity. This process can be blocked using maturation inhibitors (MIs) that affect the cleavage of the capsid-spacer peptide 1 (CA-SP1) junction. Here, we investigated the mechanisms underlying the activity of EP-39, a bevirimat (BVM) derivative with better hydrosolubility. To this aim, we selected in vitro EP-39- and BVM-resistant mutants. We found that EP-39-resistant viruses have four mutations within the CA domain (CA-A194T, CA-T200N, CA-V230I, and CA-V230A) and one in the first residue of SP1 (SP1-A1V). We also identified six mutations that confer BVM resistance (CA-A194T, CA-L231F, CA-L231M, SP1-A1V, SP1-S5N and SP1-V7A). To characterize the EP-39 and BVM-resistant mutants, we studied EP-39 effects on mutant virus replication and performed a biochemical analysis with both MIs. We observed common and distinct characteristics, suggesting that, although EP-39 and BVM share the same chemical skeleton, they could interact in a different way with the Gag polyprotein precursor (Pr55Gag). Using an in silico approach, we observed that EP-39 and BVM present different predicted positions on the hexameric crystal structure of the CACTD-SP1 Gag fragment. To clearly understand the relationship between assembly and maturation, we investigated the impact of all identified mutations on virus assembly by expressing Pr55Gag mutants. Finally, using NMR, we have shown that the interaction of EP-39 with a peptide carrying the SP1-A1V mutation (CA-SP1(A1V)-NC) is almost suppressed in comparison with the wild type peptide. These results suggest that EP-39 and BVM could interact differently with the Pr55Gag lattice and that the mutation of the first SP1 residue induces a loss of interaction between Pr55Gag and EP-39.
Collapse
|
5
|
Xiao S, Tian Z, Wang Y, Si L, Zhang L, Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med Res Rev 2018; 38:951-976. [PMID: 29350407 PMCID: PMC7168445 DOI: 10.1002/med.21484] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/20/2022]
Abstract
Viral infections cause many serious human diseases with high mortality rates. New drug‐resistant strains are continually emerging due to the high viral mutation rate, which makes it necessary to develop new antiviral agents. Compounds of plant origin are particularly interesting. The pentacyclic triterpenoids (PTs) are a diverse class of natural products from plants composed of three terpene units. They exhibit antitumor, anti‐inflammatory, and antiviral activities. Oleanolic, betulinic, and ursolic acids are representative PTs widely present in nature with a broad antiviral spectrum. This review focuses on the recent literatures in the antiviral efficacy of this class of phytochemicals and their derivatives. In addition, their modes of action are also summarized.
Collapse
Affiliation(s)
- Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenyu Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yufei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Longlong Si
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
6
|
Kapewangolo P, Omolo JJ, Fonteh P, Kandawa-Schulz M, Meyer D. Triterpenoids from Ocimum labiatum Activates Latent HIV-1 Expression In Vitro: Potential for Use in Adjuvant Therapy. Molecules 2017; 22:molecules22101703. [PMID: 29027985 PMCID: PMC6151608 DOI: 10.3390/molecules22101703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022] Open
Abstract
Latent HIV reservoirs in infected individuals prevent current treatment from eradicating infection. Treatment strategies against latency involve adjuvants for viral reactivation which exposes viral particles to antiretroviral drugs. In this study, the effect of novel triterpenoids isolated from Ocimum labiatum on HIV-1 expression was measured through HIV-1 p24 antigen capture in the U1 latency model of HIV-1 infection and in peripheral blood mononuclear cells (PBMCs) of infected patients on combination antiretroviral therapy (cART). The mechanism of viral reactivation was determined through the compound’s effect on cytokine production, histone deacetylase (HDAC) inhibition, and protein kinase C (PKC) activation. Cytotoxicity of the triterpenoids was determined using a tetrazolium dye and flow cytometry. The isolated triterpene isomers, 3-hydroxy-4,6a,6b,11,12,14b-hexamethyl-1,2,3,4,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-octadecahydropicene-4,8a-dicarboxylic acid (HHODC), significantly (p < 0.05) induced HIV-1 expression in a dose-dependent manner in U1 cells at non-cytotoxic concentrations. HHODC also induced viral expression in PBMCs of HIV-1 infected patients on cART. In addition, the compound up-regulated the production of interleukin (IL)-2, IL-6, tumour necrosis factor (TNF)-α, and interferon (IFN)-γ but had no effect on HDAC and PKC activity, suggesting cytokine upregulation as being involved in latency activation. The observed in vitro reactivation of HIV-1 introduces the adjuvant potential of HHODC for the first time here.
Collapse
Affiliation(s)
- Petrina Kapewangolo
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield Campus, Pretoria 0002, South Africa.
- Department of Chemistry and Biochemistry, Faculty of Science, University of Namibia, P/Bag 13301, Windhoek 9000, Namibia.
| | - Justin J Omolo
- Department of Traditional Medicine, National Institute for Medical Research, P.O. Box 9653, Dar es Salaam 2448, Tanzania.
| | - Pascaline Fonteh
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield Campus, Pretoria 0002, South Africa.
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Martha Kandawa-Schulz
- Department of Chemistry and Biochemistry, Faculty of Science, University of Namibia, P/Bag 13301, Windhoek 9000, Namibia.
| | - Debra Meyer
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield Campus, Pretoria 0002, South Africa.
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa.
| |
Collapse
|
7
|
Ibeh BO, Furuta Y, Habu JB, Ogbadu L. Humanized mouse as an appropriate model for accelerated global HIV research and vaccine development: current trend. Immunopharmacol Immunotoxicol 2016; 38:395-407. [PMID: 27604679 DOI: 10.1080/08923973.2016.1233980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Humanized mouse models currently have seen improved development and have received wide applications. Its usefulness is observed in cell and tissue transplant involving basic and applied human disease research. In this article, the development of a new generation of humanized mice was discussed as well as their relevant application in HIV disease. Furthermore, current techniques employed to overcome the initial limitations of mouse model were reviewed. Highly immunodeficient mice which support cell and tissue differentiation and do not reject xenografts are indispensable for generating additional appropriate models useful in disease study, this phenomenom deserves emphases, scientific highlight and a definitive research focus. Since the early 2000s, a series of immunodeficient mice appropriate for generating humanized mice has been successively developed by introducing the IL-2Rγnull gene (e.g. NOD/SCID/γcnull and Rag2nullγcnull mice) through various genomic approaches. These mice were generated by genetically introducing human cytokine genes into NOD/SCID/γcnull and Rag2nullγcnull mouse backgrounds. The application of these techniques serves as a quick and appropriate mechanistic model for basic and therapeutic investigations of known and emerging infections.
