1
|
Koul R, Lu W, Torres T, Choi YB. Temporal relationship between neurofilament light chain and cytokines involved in T helper-17 lymphocyte signaling in the blood of experimental autoimmune encephalomyelitis mice. Mult Scler Relat Disord 2025; 99:106463. [PMID: 40279778 DOI: 10.1016/j.msard.2025.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/25/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune neuroinflammatory disease leading to eventual neurodegeneration. There is a strong interest in using blood biomarkers to detect the disease onset and monitor disease progression in MS. One such biomarker is neurofilament light chain (NfL) that reflects axonal damage or neurodegeneration. Proinflammatory cytokines involved in T-helper 17 (Th17) lymphocyte signaling are potential blood biomarkers of neuroinflammation. METHODS We induced experimental autoimmune encephalomyelitis (EAE), a mouse model for MS, in female C57BL/6 mice and measured the progression of EAE using a clinical score. We collected blood from EAE mice on the post-immunization days 7, 10, 16, or 22 and measured NfL concentrations using single molecule array (SIMOA) technology. We also measured concentrations of cytokines related to Th17 using xMAP immune assay technology (Luminex) from the same mice. RESULTS We found that the concentration of NfL began to rise at the onset of clinical symptoms on the post-immunization day 10 and peaked on day 16, closely correlating with the clinical score. However, the concentrations of several proinflammatory cytokines, including IFN-γ, IL-6, IL-17A, IL-22, and TNF-α, were already elevated even before the onset of the clinical symptoms and did not correlate positively with the clinical scores. CONCLUSION Our results confirmed the utility of NfL as a blood biomarker for disease progression in MS. The elevation of multiple proinflammatory cytokines concentrations in the blood of the same EAE mice in the presymptomatic stage suggested that blood biomarkers for neuroinflammation increased before blood biomarkers for neurodegeneration during the disease course in EAE.
Collapse
Affiliation(s)
- Raveesh Koul
- Neurology Service, VA New Jersey Health Care System, 385 Tremont Ave. East Orange, NJ 07018, USA
| | - Wei Lu
- Neurology Service, VA New Jersey Health Care System, 385 Tremont Ave. East Orange, NJ 07018, USA
| | - Timothy Torres
- Neurology Service, VA New Jersey Health Care System, 385 Tremont Ave. East Orange, NJ 07018, USA
| | - Yun-Beom Choi
- Neurology Service, VA New Jersey Health Care System, 385 Tremont Ave. East Orange, NJ 07018, USA; Department of Neurology, Rutgers New Jersey Medical School, 185 S. Orange Ave. Newark, NJ 07103, USA.
| |
Collapse
|
2
|
Bin S, Cantarelli C, Horwitz JK, Gentile M, Podestà MA, La Manna G, Heeger PS, Cravedi P. Endogenous erythropoietin has immunoregulatory functions that limit the expression of autoimmune kidney disease in mice. Front Immunol 2023; 14:1195662. [PMID: 37520571 PMCID: PMC10381939 DOI: 10.3389/fimmu.2023.1195662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Background Administration of recombinant erythropoietin (EPO), a kidney-produced hormone with erythropoietic functions, has been shown to have multiple immunoregulatory effects in mice and humans, but whether physiological levels of EPO regulate immune function in vivo has not been previously evaluated. Methods We generated mice in which we could downregulate EPO production using a doxycycline (DOX)-inducible, EPO-specific silencing RNA (shEPOrtTAPOS), and we crossed them with B6.MRL-Faslpr/J mice that develop spontaneous lupus. We treated these B6.MRL/lpr shEPOrtTAPOS with DOX and serially measured anti-dsDNA antibodies, analyzed immune subsets by flow cytometry, and evaluated clinical signs of disease activity over 6 months of age in B6.MRL/lpr shEPOrtTAPOS and in congenic shEPOrtTANEG controls. Results In B6.MRL/lpr mice, Epo downregulation augmented anti-dsDNA autoantibody levels and increased disease severity and percentages of germinal center B cells compared with controls. It also increased intracellular levels of IL-6 and MCP-1 in macrophages. Discussion Our data in a murine model of lupus document that endogenous EPO reduces T- and B-cell activation and autoantibody production, supporting the conclusion that EPO physiologically acts as a counterregulatory mechanism to control immune homeostasis.
Collapse
Affiliation(s)
- Sofia Bin
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nephrology, Dialysis and Renal Transplant Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Centro Interdipartimentale di Ricerca Industriale (CIRI) Scienze della Vita e Tecnologie per la Salute - Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Chiara Cantarelli
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa (UO) Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Julian K. Horwitz
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Ronald Reagan Medical Center, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Micaela Gentile
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa (UO) Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Manuel Alfredo Podestà
- Renal Division, Department of Medicine, Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Centro Interdipartimentale di Ricerca Industriale (CIRI) Scienze della Vita e Tecnologie per la Salute - Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Peter S. Heeger
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Paolo Cravedi
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Horwitz JK, Bin S, Fairchild RL, Keslar KS, Yi Z, Zhang W, Pavlov VI, Li Y, Madsen JC, Cravedi P, Heeger PS. Linking erythropoietin to regulatory T-cell-dependent allograft survival through myeloid cells. JCI Insight 2022; 7:158856. [PMID: 35389892 PMCID: PMC9220923 DOI: 10.1172/jci.insight.158856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/06/2022] [Indexed: 12/03/2022] Open
Abstract
Erythropoietin (EPO) has multiple nonerythropoietic functions, including immune modulation, but EPO’s effects in transplantation remain incompletely understood. We tested the mechanisms linking EPO administration to prolongation of murine heterotopic heart transplantation using WT and conditional EPO receptor–knockout (EPOR-knockout) mice as recipients. In WT controls, peritransplant administration of EPO synergized with CTLA4-Ig to prolong allograft survival (P < 0.001), reduce frequencies of donor-reactive effector CD8+ T cells in the spleen (P < 0.001) and in the graft (P < 0.05), and increase frequencies and total numbers of donor-reactive Tregs (P < 0.01 for each) versus CTLA4-Ig alone. Studies performed in conditional EPOR-knockout recipients showed that each of these differences required EPOR expression in myeloid cells but not in T cells. Analysis of mRNA isolated from spleen monocytes showed that EPO/EPOR ligation upregulated macrophage-expressed, antiinflammatory, regulatory, and pro-efferocytosis genes and downregulated selected proinflammatory genes. Taken together, the data support the conclusion that EPO promotes Treg-dependent murine cardiac allograft survival by crucially altering the phenotype and function of macrophages. Coupled with our previous documentation that EPO promotes Treg expansion in humans, the data support the need for testing the addition of EPO to costimulatory blockade-containing immunosuppression regimens in an effort to prolong human transplant survival.
Collapse
Affiliation(s)
- Julian K Horwitz
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Sofia Bin
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Robert L Fairchild
- Department of Immunology, Cleveland Clinic, Cleveland, United States of America
| | - Karen S Keslar
- Department of Immunology, Cleveland Clinic, Cleveland, United States of America
| | - Zhengzi Yi
- Translational Transplant Research Center, Icahn School of medicine at Mount Sinai, New York, United States of America
| | - Weijia Zhang
- Translational Transplant Research Center, Icahn school of Medicine at Mount Sinai, New York, United States of America
| | - Vasile I Pavlov
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Yansui Li
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Joren C Madsen
- Department of Surgery, Massachusetts General Hospital, Boston, United States of America
| | - Paolo Cravedi
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Peter S Heeger
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| |
Collapse
|
4
|
An Overview of Peptide-Based Molecules as Potential Drug Candidates for Multiple Sclerosis. Molecules 2021; 26:molecules26175227. [PMID: 34500662 PMCID: PMC8434400 DOI: 10.3390/molecules26175227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) belongs to demyelinating diseases, which are progressive and highly debilitating pathologies that imply a high burden both on individual patients and on society. Currently, several treatment strategies differ in the route of administration, adverse events, and possible risks. Side effects associated with multiple sclerosis medications range from mild symptoms, such as flu-like or irritation at the injection site, to serious ones, such as progressive multifocal leukoencephalopathy and other life-threatening events. Moreover, the agents so far available have proved incapable of fully preventing disease progression, mostly during the phases that consist of continuous, accumulating disability. Thus, new treatment strategies, able to halt or even reverse disease progression and specific for targeting solely the pathways that contribute to the disease pathogenesis, are highly desirable. Here, we provide an overview of the recent literature about peptide-based systems tested on experimental autoimmune encephalitis (EAE) models. Since peptides are considered a unique therapeutic niche and important elements in the pharmaceutical landscape, they could open up new therapeutic opportunities for the treatment of MS.
Collapse
|
5
|
Tsiftsoglou AS. Erythropoietin (EPO) as a Key Regulator of Erythropoiesis, Bone Remodeling and Endothelial Transdifferentiation of Multipotent Mesenchymal Stem Cells (MSCs): Implications in Regenerative Medicine. Cells 2021; 10:cells10082140. [PMID: 34440909 PMCID: PMC8391952 DOI: 10.3390/cells10082140] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Human erythropoietin (EPO) is an N-linked glycoprotein consisting of 166 aa that is produced in the kidney during the adult life and acts both as a peptide hormone and hematopoietic growth factor (HGF), stimulating bone marrow erythropoiesis. EPO production is activated by hypoxia and is regulated via an oxygen-sensitive feedback loop. EPO acts via its homodimeric erythropoietin receptor (EPO-R) that increases cell survival and drives the terminal erythroid maturation of progenitors BFU-Es and CFU-Es to billions of mature RBCs. This pathway involves the activation of multiple erythroid transcription factors, such as GATA1, FOG1, TAL-1, EKLF and BCL11A, and leads to the overexpression of genes encoding enzymes involved in heme biosynthesis and the production of hemoglobin. The detection of a heterodimeric complex of EPO-R (consisting of one EPO-R chain and the CSF2RB β-chain, CD131) in several tissues (brain, heart, skeletal muscle) explains the EPO pleotropic action as a protection factor for several cells, including the multipotent MSCs as well as cells modulating the innate and adaptive immunity arms. EPO induces the osteogenic and endothelial transdifferentiation of the multipotent MSCs via the activation of EPO-R signaling pathways, leading to bone remodeling, induction of angiogenesis and secretion of a large number of trophic factors (secretome). These diversely unique properties of EPO, taken together with its clinical use to treat anemias associated with chronic renal failure and other blood disorders, make it a valuable biologic agent in regenerative medicine for the treatment/cure of tissue de-regeneration disorders.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Failed, Interrupted, or Inconclusive Trials on Neuroprotective and Neuroregenerative Treatment Strategies in Multiple Sclerosis: Update 2015-2020. Drugs 2021; 81:1031-1063. [PMID: 34086251 PMCID: PMC8217012 DOI: 10.1007/s40265-021-01526-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
In the recent past, a plethora of drugs have been approved for the treatment of multiple sclerosis (MS). These therapeutics are mainly confined to immunomodulatory or immunosuppressive strategies but do not sufficiently address remyelination and neuroprotection. However, several neuroregenerative agents have shown potential in pre-clinical research and entered Phase I to III clinical trials. Although none of these compounds have yet proceeded to approval, understanding the causes of failure can broaden our knowledge about neuroprotection and neuroregeneration in MS. Moreover, most of the investigated approaches are characterised by consistent mechanisms of action and proved convincing efficacy in animal studies. Therefore, learning from their failure will help us to enforce the translation of findings acquired in pre-clinical studies into clinical application. Here, we summarise trials on MS treatment published since 2015 that have either failed or were interrupted due to a lack of efficacy, adverse events, or for other reasons. We further outline the rationale underlying these drugs and analyse the background of failure to gather new insights into MS pathophysiology and optimise future study designs. For conciseness, this review focuses on agents promoting remyelination and medications with primarily neuroprotective properties or unconventional approaches. Failed clinical trials that pursue immunomodulation are presented in a separate article.
