1
|
Arencibia V, Muñoz M, Crespo CM, Russo MG, Vera P, Lia VV, García Guraieb S, Goñi RA, Avena S, Puebla A, Dejean CB. Novel B2 mitogenomes from Continental southern Patagonia's Late Holocene: New insights into the peopling of the Southern Cone. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e24822. [PMID: 37548135 DOI: 10.1002/ajpa.24822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/23/2023] [Accepted: 07/09/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVES The main aim of this study is to discuss the migratory processes and peopling dynamics that shaped the genetic variability of populations during the settlement of the Southern Cone, through the analysis of complete mitogenomes of individuals from southern Patagonia. MATERIALS AND METHODS Complete mitogenomes were sequenced through massively parallel sequencing from two late Holocene individuals (SAC 1-1-3 and SAC 1-1-4) buried in the same chenque at Salitroso Lake Basin (Santa Cruz province, Argentina). To evaluate matrilineal phylogenetic affinities with other haplotypes, maximum likelihood and Bayesian phylogenetic reconstructions were performed, as well as a haplotype median-joining network. RESULTS The mitogenomes were assigned to haplogroups B2 and B2b, exhibiting an average depth of 54X and 89X (≥1X coverage of 98.6% and 100%), and a high number of nucleotide differences among them. The phylogenetic analyses showed a relatively close relationship between the haplotype found in SAC 1-1-4 and those retrieved from a Middle Holocene individual from Laguna Chica (Buenos Aires province), and from a group of individuals from the Peruvian coast. For the SAC 1-1-3, no clear affiliations to any other haplotype were established. DISCUSSION The large divergence between the haplotypes presented in this study suggests either a highly variable founder gene pool, or a later enrichment by frequent biological contact with other populations. Our results underline the persistence of genetic signals related to the first waves of peopling in South America, suggesting that the regional settlement of the southern end of the continent has been much more complex than initially thought.
Collapse
Affiliation(s)
- Valeria Arencibia
- Equipo de Antropología Biológica, CCNAA, Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marianne Muñoz
- Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
- Instituto de Biotecnología-IABIMO (CONICET), Unidad de Genómica, Nodo CATG, Buenos Aires, Argentina
| | - Cristian M Crespo
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA), Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, Argentina
| | - M Gabriela Russo
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Grupo de Investigación en Biología Evolutiva (GIBE), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Vera
- Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
- Instituto de Biotecnología-IABIMO (CONICET), Unidad de Genómica, Nodo CATG, Buenos Aires, Argentina
| | - Verónica V Lia
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Solana García Guraieb
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Nacional de Antropología y Pensamiento Latinoamericano (INAPL), Buenos Aires, Argentina
- Facultad de Filosofía y Letras, Departamento de Ciencias Antropológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael A Goñi
- Instituto Nacional de Antropología y Pensamiento Latinoamericano (INAPL), Buenos Aires, Argentina
- Facultad de Filosofía y Letras, Departamento de Ciencias Antropológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sergio Avena
- Equipo de Antropología Biológica, CCNAA, Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Filosofía y Letras, Departamento de Ciencias Antropológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea Puebla
- Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
- Instituto de Biotecnología-IABIMO (CONICET), Unidad de Genómica, Nodo CATG, Buenos Aires, Argentina
| | - Cristina B Dejean
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Facultad de Filosofía y Letras, Departamento de Ciencias Antropológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Filosofía y Letras, Instituto de Ciencias Antropológicas, Sección Antropología Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Van Gijn R, Norder S, Arias L, Emlen NQ, Azevedo MCBC, Caine A, Dunn S, Howard A, Julmi N, Krasnoukhova O, Stoneking M, Wiegertjes J. The social lives of isolates (and small language families): the case of the Northwest Amazon. Interface Focus 2023; 13:20220054. [PMID: 36655194 PMCID: PMC9732644 DOI: 10.1098/rsfs.2022.0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
The Americas are home to patches of extraordinary linguistic (genealogical) diversity. These high-diversity areas are particularly unexpected given the recent population of the Americas. In this paper, we zoom in on one such area, the Northwest Amazon, and address the question of how the diversity in this area has persisted to the present. We contrast two hypotheses that claim opposite mechanisms for the maintenance of diversity: the isolation hypothesis suggests that isolation facilitates the preservation of diversity, while the integration hypothesis proposes that conscious identity preservation in combination with contact drives diversity maintenance. We test predictions for both hypotheses across four disciplines: biogeography, cultural anthropology, population genetics and linguistics. Our results show signs of both isolation and integration, but they mainly suggest considerable diversity in how groups of speakers have interacted with their surroundings.
Collapse
Affiliation(s)
- Rik Van Gijn
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
| | - Sietze Norder
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
- Copernicus Institute of Sustainable Development, Environmental Science Group, Utrecht University, Utrecht 3584 CB, The Netherlands
| | - Leonardo Arias
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Nicholas Q. Emlen
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
- University of Groningen, Campus Fryslân 8911 CE, The Netherlands
| | | | - Allison Caine
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
- Department of Anthropology, University of Wyoming, 82071, Laramie, WY, USA
| | - Saskia Dunn
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
| | - Austin Howard
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
| | - Nora Julmi
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
| | - Olga Krasnoukhova
- Leiden University Centre for Linguistics, Leiden 2311 BE, The Netherlands
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | | |
Collapse
|
3
|
Silva MACE, Ferraz T, Hünemeier T. A genomic perspective on South American human history. Genet Mol Biol 2022; 45:e20220078. [PMID: 35925590 PMCID: PMC9351327 DOI: 10.1590/1678-4685-gmb-2022-0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
It has generally been accepted that the current indigenous peoples of the Americas are derived from ancestors from northeastern Asia. The latter were believed to have spread into the American continent by the end of the Last Glacial Maximum. In this sense, a joint and in-depth study of the earliest settlement of East Asia and the Americas is required to elucidate these events accurately. The first Americans underwent an adaptation process to the Americas' vast environmental diversity, mediated by biological and cultural evolution and niche construction, resulting in enormous cultural diversity, a wealth of domesticated species, and extensive landscape modifications. Afterward, in the Late Holocene, the advent of intensive agricultural food production systems, sedentism, and climate change significantly reshaped genetic and cultural diversity across the continent, particularly in the Andes and Amazonia. Furthermore, starting around the end of the 15th century, European colonization resulted in massive extermination of indigenous peoples and extensive admixture. Thus, the present review aims to create a comprehensive picture of the main events involved in the formation of contemporary South American indigenous populations and the dynamics responsible for shaping their genetic diversity by integrating current genetic data with evidence from archeology, linguistics and other disciplines.
Collapse
Affiliation(s)
- Marcos Araújo Castro E Silva
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Tiago Ferraz
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Tábita Hünemeier
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Niedbalski SD, Long JC. Novel alleles gained during the Beringian isolation period. Sci Rep 2022; 12:4289. [PMID: 35277570 PMCID: PMC8917172 DOI: 10.1038/s41598-022-08212-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/09/2022] [Indexed: 01/23/2023] Open
Abstract
During the Last Glacial Maximum, a small band of Siberians entered the Beringian corridor, where they persisted, isolated from gene flow, for several thousand years before expansion into the Americas. The ecological features of the Beringian environment, coupled with an extended period of isolation at small population size, would have provided evolutionary opportunity for novel genetic variation to arise as both rare standing variants and new mutations were driven to high frequency through both neutral and directed processes. Here we perform a full genome investigation of Native American populations in the Thousand Genomes Project Phase 3 to identify unique high frequency alleles that can be dated to an origin in Beringia. Our analyses demonstrate that descendant populations of Native Americans harbor 20,424 such variants, which is on a scale comparable only to Africa and the Out of Africa bottleneck. This is consistent with simulations of a serial founder effects model. Tests for selection reveal that some of these Beringian variants were likely driven to high frequency by adaptive processes, and bioinformatic analyses suggest possible phenotypic pathways that were under selection during the Beringian Isolation period. Specifically, pathways related to cardiac processes and melanocyte function appear to be enriched for selected Beringian variants.
Collapse
Affiliation(s)
- Sara D Niedbalski
- Human Evolutionary Genetics Unit, UMR 2000, CNRS, Institut Pasteur, Paris, France.,Department of Anthropology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jeffrey C Long
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
5
|
Willerslev E, Meltzer DJ. Peopling of the Americas as inferred from ancient genomics. Nature 2021; 594:356-364. [PMID: 34135521 DOI: 10.1038/s41586-021-03499-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/26/2021] [Indexed: 02/05/2023]
Abstract
In less than a decade, analyses of ancient genomes have transformed our understanding of the Indigenous peopling and population history of the Americas. These studies have shown that this history, which began in the late Pleistocene epoch and continued episodically into the Holocene epoch, was far more complex than previously thought. It is now evident that the initial dispersal involved the movement from northeast Asia of distinct and previously unknown populations, including some for whom there are no currently known descendants. The first peoples, once south of the continental ice sheets, spread widely, expanded rapidly and branched into multiple populations. Their descendants-over the next fifteen millennia-experienced varying degrees of isolation, admixture, continuity and replacement, and their genomes help to illuminate the relationships among major subgroups of Native American populations. Notably, all ancient individuals in the Americas, save for later-arriving Arctic peoples, are more closely related to contemporary Indigenous American individuals than to any other population elsewhere, which challenges the claim-which is based on anatomical evidence-that there was an early, non-Native American population in the Americas. Here we review the patterns revealed by ancient genomics that help to shed light on the past peoples who created the archaeological landscape, and together lead to deeper insights into the population and cultural history of the Americas.
Collapse
Affiliation(s)
- Eske Willerslev
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK. .,Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark. .,Wellcome Trust Sanger Institute, Cambridge, UK.
| | - David J Meltzer
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark. .,Department of Anthropology, Southern Methodist University, Dallas, TX, USA.
| |
Collapse
|
6
|
Torres JB. A history of you, me, and humanity: mitochondrial DNA in anthropological research. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.2.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractWithin genetic anthropology, mitochondrial DNA (mtDNA) has garnered a prominent if not enduring place within the anthropological toolkit. MtDNA has provided new and innovative perspectives on the emergence and dispersal of our species, interactions with extinct human species, and illuminated relationships between human groups. In this paper, I provide a brief overview of the major findings ascertained from mtDNA about human origins, human dispersal across the globe, interactions with other hominin species, and the more recent uses of mtDNA in direct to consumer ancestry tests. Relative to nuclear DNA, mtDNA is a small section of the genome and due to its inheritance pattern provides a limited resolution of population history and an individual's genetic ancestry. Consequently, some scholars dismiss mtDNA as insignificant due to the limited inferences that may be made using the locus. Regardless, mtDNA provides some useful insights to understanding how social, cultural, and environmental factors have shaped patterns of genetic variability. Furthermore, with regard to the experiences of historically marginalized groups, in particular those of African descent throughout the Americas, mtDNA has the potential to fill gaps in knowledge that would otherwise remain unknown. Within anthropological sciences, the value of this locus for understanding human experience is maximized when contextualized with complementary lines of evidence.