Collapse
Affiliation(s)
- Bartholomew Okechukwu Ibeh
- a Immunovirology and Vaccine Development Laboratory, Medical Biotechnology Department , National Biotechnology Development Agency , Abuja , Nigeria
| | - Yasuhide Furuta
- b RIKEN CDB CLST (Center for Life Science Technologies) , Kobe , Japan
| | - Josiah Bitrus Habu
- c Bioresources Development Center Odi, Bayelsa , National Biotechnology Development Agency , Abuja , Nigeria
| | - Lucy Ogbadu
- d National Biotechnology Development Agency , Abuja , Nigeria
| |
Collapse
|
8
|
Nowicka-Sans B, Protack T, Lin Z, Li Z, Zhang S, Sun Y, Samanta H, Terry B, Liu Z, Chen Y, Sin N, Sit SY, Swidorski JJ, Chen J, Venables BL, Healy M, Meanwell NA, Cockett M, Hanumegowda U, Regueiro-Ren A, Krystal M, Dicker IB. Identification and Characterization of BMS-955176, a Second-Generation HIV-1 Maturation Inhibitor with Improved Potency, Antiviral Spectrum, and Gag Polymorphic Coverage. Antimicrob Agents Chemother 2016; 60:3956-69. [PMID: 27090171 PMCID: PMC4914680 DOI: 10.1128/aac.02560-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/03/2015] [Indexed: 12/26/2022] Open
Abstract
BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1 activity and a greatly improved preclinical profile compared to that of bevirimat.
Collapse
Affiliation(s)
- Beata Nowicka-Sans
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Tricia Protack
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Zeyu Lin
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Zhufang Li
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Sharon Zhang
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Yongnian Sun
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Himadri Samanta
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Brian Terry
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Zheng Liu
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Yan Chen
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Ny Sin
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Sing-Yuen Sit
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Jacob J Swidorski
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Jie Chen
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Brian L Venables
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Matthew Healy
- Bristol-Myers Squibb, Research and Development, Department of Genomics, Wallingford, Connecticut, USA
| | - Nicholas A Meanwell
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Mark Cockett
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Umesh Hanumegowda
- Bristol-Myers Squibb, Research and Development, Department of Preclinical Optimization, Wallingford, Connecticut, USA
| | - Alicia Regueiro-Ren
- Bristol-Myers Squibb, Research and Development, Department of Discovery Chemistry, Wallingford, Connecticut, USA
| | - Mark Krystal
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| | - Ira B Dicker
- Bristol-Myers Squibb, Research and Development, Department of Virology, Wallingford, Connecticut, USA
| |
Collapse
|
9
|
Oral administration of the nucleoside EFdA (4'-ethynyl-2-fluoro-2'-deoxyadenosine) provides rapid suppression of HIV viremia in humanized mice and favorable pharmacokinetic properties in mice and the rhesus macaque. Antimicrob Agents Chemother 2015; 59:4190-8. [PMID: 25941222 DOI: 10.1128/aac.05036-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/28/2015] [Indexed: 11/20/2022] Open
Abstract
Like normal cellular nucleosides, the nucleoside reverse transcriptase (RT) inhibitor (NRTI) 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) has a 3'-hydroxyl moiety, and yet EFdA is a highly potent inhibitor of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication with activity against a broad range of clinically important drug-resistant HIV isolates. We evaluated the anti-HIV activity of EFdA in primary human cells and in HIV-infected humanized mice. EFdA exhibited excellent potency against HIVJR-CSF in phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs), with a 50% inhibitory concentration of 0.25 nM and a selectivity index of 184,000; similar antiviral potency was found against 12 different HIV clinical isolates from multiple clades (A, B, C, D, and CRF01_AE). EFdA was readily absorbed after oral dosing (5 mg/kg of body weight) in both mice and the rhesus macaque, with micromolar levels of the maximum concentration of drug in serum (Cmax) attained at 30 min and 90 min, respectively. Trough levels were at or above 90% inhibitory concentration (IC90) levels in the macaque at 24 h, suggesting once-daily dosing. EFdA showed reasonable penetration of the blood-brain barrier in the rhesus macaque, with cerebrospinal fluid levels at approximately 25% of plasma levels 8 h after single oral dosing. Rhesus PBMCs isolated 24 h following a single oral dose of 5 mg/kg EFdA were refractory to SIV infection due to sufficiently high intracellular EFdA-triphosphate levels. The intracellular half-life of EFdA-triphosphate in PBMCs was determined to be >72 h following a single exposure to EFdA. Daily oral administration of EFdA at low dosage levels (1 to 10 mg/kg/day) was highly effective in protecting humanized mice from HIV infection, and 10 mg/kg/day oral EFdA completely suppressed HIV RNA to undetectable levels within 2 weeks of treatment.
Collapse
|
10
|
Marsden MD, Zack JA. Studies of retroviral infection in humanized mice. Virology 2015; 479-480:297-309. [PMID: 25680625 DOI: 10.1016/j.virol.2015.01.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/02/2015] [Accepted: 01/21/2015] [Indexed: 12/24/2022]
Abstract
Many important aspects of human retroviral infections cannot be fully evaluated using only in vitro systems or unmodified animal models. An alternative approach involves the use of humanized mice, which consist of immunodeficient mice that have been transplanted with human cells and/or tissues. Certain humanized mouse models can support robust infection with human retroviruses including different strains of human immunodeficiency virus (HIV) and human T cell leukemia virus (HTLV). These models have provided wide-ranging insights into retroviral biology, including detailed information on primary infection, in vivo replication and pathogenesis, latent/persistent reservoir formation, and novel therapeutic interventions. Here we describe the humanized mouse models that are most commonly utilized to study retroviral infections, and outline some of the important discoveries that these models have produced during several decades of intensive research.