Collapse
|
7
|
Zhao P, Chen X, Han X, Wang Y, Shi Y, Ji J, Lei Y, Liu Y, Kong Q, Mu L, Wang J, Zhao W, Wang G, Liu X, Zhang T, Zhang Y, Sun B, Liu Y, Li H. Involvement of microRNA-155 in the mechanism of electroacupuncture treatment effects on experimental autoimmune encephalomyelitis. Int Immunopharmacol 2021; 97:107811. [PMID: 34091117 DOI: 10.1016/j.intimp.2021.107811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/18/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative and demyelinating autoimmune disease mediated by autoreactive T cells that affects the central nervous system (CNS). Electroacupuncture (EA) has emerged as an alternative or supplemental treatment for MS, but the mechanism by which EA may alleviate MS symptoms is unresolved. Here, we examined the effects of EA at the Zusanli (ST36) acupoint on mice with experimental autoimmune encephalomyelitis (EAE), the predominant animal model of MS. The effects of EA on EAE emergence, inflammatory cell levels, proinflammatory cytokines, and spinal cord pathology were examined. EA treatment attenuated the EAE clinical score and associated spinal cord demyelination, while reducing the presence of proinflammatory cytokines in mononuclear cells (MNCs), downregulating microRNA (miR)-155, and upregulating the opioid peptide precursor proopiomelanocortin (POMC) in the CNS. Experiments in which cultured neurons were transfected with a miR-155 mimic or a miR-155 inhibitor further showed that the direct modulation of miR-155 levels could regulate POMC levels in neurons. In conclusion, the alleviation of EAE by EA is characterized by reduced proportions of Th1/Th17 cells and increased proportions of Th2 cells, POMC upregulation, and miR-155 downregulation, while miR-155 itself can suppress POMC expression. These results, support the hypothesis that the effects of EA on EAE may involve the downregulation of miR-155.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Xin Chen
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Xudong Han
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Yanping Wang
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Yu Shi
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Jiayu Ji
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Yanting Lei
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Ying Liu
- Institute of Transfusion Medicine, Harbin Blood Center, Harbin, Heilongjiang 150081, China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Lili Mu
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Jinghua Wang
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Wei Zhao
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Guangyou Wang
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Xijun Liu
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Tongshuai Zhang
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Yao Zhang
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Bo Sun
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Yumei Liu
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China.
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, No. 194 Xuefu Road, Harbin, Heilongjiang 150081, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
8
|
Viruez-Soto A, López-Dávalos MM, Rada-Barrera G, Merino-Luna A, Molano-Franco D, Tinoco-Solorozano A, Zubieta-DeUrioste N, Zubieta-Calleja G, Arias-Reyes C, Soliz J. Low serum erythropoietin levels are associated with fatal COVID-19 cases at 4,150 meters above sea level. Respir Physiol Neurobiol 2021; 292:103709. [PMID: 34087493 PMCID: PMC8169280 DOI: 10.1016/j.resp.2021.103709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
Previous studies suggested that erythropoietin (EPO) may protect against severe COVID-19-induced injuries, ultimately preventing mortality. This hypothesis is based on the fact that, in addition to promoting the increase in red blood cells, EPO is an anti-inflammatory, anti-apoptotic and protective factor in several non-erythropoietic tissues. Furthermore, EPO promotes nitric oxide production in the hypoxic lung and stimulates ventilation by interacting with the respiratory centers of the brainstem. Given that EPO in the blood is increased at high-altitude, we evaluated the serum levels of EPO in critical patients with COVID-19 at “Hospital Agramont” in the city of El Alto (4150 masl) in Bolivia. A total of 16 patients, 15 men, one woman, with a mean age of 55.8 ± 8.49 years, admitted to the Intensive Care Unit were studied. All patients were permanent residents of El Alto, with no travel history below 3000 masl for at least one year. Blood samples were collected upon admission to the ICU. Serum EPO concentration was assessed using an ELISA kit, and a standard technique determined hemoglobin concentration. Only half of the observed patients survived the disease. Remarkably, fatal cases showed 2.5 times lower serum EPO than survivors (2.78 ± 0.8643 mU/mL vs 7.06 ± 2.713 mU/mL; p = 0.0096), and 1.24 times lower hemoglobin levels (13.96 ± 2.56 g/dL vs 17.41 ± 1.61 g/dL; p = 0.0159). While the number of cases evaluated in this work is low, our findings strongly warrant further investigation of EPO levels in COVID-19 patients at high and low altitudes. Our results also support the hypothesis that exogenous EPO administration could help critically ill COVID-19 patients overcome the disease.
Collapse
Affiliation(s)
- Antonio Viruez-Soto
- Hospital Agramont, El Alto, La Paz, Bolivia; High Altitude Intensive Care Medicine International Group, GIMIA, Bolivia; High Altitude Intensive Care Medicine International Group, GIMIA, Peru; High Altitude Intensive Care Medicine International Group, GIMIA, Colombia
| | | | | | - Alfredo Merino-Luna
- High Altitude Intensive Care Medicine International Group, GIMIA, Bolivia; High Altitude Intensive Care Medicine International Group, GIMIA, Peru; High Altitude Intensive Care Medicine International Group, GIMIA, Colombia
| | - Daniel Molano-Franco
- High Altitude Intensive Care Medicine International Group, GIMIA, Bolivia; High Altitude Intensive Care Medicine International Group, GIMIA, Peru; High Altitude Intensive Care Medicine International Group, GIMIA, Colombia
| | - Amílcar Tinoco-Solorozano
- High Altitude Intensive Care Medicine International Group, GIMIA, Bolivia; High Altitude Intensive Care Medicine International Group, GIMIA, Peru; High Altitude Intensive Care Medicine International Group, GIMIA, Colombia
| | | | | | - Christian Arias-Reyes
- Centre de Recherche de l'Institute Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Jorge Soliz
- High Altitude Pulmonary and Pathology Institute (HAPPI-IPPA), La Paz, Bolivia; Centre de Recherche de l'Institute Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada.
| |
Collapse
|
9
|
Silva I, Alípio C, Pinto R, Mateus V. Potential anti-inflammatory effect of erythropoietin in non-clinical studies in vivo: A systematic review. Biomed Pharmacother 2021; 139:111558. [PMID: 33894624 DOI: 10.1016/j.biopha.2021.111558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) is a hypoxia-induced hormone produced in adult kidneys with erythropoietic and non-erythropoietic effects. In vivo studies represent an important role to comprehend the efficacy and safety in the early phase of repurposing drugs. The aim is to evaluate the potential anti-inflammatory effect of EPO observed in animal models of disease. Following PRISMA statements, electronic database Medline via PubMed platform was used to search articles with the research expression ((erythropoietin [MeSH Terms]) AND (inflammation [MeSH Terms]) AND (disease models, animal [MeSH Terms])). The inclusion criteria were original articles, studies where EPO was administered, studies where inflammation was studied and/or evaluated, non-clinical studies in vivo with rodents, and articles published in English. Thirty-six articles met the criteria for qualitative analysis. Exogenous EPO was used in models of sepsis, traumatic brain injury, and autoimmune neuritis, with an average of 3000 IU/Kg for single and multiple doses, using mice and rats. Biomarkers such as immune-related effectors, cytokines, reactive oxygen species, prostaglandins, and other biomarkers were assessed. EPO has been recognized as a multifunctional cytokine with anti-inflammatory properties, showing its significant effect both in acute and chronic models of inflammation. Further non-clinical studies are suggested for the enlightenment of anti-inflammatory mechanisms of EPO in lower doses, allowing us to understand the translational data for humans.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Carolina Alípio
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; JCS, Dr. Joaquim Chaves, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
10
|
Panoskaltsis N, McCarthy NE, Stagg AJ, Mummery CJ, Husni M, Arebi N, Greenstein D, Price CL, Al-Hassi HO, Koutinas M, Mantalaris A, Knight SC. Immune reconstitution and clinical recovery following anti-CD28 antibody (TGN1412)-induced cytokine storm. Cancer Immunol Immunother 2021; 70:1127-1142. [PMID: 33033851 PMCID: PMC7543968 DOI: 10.1007/s00262-020-02725-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022]
Abstract
Cytokine storm can result from cancer immunotherapy or certain infections, including COVID-19. Though short-term immune-related adverse events are routinely described, longer-term immune consequences and sequential immune monitoring are not as well defined. In 2006, six healthy volunteers received TGN1412, a CD28 superagonist antibody, in a first-in-man clinical trial and suffered from cytokine storm. After the initial cytokine release, antibody effect-specific immune monitoring started on Day + 10 and consisted mainly of evaluation of dendritic cell and T-cell subsets and 15 serum cytokines at 21 time-points over 2 years. All patients developed problems with concentration and memory; three patients were diagnosed with mild-to-moderate depression. Mild neutropenia and autoantibody production was observed intermittently. One patient suffered from peripheral dry gangrene, required amputations, and had persistent Raynaud's phenomenon. Gastrointestinal irritability was noted in three patients and coincided with elevated γδT-cells. One had pruritus associated with elevated IgE levels, also found in three other asymptomatic patients. Dendritic cells, initially undetectable, rose to normal within a month. Naïve CD8+ T-cells were maintained at high levels, whereas naïve CD4+ and memory CD4+ and CD8+ T-cells started high but declined over 2 years. T-regulatory cells cycled circannually and were normal in number. Cytokine dysregulation was especially noted in one patient with systemic symptoms. Over a 2-year follow-up, cognitive deficits were observed in all patients following TGN1412 infusion. Some also had signs or symptoms of psychological, mucosal or immune dysregulation. These observations may discern immunopathology, treatment targets, and long-term monitoring strategies for other patients undergoing immunotherapy or with cytokine storm.
Collapse
Affiliation(s)
- Nicki Panoskaltsis
- Department of Haematology, Imperial College London, Northwick Park & St. Mark's Campus, London, UK.
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark's Campus, London, UK.
- Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, UK.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, USA.
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA.
| | - Neil E McCarthy
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark's Campus, London, UK
- Centre for Immunobiology, The Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andrew J Stagg
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark's Campus, London, UK
- Centre for Immunobiology, The Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Catherine J Mummery
- Dementia Research Centre, National Hospital for Neurology and Neurosurgery, Queen Square, Department of Neurology, Northwick Park Hospital, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospital, University College London, London, UK
| | - Mariwan Husni
- Central and North West London Mental Health NHS Foundation Trust, Northwick Park Hospital, London, UK
- Psychiatry Department, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Naila Arebi
- Department of Gastroenterology and Intestinal Physiology, St. Mark's Hospital, London, UK
- Inflammatory Bowel Disease Clinical Service, St Mark's Hospital, London, UK
| | - David Greenstein
- Department of Vascular Surgery, North West London Hospitals NHS Trust, Northwick Park & St. Mark's Hospitals Site, London, UK
- Department of Vascular Surgery, Northwick Park Hospital and Imperial College London, London, UK
| | - Claire L Price
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark's Campus, London, UK
- Lucid Group Communications, Buckinghamshire, UK
| | - Hafid O Al-Hassi
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark's Campus, London, UK
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Michalis Koutinas
- Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, UK
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark's Campus, London, UK
| |
Collapse
|
11
|
Pan SY, Tsai PZ, Chou YH, Chang YT, Chang FC, Chiu YL, Chiang WC, Hsu T, Chen YM, Chu TS, Lin SL. Kidney pericyte hypoxia-inducible factor regulates erythropoiesis but not kidney fibrosis. Kidney Int 2021; 99:1354-1368. [PMID: 33812664 DOI: 10.1016/j.kint.2021.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/03/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
Prolyl hydroxylase domain enzyme (PHD) inhibitors are effective in the treatment of chronic kidney disease (CKD)-associated anemia by stabilizing hypoxia inducible factor (HIF), thereby increasing erythropoietin and consequently erythropoiesis. However, concern for CKD progression needs to be addressed in clinical trials. Although pre-clinical studies showed an anti-inflammatory effect in kidney disease models, the effect of PHD inhibitors on kidney fibrosis was inconsistent probably because the effects of HIF are cell type and context dependent. The major kidney erythropoietin-producing cells are pericytes that produce erythropoietin through HIF-2α-dependent gene transcription. The concern for the impact of HIF in pericytes on kidney fibrosis arises from the fact that pericytes are the major precursor cells of myofibroblasts in CKD. Since cells expressing Gli1 fulfill the morphologic and anatomic criteria for pericytes, we induced Gli1+ cell-specific HIF stabilization or knockout to study the impact of HIF in pericytes on kidney pathology of mice with or without fibrotic injury induced by unilateral ureteral obstruction. Compared with the littermate controls, mice with pericyte-specific HIF stabilization due to von Hippel-Lindau protein or PHD2 knockout showed increased serum erythropoietin and polycythemia rather than a discernible difference in kidney fibrosis. Compared with Gli1+ pericytes sorted from littermate controls, Gli1+ pericytes sorted from PHD2 knockout mice showed increased erythropoietin gene expression rather than discernible changes in Col1a1 or Acta2 expression. Furthermore, pericyte-specific knockout of HIF-1α or HIF-2α did not affect kidney fibrosis. Thus, our study supports the absence of negative effects of PHD inhibitors on kidney fibrosis of mice despite HIF stabilization in pericytes.