Collapse
Affiliation(s)
- Jada Benn Torres
- Laboratory of Genetic Anthropology, Department of Anthropology, Vanderbilt University, Nashville, TN 37325, USA
| |
Collapse
|
7
|
Dussex N, Alberti F, Heino MT, Olsen RA, van der Valk T, Ryman N, Laikre L, Ahlgren H, Askeyev IV, Askeyev OV, Shaymuratova DN, Askeyev AO, Döppes D, Friedrich R, Lindauer S, Rosendahl W, Aspi J, Hofreiter M, Lidén K, Dalén L, Díez-Del-Molino D. Moose genomes reveal past glacial demography and the origin of modern lineages. BMC Genomics 2020; 21:854. [PMID: 33267779 PMCID: PMC7709250 DOI: 10.1186/s12864-020-07208-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022] Open
Abstract
Background Numerous megafauna species from northern latitudes went extinct during the Pleistocene/Holocene transition as a result of climate-induced habitat changes. However, several ungulate species managed to successfully track their habitats during this period to eventually flourish and recolonise the holarctic regions. So far, the genomic impacts of these climate fluctuations on ungulates from high latitudes have been little explored. Here, we assemble a de-novo genome for the European moose (Alces alces) and analyse it together with re-sequenced nuclear genomes and ancient and modern mitogenomes from across the moose range in Eurasia and North America. Results We found that moose demographic history was greatly influenced by glacial cycles, with demographic responses to the Pleistocene/Holocene transition similar to other temperate ungulates. Our results further support that modern moose lineages trace their origin back to populations that inhabited distinct glacial refugia during the Last Glacial Maximum (LGM). Finally, we found that present day moose in Europe and North America show low to moderate inbreeding levels resulting from post-glacial bottlenecks and founder effects, but no evidence for recent inbreeding resulting from human-induced population declines. Conclusions Taken together, our results highlight the dynamic recent evolutionary history of the moose and provide an important resource for further genomic studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07208-3.
Collapse
Affiliation(s)
- Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden. .,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, SE-10405, Stockholm, Sweden. .,Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden.
| | - Federica Alberti
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,Reiss-Engelhorn-Museen, Zeughaus C5, 68159, Mannheim, Germany
| | - Matti T Heino
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, SE-10405, Stockholm, Sweden.,Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland.,History, Culture and Communication Studies, University of Oulu, P.O. Box 1000, 90014, Oulu, Finland
| | - Remi-Andre Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, SE-17121, Solna, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, SE-10405, Stockholm, Sweden
| | - Nils Ryman
- Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden
| | - Linda Laikre
- Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden
| | - Hans Ahlgren
- Department of Archeology and Classical studies, Stockholm University, SE-10691, Stockholm, Sweden
| | - Igor V Askeyev
- The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, 420087, Kazan, Russia
| | - Oleg V Askeyev
- The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, 420087, Kazan, Russia
| | - Dilyara N Shaymuratova
- The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, 420087, Kazan, Russia
| | - Arthur O Askeyev
- The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, 420087, Kazan, Russia
| | - Doris Döppes
- Reiss-Engelhorn-Museen, Zeughaus C5, 68159, Mannheim, Germany
| | - Ronny Friedrich
- Curt-Engelhorn-Center Archaeometry, C4, 8, D-68159, Mannheim, Germany
| | - Susanne Lindauer
- Curt-Engelhorn-Center Archaeometry, C4, 8, D-68159, Mannheim, Germany
| | - Wilfried Rosendahl
- Reiss-Engelhorn-Museen, Zeughaus C5, 68159, Mannheim, Germany.,Curt-Engelhorn-Center Archaeometry, C4, 8, D-68159, Mannheim, Germany
| | - Jouni Aspi
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Kerstin Lidén
- Department of Archeology and Classical studies, Stockholm University, SE-10691, Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, SE-10405, Stockholm, Sweden
| | - David Díez-Del-Molino
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden. .,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, SE-10405, Stockholm, Sweden. .,Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden.
| |
Collapse
|
8
|
Kim HI, Ye B, Gosalia N, Köroğlu Ç, Hanson RL, Hsueh WC, Knowler WC, Baier LJ, Bogardus C, Shuldiner AR, Van Hout CV, Van Hout CV. Characterization of Exome Variants and Their Metabolic Impact in 6,716 American Indians from the Southwest US. Am J Hum Genet 2020; 107:251-264. [PMID: 32640185 DOI: 10.1016/j.ajhg.2020.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
Applying exome sequencing to populations with unique genetic architecture has the potential to reveal novel genes and variants associated with traits and diseases. We sequenced and analyzed the exomes of 6,716 individuals from a Southwestern American Indian (SWAI) population with well-characterized metabolic traits. We found that the SWAI population has distinct allelic architecture compared to populations of European and East Asian ancestry, and there were many predicted loss-of-function (pLOF) and nonsynonymous variants that were highly enriched or private in the SWAI population. We used pLOF and nonsynonymous variants in the SWAI population to evaluate gene-burden associations of candidate genes from European genome-wide association studies (GWASs) for type 2 diabetes, body mass index, and four major plasma lipids. We found 19 significant gene-burden associations for 11 genes, providing additional evidence for prioritizing candidate effector genes of GWAS signals. Interestingly, these associations were mainly driven by pLOF and nonsynonymous variants that are unique or highly enriched in the SWAI population. Particularly, we found four pLOF or nonsynonymous variants in APOB, APOE, PCSK9, and TM6SF2 that are private or enriched in the SWAI population and associated with low-density lipoprotein (LDL) cholesterol levels. Their large estimated effects on LDL cholesterol levels suggest strong impacts on protein function and potential clinical implications of these variants in cardiovascular health. In summary, our study illustrates the utility and potential of exome sequencing in genetically unique populations, such as the SWAI population, to prioritize candidate effector genes within GWAS loci and to find additional variants in known disease genes with potential clinical impact.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Cristopher V Van Hout
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA.
| |
Collapse
|
9
|
Hubbe M, Terrazas Mata A, Herrera B, Benavente Sanvicente ME, González González A, Rojas Sandoval C, Avilés Olguín J, Acevez Núñez E, Von Cramon-Taubadel N. Morphological variation of the early human remains from Quintana Roo, Yucatán Peninsula, Mexico: Contributions to the discussions about the settlement of the Americas. PLoS One 2020; 15:e0227444. [PMID: 31995578 PMCID: PMC6988924 DOI: 10.1371/journal.pone.0227444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/18/2019] [Indexed: 11/24/2022] Open
Abstract
The human settlement of the Americas has been a topic of intense debate for centuries, and there is still no consensus on the tempo and mode of early human dispersion across the continent. When trying to explain the biological diversity of early groups across North, Central and South America, studies have defended a wide range of dispersion models that tend to oversimplify the diversity observed across the continent. In this study, we aim to contribute to this debate by exploring the cranial morphological affinities of four late Pleistocene/early Holocene specimens recovered from the caves of Quintana Roo, Mexico. The four specimens are among the earliest human remains known in the continent and permit the contextualization of biological diversity present during the initial millennia of human presence in the Americas. The specimens were compared to worldwide reference series through geometric morphometric analyses of 3D anatomical landmarks. Morphological data were analyzed through exploratory visual multivariate analyses and multivariate classification based on Mahalanobis distances. The results show very different patterns of morphological association for each Quintana Roo specimen, suggesting that the early populations of the region already shared a high degree of morphological diversity. This contrasts with previous studies of South American remains and opens the possibility that the initial populations of North America already had a high level of morphological diversity, which was reduced as populations dispersed into the southern continent. As such, the study of these rare remains illustrates that we are probably still underestimating the biological diversity of early Americans.
Collapse
Affiliation(s)
- Mark Hubbe
- Department of Anthropology, Ohio State University, Columbus, OH, United States of America
- Instituto de Arqueología y Antropología, Universidad Católica del Norte, San Pedro de Atacama, Chile
- * E-mail:
| | - Alejandro Terrazas Mata
- Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Brianne Herrera
- Department of Anthropology, Ohio State University, Columbus, OH, United States of America
| | - Martha E. Benavente Sanvicente
- Laboratorio de Prehistoria y Evolución del Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | | | | | | | - Noreen Von Cramon-Taubadel
- Department of Anthropology, State University of New York – Buffalo, Buffalo, NY, United States of America
| |
Collapse
|
10
|
Stigall AL. The Invasion Hierarchy: Ecological and Evolutionary Consequences of Invasions in the Fossil Record. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110617-062638] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Species invasions are pervasive in Earth history, yet the ecological and evolutionary consequences vary greatly. Ancient invasion events can be organized in a hierarchy of increasing invasion intensity from ephemeral invasions to globally pervasive invasive regimes. Each level exhibits emergent properties exceeding the sum of interactions at lower levels. Hierarchy levels correspond to, but do not always exactly correlate with, geographic extent of invasion success. The ecological impacts of lower-level impacts can be negligible or result in temporary community accommodation. Invasion events at moderate to high levels of the hierarchy permanently alter ecological communities, regional faunas, and global ecosystems. The prevalence of invasive species results in evolutionary changes by fostering niche evolution, differential survival of ecologically generalized taxa, faunal homogenization, and suppressing speciation. These impacts can contribute to mass extinctions and biodiversity crises that alter the trajectory of ecological and evolutionary patterns of life. The fossil record provides a long-term record of how invasion impacts may scale up through time, which can augment ecological studies of modern species invasions.
Collapse
Affiliation(s)
- Alycia L. Stigall
- Department of Geological Sciences, and OHIO Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|
11
|
Performance of ancestry-informative SNP and microhaplotype markers. Forensic Sci Int Genet 2019; 43:102141. [PMID: 31442930 DOI: 10.1016/j.fsigen.2019.102141] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/21/2019] [Accepted: 08/07/2019] [Indexed: 11/21/2022]
Abstract
The use of microhaplotypes (MHs) for ancestry inference has added to an increasing number of ancestry-informative markers (AIMs) for forensic application that includes autosomal single nucleotide polymorphisms (SNPs) and insertions/deletions (indels). This study compares bi-allelic and tri-allelic SNPs as well as MH markers for their ability to differentiate African, European, South Asian, East Asian, and American population groups from the 1000 Genomes Phase 3 database. A range of well-established metrics were applied to rank each marker according to the population differentiation potential they measured. These comprised: absolute allele frequency differences (δ); Rosenberg's informativeness for (ancestry) assignment (In); the fixation index (FST); and the effective number of alleles (Ae). A panel consisting of all three marker types resulted in the lowest mean divergence per population per individual (MDPI = 2.16%) when selected by In. However, when marker types were not mixed, MHs were the highest performing markers by most metrics (MDPI < 4%) for differentiation between the five continental populations.
Collapse
|
12
|
Gnecchi-Ruscone GA, Sarno S, De Fanti S, Gianvincenzo L, Giuliani C, Boattini A, Bortolini E, Di Corcia T, Sanchez Mellado C, Dàvila Francia TJ, Gentilini D, Di Blasio AM, Di Cosimo P, Cilli E, Gonzalez-Martin A, Franceschi C, Franceschi ZA, Rickards O, Sazzini M, Luiselli D, Pettener D. Dissecting the Pre-Columbian Genomic Ancestry of Native Americans along the Andes-Amazonia Divide. Mol Biol Evol 2019; 36:1254-1269. [PMID: 30895292 PMCID: PMC6526910 DOI: 10.1093/molbev/msz066] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extensive European and African admixture coupled with loss of Amerindian lineages makes the reconstruction of pre-Columbian history of Native Americans based on present-day genomes extremely challenging. Still open questions remain about the dispersals that occurred throughout the continent after the initial peopling from the Beringia, especially concerning the number and dynamics of diffusions into South America. Indeed, if environmental and historical factors contributed to shape distinct gene pools in the Andes and Amazonia, the origins of this East-West genetic structure and the extension of further interactions between populations residing along this divide are still not well understood. To this end, we generated new high-resolution genome-wide data for 229 individuals representative of one Central and ten South Amerindian ethnic groups from Mexico, Peru, Bolivia, and Argentina. Low levels of European and African admixture in the sampled individuals allowed the application of fine-scale haplotype-based methods and demographic modeling approaches. These analyses revealed highly specific Native American genetic ancestries and great intragroup homogeneity, along with limited traces of gene flow mainly from the Andes into Peruvian Amazonians. Substantial amount of genetic drift differentially experienced by the considered populations underlined distinct patterns of recent inbreeding or prolonged isolation. Overall, our results support the hypothesis that all non-Andean South Americans are compatible with descending from a common lineage, while we found low support for common Mesoamerican ancestors of both Andeans and other South American groups. These findings suggest extensive back-migrations into Central America from non-Andean sources or conceal distinct peopling events into the Southern Continent.