Collapse
Affiliation(s)
- Matthew D Marsden
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA
| | - Jerome A Zack
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Killinger B, Shah M, Moszczynska A. Co-administration of betulinic acid and methamphetamine causes toxicity to dopaminergic and serotonergic nerve terminals in the striatum of late adolescent rats. J Neurochem 2013; 128:764-75. [PMID: 24151877 DOI: 10.1111/jnc.12496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/07/2013] [Accepted: 10/14/2013] [Indexed: 01/31/2023]
Abstract
Psychostimulant methamphetamine (METH) is toxic to striatal dopaminergic and serotonergic nerve terminals in adult, but not in the adolescent, brain. Betulinic acid (BA) and its derivatives are promising anti-HIV agents with some toxic properties. Many METH users, particularly young men, are HIV-positive; therefore, they might be treated with BA or its derivative for HIV infection. It is not known whether BA, or any of its derivatives, are neurotoxic in combination with METH in the adolescent brain. The present study investigated the effects of BA and binge METH in the striatum of late adolescent rats. BA or METH alone did not decrease the levels of dopaminergic or serotonergic markers in the striatum whereas BA and METH together decreased these markers in a BA dose-dependent manner. BA+METH also caused decreases in the levels of mitochondrial complex I in the same manner; BA alone only slightly decreased the levels of this enzyme in striatal synaptosomes. BA or METH alone increased cytochrome c. METH alone decreased parkin, increased complex II and striatal BA levels. These results suggest that METH in combination with BA can be neurotoxic to striatal dopaminergic and serotonergic nerve terminals in the late adolescent brain via mitochondrial dysfunction and parkin deficit. We report a synergistic neurotoxicity of betulinic acid (BA) and methamphetamine (METH) to monoaminergic terminals in the striatum of male late adolescent rats. BA contribution to the neurotoxicity is decreasing mitochondrial complex I whereas METH contribution is decreasing parkin and increasing brain concentration of BA. We propose that clinical use of BA in young male METH users can be neurotoxic.
Collapse
Affiliation(s)
- Bryan Killinger
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | | | | |
Collapse
|
12
|
Taha AY, Basselin M, Ramadan E, Modi HR, Rapoport SI, Cheon Y. Altered lipid concentrations of liver, heart and plasma but not brain in HIV-1 transgenic rats. Prostaglandins Leukot Essent Fatty Acids 2012; 87:91-101. [PMID: 22939288 PMCID: PMC3467364 DOI: 10.1016/j.plefa.2012.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 12/15/2022]
Abstract
Disturbed lipid metabolism has been reported in antiretroviral-naive HIV-1-infected patients suggesting a direct effect of the virus on lipid metabolism. To test that the HIV-1 virus alone could alter lipid concentrations, we measured these concentrations in an HIV-1 transgenic (Tg) rat model of human HIV-1 infection, which demonstrates peripheral and central pathology by 7-9 months of age. Concentrations were measured in high-energy microwaved heart, brain and liver from 7-9 month-old HIV-1 Tg and wildtype rats, and in plasma from non-microwaved rats. Plasma triglycerides and liver cholesteryl ester and total cholesterol concentrations were significantly higher in HIV-1 Tg rats than controls. Heart and plasma fatty acid concentrations reflected concentration differences in liver, which showed higher n-3 and n-6 polyunsaturated fatty acid (PUFA) concentrations in multiple lipid compartments. Fatty acid concentrations were increased or decreased in heart and liver phospholipid subfractions. Brain fatty acid concentrations differed significantly between the groups for minor fatty acids such as linoleic acid and n-3 docosapentaenoic acid. The profound changes in heart, plasma and liver lipid concentrations suggest a direct effect of chronic exposure to the HIV-1 virus on peripheral lipid (including PUFA) metabolism.
Collapse
Affiliation(s)
- Ameer Y Taha
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Protease-Mediated Maturation of HIV: Inhibitors of Protease and the Maturation Process. Mol Biol Int 2012; 2012:604261. [PMID: 22888428 PMCID: PMC3410323 DOI: 10.1155/2012/604261] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/30/2012] [Indexed: 12/04/2022] Open
Abstract
Protease-mediated maturation of HIV-1 virus particles is essential for virus infectivity. Maturation occurs concomitant with immature virus particle release and is mediated by the viral protease (PR), which sequentially cleaves the Gag and Gag-Pol polyproteins into mature protein domains. Maturation triggers a second assembly event that generates a condensed conical capsid core. The capsid core organizes the viral RNA genome and viral proteins to facilitate viral replication in the next round of infection. The fundamental role of proteolytic maturation in the generation of mature infectious particles has made it an attractive target for therapeutic intervention. Development of small molecules that target the PR active site has been highly successful and nine protease inhibitors (PIs) have been approved for clinical use. This paper provides an overview of their development and clinical use together with a discussion of problems associated with drug resistance. The second-half of the paper discusses a novel class of antiretroviral drug termed maturation inhibitors, which target cleavage sites in Gag not PR itself. The paper focuses on bevirimat (BVM) the first-in-class maturation inhibitor: its mechanism of action and the implications of naturally occurring polymorphisms that confer reduced susceptibility to BVM in phase II clinical trials.
Collapse
|
14
|
Abstract
In recent years, the technology of constructing chimeric mice with humanized immune systems has markedly improved. Multiple lineages of human immune cells develop in immunodeficient mice that have been transplanted with human hematopoietic stem cells. More importantly, these mice mount functional humoral and cellular immune responses upon immunization or microbial infection. Human immunodeficiency virus type I (HIV-1) can establish an infection in humanized mice, resulting in CD4(+) T-cell depletion and an accompanying nonspecific immune activation, which mimics the immunopathology in HIV-1-infected human patients. This makes humanized mice an optimal model for studying the mechanisms of HIV-1 immunopathogenesis and for developing novel immune-based therapies.
Collapse
|
15
|
Recent advances in antiretroviral treatment and prevention in HIV-infected patients. Curr Opin HIV AIDS 2012; 6 Suppl 1:S21-30. [PMID: 22156776 DOI: 10.1097/01.coh.0000410238.80894.81] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To discuss new antiretroviral agents (ARVs) and alternative ARV treatment strategies that are currently being evaluated, and to provide an overview of the most recent advances in HIV vaccine development. RECENT FINDINGS There is a continuous need for improvements in ARV therapy (ART) and several new ARVs are currently undergoing clinical investigation, including the non-nucleoside reverse transcriptase inhibitor rilpivirine, the integrase inhibitor elvitegravir, the chemokine receptor 5 co-receptor antagonist vicriviroc and the maturation inhibitor bevirimat. Strategies to optimize ART, such as treatment interruption, induction-maintenance and class-sparing regimens, are also being evaluated and have had varying success to date. However, vaccination still remains the optimal solution, and one second-generation preventative HIV vaccine has produced encouraging results in a recent phase III trial. SUMMARY Global prevention and treatment with ARVs that are effective, well tolerated and have high barriers to the development of HIV resistance are the main strategies to fight HIV/AIDS while we await the development of an effective vaccine.