Collapse
Affiliation(s)
- Szu-Yu Pan
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Zhen Tsai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Yu-Ting Chang
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fan-Chi Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ling Chiu
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Graduate Program in Biomedical Informatics, Department of Computer Science and Engineering, College of Informatics, Yuan Ze University, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Chih Chiang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzong-Shinn Chu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Eswarappa M, Cantarelli C, Cravedi P. Erythropoietin in Lupus: Unanticipated Immune Modulating Effects of a Kidney Hormone. Front Immunol 2021; 12:639370. [PMID: 33796104 PMCID: PMC8007959 DOI: 10.3389/fimmu.2021.639370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disease with variable clinical presentation, typically characterized by a relapsing-remitting course. SLE has a multifactorial pathogenesis including genetic, environmental, and hormonal factors that lead to loss of tolerance against self-antigens and autoantibody production. Mortality in SLE patients remains significantly higher than in the general population, in part because of the limited efficacy of available treatments and the associated toxicities. Therefore, novel targeted therapies are urgently needed to improve the outcomes of affected individuals. Erythropoietin (EPO), a kidney-produced hormone that promotes red blood cell production in response to hypoxia, has lately been shown to also possess non-erythropoietic properties, including immunomodulatory effects. In various models of autoimmune diseases, EPO limits cell apoptosis and favors cell clearance, while reducing proinflammatory cytokines and promoting the induction of regulatory T cells. Notably, EPO has been shown to reduce autoimmune response and decrease disease severity in mouse models of SLE. Herein, we review EPO's non-erythropoietic effects, with a special focus on immune modulating effects in SLE and its potential clinical utility.
Collapse
Affiliation(s)
- Meghana Eswarappa
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chiara Cantarelli
- UO Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
13
|
Improvement of Islet Allograft Function Using Cibinetide, an Innate Repair Receptor Ligand. Transplantation 2021; 104:2048-2058. [PMID: 32345869 DOI: 10.1097/tp.0000000000003284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND During intraportal pancreatic islet transplantation (PITx), early inflammatory reactions cause an immediate loss of more than half of the transplanted graft and potentiate subsequent allograft rejection. Previous findings suggest that cibinetide, a selective innate repair receptor agonist, exerts islet protective and antiinflammatory properties and improved transplant efficacy in syngeneic mouse PITx model. In a stepwise approach toward a clinical application, we have here investigated the short- and long-term effects of cibinetide in an allogeneic mouse PITx model. METHODS Streptozotocin-induced diabetic C57BL/6N (H-2) mice were transplanted with 320 (marginal) or 450 (standard) islets from BALB/c (H-2) mice via the portal vein. Recipients were treated perioperative and thereafter daily during 14 d with cibinetide (120 µg/kg), with or without tacrolimus injection (0.4 mg/kg/d) during days 4-14 after transplantation. Graft function was assessed using nonfasting glucose measurements. Relative gene expressions of proinflammatory cytokines and proinsulin of the graft-bearing liver were assessed by quantitative polymerase chain reaction. Cibinetide's effects on dendritic cell maturation were investigated in vitro. RESULTS Cibinetide ameliorated the local inflammatory responses in the liver and improved glycemic control immediately after allogeneic PITx and significantly delayed the onset of allograft loss. Combination treatment with cibinetide and low-dose tacrolimus significantly improved long-term graft survival following allogeneic PITx. In vitro experiments indicated that cibinetide lowered bone-marrow-derived-immature-dendritic cell maturation and subsequently reduced allogeneic T-cell response. CONCLUSIONS Cibinetide reduced the initial transplantation-related severe inflammation and delayed the subsequent alloreactivity. Cibinetide, in combination with low-dose tacrolimus, could significantly improve long-term graft survival in allogeneic PITx.
Collapse
|
14
|
Choi YB, Dunn-Meynell AA, Marchese M, Blumberg BM, Gaindh D, Dowling PC, Lu W. Erythropoietin-derived peptide treatment reduced neurological deficit and neuropathological changes in a mouse model of tauopathy. Alzheimers Res Ther 2021; 13:32. [PMID: 33504364 PMCID: PMC7839226 DOI: 10.1186/s13195-020-00766-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/29/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Prominent activation of microglial immune/inflammatory processes is a characteristic feature of brains of patients with tauopathies including Alzheimer's disease (AD), suggesting that neuroinflammation may be a critical factor in their pathogenesis. Strategies aimed at developing new therapeutics for tauopathies based on anti-inflammation or immunomodulation are likely to be promising avenues of research. We previously developed JM4-a 19'mer cyclic peptide derived from the first loop of human erythropoietin. This peptide possesses beneficial immune modulatory and tissue protective effects while lacking the undesirable side effects of full-length erythropoietin. In this preclinical study, we investigated the effect of chronic JM4 treatment on the PS19 mouse that carries the P301S mutant human tau gene, linked to a form of frontotemporal dementia. This transgenic mouse has been widely used as a model of tauopathies including AD and related dementias. METHODS Daily subcutaneous treatment of female PS19 mice with JM4 was initiated before disease onset and continued on for the animals' lifespan. The progression of neurological deficit and the lifespan of these mice were assessed. To evaluate the effect of JM4 treatment on cognition of these animals, the PS19 mice underwent Barnes maze test and elevated plus maze test. In addition, neuronal loss, phosphorylated tau aggregation, and microglial activation were assessed using immunohistochemistry of PS19 mouse brain sections. RESULTS JM4 treatment of PS19 mice initiated before disease onset reduced neurological deficit, prolonged lifespan, and rescued memory impairment. The beneficial effects of JM4 were accompanied by reductions in neuronal loss, phosphorylated tau aggregation, and microglial activation in the PS19 mouse brain. LIMITATIONS Use of a single dose of JM4 and female mice only. CONCLUSION JM4 is a potential novel therapeutic agent for the treatment of tauopathies including AD and related dementias.
Collapse
Affiliation(s)
- Yun-Beom Choi
- Neurology Service, VA New Jersey Health Care System and Department of Neurology, Rutgers New Jersey Medical School, 385 Tremont Ave., East Orange, NJ 07018 USA
| | - Ambrose A. Dunn-Meynell
- Neurology Service, VA New Jersey Health Care System and Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, 385 Tremont Ave., East Orange, NJ 07018 USA
| | - Michelle Marchese
- Neurology Service, VA New Jersey Health Care System, 385 Tremont Ave., East Orange, NJ 07018 USA
| | - Benjamin M. Blumberg
- Neurology Service, VA New Jersey Health Care System, 385 Tremont Ave., East Orange, NJ 07018 USA
| | - Deeya Gaindh
- Neurology Service, VA New Jersey Health Care System and Department of Neurology, Rutgers New Jersey Medical School, 385 Tremont Ave., East Orange, NJ 07018 USA
| | - Peter C. Dowling
- Neurology Service, VA New Jersey Health Care System and Department of Neurology, Rutgers New Jersey Medical School, 385 Tremont Ave., East Orange, NJ 07018 USA
- Neurology Service, VA New Jersey Health Care System and Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, 385 Tremont Ave., East Orange, NJ 07018 USA
| | - Wei Lu
- Neurology Service, VA New Jersey Health Care System, 385 Tremont Ave., East Orange, NJ 07018 USA
| |
Collapse
|
15
|
Soliz J, Schneider-Gasser EM, Arias-Reyes C, Aliaga-Raduan F, Poma-Machicao L, Zubieta-Calleja G, Furuya WI, Trevizan-Baú P, Dhingra RR, Dutschmann M. Coping with hypoxemia: Could erythropoietin (EPO) be an adjuvant treatment of COVID-19? Respir Physiol Neurobiol 2020; 279:103476. [PMID: 32522574 PMCID: PMC7275159 DOI: 10.1016/j.resp.2020.103476] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022]
Abstract
A very recent epidemiological study provides preliminary evidence that living in habitats located at 2500 m above sea level (masl) might protect from the development of severe respiratory symptoms following infection with the novel SARS-CoV-2 virus. This epidemiological finding raises the question of whether physiological mechanisms underlying the acclimatization to high altitude identifies therapeutic targets for the effective treatment of severe acute respiratory syndrome pivotal to the reduction of global mortality during the COVID-19 pandemic. This article compares the symptoms of acute mountain sickness (AMS) with those of SARS-CoV-2 infection and explores overlapping patho-physiological mechanisms of the respiratory system including impaired oxygen transport, pulmonary gas exchange and brainstem circuits controlling respiration. In this context, we also discuss the potential impact of SARS-CoV-2 infection on oxygen sensing in the carotid body. Finally, since erythropoietin (EPO) is an effective prophylactic treatment for AMS, this article reviews the potential benefits of implementing FDA-approved erythropoietin-based (EPO) drug therapies to counteract a variety of acute respiratory and non-respiratory (e.g. excessive inflammation of vascular beds) symptoms of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jorge Soliz
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC, Canada; High Altitude Pulmonary and Pathology Institute IPPA, La Paz, Bolivia.