Collapse
Affiliation(s)
- Guido Alberto Gnecchi-Ruscone
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Stefania Sarno
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Sara De Fanti
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Laura Gianvincenzo
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Alessio Boattini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Tullia Di Corcia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cesar Sanchez Mellado
- Faculty of Intercultural Education and Humanity, National Intercultural University of Amazon, Ucayali, Peru
| | | | - Davide Gentilini
- Center for Biomedical Research and Technologies, Italian Auxologic Institute IRCCS, Milan, Italy
| | - Anna Maria Di Blasio
- Center for Biomedical Research and Technologies, Italian Auxologic Institute IRCCS, Milan, Italy
| | | | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Antonio Gonzalez-Martin
- Department of Zoology and Physical Anthropology, Complutense University of Madrid, Madrid, Spain
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Olga Rickards
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marco Sazzini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Davide Pettener
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
de Souza AM, Resende SS, de Sousa TN, de Brito CFA. A systematic scoping review of the genetic ancestry of the Brazilian population. Genet Mol Biol 2019; 42:495-508. [PMID: 31188926 PMCID: PMC6905439 DOI: 10.1590/1678-4685-gmb-2018-0076] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 01/16/2019] [Indexed: 12/27/2022] Open
Abstract
The genetic background of the Brazilian population is mainly characterized by three parental populations: European, African, and Native American. The aim of this study was to overview the genetic ancestry estimates for different Brazilian geographic regions and analyze factors involved in these estimates. In this systematic scoping review were included 51 studies, comprehending 81 populations of 19 states from five regions of Brazil. To reduce the potential of bias from studies with different sampling methods, we calculated the mean genetic ancestry weighted by the number of individuals. The weighted mean proportions of European, African, and Native American ancestries were 68.1%, 19.6%, and 11.6%, respectively. At the regional level, the highest European contribution occurred in the South, while the highest African and Native American contributions occurred in the Northeastern and Northern regions, respectively. Among states in the Northeast region, Bahia and Ceará showed significant differences, suggesting distinct demographic histories. This review contributes for a broader understanding of the Brazilian ancestry and indicates that the ancestry estimates are influenced by the type of molecular marker and the sampling method.
Collapse
Affiliation(s)
- Aracele Maria de Souza
- Research Group in Molecular Biology and Immunology of Malaria,
Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil
| | - Sarah Stela Resende
- Research Group in Molecular Biology and Immunology of Malaria,
Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil
| | - Taís Nóbrega de Sousa
- Research Group in Molecular Biology and Immunology of Malaria,
Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
14
|
Craniometrics Reveal "Two Layers" of Prehistoric Human Dispersal in Eastern Eurasia. Sci Rep 2019; 9:1451. [PMID: 30723215 PMCID: PMC6363732 DOI: 10.1038/s41598-018-35426-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022] Open
Abstract
This cranio-morphometric study emphasizes a “two-layer model” for eastern Eurasian anatomically modern human (AMH) populations, based on large datasets of 89 population samples including findings directly from ancient archaeological contexts. Results suggest that an initial “first layer” of AMH had related closely to ancestral Andaman, Australian, Papuan, and Jomon groups who likely entered this region via the Southeast Asian landmass, prior to 65–50 kya. A later “second layer” shared strong cranial affinities with Siberians, implying a Northeast Asian source, evidenced by 9 kya in central China and then followed by expansions of descendant groups into Southeast Asia after 4 kya. These two populations shared limited initial exchange, and the second layer grew at a faster rate and in greater numbers, linked with contexts of farming that may have supported increased population densities. Clear dichotomization between the two layers implies a temporally deep divergence of distinct migration routes for AMH through both southern and northern Eurasia.
Collapse
|
15
|
Branco C, Velasco M, Benguigui M, Currat M, Ray N, Arenas M. Consequences of diverse evolutionary processes on american genetic gradients of modern humans. Heredity (Edinb) 2018; 121:548-556. [PMID: 30022169 DOI: 10.1038/s41437-018-0122-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 11/09/2022] Open
Abstract
European genetic gradients of modern humans were initially interpreted as a consequence of the demic diffusion of expanding Neolithic farmers. However, recent studies showed that these gradients may also be influenced by other evolutionary processes such as population admixture or range contractions. Genetic gradients were observed in the Americas, although their specific evolutionary causes were not investigated. Here we extended the approach used to study genetic gradients in Europe to analyze the influence of diverse evolutionary scenarios on American genetic gradients. Using extensive computer simulations, we evaluated the impact of (i) admixture between expansion waves of modern humans, (ii) the presence of ice-sheets during the last glacial maximum (LGM) and (iii) long-distance dispersal (LDD) events, on the genetic gradients (detected by principal component analysis) of the entire continent, North America and South America. The specific simulation of North and South America showed that genetic gradients are usually orthogonal to the direction of range expansions-either expansions from Bering or posterior re-expansions to recolonize northern regions after ice sheets melting-and we suggest that they result from allele surfing processes. Conversely, our results on the entire continent show a northwest-southeast gradient obtained with any scenario, which we interpreted as a consequence of isolation by distance along the long length of the continent. These findings suggest that distinct genetic gradients can be detected at different regions of the Americas and that subcontinent regions present gradients more sensible to evolutionary and environmental factors (such as LDD and the LGM) than the whole continent.
Collapse
Affiliation(s)
- Catarina Branco
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Miguel Velasco
- Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Macarena Benguigui
- Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mathias Currat
- Anthropology, Genetics and Peopling History Lab, Department of Genetics & Evolution -Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland
| | - Nicolas Ray
- EnviroSPACE Lab, Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland.,Institute of Global Health, University of Geneva, Geneva, Switzerland
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain. .,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal. .,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal. .,Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
16
|
Fagundes NJR, Tagliani-Ribeiro A, Rubicz R, Tarskaia L, Crawford MH, Salzano FM, Bonatto SL. How strong was the bottleneck associated to the peopling of the Americas? New insights from multilocus sequence data. Genet Mol Biol 2018; 41:206-214. [PMID: 29668018 PMCID: PMC5913727 DOI: 10.1590/1678-4685-gmb-2017-0087] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022] Open
Abstract
In spite of many genetic studies that contributed for a deep knowledge about the peopling of the Americas, no consensus has emerged about important parameters such as the effective size of the Native Americans founder population. Previous estimates based on genomic datasets may have been biased by the use of admixed individuals from Latino populations, while other recent studies using samples from Native American individuals relied on approximated analytical approaches. In this study we use resequencing data for nine independent regions in a set of Native American and Siberian individuals and a full-likelihood approach based on isolation-with-migration scenarios accounting for recent flow between Asian and Native American populations. Our results suggest that, in agreement with previous studies, the effective size of the Native American population was small, most likely in the order of a few hundred individuals, with point estimates close to 250 individuals, even though credible intervals include a number as large as ~4,000 individuals. Recognizing the size of the genetic bottleneck during the peopling of the Americas is important for determining the extent of genetic markers needed to characterize Native American populations in genome-wide studies and to evaluate the adaptive potential of genetic variants in this population.
Collapse
Affiliation(s)
- Nelson J R Fagundes
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alice Tagliani-Ribeiro
- Fertilitat Centro de Medicina Reprodutiva, Centro Clínico da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rohina Rubicz
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Larissa Tarskaia
- Laboratory of Biological Anthropology, University of Kansas, Lawrence, KS, USA
| | - Michael H Crawford
- Laboratory of Biological Anthropology, University of Kansas, Lawrence, KS, USA
| | - Francisco M Salzano
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sandro L Bonatto
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Enclaves of genetic diversity resisted Inca impacts on population history. Sci Rep 2017; 7:17411. [PMID: 29234095 PMCID: PMC5727115 DOI: 10.1038/s41598-017-17728-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/29/2017] [Indexed: 11/08/2022] Open
Abstract
The Inca Empire is claimed to have driven massive population movements in western South America, and to have spread Quechua, the most widely-spoken language family of the indigenous Americas. A test-case is the Chachapoyas region of northern Peru, reported as a focal point of Inca population displacements. Chachapoyas also spans the environmental, cultural and demographic divides between Amazonia and the Andes, and stands along the lowest-altitude corridor from the rainforest to the Pacific coast. Following a sampling strategy informed by linguistic data, we collected 119 samples, analysed for full mtDNA genomes and Y-chromosome STRs. We report a high indigenous component, which stands apart from the network of intense genetic exchange in the core central zone of Andean civilization, and is also distinct from neighbouring populations. This unique genetic profile challenges the routine assumption of large-scale population relocations by the Incas. Furthermore, speakers of Chachapoyas Quechua are found to share no particular genetic similarity or gene-flow with Quechua speakers elsewhere, suggesting that here the language spread primarily by cultural diffusion, not migration. Our results demonstrate how population genetics, when fully guided by the archaeological, historical and linguistic records, can inform multiple disciplines within anthropology.
Collapse
|
18
|
|
19
|
Shirley MH, Austin JD. Did Late Pleistocene climate change result in parallel genetic structure and demographic bottlenecks in sympatric Central African crocodiles, Mecistops and Osteolaemus? Mol Ecol 2017; 26:6463-6477. [PMID: 29024142 DOI: 10.1111/mec.14378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 01/24/2023]
Abstract
The mid-Holocene has had profound demographic impacts on wildlife on the African continent, although there is little known about the impacts on species from Central Africa. Understanding the impacts of climate change on codistributed species can enhance our understanding of ecosystem dynamics and for formulating restoration objectives. We took a multigenome comparative approach to examine the phylogeographic structure of two poorly known Central African crocodile species-Mecistops sp. aff. cataphractus and Osteolaemus tetraspis. In addition, we conducted coalescent-based demographic reconstructions to test the hypothesis that population decline was driven by climate change since the Last Glacial Maximum, vs. more recent anthropogenic pressures. Using a hierarchical Bayesian model to reconstruct demographic history, we show that both species had dramatic declines (>97%) in effective population size in the 'period following the Last Glacial Maximum 1,500-18,000 YBP. Identification of genetic structuring showed both species have similar regional structure corresponding to major geological features (i.e., hydrologic basin) and that small observed differences between them are best explained by the differences in their ecology and the likely impact that climate change had on their habitat needs. Our results support our hypothesis that climatic effects, presumably on forest and wetland habitat, had a congruent negative impact on both species.
Collapse
Affiliation(s)
- Matthew H Shirley
- Tropical Conservation Institute, Florida International University, Biscayne Bay Campus, North Miami, FL, USA.,Rare Species Conservatory Foundation, Loxahatchee, FL, USA
| | - James D Austin
- Department of Wildlife Ecology & Conservation, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Naito H, Takahashi T, Kamada M, Morino H, Yoshino H, Hattori N, Maruyama H, Kawakami H, Matsumoto M. First report of a Japanese family with spinocerebellar ataxia type 10: The second report from Asia after a report from China. PLoS One 2017; 12:e0177955. [PMID: 28542277 PMCID: PMC5438172 DOI: 10.1371/journal.pone.0177955] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is an autosomal-dominant cerebellar ataxia that is variably accompanied by epilepsy and other neurological disorders. It is caused by an expansion of the ATTCT pentanucleotide repeat in intron 9 of the ATXN10 gene. Until now, SCA10 was almost exclusively found in the American continents, while no cases had been identified in Japan. Here, we report the first case of an SCA10 family from Japan. The clinical manifestations in our cases were cerebellar ataxia accompanied by epilepsy, hyperreflexia and cognitive impairment. Although the primary pathology in SCA10 in humans is reportedly the loss of Purkinje cells, brain MRI revealed frontal lobe atrophy with white matter lesions. This pathology might be associated with cognitive dysfunction, indicating that the pathological process is not limited to the cerebellum. Examination of the SNPs surrounding the SCA10 locus in the proband showed the “C-expansion-G-G-C” haplotype, which is consistent with previously reported SCA10-positive individuals. This result was consistent with the findings that the SCA10 mutation may have occurred before the migration of Amerindians from East Asia to North America and the subsequent spread of their descendants throughout North and South America.