Collapse
|
16
|
Ghosh AK, Anderson DD, Weber IT, Mitsuya H. Enhancing protein backbone binding--a fruitful concept for combating drug-resistant HIV. Angew Chem Int Ed Engl 2012; 51:1778-802. [PMID: 22290878 PMCID: PMC7159617 DOI: 10.1002/anie.201102762] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Indexed: 12/02/2022]
Abstract
The evolution of drug resistance is one of the most fundamental problems in medicine. In HIV/AIDS, the rapid emergence of drug-resistant HIV-1 variants is a major obstacle to current treatments. HIV-1 protease inhibitors are essential components of present antiretroviral therapies. However, with these protease inhibitors, resistance occurs through viral mutations that alter inhibitor binding, resulting in a loss of efficacy. This loss of potency has raised serious questions with regard to effective long-term antiretroviral therapy for HIV/AIDS. In this context, our research has focused on designing inhibitors that form extensive hydrogen-bonding interactions with the enzyme's backbone in the active site. In doing so, we limit the protease's ability to acquire drug resistance as the geometry of the catalytic site must be conserved to maintain functionality. In this Review, we examine the underlying principles of enzyme structure that support our backbone-binding concept as an effective means to combat drug resistance and highlight their application in our recent work on antiviral HIV-1 protease inhibitors.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
17
|
Ghosh AK, Anderson DD, Weber IT, Mitsuya H. Verstärkung der Bindung an das Proteinrückgrat - ein fruchtbares Konzept gegen die Arzneimittelresistenz von HIV. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201102762] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Preexposure prophylaxis with albumin-conjugated C34 peptide HIV-1 fusion inhibitor in SCID-hu Thy/Liv mice. Antimicrob Agents Chemother 2012; 56:2162-5. [PMID: 22252805 DOI: 10.1128/aac.05015-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PC-1505 is a C34 peptide derived from the heptad repeat 2 region of HIV-1 gp41 conjugated to human serum albumin for sustained in vivo activity. One single preexposure dose of PC-1505 reduced viral RNA in HIV-1-infected SCID-hu Thy/Liv mice by 3.3 log₁₀ and protected T cells from virus-mediated depletion. In contrast, a single preexposure dose of Truvada reduced viral RNA by only 0.8 log₁₀ and was substantially less effective in preventing T cell depletion.
Collapse
|
19
|
Waheed AA, Freed EO. HIV type 1 Gag as a target for antiviral therapy. AIDS Res Hum Retroviruses 2012; 28:54-75. [PMID: 21848364 DOI: 10.1089/aid.2011.0230] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Gag proteins of HIV-1 are central players in virus particle assembly, release, and maturation, and also function in the establishment of a productive infection. Despite their importance throughout the replication cycle, there are currently no approved antiretroviral therapies that target the Gag precursor protein or any of the mature Gag proteins. Recent progress in understanding the structural and cell biology of HIV-1 Gag function has revealed a number of potential Gag-related targets for possible therapeutic intervention. In this review, we summarize our current understanding of HIV-1 Gag and suggest some approaches for the development of novel antiretroviral agents that target Gag.
Collapse
Affiliation(s)
- Abdul A. Waheed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
20
|
Joshi P, Stoddart CA. Impaired infectivity of ritonavir-resistant HIV is rescued by heat shock protein 90AB1. J Biol Chem 2011; 286:24581-92. [PMID: 21602280 PMCID: PMC3137033 DOI: 10.1074/jbc.m111.248021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/19/2011] [Indexed: 12/18/2022] Open
Abstract
Certain ritonavir resistance mutations impair HIV infectivity through incomplete Gag processing by the mutant viral protease. Analysis of the mutant virus phenotype indicates that accumulation of capsid-spacer peptide 1 precursor protein in virus particles impairs HIV infectivity and that the protease mutant virus is arrested during the early postentry stage of HIV infection before proviral DNA synthesis. However, activation of the target cell can rescue this defect, implying that specific host factors expressed in activated cells can compensate for the defect in ritonavir-resistant HIV. This ability to rescue impaired HIV replication presented a unique opportunity to identify host factors involved in postentry HIV replication, and we designed a functional genetic screen so that expression of a given host factor extracted from activated T cells would lead directly to its discovery by rescuing mutant virus replication in nonactivated T cells. We identified the cellular heat shock protein 90 kDa α (cytosolic), class B member 1 (HSP90AB1) as a host factor that can rescue impaired replication of ritonavir-resistant HIV. Moreover, we show that pharmacologic inhibition of HSP90AB1 with 17-(allylamino)-17-demethoxygeldanamycin (tanespimycin) has potent in vitro anti-HIV activity and that ritonavir-resistant HIV is hypersensitive to the drug. These results suggest a possible role for HSP90AB1 in postentry HIV replication and may provide an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Pheroze Joshi
- From the Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California 94110
| | - Cheryl A. Stoddart
- From the Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California 94110
| |
Collapse
|
21
|
Haraguchi S, Ho SK, Morrow M, Goodenow MM, Sleasman JW. Developmental regulation of P-glycoprotein activity within thymocytes results in increased anti-HIV protease inhibitor activity. J Leukoc Biol 2011; 90:653-60. [PMID: 21504949 DOI: 10.1189/jlb.0111-009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The thymus harbors HIV-1 and supports its replication. Treatment with PI-containing ART restores thymic output of naïve T cells. This study demonstrates that CXCR4-using WT viruses are more sensitive to PI in fetal thymcocytes than mature T cells with average IC(50) values for two PIs, RTV and IDV, of 1.5 nM (RTV) and 4.4 nM (IDV) in thymocytes versus 309.4 nM (RTV) and 27.3 nM (IDV) in mature T cells. P-gp activity, as measured using Rh123 efflux and quantitation of P-gp mRNA, increased with thymocyte maturation into CD4 and CD8 lineage T cells. P-gp activity is developmentally regulated in the thymus. Thymocytes developed increased levels of P-gp activity as maturation from DP to SP CD4 or CD8 T cells occurred, although CD4 T cells acquired activity more rapidly. Reduced P-gp activity in thymocytes is one mechanism for effectiveness of PI therapy in suppressing viral replication in the thymus and in reconstitution of naïve T cells, particularly among children receiving PI-containing ART.