| | - Edith M Schneider-Gasser
- Institute of Veterinary Physiology, Vetsuisse-Faculty University of Zurich, Winterthurerstrasse 260, Switzerland
| | - Christian Arias-Reyes
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Fernanda Aliaga-Raduan
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Liliana Poma-Machicao
- Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC, Canada
| | | | - Werner I Furuya
- Florey Institute of Neuroscience and Mental Health, Melbourne Victoria, Australia; The Florey Department of Neuroscience, University of Melbourne, Melbourne Victoria, Australia
| | - Pedro Trevizan-Baú
- Florey Institute of Neuroscience and Mental Health, Melbourne Victoria, Australia; The Florey Department of Neuroscience, University of Melbourne, Melbourne Victoria, Australia
| | - Rishi R Dhingra
- Florey Institute of Neuroscience and Mental Health, Melbourne Victoria, Australia
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, Melbourne Victoria, Australia; The Florey Department of Neuroscience, University of Melbourne, Melbourne Victoria, Australia
| |
Collapse
|
16
|
Zhou J, Bai Y, Jiang Y, Tarun P, Feng Y, Huang R, Fu P. Immunomodulatory role of recombinant human erythropoietin in acute kidney injury induced by crush syndrome via inhibition of the TLR4/NF-κB signaling pathway in macrophages. Immunopharmacol Immunotoxicol 2020; 42:37-47. [PMID: 31971040 DOI: 10.1080/08923973.2019.1706555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: The present study aimed to investigate whether recombinant human erythropoietin (rHuEPO) plays an immunomodulatory function by regulating the TLR4/NF-κB signaling pathway.Materials and methods: C57BL/6 mice were intraperitoneally injected with rHuEPO and, half an hour later, with 50% glycerol at the dose of 7.5 ml/kg to induce crush syndrome (CS)-acute kidney injury (AKI). The levels of TNF-α, IL-1β, IL-6, serum creatinine (Scr), and creatine kinase (CK) were measured. The kidney tissues were analyzed by HE staining, and macrophage infiltration was detected by immunohistochemistry. Double immunofluorescence staining, RT-qPCR, and western blotting were conducted to analyze TLR4/NF-κB p65 expression. Ferrous myoglobin was co-cultured with RAW264.7 cells to mimic crush injury and the production of proinflammatory cytokines. The expression levels of TLR4 and NF-κB p65 were measured.Results: In vivo study results revealed that rHuEPO ameliorated renal function, tissue damage, production of proinflammatory cytokines, and macrophage infiltration in the kidneys. The protein and mRNA expression levels of genes involved in the TLR4/NF-κB signaling pathway in CS-induced AKI mice were upregulated (p < .05). Meanwhile, the expression levels of TLR4, NF-κB p65, and proinflammatory cytokines in RAW264.7 cells were downregulated in CS-AKI mice injected with rHuEPO (p < .05).Conclusions: Our results demonstrated the immunomodulatory capacity of rHuEPO and confirmed that rHuEPO exerts protective effects against CS-induced AKI by regulating the TLR4/NF-κB signaling pathway in macrophages. Therefore, our findings highlight the therapeutic potential of rHuEPO in improving the prognosis of CS-AKI patients.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- Division of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yajun Bai
- Department of Nephrology, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Yong Jiang
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Padamata Tarun
- West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuying Feng
- Kidney Research Institute, Department of Internal Medicine, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rongshuang Huang
- Kidney Research Institute, Department of Internal Medicine, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Kidney Research Institute, Department of Internal Medicine, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Mirzaie J, Raoofi A, Jamalpoor Z, Nezhadi A, Golmohammadi R. Protective impacts of erythropoietin on myelinization of oligodendrocytes and schwann cells in CNS and PNS following cuprizone-induced multiple sclerosis- histology, molecular, and functional studies. J Chem Neuroanat 2020; 104:101750. [PMID: 31954768 DOI: 10.1016/j.jchemneu.2020.101750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is known as one of the chronic inflammatory diseases characterized by lesions in the central nervous system (CNS) and peripheral nervous system(PNS) resulting in serious cognitive or physical disabilities as well as neurological disorders. Thus, protective effects of erythropoietin(EPO) on myelinization of oligodendrocytes and schwann cells respectively in CNS and PNS following MS induced by cuprizone (CPZ) administration in young female mice. METHODOLOGY To meet the objectives of this study; a chow with 0.2 % CPZ was used to feed young female C57BL/6 J mice for six weeks. After three weeks, EPO (5000 IU/kg body weight) was administered via daily intra-peritoneal injection for simultaneous treatment of the mice. Measurement of latency and amplitude of the compound muscle action potential (CMAP) of gastrocnemius muscle was also performed every week during a six-week demyelination interval, and then examinations were fulfilled on the histological sections of the brain and sciatic nerve. Therefore, we focused on the removal of the sciatic and sciatic nerve specimens and analysis of the use of the stereological procedures, western blot, immuno-histochemistry, and gene expression. RESULTS According to the results of this study, MBP levels increased in oligodendrocytes (OLs) in the treated mice. Moreover, EPO could concurrently enhance motor coordination and muscle activity. Analysis showed the significant enhancement of the gene expression of MBP, MAG, and S100, as well as stereological variables in the treatment group in comparison with the cuprizone (CPZ) group. CONCLUSION Findings could help further understand the alleviation of the detrimental impacts of CPZ using the OLs that would be capable of increasing the level of S100, MAG, and MBP.
Collapse
Affiliation(s)
- Jafar Mirzaie
- Neuroscience Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Amir Raoofi
- Leishmaniasis Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Akram Nezhadi
- Neuroscience Research Center, Aja University of Medical Sciences, Tehran, Iran.
| | - Rahim Golmohammadi
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
18
|
Cantarelli C, Angeletti A, Cravedi P. Erythropoietin, a multifaceted protein with innate and adaptive immune modulatory activity. Am J Transplant 2019; 19:2407-2414. [PMID: 30903735 PMCID: PMC6711804 DOI: 10.1111/ajt.15369] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 01/25/2023]
Abstract
Erythropoietin (EPO) is a glycoprotein produced mainly by the adult kidney in response to hypoxia and is the crucial regulator of red blood cell production. EPO receptors (EPORs), however, are not confined to erythroid cells, but are expressed by many organs including the heart, brain, retina, pancreas, and kidney, where they mediate EPO-induced, erythropoiesis-independent, tissue-protective effects. Some of these tissues also produce and locally release small amounts of EPO in response to organ injury as a mechanism of self-repair. Growing evidence shows that EPO possesses also important immune-modulating effects. Monocytes can produce EPO, and autocrine EPO/EPOR signaling in these cells is crucial in maintaining immunologic self-tolerance. New data in mice and humans also indicate that EPO has a direct inhibitory effect on effector/memory T cells, while it promotes formation of regulatory T cells. This review examines the nonerythropoietic effects of EPO, with a special emphasis on its modulating activity on innate immune cells and T cells and on how it affects transplant outcomes.
Collapse
Affiliation(s)
- Chiara Cantarelli
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrea Angeletti
- Department of Experimental, Diagnostic, Specialty Medicine, Nephrology, Dialysis, and Renal Transplant Unit, S. Orsola University Hospital, Bologna, Italy
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
19
|
Li Y, Yue H, Yang S, Yuan D, Li L, Zhao J, Zhao L. Splenomegaly induced by anemia impairs T cell movement in the spleen partially via EPO. Mol Immunol 2019; 112:399-405. [PMID: 31299495 DOI: 10.1016/j.molimm.2019.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
The spleen is an important secondary lymph organ. Splenomegaly induced by anemia could affect the function of spleen in immune responses. We observe that anemia induced in mice with reduced peripheral T cell trafficking to the spleen T cell zones as well as CCL21 and CCL19 expression. In accordance with previous research, we found that the production of EPO in the mice kidney was sharply increased post anemia. In addition, mice were injected with different doses of EPO. Our results show that with the increased dosage of EPO, the chemokine expression in the spleen is lowered with a decrease in peripheral T cell homing to the spleen T cell zones. At last, our results show that the anemia mice model administrated with anti-EPO antibody had a higher expression of spleen CCL19 and CCL21 and an increased count of periphery T cells trafficking to spleen T cell zones at day 3 post induction. These data indicate that anemia could disturb T cell movement in the spleen, which might further affect T cell immune response, with partial involvement of EPO.
Collapse
Affiliation(s)
- Yan Li
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Honggang Yue
- Department of Oncology, PLA 958 Hospital, Chongqing, 400020, China.
| | - Shouyan Yang
- Department of Oncology, PLA 958 Hospital, Chongqing, 400020, China.
| | - Dandi Yuan
- Department of Oncology, PLA 958 Hospital, Chongqing, 400020, China.
| | - Luxia Li
- Department of Oncology, PLA 958 Hospital, Chongqing, 400020, China.
| | - Jinghong Zhao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Lintao Zhao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China; Department of Oncology, PLA 958 Hospital, Chongqing, 400020, China.
| |
Collapse
|
20
|
Donadei C, Angeletti A, Cantarelli C, D'Agati VD, La Manna G, Fiaccadori E, Horwitz JK, Xiong H, Guglielmo C, Hartzell S, Madsen JC, Maggiore U, Heeger PS, Cravedi P. Erythropoietin inhibits SGK1-dependent TH17 induction and TH17-dependent kidney disease. JCI Insight 2019; 5:127428. [PMID: 31013255 DOI: 10.1172/jci.insight.127428] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IL-17-producing CD4+ cells (TH17) are pathogenically linked to autoimmunity including to autoimmune kidney disease. Erythropoietin's (EPO) newly recognized immunoregulatory functions and its predominant intra-renal source suggested that EPO physiologically regulates TH17 differentiation, thereby serving as a barrier to the development of autoimmune kidney disease. Using in vitro studies of human and murine cells and in vivo models, we show that EPO ligation of its receptor (EPO-R) on CD4+ T cells directly inhibits TH17 generation and promotes trans-differentiation of TH17 into IL-17-FOXP3+CD4+ T cells. Mechanistically, EPO/EPO-R ligation abrogates upregulation of SGK1 gene expression and blocks p38 activity to prevent SGK1 phosphorylation, thereby inhibiting RORC-mediated transcription of IL-17 and IL-23 receptor genes. In a murine model of TH17-dependent aristolochic acid (ArA)-induced, interstitial kidney disease associated with reduced renal EPO production, we demonstrate that transgenic EPO overexpression or recombinant EPO (rEPO) administration limits TH17 formation and clinical/histological disease expression. EPO/EPO-R ligations on CD4+ T cells abrogate, while absence of T cell-expressed EPO-R augments, TH17 induction and clinical/histological expression of pristane-induced glomerulonephritis (associated with decreased intrarenal EPO). rEPO prevents spontaneous glomerulonephritis and TH17 generation in MRL-lpr mice. Together, our findings indicate that EPO physiologically and therapeutically modulate TH17 cells to limit expression of TH17-associated autoimmune kidney disease.
Collapse
Affiliation(s)
- Chiara Donadei
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Nephrology Dialysis and Renal Transplantation Unit, S. Orsola University Hospital, Bologna, Italy
| | - Andrea Angeletti
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Nephrology Dialysis and Renal Transplantation Unit, S. Orsola University Hospital, Bologna, Italy
| | - Chiara Cantarelli
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Dipartimento di Medicina e Chirurgia (Università di Parma), UO Nefrologia (Azienda Ospedaliera-Universitaria Parma), Parma, Italy
| | - Vivette D D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Gaetano La Manna
- Nephrology Dialysis and Renal Transplantation Unit, S. Orsola University Hospital, Bologna, Italy
| | - Enrico Fiaccadori
- Dipartimento di Medicina e Chirurgia (Università di Parma), UO Nefrologia (Azienda Ospedaliera-Universitaria Parma), Parma, Italy
| | - Julian K Horwitz
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Huabao Xiong
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chiara Guglielmo
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Susan Hartzell
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joren C Madsen
- Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Umberto Maggiore
- Dipartimento di Medicina e Chirurgia (Università di Parma), UO Nefrologia (Azienda Ospedaliera-Universitaria Parma), Parma, Italy
| | - Peter S Heeger
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paolo Cravedi
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Zhang Z, Liu D, Zhang X, Wang X. Erythropoietin Treatment Ameliorates Lupus Nephritis of MRL/lpr Mice. Inflammation 2019; 41:1888-1899. [PMID: 29951872 DOI: 10.1007/s10753-018-0832-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An increasing body of data has shown that erythropoietin (EPO) plays multiple roles in inflammation control and immunoregulation. However, less attention has been given to its effects on lupus nephritis (LN). In this study, we investigated the therapeutic effects of EPO on LN in MRL/lpr mice, a well-studied animal model for lupus. MRL/lpr mice were randomly divided into an EPO and control group. Mice in the EPO group were treated with EPO; saline was given to the control group. Both groups were treated for 10 weeks. We analyzed the differences of general disease condition, histopathologic changes, Th lymphocytes subsets, and the expression of inflammatory factors of mice between the groups. Compared to the control group, mice in the EPO group showed less spleen hyperplasia, less urinary protein, and lower serum anti-dsDNA antibody; they also had lower renal histopathologic scores and less deposition of IgG/C3 within glomeruli. Moreover, Th1 and Th17 levels were decreased, while Th2 and Treg levels were increased in the spleen, and the expression of inflammatory cytokines decreased in both the spleen and kidneys. EPO increased Th2 and Treg lymphocytes, decreased Th1, Th17 lymphocytes in the spleen, and inhibited the inflammatory reactions in both the spleen and kidneys, thus ameliorating LN of MRL/lpr mice.