Collapse
Affiliation(s)
- Hiroyuki Naito
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- * E-mail:
| | - Masaki Kamada
- Department of Neurological Intractable Disease Research, Kagawa University School of Medicine, Kagawa, Japan
| | - Hiroyuki Morino
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Japan Community Health care Organization, Hoshigaoka Medical Center, Osaka, Japan
| |
Collapse
|
21
|
Abstract
When humans moved from Asia toward the Americas over 18,000 y ago and eventually peopled the New World they encountered a new environment with extreme climate conditions and distinct dietary resources. These environmental and dietary pressures may have led to instances of genetic adaptation with the potential to influence the phenotypic variation in extant Native American populations. An example of such an event is the evolution of the fatty acid desaturases (FADS) genes, which have been claimed to harbor signals of positive selection in Inuit populations due to adaptation to the cold Greenland Arctic climate and to a protein-rich diet. Because there was evidence of intercontinental variation in this genetic region, with indications of positive selection for its variants, we decided to compare the Inuit findings with other Native American data. Here, we use several lines of evidence to show that the signal of FADS-positive selection is not restricted to the Arctic but instead is broadly observed throughout the Americas. The shared signature of selection among populations living in such a diverse range of environments is likely due to a single and strong instance of local adaptation that took place in the common ancestral population before their entrance into the New World. These first Americans peopled the whole continent and spread this adaptive variant across a diverse set of environments.
Collapse
|
22
|
Mulligan CJ, Szathmáry EJ. The peopling of the Americas and the origin of the Beringian occupation model. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 162:403-408. [DOI: 10.1002/ajpa.23152] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Connie J. Mulligan
- Department of Anthropology; Genetics Institute, University of Florida; Gainesville Florida 32610-3610
| | - Emőke J.E. Szathmáry
- Department of Anthropology; University of Manitoba; Winnipeg Manitoba Canada R3T 2M6
| |
Collapse
|
23
|
Bourgeon L, Burke A, Higham T. Earliest Human Presence in North America Dated to the Last Glacial Maximum: New Radiocarbon Dates from Bluefish Caves, Canada. PLoS One 2017; 12:e0169486. [PMID: 28060931 PMCID: PMC5218561 DOI: 10.1371/journal.pone.0169486] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022] Open
Abstract
The timing of the first entry of humans into North America is still hotly debated within the scientific community. Excavations conducted at Bluefish Caves (Yukon Territory) from 1977 to 1987 yielded a series of radiocarbon dates that led archaeologists to propose that the initial dispersal of human groups into Eastern Beringia (Alaska and the Yukon Territory) occurred during the Last Glacial Maximum (LGM). This hypothesis proved highly controversial in the absence of other sites of similar age and concerns about the stratigraphy and anthropogenic signature of the bone assemblages that yielded the dates. The weight of the available archaeological evidence suggests that the first peopling of North America occurred ca. 14,000 cal BP (calibrated years Before Present), i.e., well after the LGM. Here, we report new AMS radiocarbon dates obtained on cut-marked bone samples identified during a comprehensive taphonomic analysis of the Bluefish Caves fauna. Our results demonstrate that humans occupied the site as early as 24,000 cal BP (19,650 ± 130 14C BP). In addition to proving that Bluefish Caves is the oldest known archaeological site in North America, the results offer archaeological support for the “Beringian standstill hypothesis”, which proposes that a genetically isolated human population persisted in Beringia during the LGM and dispersed from there to North and South America during the post-LGM period.
Collapse
Affiliation(s)
- Lauriane Bourgeon
- Département d'Anthropologie, Université de Montréal, Montréal QC, Canada
- * E-mail:
| | - Ariane Burke
- Département d'Anthropologie, Université de Montréal, Montréal QC, Canada
| | - Thomas Higham
- Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology & the History of Art, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
García-González I, Mendoza-Alcocer R, Pérez-Mendoza GJ, Rubí-Castellanos R, González-Herrera L. Distribution of genetic variants of oxidative stress metabolism genes: Paraoxonase 1 (PON1) and Glutathione S-transferase (GSTM1/GSTT1) in a population from Southeastern Mexico. Ann Hum Biol 2016; 43:554-562. [PMID: 26620773 DOI: 10.3109/03014460.2015.1126353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Paraoxonase 1 (PON1) and glutathione S-transferases (GSTs) are involved in the biotransformation of xenobiotics. Variation in the enzyme concentration and activity suggests individual differences for the degree of protection against oxidative stress. AIM This study analysed the distribution of SNPs Q192R, L55M (PON1) and variants in GSTM1 and GSTT1 genes in a population from Southeastern Mexico. SUBJECTS AND METHODS One hundred and fifty-one Mexican Mestizo healthy volunteers were included. PON1 polymorphisms were determined by Taqman allele discrimination real time-PCR, whereas GSTM1 and GSTT1 genes were determined with a multiplex PCR-based method. RESULTS All genotypes were in Hardy-Weinberg equilibrium, except for GSTM1. The genotypic distributions of Q192R and L55M were 22% QQ, 48% QR, 30% RR, 62% LL, 34% LM and 4% MM, respectively, whereas the allele frequencies were 0.46 (Q), 0.54 (R), 0.79 (L) and 0.21 (M). The most frequent haplotype was R/L (46.7%). It was found that 31% and 9% of the individuals had the GSTM1 and GSTT1 null genotype, respectively. The frequency of the combined null genotype GSTM1*0/GSTT1*0 was 4.64%. CONCLUSION The results showed that the frequencies of polymorphisms of PON1, GSTM1 and GSTT1 in the Yucatán population differ to those observed in other ethnic groups and provide useful data for epidemiological studies.
Collapse
Affiliation(s)
- I García-González
- a Laboratorio de Genética , Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán . Mérida, Yucatán , Mexico and
| | - R Mendoza-Alcocer
- b Centro Estatal de la Transfusión Sanguínea, Secretaria de Salud de Yucatán , Mérida, Yucatán , Mexico
| | - G J Pérez-Mendoza
- a Laboratorio de Genética , Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán . Mérida, Yucatán , Mexico and
| | - R Rubí-Castellanos
- a Laboratorio de Genética , Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán . Mérida, Yucatán , Mexico and
| | - L González-Herrera
- a Laboratorio de Genética , Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán . Mérida, Yucatán , Mexico and
| |
Collapse
|
25
|
Bolnick DA, Raff JA, Springs LC, Reynolds AW, Miró-Herrans AT. Native American Genomics and Population Histories. ANNUAL REVIEW OF ANTHROPOLOGY 2016. [DOI: 10.1146/annurev-anthro-102215-100036] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of Native American genetic diversity and population history have been transformed over the last decade by important developments in anthropological genetics. During this time, researchers have adopted new DNA technologies and computational approaches for analyzing genomic data, and they have become increasingly sensitive to the views of research participants and communities. As new methods are applied to long-standing questions, and as more research is conducted in collaboration with indigenous communities, we are gaining new insights into the history and diversity of indigenous populations. This review discusses the recent methodological advances and genetic studies that have improved our understanding of Native American genomics and population histories. We synthesize current knowledge about Native American genomic variation and build a model of population history in the Americas. We also discuss the broader implications of this research for anthropology and related disciplines, and we highlight challenges and other considerations for future research.
Collapse
Affiliation(s)
- Deborah A. Bolnick
- Department of Anthropology, University of Texas at Austin, Austin, Texas 78712;, , ,
- Population Research Center, University of Texas at Austin, Austin, Texas 78712
| | - Jennifer A. Raff
- Department of Anthropology, University of Kansas, Lawrence, Kansas 66045-7556
| | - Lauren C. Springs
- Department of Anthropology, University of Texas at Austin, Austin, Texas 78712;, , ,
| | - Austin W. Reynolds
- Department of Anthropology, University of Texas at Austin, Austin, Texas 78712;, , ,
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Aida T. Miró-Herrans
- Department of Anthropology, University of Texas at Austin, Austin, Texas 78712;, , ,
| |
Collapse
|
26
|
Human Y Chromosome Haplogroup N: A Non-trivial Time-Resolved Phylogeography that Cuts across Language Families. Am J Hum Genet 2016; 99:163-73. [PMID: 27392075 DOI: 10.1016/j.ajhg.2016.05.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/22/2016] [Indexed: 11/21/2022] Open
Abstract
The paternal haplogroup (hg) N is distributed from southeast Asia to eastern Europe. The demographic processes that have shaped the vast extent of this major Y chromosome lineage across numerous linguistically and autosomally divergent populations have previously been unresolved. On the basis of 94 high-coverage re-sequenced Y chromosomes, we establish and date a detailed hg N phylogeny. We evaluate geographic structure by using 16 distinguishing binary markers in 1,631 hg N Y chromosomes from a collection of 6,521 samples from 56 populations. The more southerly distributed sub-clade N4 emerged before N2a1 and N3, found mostly in the north, but the latter two display more elaborate branching patterns, indicative of regional contrasts in recent expansions. In particular, a number of prominent and well-defined clades with common N3a3'6 ancestry occur in regionally dissimilar northern Eurasian populations, indicating almost simultaneous regional diversification and expansion within the last 5,000 years. This patrilineal genetic affinity is decoupled from the associated higher degree of language diversity.
Collapse
|
27
|
Hoffecker JF, Elias SA, O'Rourke DH, Scott GR, Bigelow NH. Beringia and the global dispersal of modern humans. Evol Anthropol 2016; 25:64-78. [DOI: 10.1002/evan.21478] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Raff JA, Bolnick DA. Does Mitochondrial Haplogroup X Indicate Ancient Trans-Atlantic Migration to the Americas? A Critical Re-Evaluation. ACTA ACUST UNITED AC 2015. [DOI: 10.1179/2055556315z.00000000040] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
29
|
Demographic History of Indigenous Populations in Mesoamerica Based on mtDNA Sequence Data. PLoS One 2015; 10:e0131791. [PMID: 26292226 PMCID: PMC4546282 DOI: 10.1371/journal.pone.0131791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
The genetic characterization of Native American groups provides insights into their history and demographic events. We sequenced the mitochondrial D-loop region (control region) of 520 samples from eight Mexican indigenous groups. In addition to an analysis of the genetic diversity, structure and genetic relationship between 28 Native American populations, we applied Bayesian skyline methodology for a deeper insight into the history of Mesoamerica. AMOVA tests applying cultural, linguistic and geographic criteria were performed. MDS plots showed a central cluster of Oaxaca and Maya populations, whereas those from the North and West were located on the periphery. Demographic reconstruction indicates higher values of the effective number of breeding females (Nef) in Central Mesoamerica during the Preclassic period, whereas this pattern moves toward the Classic period for groups in the North and West. Conversely, Nef minimum values are distributed either in the Lithic period (i.e. founder effects) or in recent periods (i.e. population declines). The Mesomerican regions showed differences in population fluctuation as indicated by the maximum Inter-Generational Rate (IGRmax): i) Center-South from the lithic period until the Preclassic; ii) West from the beginning of the Preclassic period until early Classic; iii) North characterized by a wide range of temporal variation from the Lithic to the Preclassic. Our findings are consistent with the genetic variations observed between central, South and Southeast Mesoamerica and the North-West region that are related to differences in genetic drift, structure, and temporal survival strategies (agriculture versus hunter-gathering, respectively). Interestingly, although the European contact had a major negative demographic impact, we detect a previous decline in Mesoamerica that had begun a few hundred years before.