Collapse
Affiliation(s)
- Soichi Haraguchi
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of South Florida, St. Petersburg, Florida 33701, USA
| | | | | | | | | |
Collapse
|
22
|
Curreli F, Zhang H, Zhang X, Pyatkin I, Victor Z, Altieri A, Debnath AK. Virtual screening based identification of novel small-molecule inhibitors targeted to the HIV-1 capsid. Bioorg Med Chem 2011; 19:77-90. [PMID: 21168336 PMCID: PMC3034313 DOI: 10.1016/j.bmc.2010.11.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/16/2010] [Accepted: 11/22/2010] [Indexed: 11/27/2022]
Abstract
The hydrophobic cavity of the C-terminal domain (CTD) of HIV-1 capsid has been recently validated as potential target for antiviral drugs by peptide-based inhibitors; however, there is no report yet of any small molecule compounds that target this hydrophobic cavity. In order to fill this gap and discover new classes of ant-HIV-1 inhibitors, we undertook a docking-based virtual screening and subsequent analog search, and medicinal chemistry approaches to identify small molecule inhibitors against this target. This article reports for the first time, to the best of our knowledge, identification of diverse classes of inhibitors that efficiently inhibited the formation of mature-like viral particles verified under electron microscope (EM) and showed potential as anti-HIV-1 agents in a viral infectivity assay against a wide range of laboratory-adapted as well as primary isolates in MT-2 cells and PBMC. In addition, the virions produced after the HIV-1 infected cells were treated with two of the most active compounds showed drastically reduced infectivity confirming the potential of these compounds as anti-HIV-1 agents. We have derived a comprehensive SAR from the antiviral data. The SAR analyses will be useful in further optimizing the leads to potential anti-HIV-1 agents.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design; Lindsley F. Kimball Research Institute of the New York Blood Center, 310 E 67 Street, New York, NY 10065, USA
| | - Hongtao Zhang
- Laboratory of Molecular Modeling & Drug Design; Lindsley F. Kimball Research Institute of the New York Blood Center, 310 E 67 Street, New York, NY 10065, USA
| | - Xihui Zhang
- Laboratory of Molecular Modeling & Drug Design; Lindsley F. Kimball Research Institute of the New York Blood Center, 310 E 67 Street, New York, NY 10065, USA
| | - Ilya Pyatkin
- Asinex, 20 Geroev Panfilovtzev, building 1 - Moscow 125480 Russia
| | | | - Andrea Altieri
- Asinex, 20 Geroev Panfilovtzev, building 1 - Moscow 125480 Russia
| | - Asim K. Debnath
- Laboratory of Molecular Modeling & Drug Design; Lindsley F. Kimball Research Institute of the New York Blood Center, 310 E 67 Street, New York, NY 10065, USA
| |
Collapse
|
23
|
Adamson CS, Sakalian M, Salzwedel K, Freed EO. Polymorphisms in Gag spacer peptide 1 confer varying levels of resistance to the HIV- 1 maturation inhibitor bevirimat. Retrovirology 2010; 7:36. [PMID: 20406463 PMCID: PMC2873507 DOI: 10.1186/1742-4690-7-36] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 04/20/2010] [Indexed: 11/24/2022] Open
Abstract
Background The maturation inhibitor bevirimat (BVM) potently inhibits human immunodeficiency virus type 1 (HIV-1) replication by blocking capsid-spacer peptide 1 (CA-SP1) cleavage. Recent clinical trials demonstrated that a significant proportion of HIV-1-infected patients do not respond to BVM. A patient's failure to respond correlated with baseline polymorphisms at SP1 residues 6-8. Results In this study, we demonstrate that varying levels of BVM resistance are associated with point mutations at these residues. BVM susceptibility was maintained by SP1-Q6A, -Q6H and -T8A mutations. However, an SP1-V7A mutation conferred high-level BVM resistance, and SP1-V7M and T8Δ mutations conferred intermediate levels of BVM resistance. Conclusions Future exploitation of the CA-SP1 cleavage site as an antiretroviral drug target will need to overcome the baseline variability in the SP1 region of Gag.
Collapse
Affiliation(s)
- Catherine S Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | | | | | | |
Collapse
|
24
|
Lee KH. Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach. JOURNAL OF NATURAL PRODUCTS 2010; 73:500-16. [PMID: 20187635 PMCID: PMC2893734 DOI: 10.1021/np900821e] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Medicinal plants have long been an excellent source of pharmaceutical agents. Accordingly, the long-term objectives of the author's research program are to discover and design new chemotherapeutic agents based on plant-derived compound leads by using a medicinal chemistry approach, which is a combination of chemistry and biology. Different examples of promising bioactive natural products and their synthetic analogues, including sesquiterpene lactones, quassinoids, naphthoquinones, phenylquinolones, dithiophenediones, neo-tanshinlactone, tylophorine, suksdorfin, DCK, and DCP, will be presented with respect to their discovery and preclinical development as potential clinical trial candidates. Research approaches include bioactivity- or mechanism of action-directed isolation and characterization of active compounds, rational drug design-based modification and analogue synthesis, and structure-activity relationship and mechanism of action studies. Current clinical trial agents discovered by the Natural Products Research Laboratories, University of North Carolina, include bevirimat (dimethyl succinyl betulinic acid), which is now in phase IIb trials for treating AIDS. Bevirimat is also the first in a new class of HIV drug candidates called "maturation inhibitors". In addition, an etoposide analogue, GL-331, progressed to anticancer phase II clinical trials, and the curcumin analogue JC-9 is in phase II clinical trials for treating acne and in development for trials against prostate cancer. The discovery and development of these clinical trial candidates will also be discussed.