Collapse
Affiliation(s)
- Zeming Zhang
- Department of Rheumatology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Dongmei Liu
- Department of Rheumatology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xiaoli Zhang
- Department of Rheumatology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xiaofei Wang
- Department of Rheumatology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
22
|
Erythropoietin and Nrf2: key factors in the neuroprotection provided by apo-lactoferrin. Biometals 2018; 31:425-443. [PMID: 29748743 DOI: 10.1007/s10534-018-0111-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
Among the properties of lactoferrin (LF) are bactericidal, antianemic, immunomodulatory, antitumour, antiphlogistic effects. Previously we demonstrated its capacity to stabilize in vivo HIF-1-alpha and HIF-2-alpha, which are redox-sensitive multiaimed transcription factors. Various tissues of animals receiving recombinant human LF (rhLF) responded by expressing the HIF-1-alpha target genes, hence such proteins as erythropoietin (EPO), ceruloplasmin, etc. were synthesized in noticeable amounts. Among organs in which EPO synthesis occurred were brain, heart, spleen, liver, kidneys and lungs. Other researchers showed that EPO can act as a protectant against severe brain injury and status epilepticus in rats. Therefore, we tried rhLF as a protector against the severe neurologic disorders developed in rats, such as the rotenone-induced model of Parkinson's disease and experimental autoimmune encephalomyelitis as a model of multiple sclerosis, and observed its capacity to mitigate the grave symptoms. Moreover, an intraperitoneal injection of rhLF into mice 1 h after occlusion of the medial cerebral artery significantly diminished the necrosis area measured on the third day in the ischaemic brain. During this period EPO was synthesized in various murine tissues. It was known that EPO induces nuclear translocation of Nrf2, which, like HIF-1-alpha, is a transcription factor. In view that under conditions of hypoxia both factors demonstrate a synergistic protective effect, we suggested that LF activates the Keap1/Nrf2 signaling pathway, an important link in proliferation and differentiation of normal and malignant cells. J774 macrophages were cultured for 3 days without or in the presence of ferric and ferrous ions (RPMI-1640 and DMEM/F12, respectively). Then cells were incubated with rhLF or Deferiprone. Confocal microscopy revealed nuclear translocation of Nrf2 (the key event in Keap1/Nrf2 signaling) induced by apo-rhLF (iron-free, RPMI-1640). The reference compound Deferiprone (iron chelator) had the similar effect. Upon iron binding (in DMEM/F12) rhLF did not activate the Keap1/Nrf2 pathway. Added to J774, apo-rhLF enhanced transcription of Nrf2-dependent genes coding for glutathione S-transferase P and heme oxygenase-1. Western blotting revealed presence of Nrf2 in mice brain after 6 days of oral administration of apo-rhLF, but not Fe-rhLF or equivalent amount of PBS. Hence, apo-LF, but not holo-LF, induces the translocation of Nrf2 from cytoplasm to the nucleus, probably due to its capacity to induce EPO synthesis.
Collapse
|
23
|
Zhou ZW, Li F, Zheng ZT, Li YD, Chen TH, Gao WW, Chen JL, Zhang JN. Erythropoietin regulates immune/inflammatory reaction and improves neurological function outcomes in traumatic brain injury. Brain Behav 2017; 7:e00827. [PMID: 29201540 PMCID: PMC5698857 DOI: 10.1002/brb3.827] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/25/2017] [Accepted: 08/10/2017] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) remains a leading cause of disability and death among young people in China. Unfortunately, no specific pharmacological agents to block the progression of secondary brain injury have been approved for clinical treatment. Recently, neuroprotective effects of erythropoietin (EPO) have been demonstrated in addition to its principal function in erythropoiesis, and hence it is viewed as a potential drug for TBI. In this study, we have investigated the neuroprotective effects of EPO associated with immune/inflammatory modulation in a mouse experimental TBI model. METHODS EPO (5000 U/kg body weight, i.p.) was injected at 1 hr, 1, 2, and 3 days after TBI, and its effect on cognitive function, brain edema, immune/inflammatory cells including regulatory T cells (Tregs), neutrophils, CD3+ T cells, and microglia, cytokines including interleukin-10 (IL-10), transforming growth factor-β (TGF-β), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were evaluated at different time points after treatment. RESULTS EPO treatment significantly decreased brain edema and improved cognitive function when compared to Saline-treated mice (p < .05). EPO treatment also significantly increased Tregs level in spleen and injured brain tissue as well as significantly reduced the infiltration and activation of immune/inflammatory cells (neutrophils, CD3+T cells, and microglia) in the injured hemisphere compared to Saline-treated control animals (p < .05). In addition, ELISA analysis demonstrated that EPO treatment increased the expression of anti-inflammatory cytokine IL-10, but decreased the expression of proinflammatory cytokine IL-1β and TNF-α in the injured brain tissue (p < .05). CONCLUSIONS These findings suggest that EPO could improve neurological and cognitive functional outcomes as well as regulate immune/inflammatory reaction in TBI.
Collapse
Affiliation(s)
- Zi-Wei Zhou
- Department of Neurosurgery Tianjin Medical University General Hospital Heping District Tianjin China.,Tianjin Neurological Institute Tianjin China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System Ministry of Education Heping District Tianjin China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System Heping District Tianjin China
| | - Fei Li
- Department of Neurosurgery Tianjin Medical University General Hospital Heping District Tianjin China
| | - Zhi-Tong Zheng
- Department of Neurosurgery Tianjin Medical University General Hospital Heping District Tianjin China
| | - Ya-Dan Li
- Intensive Care Units Tianjin Huanhu Hospital Tianjin China
| | - Tong-Heng Chen
- Department of Neurosurgery The Second Hospital Tianjin Medical University Hexi District Tianjin China
| | - Wei-Wei Gao
- Department of Neurosurgery Tianjin Medical University General Hospital Heping District Tianjin China.,Tianjin Neurological Institute Tianjin China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System Ministry of Education Heping District Tianjin China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System Heping District Tianjin China
| | - Jie-Li Chen
- Department of Neurology Henry Ford Hospital Detroit MI USA
| | - Jian-Ning Zhang
- Department of Neurosurgery Tianjin Medical University General Hospital Heping District Tianjin China.,Tianjin Neurological Institute Tianjin China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System Ministry of Education Heping District Tianjin China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System Heping District Tianjin China
| |
Collapse
|
24
|
Moransard M, Bednar M, Frei K, Gassmann M, Ogunshola OO. Erythropoietin reduces experimental autoimmune encephalomyelitis severity via neuroprotective mechanisms. J Neuroinflammation 2017; 14:202. [PMID: 29029628 PMCID: PMC5640948 DOI: 10.1186/s12974-017-0976-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Treatment with erythropoietin (Epo) in experimental autoimmune encephalomyelitis (EAE), the rodent model of multiple sclerosis (MS), has consistently been shown to ameliorate disease progression and improve overall outcome. The effect has been attributed to modulation of the immune response and/or preservation of the central nervous system (CNS) tissue integrity. It remains unclear, however, if (a) Epo acts primarily in the CNS or the periphery and if (b) Epo's beneficial effect in EAE is mainly due to maintaining CNS tissue integrity or to modulation of the immune response. If Epo acts primarily by modulating the immune system, where is this modulation required? In the periphery, the CNS or both? METHODS To address these questions, we used two well-characterized transgenic mouse strains that constitutively overexpress recombinant human Epo (rhEpo) either systemically (tg6) or in CNS only (tg21) in a MOG-induced EAE model. We assessed clinical severity, disease progression, immunomodulation, and CNS tissue integrity, including neuronal survival. RESULTS Although disease onset remained unaffected, EAE progression was alleviated in transgenic animals compared to controls with both lines performing equally well showing that expression of Epo in the periphery is not required; Epo expression in the CNS is sufficient. Immunomodulation was observed in both strains but surprisingly the profile of modulation differed substantially between strains. Modulation in the tg21 strain was limited to a reduction in macrophages in the CNS, with no peripheral immunomodulatory effects observed. In contrast, in the tg6 strain, macrophages were upregulated in the CNS, and, in the periphery of this strain, T cells and macrophages were downregulated. The lack of a consistent immunomodulatory profile across both transgenic species suggests that immunomodulation by Epo is unlikely to be the primary mechanism driving amelioration of EAE. Finally, CNS tissue integrity was affected in all strains. Although myelin appeared equally damaged in all strains, neuronal survival was significantly improved in the spinal cord of tg21 mice, indicating that Epo may ameliorate EAE predominantly by protecting neurons. CONCLUSIONS Our data suggests that moderate elevated brain Epo levels provide clinically significant neuroprotection in EAE without modulation of the immune response making a significant contribution.
Collapse
Affiliation(s)
- M Moransard
- Department of Internal Medicine, Section of Clinical Immunology, University Hospital Zürich, Zurich, Switzerland
| | - M Bednar
- Institute of Veterinary Physiology and Zurich Center of Integrative Human Physiology (ZIHP), Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - K Frei
- Department of Neurosurgery, University Hospital Zurich, CH-8006, Zurich, Switzerland
| | - M Gassmann
- Institute of Veterinary Physiology and Zurich Center of Integrative Human Physiology (ZIHP), Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - O O Ogunshola
- Institute of Veterinary Physiology and Zurich Center of Integrative Human Physiology (ZIHP), Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| |
Collapse
|
25
|
Nairz M, Haschka D, Dichtl S, Sonnweber T, Schroll A, Aßhoff M, Mindur JE, Moser PL, Wolf D, Swirski FK, Theurl I, Cerami A, Brines M, Weiss G. Cibinetide dampens innate immune cell functions thus ameliorating the course of experimental colitis. Sci Rep 2017; 7:13012. [PMID: 29026145 PMCID: PMC5638901 DOI: 10.1038/s41598-017-13046-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/15/2017] [Indexed: 11/28/2022] Open
Abstract
Two distinct forms of the erythropoietin receptor (EPOR) mediate the cellular responses to erythropoietin (EPO) in different tissues. EPOR homodimers signal to promote the maturation of erythroid progenitor cells. In other cell types, including immune cells, EPOR and the ß-common receptor (CD131) form heteromers (the innate repair receptor; IRR), and exert tissue protective effects. We used dextran sulphate sodium (DSS) to induce colitis in C57BL/6 N mice. Once colitis was established, mice were treated with solvent, EPO or the selective IRR agonist cibinetide. We found that both cibinetide and EPO ameliorated the clinical course of experimental colitis in mice, resulting in improved weight gain and survival. Correspondingly, DSS-exposed mice treated with cibinetide or EPO displayed preserved tissue integrity due to reduced infiltration of myeloid cells and diminished production of pro-inflammatory disease mediators including cytokines, chemokines and nitric oxide synthase-2. Experiments using LPS-activated primary macrophages revealed that the anti-inflammatory effects of cibinetide were dependent on CD131 and JAK2 functionality and were mediated via inhibition of NF-κB subunit p65 activity. Cibinetide activation of the IRR exerts potent anti-inflammatory effects, especially within the myeloid population, reduces disease activity and mortality in mice. Cibinetide thus holds promise as novel disease-modifying therapeutic of inflammatory bowel disease.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria. .,Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. .,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - David Haschka
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| | - Stefanie Dichtl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Sonnweber
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| | - Malte Aßhoff
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| | - John E Mindur
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Patrizia L Moser
- Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Medical Clinic III for Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Igor Theurl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| | - Anthony Cerami
- Araim Pharmaceuticals, Tarrytown, New York, United States of America
| | - Michael Brines
- Araim Pharmaceuticals, Tarrytown, New York, United States of America
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
Purroy C, Fairchild RL, Tanaka T, Baldwin WM, Manrique J, Madsen JC, Colvin RB, Alessandrini A, Blazar BR, Fribourg M, Donadei C, Maggiore U, Heeger PS, Cravedi P. Erythropoietin Receptor-Mediated Molecular Crosstalk Promotes T Cell Immunoregulation and Transplant Survival. J Am Soc Nephrol 2017; 28:2377-2392. [PMID: 28302753 PMCID: PMC5533236 DOI: 10.1681/asn.2016101100] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/30/2017] [Indexed: 01/14/2023] Open
Abstract
Although spontaneous kidney transplant acceptance/tolerance occurs in mice and occasionally in humans, mechanisms remain unclear. Herein we test the hypothesis that EPO, a hormone predominantly produced by the adult kidney, has immunomodulating properties that are required for spontaneous kidney graft acceptance. In vitro, in a manner dependent on the EPO receptor and CD131 on antigen-presenting cells, EPO induced the secretion of active TGFβ by antigen-presenting cells, which in turn converted naïve CD4+ T cells into functional Foxp3+ regulatory T cells (Treg). In murine transplant models, pharmacologic downregulation of kidney-derived EPO prevented spontaneous Treg generation. In a controlled, prospective cohort clinical study, EPO administration at doses used to correct anemia augmented the frequency of peripheral CD4+CD25+CD127lo T cells in humans with CKD. Furthermore, EPO directly inhibited conventional T cell proliferation in vitro via tyrosine phosphatase SHP-1-dependent uncoupling of IL-2Rβ signaling. Conversely, EPO-initiated signals facilitated Treg proliferation by augmenting IL-2Rγ signaling and maintaining constitutively quenched IL-2Rβ signaling. In additional murine transplant models, recombinant EPO administration prolonged heart allograft survival, whereas pharmacologic downregulation of kidney-derived EPO reduced the expression of TGFβ mRNA and abrogated kidney allograft acceptance. Together, our findings delineate the protolerogenic properties of EPO in inhibiting conventional T cells while simultaneously promoting Treg induction, and suggest that manipulating the EPO/EPO receptor signaling axis could be exploited to prevent and/or treat T cell-mediated pathologies, including transplant rejection.