Collapse
|
30
|
Raghavan M, Steinrücken M, Harris K, Schiffels S, Rasmussen S, DeGiorgio M, Albrechtsen A, Valdiosera C, Ávila-Arcos MC, Malaspinas AS, Eriksson A, Moltke I, Metspalu M, Homburger JR, Wall J, Cornejo OE, Moreno-Mayar JV, Korneliussen TS, Pierre T, Rasmussen M, Campos PF, de Barros Damgaard P, Allentoft ME, Lindo J, Metspalu E, Rodríguez-Varela R, Mansilla J, Henrickson C, Seguin-Orlando A, Malmström H, Stafford T, Shringarpure SS, Moreno-Estrada A, Karmin M, Tambets K, Bergström A, Xue Y, Warmuth V, Friend AD, Singarayer J, Valdes P, Balloux F, Leboreiro I, Vera JL, Rangel-Villalobos H, Pettener D, Luiselli D, Davis LG, Heyer E, Zollikofer CPE, Ponce de León MS, Smith CI, Grimes V, Pike KA, Deal M, Fuller BT, Arriaza B, Standen V, Luz MF, Ricaut F, Guidon N, Osipova L, Voevoda MI, Posukh OL, Balanovsky O, Lavryashina M, Bogunov Y, Khusnutdinova E, Gubina M, Balanovska E, Fedorova S, Litvinov S, Malyarchuk B, Derenko M, Mosher MJ, Archer D, Cybulski J, Petzelt B, Mitchell J, Worl R, Norman PJ, Parham P, Kemp BM, Kivisild T, Tyler-Smith C, Sandhu MS, Crawford M, Villems R, Smith DG, Waters MR, Goebel T, Johnson JR, Malhi RS, Jakobsson M, Meltzer DJ, Manica A, Durbin R, Bustamante CD, Song YS, Nielsen R, et alRaghavan M, Steinrücken M, Harris K, Schiffels S, Rasmussen S, DeGiorgio M, Albrechtsen A, Valdiosera C, Ávila-Arcos MC, Malaspinas AS, Eriksson A, Moltke I, Metspalu M, Homburger JR, Wall J, Cornejo OE, Moreno-Mayar JV, Korneliussen TS, Pierre T, Rasmussen M, Campos PF, de Barros Damgaard P, Allentoft ME, Lindo J, Metspalu E, Rodríguez-Varela R, Mansilla J, Henrickson C, Seguin-Orlando A, Malmström H, Stafford T, Shringarpure SS, Moreno-Estrada A, Karmin M, Tambets K, Bergström A, Xue Y, Warmuth V, Friend AD, Singarayer J, Valdes P, Balloux F, Leboreiro I, Vera JL, Rangel-Villalobos H, Pettener D, Luiselli D, Davis LG, Heyer E, Zollikofer CPE, Ponce de León MS, Smith CI, Grimes V, Pike KA, Deal M, Fuller BT, Arriaza B, Standen V, Luz MF, Ricaut F, Guidon N, Osipova L, Voevoda MI, Posukh OL, Balanovsky O, Lavryashina M, Bogunov Y, Khusnutdinova E, Gubina M, Balanovska E, Fedorova S, Litvinov S, Malyarchuk B, Derenko M, Mosher MJ, Archer D, Cybulski J, Petzelt B, Mitchell J, Worl R, Norman PJ, Parham P, Kemp BM, Kivisild T, Tyler-Smith C, Sandhu MS, Crawford M, Villems R, Smith DG, Waters MR, Goebel T, Johnson JR, Malhi RS, Jakobsson M, Meltzer DJ, Manica A, Durbin R, Bustamante CD, Song YS, Nielsen R, Willerslev E. POPULATION GENETICS. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 2015. [PMID: 26198033 DOI: 10.1126/science.aab3884] [Show More Authors] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.
Collapse
Affiliation(s)
- Maanasa Raghavan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Matthias Steinrücken
- Computer Science Division, University of California, Berkeley, CA 94720, USA.,Department of Statistics, University of California, Berkeley, CA 94720, USA.,Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Kelley Harris
- Department of Mathematics, University of California, Berkeley, CA 94720, USA
| | - Stephan Schiffels
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Simon Rasmussen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kongens Lyngby, Denmark
| | - Michael DeGiorgio
- Departments of Biology and Statistics, Pennsylvania State University, 502 Wartik Laboratory, University Park, PA 16802, USA
| | - Anders Albrechtsen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Cristina Valdiosera
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,Department of Archaeology and History, La Trobe University, Melbourne, Victoria 3086, Australia
| | - María C Ávila-Arcos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, California 94305, USA
| | - Anna-Sapfo Malaspinas
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Anders Eriksson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Integrative Systems Biology Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ida Moltke
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Mait Metspalu
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia.,Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia
| | - Julian R Homburger
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, California 94305, USA
| | - Jeff Wall
- Institute for Human Genetics, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Omar E Cornejo
- School of Biological Sciences, Washington State University, PO Box 644236, Heald 429, Pullman, Washington 99164, USA
| | - J Víctor Moreno-Mayar
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Thorfinn S Korneliussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Tracey Pierre
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Morten Rasmussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, California 94305, USA
| | - Paula F Campos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Peter de Barros Damgaard
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Morten E Allentoft
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - John Lindo
- Department of Anthropology, University of Illinois at Urbana-Champaign, 607 S. Mathews Ave, Urbana, IL 61801, USA
| | - Ene Metspalu
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia.,Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia
| | - Ricardo Rodríguez-Varela
- Centro Mixto, Universidad Complutense de Madrid-Instituto de Salud Carlos III de Evolución y Comportamiento Humano, Madrid, Spain
| | - Josefina Mansilla
- Instituto Nacional de Antropología e Historia, Moneda 13, Centro, Cuauhtémoc, 06060 Mexico Mexico City, Mexico
| | - Celeste Henrickson
- University of Utah, Department of Anthropology, 270 S 1400 E, Salt Lake City, Utah 84112, USA
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Helena Malmström
- Department of Evolutionary Biology and Science for Life Laboratory, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Thomas Stafford
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,AMS 14C Dating Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark
| | - Suyash S Shringarpure
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, California 94305, USA
| | - Andrés Moreno-Estrada
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, California 94305, USA.,Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36821, Mexico
| | - Monika Karmin
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia.,Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia
| | - Kristiina Tambets
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia
| | - Anders Bergström
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Yali Xue
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Vera Warmuth
- UCL Genetics Institute, Gower Street, London WC1E 6BT, UK.,Evolutionsbiologiskt Centrum, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
| | - Joy Singarayer
- Centre for Past Climate Change and Department of Meteorology, University of Reading, Earley Gate, PO Box 243, Reading, UK
| | - Paul Valdes
- School of Geographical Sciences, University Road, Clifton, Bristol BS8 1SS, UK
| | | | - Ilán Leboreiro
- Instituto Nacional de Antropología e Historia, Moneda 13, Centro, Cuauhtémoc, 06060 Mexico Mexico City, Mexico
| | - Jose Luis Vera
- Escuela Nacional de AntropologÍa e Historia, Periférico Sur y Zapote s/n. Colonia Isidro Fabela, Tlalpan, Isidro Fabela, 14030 Mexico City, Mexico
| | | | - Davide Pettener
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Donata Luiselli
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Loren G Davis
- Department of Anthropology, Oregon State University, 238 Waldo Hall, Corvallis, OR, 97331 USA
| | - Evelyne Heyer
- Museum National d'Histoire Naturelle, CNRS, Université Paris 7 Diderot, Sorbonne Paris Cité, Sorbonne Universités, Unité Eco-Anthropologie et Ethnobiologie (UMR7206), Paris, France
| | - Christoph P E Zollikofer
- Anthropological Institute and Museum, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Marcia S Ponce de León
- Anthropological Institute and Museum, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Colin I Smith
- Department of Archaeology and History, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Vaughan Grimes
- Department of Archaeology, Memorial University, Queen's College, 210 Prince Philip Drive, St. John's, Newfoundland, A1C 5S7, Canada.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Kelly-Anne Pike
- Department of Archaeology, Memorial University, Queen's College, 210 Prince Philip Drive, St. John's, Newfoundland, A1C 5S7, Canada
| | - Michael Deal
- Department of Archaeology, Memorial University, Queen's College, 210 Prince Philip Drive, St. John's, Newfoundland, A1C 5S7, Canada
| | - Benjamin T Fuller
- Department of Earth System Science, University of California, Irvine, Keck CCAMS Group, B321 Croul Hall, Irvine, California, 92697, USA
| | - Bernardo Arriaza
- Instituto de Alta Investigación, Universidad de Tarapacá, 18 de Septiembre 2222, Carsilla 6-D Arica, Chile
| | - Vivien Standen
- Departamento de Antropologia, Universidad de Tarapacá, 18 de Septiembre 2222. Casilla 6-D Arica, Chile
| | - Maria F Luz
- Fundação Museu do Homem Americano, Centro Cultural Sérgio Motta, Campestre, 64770-000 Sao Raimundo Nonato, Brazil
| | - Francois Ricaut
- Laboratoire d'Anthropologie Moléculaire et Imagérie de Synthèse UMR-5288, CNRS, Université de Toulouse, 31073 Toulouse, France
| | - Niede Guidon
- Fundação Museu do Homem Americano, Centro Cultural Sérgio Motta, Campestre, 64770-000 Sao Raimundo Nonato, Brazil
| | - Ludmila Osipova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - Mikhail I Voevoda
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia.,Institute of Internal Medicine, Siberian Branch of RAS, 175/1 ul. B. Bogatkova, Novosibirsk 630089, Russia.,Novosibirsk State University, Laboratory of Molecular Epidemiology and Bioinformatics, 630090 Novosibirsk, Russia
| | - Olga L Posukh
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - Oleg Balanovsky
- Vavilov Institute of General Genetics, Gubkina 3, 119333 Moscow, Russia.,Research Centre for Medical Genetics, Moskvorechie 1, 115478 Moscow, Russia
| | | | - Yuri Bogunov
- Vavilov Institute of General Genetics, Gubkina 3, 119333 Moscow, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Scientific Center of RAS, Prospekt Oktyabrya 71, 450054 Ufa, Russia.,Department of Genetics and Fundamental Medicine, Bashkir State University, Zaki Validi 32, 450076 Ufa, Russia
| | - Marina Gubina
- Fundação Museu do Homem Americano, Centro Cultural Sérgio Motta, Campestre, 64770-000 Sao Raimundo Nonato, Brazil
| | - Elena Balanovska
- Research Centre for Medical Genetics, Moskvorechie 1, 115478 Moscow, Russia
| | - Sardana Fedorova
- Department of Molecular Genetics, Yakut Scientific Centre of Complex Medical Problems, Sergelyahskoe Shosse 4, 677010 Yakutsk, Russia.,Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Russia
| | - Sergey Litvinov
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia.,Institute of Biochemistry and Genetics, Ufa Scientific Center of RAS, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| | - Boris Malyarchuk
- Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street 18, Magadan 685000, Russia
| | - Miroslava Derenko
- Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street 18, Magadan 685000, Russia
| | - M J Mosher
- Department of Anthropology, Western Washington University, Bellingham Washington 98225, USA
| | - David Archer
- Department of Anthropology, Northwest Community College, 353 Fifth Street, Prince Rupert, British Columbia V8J 3L6, Canada
| | - Jerome Cybulski
- Canadian Museum of History, 100 Rue Laurier, Gatineau, Quebec K1A 0M8, Canada.,University of Western Ontario, London, Ontario N6A 3K7, Canada.,Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Barbara Petzelt
- Metlakatla Treaty Office, PO Box 224, Prince Rupert, BC, Canada V8J 3P6
| | | | - Rosita Worl
- Sealaska Heritage Institute, 105 S. Seward Street, Juneau, Alaska 99801, USA
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, D100 Fairchild Science Building, Stanford, California 94305-5126, USA
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, D100 Fairchild Science Building, Stanford, California 94305-5126, USA
| | - Brian M Kemp
- School of Biological Sciences, Washington State University, PO Box 644236, Heald 429, Pullman, Washington 99164, USA.,Department of Anthropology, Washington State University, Pullman Washington 99163, USA
| | - Toomas Kivisild
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia.,Division of Biological Anthropology, University of Cambridge, Henry Wellcome Building, Fitzwilliam Street, CB2 1QH, Cambridge, UK