Collapse
Affiliation(s)
- Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA.
| |
Collapse
|
25
|
Zhang L, Meissner E, Chen J, Su L. Current humanized mouse models for studying human immunology and HIV-1 immuno-pathogenesis. SCIENCE CHINA-LIFE SCIENCES 2010; 53:195-203. [PMID: 20596827 DOI: 10.1007/s11427-010-0059-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 01/15/2010] [Indexed: 01/12/2023]
Abstract
A robust animal model for "hypothesis-testing/mechanistic" research in human immunology and immuno-pathology should meet the following criteria. First, it has well-studied hemato-lymphoid organs and target cells similar to those of humans. Second, the human pathogens establish infection and lead to relevant diseases. Third, it is genetically inbred and can be manipulated via genetic, immunological and pharmacological means. Many human-tropic pathogens such as HIV-1 fail to infect murine cells due to the blocks at multiple steps of their life cycle. The mouse with a reconstituted human immune system and other human target organs is a good candidate. A number of human-mouse chimeric models with human immune cells have been developed in the past 20 years, but most with only limited success due to the selective engraftment of xeno-reactive human T cells in hu-PBL-SCID mice or the lack of significant human immune responses in the SCID-hu Thy/Liv mouse. This review summarizes the current understanding of HIV-1 immuno-pathogenesis in human patients and in SIV-infected primate models. It also reviews the recent progress in the development of humanized mouse models with a functional human immune system, especially the recent progress in the immunodeficient mice that carry a defective gammaC gene. NOD/SCID/gammaC(-/-) (NOG or NSG) or the Rag2(-/-)gammaC(-/-) double knockout (DKO) mice, which lack NK as well as T and B cells (NTB-null mice), have been used to reconstitute a functional human immune system in central and peripheral lymphoid organs with human CD34(+) HSC. These NTB-hu HSC humanized models have been used to investigate HIV-1 infection, immuno-pathogenesis and therapeutic interventions. Such models, with further improvements, will contribute to study human immunology, human-tropic pathogens as well as human stem cell biology in the tissue development and function in vivo.
Collapse
Affiliation(s)
- LiGuo Zhang
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | | | | | | |
Collapse
|
26
|
Adamson CS, Freed EO. Novel approaches to inhibiting HIV-1 replication. Antiviral Res 2010; 85:119-41. [PMID: 19782103 PMCID: PMC2815006 DOI: 10.1016/j.antiviral.2009.09.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/09/2009] [Accepted: 09/12/2009] [Indexed: 01/17/2023]
Abstract
Considerable success has been achieved in the treatment of HIV-1 infection, and more than two-dozen antiretroviral drugs are available targeting several distinct steps in the viral replication cycle. However, resistance to these compounds emerges readily, even in the context of combination therapy. Drug toxicity, adverse drug-drug interactions, and accompanying poor patient adherence can also lead to treatment failure. These considerations make continued development of novel antiretroviral therapeutics necessary. In this article, we highlight a number of steps in the HIV-1 replication cycle that represent promising targets for drug discovery. These include lipid raft microdomains, the RNase H activity of the viral enzyme reverse transcriptase, uncoating of the viral core, host cell machinery involved in the integration of the viral DNA into host cell chromatin, virus assembly, maturation, and budding, and the functions of several viral accessory proteins. We discuss the relevant molecular and cell biology, and describe progress to date in developing inhibitors against these novel targets. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Catherine S. Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, 21702-1201
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Maryland, 21702-1201
| |
Collapse
|
27
|
Van Duyne R, Pedati C, Guendel I, Carpio L, Kehn-Hall K, Saifuddin M, Kashanchi F. The utilization of humanized mouse models for the study of human retroviral infections. Retrovirology 2009; 6:76. [PMID: 19674458 PMCID: PMC2743631 DOI: 10.1186/1742-4690-6-76] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 08/12/2009] [Indexed: 01/10/2023] Open
Abstract
The development of novel techniques and systems to study human infectious diseases in both an in vitro and in vivo settings is always in high demand. Ideally, small animal models are the most efficient method of studying human afflictions. This is especially evident in the study of the human retroviruses, HIV-1 and HTLV-1, in that current simian animal models, though robust, are often expensive and difficult to maintain. Over the past two decades, the construction of humanized animal models through the transplantation and engraftment of human tissues or progenitor cells into immunocompromised mouse strains has allowed for the development of a reconstituted human tissue scaffold in a small animal system. The utilization of small animal models for retroviral studies required expansion of the early CB-17 scid/scid mouse resulting in animals demonstrating improved engraftment efficiency and infectivity. The implantation of uneducated human immune cells and associated tissue provided the basis for the SCID-hu Thy/Liv and hu-PBL-SCID models. Engraftment efficiency of these tissues was further improved through the integration of the non-obese diabetic (NOD) mutation leading to the creation of NODSCID, NOD/Shi-scid IL2rγ-/-, and NOD/SCID β2-microglobulinnull animals. Further efforts at minimizing the response of the innate murine immune system produced the Rag2-/-γc-/- model which marked an important advancement in the use of human CD34+ hematopoietic stem cells. Together, these animal models have revolutionized the investigation of retroviral infections in vivo.
Collapse
Affiliation(s)
- Rachel Van Duyne
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Washington, DC 20037, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Development of novel therapeutic targets against HIV-1 is a high research priority owing to the serious clinical consequences associated with acquisition of resistance to current antiretroviral drugs. The HIV-1 structural protein Gag represents a potential new therapeutic target as it plays a central role in virus particle production yet is not targeted by any of the antiretroviral drugs approved at present. The Gag polyprotein precursor multimerizes to form immature particles that bud from the infected cell. Concomitant with virus release, the Gag precursor undergoes proteolytic processing by the viral protease to generate the mature Gag proteins, which include capsid (CA). Once liberated from the Gag polyprotein precursor, CA molecules interact to reassemble into a condensed conical core, which organizes the viral RNA genome and several viral proteins to facilitate virus replication in the next round of infection. Correct Gag proteolytic processing and core assembly are therefore essential for virus infectivity. In this review, we discuss new strategies to inhibit maturation by targeting proteolytic cleavage sites in Gag or CA-CA interactions required for core formation. The identification and development of lead maturation inhibitors are highlighted.