Collapse
Affiliation(s)
- Carolina Purroy
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute and
- Nephrology Service, Complejo Hospitalario de Navarra, Pamplona, Spain
| | | | - Toshiaki Tanaka
- Department of Immunology, The Cleveland Clinic, Cleveland, Ohio
| | | | - Joaquin Manrique
- Nephrology Service, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Joren C Madsen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robert B Colvin
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota; and
| | - Miguel Fribourg
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chiara Donadei
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute and
| | - Umberto Maggiore
- Kidney and Pancreas Transplantation Unit, University Hospital of Parma, Parma, Italy
| | - Peter S Heeger
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute and
| | - Paolo Cravedi
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute and
| |
Collapse
|
27
|
Abstract
Type 1 diabetes is an autoimmune disorder in which the immune system attacks and destroys insulin-producing islet cells of the pancreas. Although islet transplantation has proved to be successful for some patients with type 1 diabetes, its widespread use is limited by islet donor shortage and the requirement for lifelong immunosuppression. An encapsulation strategy that can prevent the rejection of xenogeneic islets or of stem cell-derived allogeneic islets can potentially eliminate both of these barriers. Although encapsulation technology has met several challenges, the convergence of expertise in materials, nanotechnology, stem cell biology and immunology is allowing us to get closer to the goal of encapsulated islet cell therapy for humans.
Collapse
Affiliation(s)
- Tejal Desai
- University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, Byers Hall Rm 203C, MC 2520, 1700 4th Street, San Francisco, California 94158-2330, USA
| | - Lonnie D Shea
- University of Michigan, Department of Biomedical Engineering, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, USA
| |
Collapse
|
28
|
Yu Y, Cao F, Ran Q, Sun X. Regulatory T cells exhibit neuroprotective effect in a mouse model of traumatic brain injury. Mol Med Rep 2016; 14:5556-5566. [PMID: 27878274 PMCID: PMC5355672 DOI: 10.3892/mmr.2016.5954] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health and socioeconomic problem as it is associated with high rates of mortality and morbidity worldwide. Regulatory T cells (Tregs) have been reported to reduce inflammatory response in several diseases, including myasthenia gravis, viral myocarditis and cerebral infarction. The present study investigated the role of Tregs in mediating neuro‑protective effects in a mouse model of TBI. Initially, Treg levels were determined, and compared between the controlled cortical impact (CCI) model for moderate TBI and the sham group, by using flow cytometry and ELISA. Afterwards, the number of Tregs was upregulated (by injection) and downregulated (by depletion), respectively, to elucidate the effect of Tregs in the presence of an inflammatory reaction and a deficient neurological function and consequently, in the prognosis of TBI in the mouse. The expression of pro‑inflammatory cytokines [tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β, IL‑6)] and anti‑inflammatory cytokines [IL‑10, transforming growth factor (TGF)‑β] in blood and brain tissues was also measured in the five groups: Μice receiving a saline injection, mice experiencing Treg depletion, small‑dose (SD Tregs, 1.25x105), and mice receiving different doses of Tregs: Moderate‑dose (MD Tregs, 2.5x105) and large‑dose (LD Tregs, 5x105), using ELISA and PCR. Co‑cultures of Tregs and microglia were performed to evaluate the expression of pro‑inflammatory cytokines and observe the interaction between the two types of cells. The regulation patterns in JNK‑NF‑κB pathway by Tregs were also evaluated by western blot analysis. Treg levels were significantly reduced in TBI mouse group on the 3rd day after TBI (P<0.05). In the mouse model of TBI, the expression of pro‑inflammatory cytokines (TNF‑α, IL‑1β, IL‑6) was enhanced, while the expression of anti‑inflammatory cytokines (IL‑10, TGF‑β) was reduced (P<0.05). Tregs exhibited a suppressive effect on inflammatory reactions. In the MD group, the activation of microglia cells was markedly inhibited, compared to the activation in SD and LD groups. The expression of ERK1/2, JNK1/2/3 and NK‑κB was significantly downregulated in the MD group. The results indicated that Tregs exhibited significant neuro‑protective effects, suppressing pro‑inflammatory responses and promoting tissue repair after TBI injury in the mouse, specifically by deactivating the JNK‑NF‑κB pathway. The results of the study show that Tregs potentially participates in neuro‑therapeutic approaches for TBI.
Collapse
Affiliation(s)
- Yunhu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Fang Cao
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Qishan Ran
- Department of Neurosurgery, The Third Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
29
|
Deshet-Unger N, Oster HS, Prutchi-Sagiv S, Maaravi N, Golishevski N, Neumann D, Mittelman M. Erythropoietin administration is associated with improved T-cell properties in patients with myelodysplastic syndromes. Leuk Res 2016; 52:20-27. [PMID: 27870945 DOI: 10.1016/j.leukres.2016.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 10/05/2016] [Accepted: 11/01/2016] [Indexed: 01/19/2023]
Abstract
The immune system is impaired in myelodysplastic syndromes (MDS) and plays a role in the pathogenesis of the disease. Here we show effects of recombinant human erythropoietin (rHuEPO) on T cell (CD4+, CD8+ and CD4+CD25+) number and function in MDS patients. Healthy (20 subjects), MDS patients without rHuEPO treatment ('MDS', 13), and MDS patients treated with rHuEPO ('MDS+EPO', 17) were examined. CD4+ and CD8+ T cell numbers were reduced and increased respectively in MDS compared to healthy subjects. EPO treatment normalized these levels. CD4+CD25+ cell numbers, lower in MDS, were normalized in MDS+EPO. In vitro activation of CD4+ and CD8+ cells with phytohemagglutinin as measured by CD69 expression, demonstrated a 7.2 fold increase in CD4+ activation vs 13.6 fold for MDS and MDS+EPO respectively (p=0.004); and 10.2 fold (MDS) vs 18.6 fold (MDS+EPO, p<0.003) for CD8+ T cells. Expression of the co-stimulatory marker CD28, decreased in CD4+ and CD8+ T cells in MDS, was normalized in MDS+EPO CD4+ T cells. Subgroup analysis of milder disease (WHO RA and RARS) and more advanced disease revealed no difference in CD4+ and CD8+ T cell numbers. However, the activation of these cells in the RA/RARS subgroup was impaired in EPO-untreated and enhanced in EPO-treated MDS patients. Our data suggest that EPO treatment improves immune abnormalities in MDS and may depend on disease severity.
Collapse
Affiliation(s)
- Naamit Deshet-Unger
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Howard S Oster
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, and Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Sara Prutchi-Sagiv
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nir Maaravi
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, and Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Nataliya Golishevski
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, and Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moshe Mittelman
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, and Sackler Faculty of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
30
|
Dumont CM, Margul DJ, Shea LD. Tissue Engineering Approaches to Modulate the Inflammatory Milieu following Spinal Cord Injury. Cells Tissues Organs 2016; 202:52-66. [PMID: 27701152 PMCID: PMC5067186 DOI: 10.1159/000446646] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2016] [Indexed: 12/11/2022] Open
Abstract
Tissue engineering strategies have shown promise in promoting healing and regeneration after spinal cord injury (SCI); however, these strategies are limited by inflammation and the immune response. Infiltration of cells of the innate and adaptive immune responses and the inflammation that follows cause secondary damage adjacent to the injury, increased scarring, and a potently inhibitory environment for the regeneration of damaged neurons. While the inflammation that ensues is typically associated with limited regeneration, the immune response is a crucial element in the closing of the blood-brain barrier, minimizing the spread of injury, and initiating healing. This review summarizes the strategies that have been developed to modulate the immune response towards an anti-inflammatory environment that is permissive to the regeneration of neurons, glia, and parenchyma. We focus on the use of biomaterials, biologically active molecules, gene therapy, nanoparticles, and stem cells to modulate the immune response, and illustrate concepts for future therapies. Current clinical treatments for SCI are limited to systemic hypothermia or methylprednisolone, which both act by systemically mitigating the effects of immune response but have marginal efficacy. Herein, we discuss emerging research strategies to further enhance these clinical treatments by directly targeting specific aspects of the immune response.
Collapse
Affiliation(s)
- Courtney. M. Dumont
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Daniel J. Margul
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lonnie. D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
31
|
Ding J, Wang J, Li QY, Yu JZ, Ma CG, Wang X, Lu CZ, Xiao BG. Neuroprotection and CD131/GDNF/AKT Pathway of Carbamylated Erythropoietin in Hypoxic Neurons. Mol Neurobiol 2016; 54:5051-5060. [PMID: 27541284 DOI: 10.1007/s12035-016-0022-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022]
Abstract
Carbamylated erythropoietin (CEPO), an EPO derivative, is attracting widespread interest due to neuroprotective effects without erythropoiesis. However, little is known about molecular mechanisms behind CEPO-mediated neuroprotection. In primary neurons with oxygen-glucose deprivation (OGD) and mice with hypoxia-reoxygenation, the neuroprotection and possible molecular mechanism of CEPO were performed by immunohistochemistry and immunocytochemistry, Western blot, RT-PCR, and ELISA. The comparisons were analyzed by ANOVA followed by unpaired two-tailed Student's t test. Both CEPO and EPO showed the neuroprotective effects in OGD model and hypoxic brain. CEPO did not trigger JAK-2 but activated AKT through glial cell line-derived neurotrophic factor (GDNF). It has been shown that CEPO acts upon a heteroreceptor complex comprising both the EPO receptor and the common β receptor subunit (βcR, also known as CD131). The blockage of CD131 reduced CEPO-mediated GDNF production, while GFR receptor blockage and GDNF neutralization inhibited CEPO-induced neurogenesis. Addition of GDNF to cultured neurons increased phosphorylation of AKT. CEPO protects neurons possible through the CD131/GDNF/AKT pathway.