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Manjinder S Sandhu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.,Dept of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Michael Crawford
- Laboratory of Biological Anthropology, University of Kansas, 1415 Jayhawk Blvd., 622 Fraser Hall, Lawrence, Kansas 66045, USA
| | - Richard Villems
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia.,Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia
| | - David Glenn Smith
- Molecular Anthropology Laboratory, 209 Young Hall, Department of Anthropology, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Michael R Waters
- Center for the Study of the First Americans, Texas A&M University, College Station, Texas 77843-4352, USA.,Department of Anthropology, Texas A&M University, College Station, Texas 77843-4352, USA.,Department of Geography, Texas A&M University, College Station, Texas 77843-4352, USA
| | - Ted Goebel
- Center for the Study of the First Americans, Texas A&M University, College Station, Texas 77843-4352, USA
| | - John R Johnson
- Santa Barbara Museum of Natural History, 2559 Puesta del Sol, Santa Barbara, CA 93105, USA
| | - Ripan S Malhi
- Department of Anthropology, University of Illinois at Urbana-Champaign, 607 S. Mathews Ave, Urbana, IL 61801, USA.,Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Mattias Jakobsson
- Department of Evolutionary Biology and Science for Life Laboratory, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - David J Meltzer
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,Department of Anthropology, Southern Methodist University, Dallas, Texas 75275, USA
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Richard Durbin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Carlos D Bustamante
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, California 94305, USA
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, CA 94720, USA.,Department of Statistics, University of California, Berkeley, CA 94720, USA.,Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg #3140, Berkeley, CA 94720, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg #3140, Berkeley, CA 94720, USA
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| |
Collapse
|
31
|
de Azevedo S, Bortolini MC, Bonatto SL, Hünemeier T, Santos FR, González-José R. Ancient remains and the first peopling of the Americas: Reassessing the Hoyo Negro skull. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 158:514-21. [PMID: 26174009 DOI: 10.1002/ajpa.22801] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/05/2015] [Accepted: 06/10/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVE A noticeably well-preserved ∼12.500 years-old skeleton from the Hoyo Negro cave, Yucatán, México, was recently reported, along with its archaeological, genetic and skeletal characteristics. Based exclusively on an anatomical description of the skull (HN5/48), Chatters and colleagues stated that this specimen can be assigned to a set of ancient remains that differ from modern Native Americans, the so called "Paleoamericans". Here, we aim to further explore the morphological affinities of this specimen with a set of comparative cranial samples covering ancient and modern periods from Asia and the Americas. METHODS Images published in the original article were analyzed using geometric morphometrics methods. Shape variables were used to perform Principal Component and Discriminant analysis against the reference samples. RESULTS Even thought the Principal Component Analysis suggests that the Hoyo Negro skull falls in a subregion of the morphospace occupied by both "Paleoamericans" and some modern Native Americans, the Discriminant analyses suggest greater affinity with a modern Native American sample. DISCUSSION These results reinforce the idea that the original population that first occupied the New World carried high levels of within-group variation, which we have suggested previously on a synthetic model for the settlement of the Americas. Our results also highlight the importance of developing formal classificatory test before deriving settlement hypothesis purely based on macroscopic descriptions.
Collapse
Affiliation(s)
- Soledad de Azevedo
- Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, Bvd. Brown 2915, U9120ACD, Puerto Madryn, Argentina
| | - Maria C Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil
| | - Sandro L Bonatto
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul. Av. Ipiranga 6681, 90610-001, Porto Alegre, RS, Brazil
| | - Tábita Hünemeier
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil
| | - Fabrício R Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-910, Belo Horizonte, MG, Brazil
| | - Rolando González-José
- Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, Bvd. Brown 2915, U9120ACD, Puerto Madryn, Argentina
| |
Collapse
|
32
|
Novichkova AA, Chertoprud ES. Fauna of microcrustaceans (Cladocera: Copepoda) of shallow freshwater ecosystems of Wrangel Island (Russian Far East). J NAT HIST 2015. [DOI: 10.1080/00222933.2015.1056269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Villanea FA, Safi KN, Busch JW. A General Model of Negative Frequency Dependent Selection Explains Global Patterns of Human ABO Polymorphism. PLoS One 2015; 10:e0125003. [PMID: 25946124 PMCID: PMC4422588 DOI: 10.1371/journal.pone.0125003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/19/2015] [Indexed: 11/18/2022] Open
Abstract
The ABO locus in humans is characterized by elevated heterozygosity and very similar allele frequencies among populations scattered across the globe. Using knowledge of ABO protein function, we generated a simple model of asymmetric negative frequency dependent selection and genetic drift to explain the maintenance of ABO polymorphism and its loss in human populations. In our models, regardless of the strength of selection, models with large effective population sizes result in ABO allele frequencies that closely match those observed in most continental populations. Populations must be moderately small to fall out of equilibrium and lose either the A or B allele (N(e) ≤ 50) and much smaller (N(e) ≤ 25) for the complete loss of diversity, which nearly always involved the fixation of the O allele. A pattern of low heterozygosity at the ABO locus where loss of polymorphism occurs in our model is consistent with small populations, such as Native American populations. This study provides a general evolutionary model to explain the observed global patterns of polymorphism at the ABO locus and the pattern of allele loss in small populations. Moreover, these results inform the range of population sizes associated with the recent human colonization of the Americas.
Collapse
Affiliation(s)
- Fernando A. Villanea
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, Washington, 99164, United States of America
| | - Kristin N. Safi
- Department of Anthropology, Washington State University, PO Box 644910, Pullman, Washington, 99164, United States of America
| | - Jeremiah W. Busch
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, Washington, 99164, United States of America
| |
Collapse
|
34
|
Grant WS. Problems and Cautions With Sequence Mismatch Analysis and Bayesian Skyline Plots to Infer Historical Demography. J Hered 2015; 106:333-46. [DOI: 10.1093/jhered/esv020] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/24/2015] [Indexed: 12/11/2022] Open
|
35
|
Witt KE, Judd K, Kitchen A, Grier C, Kohler TA, Ortman SG, Kemp BM, Malhi RS. DNA analysis of ancient dogs of the Americas: identifying possible founding haplotypes and reconstructing population histories. J Hum Evol 2014; 79:105-18. [PMID: 25532803 DOI: 10.1016/j.jhevol.2014.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/16/2014] [Accepted: 10/22/2014] [Indexed: 11/13/2022]
Abstract
As dogs have traveled with humans to every continent, they can potentially serve as an excellent proxy when studying human migration history. Past genetic studies into the origins of Native American dogs have used portions of the hypervariable region (HVR) of mitochondrial DNA (mtDNA) to indicate that prior to European contact the dogs of Native Americans originated in Eurasia. In this study, we summarize past DNA studies of both humans and dogs to discuss their population histories in the Americas. We then sequenced a portion of the mtDNA HVR of 42 pre-Columbian dogs from three sites located in Illinois, coastal British Columbia, and Colorado, and identify four novel dog mtDNA haplotypes. Next, we analyzed a dataset comprised of all available ancient dog sequences from the Americas to infer the pre-Columbian population history of dogs in the Americas. Interestingly, we found low levels of genetic diversity for some populations consistent with the possibility of deliberate breeding practices. Furthermore, we identified multiple putative founding haplotypes in addition to dog haplotypes that closely resemble those of wolves, suggesting admixture with North American wolves or perhaps a second domestication of canids in the Americas. Notably, initial effective population size estimates suggest at least 1000 female dogs likely existed in the Americas at the time of the first known canid burial, and that population size increased gradually over time before stabilizing roughly 1200 years before present.
Collapse
Affiliation(s)
- Kelsey E Witt
- School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kathleen Judd
- Kemp Lab of Molecular Anthropology and Ancient DNA, Washington State University, Pullman, WA 99164, USA
| | - Andrew Kitchen
- Department of Anthropology, University of Iowa, Iowa City, IA 52242, USA
| | - Colin Grier
- Department of Anthropology, Washington State University, Pullman, WA 99164, USA
| | - Timothy A Kohler
- Department of Anthropology, Washington State University, Pullman, WA 99164, USA; Santa Fe Institute, Santa Fe, NM 87501, USA; Crow Canyon Archaeological Center, 23390 Road K, Cortez, CO 81321-9408, USA
| | - Scott G Ortman
- Department of Anthropology, University of Colorado, Boulder, CO 80309, USA
| | - Brian M Kemp
- Department of Anthropology, Washington State University, Pullman, WA 99164, USA; School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ripan S Malhi
- School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Anthropology and Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA.
| |
Collapse
|
36
|
Bayesian inferences suggest that Amazon Yunga Natives diverged from Andeans less than 5000 ybp: implications for South American prehistory. BMC Evol Biol 2014; 14:174. [PMID: 25266366 PMCID: PMC4189748 DOI: 10.1186/s12862-014-0174-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/24/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Archaeology reports millenary cultural contacts between Peruvian Coast-Andes and the Amazon Yunga, a rainforest transitional region between Andes and Lower Amazonia. To clarify the relationships between cultural and biological evolution of these populations, in particular between Amazon Yungas and Andeans, we used DNA-sequence data, a model-based Bayesian approach and several statistical validations to infer a set of demographic parameters. RESULTS We found that the genetic diversity of the Shimaa (an Amazon Yunga population) is a subset of that of Quechuas from Central-Andes. Using the Isolation-with-Migration population genetics model, we inferred that the Shimaa ancestors were a small subgroup that split less than 5300 years ago (after the development of complex societies) from an ancestral Andean population. After the split, the most plausible scenario compatible with our results is that the ancestors of Shimaas moved toward the Peruvian Amazon Yunga and incorporated the culture and language of some of their neighbors, but not a substantial amount of their genes. We validated our results using Approximate Bayesian Computations, posterior predictive tests and the analysis of pseudo-observed datasets. CONCLUSIONS We presented a case study in which model-based Bayesian approaches, combined with necessary statistical validations, shed light into the prehistoric demographic relationship between Andeans and a population from the Amazon Yunga. Our results offer a testable model for the peopling of this large transitional environmental region between the Andes and the Lower Amazonia. However, studies on larger samples and involving more populations of these regions are necessary to confirm if the predominant Andean biological origin of the Shimaas is the rule, and not the exception.