Collapse
Affiliation(s)
- Catherine S. Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute at Frederick, Maryland, 21702-1201
| | - Karl Salzwedel
- Panacos Pharmaceuticals, 209 Perry Parkway, Gaithersburg, MD 20877
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute at Frederick, Maryland, 21702-1201
| |
Collapse
|
29
|
Abstract
The advent of HIV-1 resistance to antiretroviral medications, the need for lifelong antiretroviral therapy (ART) for HIV-infected individuals, and the goal of minimizing ART-related adverse effects and toxicity all drive the need for new antiretroviral drugs. Two new classes of antiretroviral medications for HIV treatment, the CCR5 and integrase inhibitors, have recently been approved for use in patients in whom previous HIV treatment regimens have failed. These new agent classes are a welcome addition to other antiretroviral classes, which include nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitors and fusion inhibitors. Maraviroc is a CCR5 co-receptor antagonist that blocks HIV binding to the CCR5 receptor, which is a CD4 co-receptor necessary for cell entry. It is approved for use in ART-experienced patients with CCR5-tropic HIV, and was found to significantly reduce HIV viral load and increase CD4+ cell count when combined with an optimized background ART regimen (OBR). Treatment failure with maraviroc has been described and is primarily associated with the presence of CXCR4-tropic virus. Vicriviroc is another CCR5 co-receptor antagonist that is in late clinical trials. Raltegravir is the first US FDA-approved HIV-1 integrase inhibitor. It is approved for use in ART-experienced patients and was found to significantly reduce HIV viral load and increase CD4+ cell counts compared with placebo in combination with an OBR. Raltegravir has also been studied in treatment-naive patients and was found to be non-inferior to an efavirenz-based regimen. Elvitegravir is another HIV-1 integrase inhibitor in clinical development. Other new antiretroviral agents in clinical development include PRO140, a monoclonal antibody against CCR5, and bevirimat, a maturation inhibitor that prevents late-stage gag polyprotein processing. A number of other drug targets, such as CCR5 co-receptor agonists, CXCR4 co-receptor antagonists, novel fusion inhibitors, and alternative antiretroviral strategies, such as immune stimulation and gene therapy, are under investigation.
Collapse
Affiliation(s)
- Birgitt Dau
- VA Palo Alto Health Care System, Palo Alto, California, USA
| | | |
Collapse
|
30
|
Impact of human immunodeficiency virus type 1 resistance to protease inhibitors on evolution of resistance to the maturation inhibitor bevirimat (PA-457). J Virol 2009; 83:4884-94. [PMID: 19279107 DOI: 10.1128/jvi.02659-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The maturation inhibitor bevirimat [3-O-(3',3'dimethysuccinyl)betulinic acid; BVM; also known as PA-457 or DSB] potently inhibits human immunodeficiency virus type 1 (HIV-1) replication by blocking protease (PR)-mediated cleavage at the junction between capsid (CA) and spacer peptide 1 (SP1) in Gag. We previously isolated a panel of single-amino-acid substitutions that confer resistance to BVM in vitro (C. S. Adamson, S. D. Ablan, I. Boeras, R. Goila-Gaur, F. Soheilian, K. Nagashima, F. Li, K. Salzwedel, M. Sakalian, C. T. Wild, and E. O. Freed, J. Virol. 80:10957-10971, 2006). The BVM resistance mutations cluster at or near the CA-SP1 cleavage site. Because BVM likely will be used clinically in patients harboring viruses resistant to PR inhibitors (PIs), in this study we evaluated the interplay between a PI-resistant (PIR) PR and the BVM resistance mutations in Gag. As expected, the PIR mutations had no effect on inhibition by BVM; however, we observed general processing defects and a slight delay in viral replication in Jurkat T cells associated with the PIR mutations, even in the absence of compound. When combined, most BVM resistance and PIR mutations acted additively to impair viral replication, particularly in the presence of BVM. The BVM-resistant mutant SP1-A1V was an exception, as it supported robust replication in the context of either wild-type (WT) or PIR PR, even at high BVM concentrations. Significantly, the emergence of BVM resistance was delayed in the context of the PIR PR, and the SP1-A1V mutation was acquired most frequently with either WT or PIR PR. These results suggest that resistance to BVM is less likely to emerge in patients who have failed PIs than in patients who are PI naive. We predict that the SP1-A1V substitution is the most likely to emerge in vivo, as this mutant replicates robustly independently of PR mutations or BVM. These findings offer insights into the effect of PIR mutations on the evolution of BVM resistance in PI-experienced patients.
Collapse
|
31
|
Martin DE, Salzwedel K, Allaway GP. Bevirimat: a novel maturation inhibitor for the treatment of HIV-1 infection. Antivir Chem Chemother 2008; 19:107-13. [PMID: 19024627 DOI: 10.1177/095632020801900301] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Existing antiretroviral treatments for HIV type-1 (HIV-1) disease are limited by problems of resistance and drug-drug interactions. Bevirimat is a novel HIV-1 maturation inhibitor with a mechanism of action that is distinct from other antiretroviral agents. Specific inhibition of the final rate-limiting step in Gag processing by bevirimat prevents release of mature capsid protein from its precursor (CA-SP1), resulting in the production of immature, non-infectious virus particles. Bevirimat inhibits replication of both wild-type and drug-resistant HIV-1 isolates in vitro, achieving similar 50% inhibitory concentration values with both categories. Serial drug passage studies have identified six single amino acid substitutions that independently confer bevirimat resistance. These resistance mutations occur at or near the CA-SP1 cleavage site, which is not a known target for resistance to other antiretroviral drugs. Bevirimat has demonstrated a consistent pharmacokinetic profile in healthy volunteers and HIV-infected patients, with peak plasma concentrations attained approximately 1-3 h after dosing. Plasma concentrations decrease in a log-linear manner with a mean plasma elimination halflife of 58-80 h, supporting once-daily dosing. Animal studies suggest that elimination of bevirimat is primarily by hepatic glucuronidation and hepatobiliary excretion. There is minimal renal elimination, with < 1% of the administered dose appearing in the urine. In responsive patients, bevirimat has demonstrated a robust dosedependent reduction in viral load (> 1.5 log10 copies/ml). Short-term administration (< or = 14 days) of bevirimat is well tolerated, even when used in combination with other antiretroviral agents. Further studies to evaluate the long-term efficacy and tolerability of bevirimat are currently underway.