Collapse
Affiliation(s)
- Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qin-Ying Li
- Institute of Neurology, Huashan Hospital, Institute of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Jie-Zhong Yu
- Institute of Brain Science, Shanxi Datong University, Shanxi, 037009, China
| | - Cun-Gen Ma
- Institute of Brain Science, Shanxi Datong University, Shanxi, 037009, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuan-Zhen Lu
- Institute of Neurology, Huashan Hospital, Institute of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institute of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.
| |
Collapse
|
32
|
Deshet-Unger N, Hiram-Bab S, Haim-Ohana Y, Mittelman M, Gabet Y, Neumann D. Erythropoietin treatment in murine multiple myeloma: immune gain and bone loss. Sci Rep 2016; 6:30998. [PMID: 27481313 PMCID: PMC4969594 DOI: 10.1038/srep30998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/12/2016] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy, characterized by osteolytic lesions and monoclonal immunoglobulins. The anemia, accompanying the disease is often treated with recombinant human EPO. Diverse non-erythropoietic effects of EPO have led us to question its combined action on the immune system and bone in the 5T33MM mouse model. EPO administration to MM mice attenuated disease progression as demonstrated by a decrease in serum MM IgG2b, splenic CD138 expressing cells, IL-6 and RORγτ transcripts in bone marrow (BM). IFN-γ transcript levels and macrophages (F4/80+CD11b+) in the BM both increased ~1.5 fold in the EPO-treated MM mice. In-vitro, EPO stimulated phagocytosis of 5T33MM cells (+30%) by BM-derived macrophages. In contrast, high-resolution microCT analysis of distal femurs revealed EPO-associated bone loss in both healthy and 5T33MM mice. EPO significantly increased expression of the osteoclastogenic nuclear factor-kappa B ligand (RANKL) in healthy mice, but not in MM mice, likely due to antagonizing effects on MM progression. Thus, in MM, EPO may act as a double-edged-sword stimulating immune response, while accelerating bone resorption, possibly via direct action on BM macrophages. This study supports a prudent approach of treating anemia in MM patients, aiming to maintain EPO-associated anti-MM effects, while considering bone damage.
Collapse
Affiliation(s)
- Naamit Deshet-Unger
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Sahar Hiram-Bab
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Israel.,Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Yasmin Haim-Ohana
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Moshe Mittelman
- Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
33
|
A Nonhematopoietic Erythropoietin Analogue, ARA 290, Inhibits Macrophage Activation and Prevents Damage to Transplanted Islets. Transplantation 2016; 100:554-62. [PMID: 26683514 DOI: 10.1097/tp.0000000000001026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Erythropoietin exerts anti-inflammatory, antiapoptotic, and cytoprotective effects in addition to its hematopoietic action. A nonhematopoietic erythropoietin analogue, ARA 290, has similar properties. The efficacy of pancreatic islet transplantation (PITx) is reduced due to islet damage that occurs during isolation and from the severe inflammatory reactions caused by the transplantation procedure. We investigated whether ARA 290 protects islets and ameliorates inflammatory responses following PITx thus improving engraftment. METHODS The effects of ARA 290 on pancreatic islets of C57BL/6J (H-2) mice and on murine macrophages were investigated using an in vitro culture model. As a marginal PITx, 185 islets were transplanted into the liver of streptozotocin-induced diabetic mice (H-2) via the portal vein. Recipients were given ARA 290 (120 μg/kg) intraperitoneally just before and at 0, 6, and 24 hours after PITx. Liver samples were obtained at 12 hours after PITx, and expression levels of proinflammatory cytokines were assessed. RESULTS ARA 290 protected islets from cytokine-induced damage and apoptosis. Secretion of pro-inflammatory cytokines (IL-6, IL-12, and TNF-α) from macrophages was significantly inhibited by ARA 290. After the marginal PITx, ARA 290 treatment significantly improved the blood glucose levels when compared to those of control animals (P < 0.001). Upregulation of monocyte chemoattractant protein-1, macrophage inflammatory protein-1β, IL-1β, and IL-6 messenger RNA expression within the liver was suppressed by ARA 290 treatment. CONCLUSIONS ARA 290 protected pancreatic islets from cytokine-induced damage and apoptosis and ameliorated the inflammatory response after PITx. ARA 290 appears to be a promising candidate for improvement of PITx.
Collapse
|
34
|
Erythropoietin exerts direct immunomodulatory effects on the cytokine production by activated human T-lymphocytes. Int Immunopharmacol 2016; 36:277-281. [DOI: 10.1016/j.intimp.2016.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/21/2016] [Accepted: 05/08/2016] [Indexed: 01/29/2023]
|
35
|
Erythropoietin Pathway: A Potential Target for the Treatment of Depression. Int J Mol Sci 2016; 17:ijms17050677. [PMID: 27164096 PMCID: PMC4881503 DOI: 10.3390/ijms17050677] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/05/2016] [Accepted: 04/27/2016] [Indexed: 12/21/2022] Open
Abstract
During the past decade, accumulating evidence from both clinical and experimental studies has indicated that erythropoietin may have antidepressant effects. In addition to the kidney and liver, many organs have been identified as secretory tissues for erythropoietin, including the brain. Its receptor is expressed in cerebral and spinal cord neurons, the hypothalamus, hippocampus, neocortex, dorsal root ganglia, nerve axons, and Schwann cells. These findings may highlight new functions for erythropoietin, which was originally considered to play a crucial role in the progress of erythroid differentiation. Erythropoietin and its receptor signaling through JAK2 activate multiple downstream signaling pathways including STAT5, PI3K/Akt, NF-κB, and MAPK. These factors may play an important role in inflammation and neuroprogression in the nervous system. This is particularly true for the hippocampus, which is possibly related to learning, memory, neurocognitive deficits and mood alterations. Thus, the influence of erythropoietin on the downstream pathways known to be involved in the treatment of depression makes the erythropoietin-related pathway an attractive target for the development of new therapeutic approaches. Focusing on erythropoietin may help us understand the pathogenic mechanisms of depression and the molecular basis of its treatment.
Collapse
|
36
|
Wang B, Kang M, Marchese M, Rodriguez E, Lu W, Li X, Maeda Y, Dowling P. Beneficial Effect of Erythropoietin Short Peptide on Acute Traumatic Brain Injury. Neurotherapeutics 2016; 13:418-27. [PMID: 26715414 PMCID: PMC4824022 DOI: 10.1007/s13311-015-0418-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There is currently no effective medical treatment for traumatic brain injury (TBI). Beyond the immediate physical damage caused by the initial impact, additional damage evolves due to the inflammatory response that follows brain injury. Here we show that therapy with JM4, a low molecular weight 19-amino acid nonhematopoietic erythropoietin (EPO) peptidyl fragment, containing amino acids 28-46 derived from the first loop of EPO, markedly reduces acute brain injury. Mice underwent controlled cortical injury and received either whole molecule EPO, JM4, or sham-treatment with phosphate-buffered saline. Animals treated with JM4 peptide exhibited a large decrease in number of dead neural cells and a marked reduction in lesion size at both 3 and 8 days postinjury. Therapy with JM4 also led to improved functional recovery and we observed a treatment window for JM4 peptide that remained open for at least 9 h postinjury. The full-length EPO molecule was divided into a series of 6 contiguous peptide segments; the JM4-containing segment and the adjoining downstream region contained the bulk of the death attenuating effects seen with intact EPO molecule following TBI. These findings indicate that the JM4 molecule substantially blocks cell death and brain injury following acute brain trauma and, as such, presents an excellent opportunity to explore the therapeutic potential of a small-peptide EPO derivative in the medical treatment of TBI.
Collapse
Affiliation(s)
- Bo Wang
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA
| | - Mitchell Kang
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA
| | - Michelle Marchese
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA
| | - Esther Rodriguez
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA
| | - Wei Lu
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA
| | - Xintong Li
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA
| | - Yasuhiro Maeda
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peter Dowling
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA.
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
37
|
Sternberg Z. Promoting sympathovagal balance in multiple sclerosis; pharmacological, non-pharmacological, and surgical strategies. Autoimmun Rev 2016; 15:113-23. [DOI: 10.1016/j.autrev.2015.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Yuan R, Wang B, Lu W, Maeda Y, Dowling P. A Distinct Region in Erythropoietin that Induces Immuno/Inflammatory Modulation and Tissue Protection. Neurotherapeutics 2015; 12:850-61. [PMID: 26271954 PMCID: PMC4604189 DOI: 10.1007/s13311-015-0379-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Beneficial effects of short-term whole-molecule erythropoietin (EPO) therapy have been demonstrated on several animal models of diverse central nervous system pathology. However, the increased hematocrit induced by EPO-driven marrow stimulation greatly limits its potential for side effect-free therapy. We created a library of EPO-derived fragments based on the hypothesis that 2 distinct functions, erythropoiesis and tissue protection, reside in different regions of the molecule. Several small EPO-derived peptides within the Aβ loop of whole EPO molecule were screened for tissue protection in EAE mice. The 19-mer JM-4 peptide that contains 2 cysteine molecules consistently demonstrated the most potent clinical beneficial effects without producing hematocrit alterations in animal models of EAE. The JM-4-induced tissue protection was associated with modulation of the immunoregulatory process that drives inflammation and provokes subsequent autoimmune damage. Like the whole EPO molecule, JM-4 effectively modulated immune/inflammatory reaction within both the peripheral lymphatic tissue and central nervous system. The major effects induced by JM-4 include blocked expansion of monocyte/dendritic antigen presenting cell and T helper 17 cell populations, decreased proinflammatory cytokine production, and sharply enhanced expansion of the regulatory T-cell population. JM-4 shows promise for treatment of a broad spectrum of neural and non-neural conditions associated with inflammation.
Collapse
Affiliation(s)
- RuiRong Yuan
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bo Wang
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Wei Lu
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA
| | - Yasuhiro Maeda
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peter Dowling
- Neurology Service, VA Medical Center of East Orange, East Orange, NJ, USA.
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
39
|
Dumont CM, Park J, Shea LD. Controlled release strategies for modulating immune responses to promote tissue regeneration. J Control Release 2015; 219:155-166. [PMID: 26264833 DOI: 10.1016/j.jconrel.2015.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 01/06/2023]
Abstract
Advances in the field of tissue engineering have enhanced the potential of regenerative medicine, yet the efficacy of these strategies remains incomplete, and is limited by the innate and adaptive immune responses. The immune response associated with injury or disease combined with that mounted to biomaterials, transplanted cells, proteins, and gene therapies vectors can contribute to the inability to fully restore tissue function. Blocking immune responses such as with anti-inflammatory or immunosuppressive agents are either ineffective, as the immune response contributes significantly to regeneration, or have significant side effects. This review describes targeted strategies to modulate the immune response in order to limit tissue damage following injury, promote an anti-inflammatory environment that leads to regeneration, and induce antigen (Ag)-specific tolerance that can target degenerative diseases that destroy tissues and promote engraftment of transplanted cells. Focusing on targeted immuno-modulation, we describe local delivery techniques to sites of inflammation as well as systemic approaches that preferentially target subsets of immune populations.
Collapse
Affiliation(s)
- Courtney M Dumont
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jonghyuck Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
40
|
Alnaeeli M, Noguchi CT. Erythropoietin and obesity-induced white adipose tissue inflammation: redefining the boundaries of the immunometabolism territory. Adipocyte 2015; 4:153-7. [PMID: 26167420 DOI: 10.4161/21623945.2014.978654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/29/2014] [Accepted: 10/15/2014] [Indexed: 12/16/2022] Open
Abstract
The adipose tissue represents a critical and predominant site for the interaction between metabolic and inflammatory responses during health and disease. In the white adipose tissue microenvironment, macrophages/adipocytes cross-talk have been shown to influence the metabolic and inflammatory states of both cell types, and contribute to the development of systemic insulin resistance during obesity. Indeed, the existence of paracrine loops between mature adipocytes and macrophages, especially during obesity-induced stress, involving the release of, and response to, an array of cytokines and regulatory factors, have been extensively studied using several in vitro and in vivo model systems. Published evidence together with recent observations, brought to light the unexpected role of erythropoietin and its receptor in the regulation of white adipose tissue mass, energy homeostasis, and inflammation as demonstrated by erythropoietin effects on adipocyte development and metabolic profile, and macrophage infiltration, cytokine responses, and activation state during diet-induced obesity. In this commentary, we discuss the newly added elements and perspectives to our understanding of the erythropoietin/erythropoietin-receptor axis as a regulator of obesity-induced white adipose tissue inflammation, providing insight into its effects on cytokine responses of macrophages and adipocytes, and possible links to glucose metabolism and insulin resistance.