Collapse
|
37
|
Ruiz-Linares A. How genes have illuminated the history of early Americans and Latino Americans. Cold Spring Harb Perspect Biol 2014; 7:cshperspect.a008557. [PMID: 25256008 DOI: 10.1101/cshperspect.a008557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The American continent currently accounts for ∼15% of the world population. Although first settled thousands of years ago and fitting its label as "the New World," the European colonial expansion initiated in the late 15th century resulted in people from virtually every corner of the globe subsequently settling in the Americas. The arrival of large numbers of immigrants led to a dramatic decline of the Native American population and extensive population mixing. A salient feature of the current human population of the Americas is, thus, its great diversity. The genetic variation of the Native peoples that recent immigrants encountered had been shaped by demographic events acting since the initial peopling of the continent. Similarly, but on a compressed timescale, the colonial history of the Americas has had a major impact on the genetic makeup of the current population of the continent. A range of genetic analyses has been used to study both the ancient settlement of the continent and more recent history of population mixing. Here, I show how these two strands of research overlap and make use of results from other scientific disciplines to produce a fuller picture of the settlement of the continent at different time periods. The biological diversity of the Americas also provides prominent examples of the complex interaction between biological and social factors in constructing human identities and of the difficulties in defining human populations.
Collapse
Affiliation(s)
- Andrés Ruiz-Linares
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
38
|
Barbieri C, Heggarty P, Yang Yao D, Ferri G, De Fanti S, Sarno S, Ciani G, Boattini A, Luiselli D, Pettener D. Between Andes and Amazon: the genetic profile of the Arawak-speaking Yanesha. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 155:600-9. [PMID: 25229359 DOI: 10.1002/ajpa.22616] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/04/2014] [Indexed: 11/10/2022]
Abstract
The Yanesha are a Peruvian population who inhabit an environment transitional between the Andes and Amazonia. They present cultural traits characteristic of both regions, including in the language they speak: Yanesha belongs to the Arawak language family (which very likely originated in the Amazon/Orinoco lowlands), but has been strongly influenced by Quechua, the most widespread language family of the Andes. Given their location and cultural make-up, the Yanesha make for an ideal case study for investigating language and population dynamics across the Andes-Amazonia divide. In this study, we analyze data from high and mid-altitude Yanesha villages, both Y chromosome (17 STRs and 16 SNPs diagnostic for assigning haplogroups) and mtDNA data (control region sequences and 3 SNPs and one INDEL diagnostic for assigning haplogroups). We uncover sex-biased genetic trends that probably arose in different stages: first, a male-biased gene flow from Andean regions, genetically consistent with highland Quechua-speakers and probably dating back to Inca expansion; and second, traces of European contact consistent with Y chromosome lineages from Italy and Tyrol, in line with historically documented migrations. Most research in the history, archaeology and linguistics of South America has long been characterized by perceptions of a sharp divide between the Andes and Amazonia; our results serve as a clear case-study confirming demographic flows across that 'divide'.
Collapse
Affiliation(s)
- Chiara Barbieri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zehender G, Ebranati E, Gabanelli E, Sorrentino C, Lo Presti A, Tanzi E, Ciccozzi M, Galli M. Enigmatic origin of hepatitis B virus: An ancient travelling companion or a recent encounter? World J Gastroenterol 2014; 20:7622-7634. [PMID: 24976700 PMCID: PMC4069291 DOI: 10.3748/wjg.v20.i24.7622] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/08/2014] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is the leading cause of liver disease and infects an estimated 240 million people worldwide. It is characterised by a high degree of genetic heterogeneity because of the use of a reverse transcriptase during viral replication. The ten genotypes (A-J) that have been described so far further segregate into a number of subgenotypes which have distinct ethno-geographic distribution. Genotypes A and D are ubiquitous and the most prevalent genotypes in Europe (mainly represented by subgenotypes D1-3 and A2); genotypes B and C are restricted to eastern Asia and Oceania; genotype E to central and western Africa; and genotypes H and F (classified into 4 subgenotypes) to Latin America and Alaska. This review summarises the data obtained by studying the global phylodynamics and phylogeography of HBV genotypes, particularly those concerning the origin and dispersion histories of genotypes A, D, E and F and their subgenotypes. The lack of any consensus concerning the HBV substitution rate and the conflicting data obtained using different calibration approaches make the time of origin and divergence of the various genotypes and subgenotypes largely uncertain. It is hypothesised that HBV evolutionary rates are time dependent, and that the changes depend on the main transmission routes of the genotypes and the dynamics of the infected populations.
Collapse
|
40
|
Roman S, Jose-Abrego A, Fierro NA, Escobedo-Melendez G, Ojeda-Granados C, Martinez-Lopez E, Panduro A. Hepatitis B virus infection in Latin America: a genomic medicine approach. World J Gastroenterol 2014; 20:7181-7196. [PMID: 24966588 PMCID: PMC4064063 DOI: 10.3748/wjg.v20.i23.7181] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/14/2013] [Accepted: 01/08/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is the leading cause of severe chronic liver disease. This article provides a critical view of the importance of genomic medicine for the study of HBV infection and its clinical outcomes in Latin America. Three levels of evolutionary adaptation may correlate with the clinical outcomes of HBV infection. Infections in Latin America are predominantly of genotype H in Mexico and genotype F in Central and South America; these strains have historically circulated among the indigenous population. Both genotypes appear to be linked to a benign course of disease among the native and mestizo Mexicans and native South Americans. In contrast, genotypes F, A and D are common in acute and chronic infections among mestizos with Caucasian ancestry. Hepatocellular carcinoma is rare in Mexicans, but it has been associated with genotype F1b among Argentineans. This observation illustrates the significance of ascertaining the genetic and environmental factors involved in the development of HBV-related liver disease in Latin America, which contrast with those reported in other regions of the world.
Collapse
|
41
|
Complete mitogenome analysis of indigenous populations in Mexico: its relevance for the origin of Mesoamericans. J Hum Genet 2014; 59:359-67. [PMID: 24804703 DOI: 10.1038/jhg.2014.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 11/08/2022]
Abstract
Mesoamerica has an important role in the expansion of Paleoamericans as the route to South America. In this study, we determined complete mitogenome sequences of 113 unrelated individuals from two indigenous populations of Mesoamerica, Mazahua and Zapotec. All newly sequenced mitogenomes could be classified into haplogroups A2, B2, C1 and D1, but one sequence in Mazahua was D4h3a, a subclade of haplogroup D4. This haplogroup has been mostly found in South America along the Pacific coast. Haplogroup X2a was not found in either population. Genetic similarity obtained using phylogenetic tree construction and principal component analysis showed that these two populations are distantly related to each other. Actually, the Mazahua and the Zapotec shared no sequences (haplotypes) in common, while each also showed a number of unique subclades. Surprisingly, Zapotec formed a cluster with indigenous populations living in an area from central Mesoamerica to Central America. By contrast, the Mazahua formed a group with indigenous populations living in external areas, including southwestern North America and South America. This intriguing genetic relationship suggests the presence of two paleo-Mesoamerican groups, invoking a scenario in which one group had expanded into South America and the other resided in Mesoamerica.
Collapse
|
42
|
|
43
|
Meiri M, Lister AM, Collins MJ, Tuross N, Goebel T, Blockley S, Zazula GD, van Doorn N, Dale Guthrie R, Boeskorov GG, Baryshnikov GF, Sher A, Barnes I. Faunal record identifies Bering isthmus conditions as constraint to end-Pleistocene migration to the New World. Proc Biol Sci 2014; 281:20132167. [PMID: 24335981 PMCID: PMC3871309 DOI: 10.1098/rspb.2013.2167] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/21/2013] [Indexed: 11/12/2022] Open
Abstract
Human colonization of the New World is generally believed to have entailed migrations from Siberia across the Bering isthmus. However, the limited archaeological record of these migrations means that details of the timing, cause and rate remain cryptic. Here, we have used a combination of ancient DNA, 14C dating, hydrogen and oxygen isotopes, and collagen sequencing to explore the colonization history of one of the few other large mammals to have successfully migrated into the Americas at this time: the North American elk (Cervus elaphus canadensis), also known as wapiti. We identify a long-term occupation of northeast Siberia, far beyond the species's current Old World distribution. Migration into North America occurred at the end of the last glaciation, while the northeast Siberian source population became extinct only within the last 500 years. This finding is congruent with a similar proposed delay in human colonization, inferred from modern human mitochondrial DNA, and suggestions that the Bering isthmus was not traversable during parts of the Late Pleistocene. Our data imply a fundamental constraint in crossing Beringia, placing limits on the age and mode of human settlement in the Americas, and further establish the utility of ancient DNA in palaeontological investigations of species histories.
Collapse
Affiliation(s)
- Meirav Meiri
- Zoological Museum and Department of Zoology, Institute of Archaeology, The Steinhardt National Collection of Natural History, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adrian M. Lister
- Earth Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Matthew J. Collins
- Department of Archaeology, University of York, Heslington, York YO10 5YW, UK
| | - Noreen Tuross
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ted Goebel
- Center for the Study of the First Americans, Department of Anthropology, Texas A&M University, College Station, TX 77843, USA
| | - Simon Blockley
- Department of Geography, University of London, Egham, Surrey TW20 0EX, UK
| | - Grant D. Zazula
- Department of Tourism and Culture, Government of Yukon, PO Box 2703, Whitehorse, Yukon, CanadaY1A 2C6
| | - Nienke van Doorn
- Department of Archaeology, University of York, Heslington, York YO10 5YW, UK
| | - R. Dale Guthrie
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99709, USA
| | - Gennady G. Boeskorov
- Siberian Branch of Russian Academy of Sciences (SB RAS), Diamond and Precious Metals Geology Institute, 39 Prospect Lenina, Yakutsk 677980, Russia
- M. K. Ammosov's North-Eastern Federal University, 48 Kulakovsky street, Yakutsk 677013, Russia
| | - Gennady F. Baryshnikov
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St Petersburg 199034, Russia
| | | | - Ian Barnes
- Earth Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
44
|
Ibarra A, Restrepo T, Rojas W, Castillo A, Amorim A, Martínez B, Burgos G, Ostos H, Álvarez K, Camacho M, Suarez Z, Pereira R, Gusmão L. Evaluating the X chromosome-specific diversity of Colombian populations using insertion/deletion polymorphisms. PLoS One 2014; 9:e87202. [PMID: 24498042 PMCID: PMC3909073 DOI: 10.1371/journal.pone.0087202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022] Open
Abstract
The European and African contribution to the pre-existing Native American background has influenced the complex genetic pool of Colombia. Because colonisation was not homogeneous in this country, current populations are, therefore, expected to have different proportions of Native American, European and African ancestral contributions. The aim of this work was to examine 11 urban admixed populations and a Native American group, called Pastos, for 32 X chromosome indel markers to expand the current knowledge concerning the genetic background of Colombia. The results revealed a highly diverse genetic background comprising all admixed populations, harbouring important X chromosome contributions from all continental source populations. In addition, Colombia is genetically sub-structured, with different proportions of European and African influxes depending on the regions. The samples from the North Pacific and Caribbean coasts have a high African ancestry, showing the highest levels of diversity. The sample from the South Andean region showed the lowest diversity and significantly higher proportion of Native American ancestry than the other samples from the North Pacific and Caribbean coasts, Central-West and Central-East Andean regions, and the Orinoquian region. The results of admixture analysis using X-chromosomal markers suggest that the high proportion of African ancestry in the North Pacific coast was primarily male driven. These men have joined to females with higher Native American and European ancestry (likely resulting from a classic colonial asymmetric mating type: European male x Amerindian female). This high proportion of male-mediated African contributions is atypical of colonial settings, suggesting that the admixture occurred during a period when African people were no longer enslaved. In the remaining regions, the African contribution was primarily female-mediated, whereas the European counterpart was primarily male driven and the Native American ancestry contribution was not gender biased.