Collapse
|
32
|
Stoddart CA, Nault G, Galkina SA, Thibaudeau K, Bakis P, Bousquet-Gagnon N, Robitaille M, Bellomo M, Paradis V, Liscourt P, Lobach A, Rivard ME, Ptak RG, Mankowski MK, Bridon D, Quraishi O. Albumin-conjugated C34 peptide HIV-1 fusion inhibitor: equipotent to C34 and T-20 in vitro with sustained activity in SCID-hu Thy/Liv mice. J Biol Chem 2008; 283:34045-52. [PMID: 18809675 PMCID: PMC2590714 DOI: 10.1074/jbc.m805536200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/22/2008] [Indexed: 12/02/2022] Open
Abstract
Entry inhibitors of human immunodeficiency virus, type 1 (HIV-1) have been the focus of much recent research. C34, a potent fusion inhibitor derived from the HR2 region of gp41, was engineered into a 1:1 human serum albumin conjugate through stable covalent attachment of a maleimido-C34 analog onto cysteine 34 of albumin. This bioconjugate, PC-1505, was designed to require less frequent dosing and less peptide than T-20 and was assessed for its antifusogenic activity both in vitro and in vivo in the SCID-hu Thy/Liv mouse model. PC-1505 was essentially equipotent to the original C34 peptide and to T-20 in vitro. In HIV-1-infected SCID-hu Thy/Liv mice, T-20 lost activity with infrequent dosing, whereas the antiviral potency of PC-1505 was sustained, and PC-1505 was active against T-20-resistant ("DIV") virus with a G36D substitution in gp41. The in vivo results are the direct result of a significantly improved pharmacokinetic profile for the C34 peptide following albumin conjugation. Contrary to previous reports that the gp41 NHR trimer is poorly accessible to C34 fused to protein cargoes of increasing size (Hamburger, A. E., Kim, S., Welch, B. D., and Kay, M. S. (2005) J. Biol. Chem. 280, 12567-12572), these results are the first demonstration of the capacity for a large, endogenous serum protein to gain unobstructed access to the transient gp41 intermediates that exist during the HIV fusion process, and it supports further development of albumin conjugation as a promising approach to inhibit HIV-1 entry.
Collapse
Affiliation(s)
- Cheryl A Stoddart
- Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California 94110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The Maturation Inhibitor Bevirimat (PA-457) can be Active in Patients Carrying HIV type-1 non-B Subtypes and Recombinants. Antivir Ther 2008. [DOI: 10.1177/135965350801300805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Bevirimat (PA-457) is the first candidate of a new family of antiretroviral drugs, the maturation inhibitors. Its action is based on disruption of the protease cleavage of the Gag precursor region. Six resistance mutations have been described and analysed in virus from both treatment-naive and protease inhibitor (PI)-experienced patients, but only in the subtype B of HIV type-1 (HIV-1) virus. Thus, genotypic resistance in non-B subtypes still requires analysis. Methods HIV-1 sequences of different subtypes (54 B, 81 non-B and recombinants) were analysed for the presence of resistance mutations to bevirimat, located within the capsid (CA) protein and spacer peptide 1 (SP1) cleavage site. Results No resistance mutations were found, although polymorphisms appeared in some CA-SP1 residues. The C-terminal CA protein and the N-terminal SP1 presented high conservation, whereas C-terminal SP1 was highly variable in sequence and length, with unknown influence in resistance acquisition. Conclusions The results of the present study confirm an absolute conservation of the residues involved in bevirimat in vitro resistance in a large panel of HIV-1 subtypes and recombinants from both treatment-naive and PI- experienced patients. Treatment alone seemed to increase the polymorphisms account in CRF02_AG recombinant sequences; however, the influence of natural polymorphisms needs to be explored.
Collapse
|
34
|
Mastrolorenzo A, Maresca A, Rusconi S, Supuran CT. Update on the development of HIV entry inhibitors. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17469600.2.5.479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
HIV fusion and entry are two steps in the viral lifecycle that can be targeted by several classes of antiviral drugs. The discovery of chemokines focused the attention on cellular co-receptors used by the virus for entering cells, and on the various steps of such processes that are subject to interactions with small molecules. Intense research has led to a wide range of effective compounds that are able to inhibit these initial steps of viral replication. All steps in the process of HIV entry into the cell may be targeted by specific compounds, grouped into three main classes (attachment inhibitors, co-receptor binding inhibitors and fusion inhibitors), which may be developed as novel antiretrovirals. Thus, several inhibitors of the gp120–CD4 interaction have been discovered (e.g., zintevir and BMS-378806). Small molecule chemokine receptor antagonists acting as HIV entry inhibitors have also been described recently, including those which interact with both the CXCR4 co-receptor (e.g., AMD3100, AMD3465, ALX40-4C, T22, T134 and T140) and CCR5 co-receptor antagonists (TAK-779, TAK-220, E913, AK-602 and NSC 651016 in clinical trials). Recently, a third family of antivirals started to be used clinically (in addition to reverse transcriptase and protease inhibitors), with the advent of enfuvirtide (T20), the first fusion inhibitor to be approved as an anti-HIV agent. Some of these compounds demonstrated in vitro synergism with other classes of antivirals, thus offering the rationale for their combination in therapies for HIV-infected individuals. Many HIV entry and fusion inhibitors are currently being investigated in controlled clinical trials, and a number of them are bioavailable as oral formulations. In 2007, the US FDA approved maraviroc as an anti-HIV agent. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades and diverse geographic origin. Maraviroc was active against 200 clinically derived HIV-1 envelope-recombinant pseudoviruses, 100 of which were derived from viruses resistant to existing drug classes. Furthermore, in October 2007, the FDA announced the approval of raltegravir for the treatment of HIV-1 infection as part of combination antiretroviral therapy in treatment-experienced patients with evidence of HIV-1 replication despite optimized background antiretroviral therapy. At present, raltegravir is the only drug in the integrase inhibitor class approved for clinical use. With the approval of raltegravir, oral agents targeting all three constitutive viral enzymes, reverse transcriptase, protease and integrase, are now represented in FDA-approved therapies.
Collapse
Affiliation(s)
- Antonio Mastrolorenzo
- Università degli Studi di Firenze, Dipartimento di Scienze Dermatologiche, Centro MTS, Via degli Alfani 37, I-50121 Florence, Italy
| | - Alfonso Maresca
- Università degli Studi di Firenze, Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica, Via della Lastruccia, 3, Rm. 188, I-50019 Sesto Fiorentino (Florence), Italy
| | - Stefano Rusconi
- Dipartimento di Scienze Cliniche “Luigi Sacco”, Cattedra di Malattie Infettive e Tropicali, Università degli Studi, Ospedale Luigi Sacco, Via GB Grassi 74, 20157 Milano, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica, Via della Lastruccia, 3, Rm. 188, I-50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
35
|
Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 2008; 25:475-516. [PMID: 18497896 DOI: 10.1039/b514294f] [Citation(s) in RCA: 524] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural product and natural product-derived compounds that are being evaluated in clinical trials or are in registration (as at 31st December 2007) have been reviewed, as well as natural product-derived compounds for which clinical trials have been halted or discontinued since 2005. Also discussed are natural product-derived drugs launched since 2005, new natural product templates and late-stage development candidates.
Collapse
Affiliation(s)
- Mark S Butler
- MerLion Pharmaceuticals, 1 Science Park Road, The Capricorn 05-01, Singapore Science Park II, Singapore 117528.
| |
Collapse
|