Collapse
Affiliation(s)
- Adriana Ibarra
- IdentiGEN - Genetic Identification Laboratory and Research Group of Genetic Identification, Institute of Biology, School of Natural and Exact Sciences (FCEN), University of Antioquia, Medellin, Antioquia, Colombia
- * E-mail:
| | - Tomás Restrepo
- IdentiGEN - Genetic Identification Laboratory and Research Group of Genetic Identification, Institute of Biology, School of Natural and Exact Sciences (FCEN), University of Antioquia, Medellin, Antioquia, Colombia
| | - Winston Rojas
- Laboratory of Molecular Genetics, Institute of Biology, University of Antioquia, Medellin, Antioquia, Colombia
| | - Adriana Castillo
- Laboratorio de Genética, Universidad Industrial de Santander (UIS), Bucaramanga, Santander, Colombia
| | - António Amorim
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FCUP - Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Beatriz Martínez
- Molecular Genetics Laboratory, Institute for Immunological Research, University of Cartagena, Cartagena, Bolivar, Colombia
| | - German Burgos
- Molecular Genetics Laboratory, Cruz Vital, Ecuadorian Red Cross, Quito, Ecuador
| | - Henry Ostos
- Genomic Medicine Laboratory, Health Faculty, Surcolombiana University, Neiva, Huila, Colombia
| | - Karen Álvarez
- IdentiGEN - Genetic Identification Laboratory and Research Group of Genetic Identification, Institute of Biology, School of Natural and Exact Sciences (FCEN), University of Antioquia, Medellin, Antioquia, Colombia
| | - Mauricio Camacho
- Institute of Legal Medicine and Forensic Sciences, Northeast Regional, Arauca, Colombia
| | - Zuleyma Suarez
- Clinical Laboratory Olga Zuleima Suárez Molina, Cucuta, Norte de Santander, Colombia
| | - Rui Pereira
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Leonor Gusmão
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Expansion of the Spinocerebellar ataxia type 10 (SCA10) repeat in a patient with Sioux Native American ancestry. PLoS One 2013; 8:e81342. [PMID: 24278426 PMCID: PMC3835687 DOI: 10.1371/journal.pone.0081342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/11/2013] [Indexed: 11/19/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10), an autosomal dominant cerebellar ataxia, is caused by the expansion of the non-coding ATTCT pentanucleotide repeat in the ATAXIN 10 gene. To date, all cases of SCA10 are restricted to patients with ancestral ties to Latin American countries. Here, we report on a SCA10 patient with Sioux Native American ancestry and no reported Hispanic or Latino heritage. Neurological exam findings revealed impaired gait with mild, age-consistent cerebellar atrophy and no evidence of epileptic seizures. The age at onset for this patient, at 83 years of age, is the latest documented for SCA10 patients and is suggestive of a reduced penetrance allele in his family. Southern blot analysis showed an SCA10 expanded allele of 1400 repeats. Established SNPs surrounding the SCA10 locus showed a disease haplotype consistent with the previously described “SCA10 haplotype”. This case suggests that the SCA10 expansion represents an early mutation event that possibly occurred during the initial peopling of the Americas.
Collapse
|
46
|
Villanea FA, Bolnick DA, Monroe C, Worl R, Cambra R, Leventhal A, Kemp BM. Brief communication: Evolution of a specific O allele (O1vG542A) supports unique ancestry of Native Americans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 151:649-57. [PMID: 23868176 DOI: 10.1002/ajpa.22292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/16/2013] [Indexed: 11/09/2022]
Abstract
In this study, we explore the geographic and temporal distribution of a unique variant of the O blood group allele called O1v(G542A) , which has been shown to be shared among Native Americans but is rare in other populations. O1v(G542A) was previously reported in Native American populations in Mesoamerica and South America, and has been proposed as an ancestry informative marker. We investigated whether this allele is also found in the Tlingit and Haida, two contemporary indigenous populations from Alaska, and a pre-Columbian population from California. If O1v(G542A) is present in Na-Dene speakers (i.e., Tlingits), it would indicate that Na-Dene speaking groups share close ancestry with other Native American groups and support a Beringian origin of the allele, consistent with the Beringian Incubation Model. If O1v(G542A) is found in pre-Columbian populations, it would further support a Beringian origin of the allele, rather than a more recent introduction of the allele into the Americas via gene flow from one or more populations which have admixed with Native Americans over the past five centuries. We identified this allele in one Na-Dene population at a frequency of 0.11, and one ancient California population at a frequency of 0.20. Our results support a Beringian origin of O1v(G542A) , which is distributed today among all Native American groups that have been genotyped in appreciable numbers at this locus. This result is consistent with the hypothesis that Na-Dene and other Native American populations primarily derive their ancestry from a single source population.
Collapse
Affiliation(s)
- Fernando A Villanea
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4910, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Kolb AW, Ané C, Brandt CR. Using HSV-1 genome phylogenetics to track past human migrations. PLoS One 2013; 8:e76267. [PMID: 24146849 DOI: 10.1371/journal.pone.0076267] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 08/24/2013] [Indexed: 01/11/2023] Open
Abstract
We compared 31 complete and nearly complete globally derived HSV-1 genomic sequences using HSV-2 HG52 as an outgroup to investigate their phylogenetic relationships and look for evidence of recombination. The sequences were retrieved from NCBI and were then aligned using Clustal W. The generation of a maximum likelihood tree resulted in a six clade structure that corresponded with the timing and routes of past human migration. The East African derived viruses contained the greatest amount of genetic diversity and formed four of the six clades. The East Asian and European/North American derived viruses formed separate clades. HSV-1 strains E07, E22 and E03 were highly divergent and may each represent an individual clade. Possible recombination was analyzed by partitioning the alignment into 5 kb segments, performing individual phylogenetic analysis on each partition and generating a.phylogenetic network from the results. However most evidence for recombination spread at the base of the tree suggesting that recombination did not significantly disrupt the clade structure. Examination of previous estimates of HSV-1 mutation rates in conjunction with the phylogenetic data presented here, suggests that the substitution rate for HSV-1 is approximately 1.38 × 10(-7) subs/site/year. In conclusion, this study expands the previously described HSV-1 three clade phylogenetic structures to a minimum of six and shows that the clade structure also mirrors global human migrations. Given that HSV-1 has co-evolved with its host, sequencing HSV-1 isolated from various populations could serve as a surrogate biomarker to study human population structure and migration patterns.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | | |
Collapse
|
48
|
Ascunce MS, Fane J, Kassu G, Toloza AC, Picollo MI, González-Oliver A, Reed DL. Mitochondrial diversity in human head louse populations across the Americas. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 152:118-29. [PMID: 23900879 DOI: 10.1002/ajpa.22336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/18/2013] [Indexed: 01/04/2023]
Abstract
Anthropological studies suggest that the genetic makeup of human populations in the Americas is the result of diverse processes including the initial colonization of the continent by the first people plus post-1492 European migrations. Because of the recent nature of some of these events, understanding the geographical origin of American human diversity is challenging. However, human parasites have faster evolutionary rates and larger population sizes allowing them to maintain greater levels of genetic diversity than their hosts. Thus, we can use human parasites to provide insights into some aspects of human evolution that may be unclear from direct evidence. In this study, we analyzed mitochondrial DNA (mtDNA) sequences from 450 head lice in the Americas. Haplotypes clustered into two well-supported haplogroups, known as A and B. Haplogroup frequencies differ significantly among North, Central and South America. Within each haplogroup, we found evidence of demographic expansions around 16,000 and 20,000 years ago, which correspond broadly with those estimated for Native Americans. The parallel timing of demographic expansions of human lice and Native Americans plus the contrasting pattern between the distribution of haplogroups A and B through the Americas suggests that human lice can provide additional evidence about the human colonization of the New World.
Collapse
Affiliation(s)
- Marina S Ascunce
- Florida Museum of Natural History, University of Florida, Gainesville, FL; Department of Biology, University of Florida, Gainesville, FL
| | | | | | | | | | | | | |
Collapse
|
49
|
Guillot EG, Tumonggor MK, Lansing JS, Sudoyo H, Cox MP. Climate Change Influenced Female Population Sizes Through Time Across the Indonesian Archipelago. Hum Biol 2013; 85:135-52. [DOI: 10.3378/027.085.0306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 11/05/2022]
|
50
|
Roewer L, Nothnagel M, Gusmão L, Gomes V, González M, Corach D, Sala A, Alechine E, Palha T, Santos N, Ribeiro-Dos-Santos A, Geppert M, Willuweit S, Nagy M, Zweynert S, Baeta M, Núñez C, Martínez-Jarreta B, González-Andrade F, Fagundes de Carvalho E, da Silva DA, Builes JJ, Turbón D, Lopez Parra AM, Arroyo-Pardo E, Toscanini U, Borjas L, Barletta C, Ewart E, Santos S, Krawczak M. Continent-wide decoupling of Y-chromosomal genetic variation from language and geography in native South Americans. PLoS Genet 2013; 9:e1003460. [PMID: 23593040 PMCID: PMC3623769 DOI: 10.1371/journal.pgen.1003460] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/04/2013] [Indexed: 01/07/2023] Open
Abstract
Numerous studies of human populations in Europe and Asia have revealed a concordance between their extant genetic structure and the prevailing regional pattern of geography and language. For native South Americans, however, such evidence has been lacking so far. Therefore, we examined the relationship between Y-chromosomal genotype on the one hand, and male geographic origin and linguistic affiliation on the other, in the largest study of South American natives to date in terms of sampled individuals and populations. A total of 1,011 individuals, representing 50 tribal populations from 81 settlements, were genotyped for up to 17 short tandem repeat (STR) markers and 16 single nucleotide polymorphisms (Y-SNPs), the latter resolving phylogenetic lineages Q and C. Virtually no structure became apparent for the extant Y-chromosomal genetic variation of South American males that could sensibly be related to their inter-tribal geographic and linguistic relationships. This continent-wide decoupling is consistent with a rapid peopling of the continent followed by long periods of isolation in small groups. Furthermore, for the first time, we identified a distinct geographical cluster of Y-SNP lineages C-M217 (C3*) in South America. Such haplotypes are virtually absent from North and Central America, but occur at high frequency in Asia. Together with the locally confined Y-STR autocorrelation observed in our study as a whole, the available data therefore suggest a late introduction of C3* into South America no more than 6,000 years ago, perhaps via coastal or trans-Pacific routes. Extensive simulations revealed that the observed lack of haplogroup C3* among extant North and Central American natives is only compatible with low levels of migration between the ancestor populations of C3* carriers and non-carriers. In summary, our data highlight the fact that a pronounced correlation between genetic and geographic/cultural structure can only be expected under very specific conditions, most of which are likely not to have been met by the ancestors of native South Americans. In the largest population genetic study of South Americans to date, we analyzed the Y-chromosomal makeup of more than 1,000 male natives. We found that the male-specific genetic variation of Native Americans lacks any clear structure that could sensibly be related to their geographic and/or linguistic relationships. This finding is consistent with a rapid initial peopling of South America, followed by long periods of isolation in small tribal groups. The observed continent-wide decoupling of geography, spoken language, and genetics contrasts strikingly with previous reports of such correlation from many parts of Europe and Asia. Moreover, we identified a cluster of Native American founding lineages of Y chromosomes, called C-M217 (C3*), within a restricted area of Ecuador in North-Western South America. The same haplogroup occurs at high frequency in Central, East, and North East Asia, but is virtually absent from North (except Alaska) and Central America. Possible scenarios for the introduction of C-M217 (C3*) into Ecuador may thus include a coastal or trans-Pacific route, an idea also supported by occasional archeological evidence and the recent coalescence of the C3* haplotypes, estimated from our data to have occurred some 6,000 years ago.
Collapse
Affiliation(s)
- Lutz Roewer
- Institute of Legal Medicine and Forensic Sciences, Department of Forensic Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|