Collapse
|
41
|
Cravedi P, Manrique J, Hanlon KE, Reid-Adam J, Brody J, Prathuangsuk P, Mehrotra A, Heeger PS. Immunosuppressive effects of erythropoietin on human alloreactive T cells. J Am Soc Nephrol 2014; 25:2003-15. [PMID: 24676641 PMCID: PMC4147979 DOI: 10.1681/asn.2013090945] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/17/2013] [Indexed: 01/02/2023] Open
Abstract
Correction of anemia with erythropoietin (EPO) is associated with improved kidney transplant outcomes. Emerging evidence, predominantly from animal models, indicates that these observations may be erythropoiesis-independent and that EPO exhibits immunosuppressive properties. We examined the effects of EPO on human T-cell alloimmunity by first documenting that CD4(+) and CD8(+) T cells express EPO receptor (EPO-R) on their surfaces. In mixed lymphocyte reactions, EPO induced a dose-dependent decrease in allogeneic CD4(+) T-cell proliferation (EPO 1000 U/ml: 44.6%±22.9% of vehicle, P<0.05; 2000 U/ml: 11.1%±4% of vehicle, P<0.001) without inducing cell death. The effects required signals transmitted directly through the EPO-R expressed on T cells, resulting in diminished Th1 differentiation without effects on regulatory T-cell induction. Mechanistic studies revealed that EPO prevented IL-2-induced proliferation by uncoupling IL-2 receptor signaling, inhibiting phosphorylation of the intracellular intermediaries AKT and extracellular signal-regulated kinase that are known to mediate T-cell expansion. EPO treatment reduced expansion of human naïve CD4(+) T cells after adoptive transfer into NOD scid γc(null) mouse recipients, verifying the effects in vivo. Although activated T cells expressed CD131, an alternative EPO receptor, addition of a specific CD131 agonist peptide, ARA290, did not alter T-cell proliferation or cytokine production. Our findings link EPO-R signaling on T cells to inhibition of T-cell immunity, providing one mechanism that could explain the observed protective effects of EPO in kidney transplant recipients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter S Heeger
- Renal Division, Department of Medicine, Recanati Miller Transplant Institute, and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
42
|
Wang L, Di L, Noguchi CT. Erythropoietin, a novel versatile player regulating energy metabolism beyond the erythroid system. Int J Biol Sci 2014; 10:921-39. [PMID: 25170305 PMCID: PMC4147225 DOI: 10.7150/ijbs.9518] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022] Open
Abstract
Erythropoietin (EPO), the required cytokine for promoting the proliferation and differentiation of erythroid cells to stimulate erythropoiesis, has been reported to act as a pleiotropic cytokine beyond hematopoietic system. The various activities of EPO are determined by the widespread distribution of its cell surface EPO receptor (EpoR) in multiple tissues including endothelial, neural, myoblasts, adipocytes and other cell types. EPO activity has been linked to angiogenesis, neuroprotection, cardioprotection, stress protection, anti-inflammation and especially the energy metabolism regulation that is recently revealed. The investigations of EPO activity in animals and the expression analysis of EpoR provide more insights on the potential of EPO in regulating energy metabolism and homeostasis. The findings of crosstalk between EPO and some important energy sensors and the regulation of EPO in the cellular respiration and mitochondrial function further provide molecular mechanisms for EPO activity in metabolic activity regulation. In this review, we will summarize the roles of EPO in energy metabolism regulation and the activity of EPO in tissues that are tightly associated with energy metabolism. We will also discuss the effects of EPO in regulating oxidative metabolism and mitochondrial function, the interactions between EPO and important energy regulation factors, and the protective role of EPO from stresses that are related to metabolism, providing a brief overview of previously less appreciated EPO biological function in energy metabolism and homeostasis.
Collapse
Affiliation(s)
- Li Wang
- 1. Faculty of Health Sciences, University of Macau, SAR of People's Republic of China
| | - Lijun Di
- 1. Faculty of Health Sciences, University of Macau, SAR of People's Republic of China
| | - Constance Tom Noguchi
- 2. Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
43
|
Alnaeeli M, Raaka BM, Gavrilova O, Teng R, Chanturiya T, Noguchi CT. Erythropoietin signaling: a novel regulator of white adipose tissue inflammation during diet-induced obesity. Diabetes 2014; 63:2415-31. [PMID: 24647735 PMCID: PMC4066343 DOI: 10.2337/db13-0883] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity-induced white adipose tissue (WAT) inflammation and insulin resistance are associated with macrophage (Mф) infiltration and phenotypic shift from "anti-inflammatory" M2-like to predominantly "proinflammatory" M1-like cells. Erythropoietin (EPO), a glycoprotein hormone indispensable for erythropoiesis, has biological activities that extend to nonerythroid tissues, including antiapoptotic and anti-inflammatory effects. Using comprehensive in vivo and in vitro analyses in mice, EPO treatment inhibited WAT inflammation, normalized insulin sensitivity, and reduced glucose intolerance. We investigated EPO receptor (EPO-R) expression in WAT and characterized the role of its signaling during obesity-induced inflammation. Remarkably, and prior to any detectable changes in body weight or composition, EPO treatment reduced M1-like Mф and increased M2-like Mф in WAT, while decreasing inflammatory monocytes. These anti-inflammatory effects were found to be driven, at least in part, by direct EPO-R response in Mф via Stat3 activation, where EPO effects on M2 but not M1 Mф required interleukin-4 receptor/Stat6. Using obese ∆EpoR mice with EPO-R restricted to erythroid cells, we demonstrated an anti-inflammatory role for endogenous EPO. Collectively, our findings identify EPO-R signaling as a novel regulator of WAT inflammation, extending its nonerythroid activity to encompass effects on both Mф infiltration and subset composition in WAT.
Collapse
Affiliation(s)
- Mawadda Alnaeeli
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Bruce M Raaka
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Oksana Gavrilova
- Mouse Metabolism Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Ruifeng Teng
- Mouse Metabolism Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Tatyana Chanturiya
- Mouse Metabolism Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
44
|
Caris AV, Lira FS, de Mello MT, Oyama LM, dos Santos RVT. Carbohydrate and glutamine supplementation modulates the Th1/Th2 balance after exercise performed at a simulated altitude of 4500 m. Nutrition 2014; 30:1331-6. [PMID: 25280408 DOI: 10.1016/j.nut.2014.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of carbohydrate or glutamine supplementation, or a combination of the two, on the immune system and inflammatory parameters after exercise in simulated hypoxic conditions at 4500 m. METHODS Nine men underwent three sessions of exercise at 70% VO2peak until exhaustion as follows: 1) hypoxia with a placebo; 2) hypoxia with 8% maltodextrin (200 mL/20 min) during exercise and for 2 h after; and 3) hypoxia after 6 d of glutamine supplementation (20 g/d) and supplementation with 8% maltodextrin (200 mL/20 min) during exercise and for 2 h after. All procedures were randomized and double blind. Blood was collected at rest, immediately before exercise, after the completion of exercise, and 2 h after recovery. Glutamine, cortisol, cytokines, glucose, heat shock protein-70, and erythropoietin were measured in serum, and the cytokine production from lymphocytes was measured. RESULTS Erythropoietin and interleukin (IL)-6 increased after exercise in the hypoxia group compared with baseline. IL-6 was higher in the hypoxia group than pre-exercise after exercise and after 2 h recovery. Cortisol did not change, whereas glucose was elevated post-exercise in the three groups compared with baseline and pre-exercise. Glutamine increased in the hypoxia + carbohydrate + glutamine group after exercise compared with baseline. Heat shock protein-70 increased post-exercise compared with baseline and pre-exercise and after recovery compared with pre-exercise, in the hypoxia + carbohydrate group. No difference was observed in IL-2 and IL-6 production from lymphocytes. IL-4 was reduced in the supplemented groups. CONCLUSION Carbohydrate or glutamine supplementation shifts the T helper (Th)1/Th2 balance toward Th1 responses after exercise at a simulated altitude of 4500 m. The nutritional strategies increased in IL-6, suggesting an important anti-inflammatory effect.
Collapse
Affiliation(s)
- Aline V Caris
- Department of Physiology, Federal University of São Paulo, Brazil; Postgraduate Nutrition, Federal University of São Paulo, Brazil
| | - Fábio S Lira
- Department of Physiology, Federal University of São Paulo, Brazil; Department of Psychobiology, Federal University of São Paulo, Brazil; Department of Physical Education, State University of São Paulo, Brazil
| | - Marco T de Mello
- Department of Physiology, Federal University of São Paulo, Brazil; Department of Psychobiology, Federal University of São Paulo, Brazil
| | - Lila M Oyama
- Department of Physiology, Federal University of São Paulo, Brazil; Postgraduate Nutrition, Federal University of São Paulo, Brazil
| | - Ronaldo V T dos Santos
- Department of Psychobiology, Federal University of São Paulo, Brazil; Department of Bioscience, Federal University of São Paulo, Brazil.
| |
Collapse
|
45
|
Affiliation(s)
- Frank Martinez
- Department of Intensive Care and Renal Transplantation, Necker Hospital, Paris' Public Assistance Hospital, Paris, France; Paris Descartes University and Sorbonne Paris City, Paris, France
| | - Nicolas Pallet
- Paris Descartes University and Sorbonne Paris City, Paris, France; Department of Nephrology, and Department of Biochemistry, Georges Pompidou European Hospital, Paris' Public Assistance Hospital, France, Paris, France; and Institute of Health and Medical Research U1147, University Centre of the Holy Fathers, Paris, France
| |
Collapse
|
46
|
Chen H, Luo B, Yang X, Xiong J, Liu Z, Jiang M, Shi R, Yan C, Wu Y, Zhang Z. Therapeutic effects of nonerythropoietic erythropoietin analog ARA290 in experimental autoimmune encephalomyelitis rat. J Neuroimmunol 2014; 268:64-70. [DOI: 10.1016/j.jneuroim.2014.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 12/27/2013] [Accepted: 01/13/2014] [Indexed: 12/17/2022]
|
47
|
Hayley S, Litteljohn D. Neuroplasticity and the next wave of antidepressant strategies. Front Cell Neurosci 2013; 7:218. [PMID: 24312008 PMCID: PMC3834236 DOI: 10.3389/fncel.2013.00218] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/29/2013] [Indexed: 12/13/2022] Open
Abstract
Depression is a common chronic psychiatric disorder that is also often co-morbid with numerous neurological and immune diseases. Accumulating evidence indicates that disturbances of neuroplasticity occur with depression, including reductions of hippocampal neurogenesis and cortical synaptogenesis. Improper trophic support stemming from stressor-induced reductions of growth factors, most notably brain derived neurotrophic factor (BDNF), likely drives such aberrant neuroplasticity. We posit that psychological and immune stressors can interact upon a vulnerable genetic background to promote depression by disturbing BDNF and neuroplastic processes. Furthermore, the chronic and commonly relapsing nature of depression is suggested to stem from "faulty wiring" of emotional circuits driven by neuroplastic aberrations. The present review considers depression in such terms and attempts to integrate the available evidence indicating that the efficacy of current and "next wave" antidepressant treatments, whether used alone or in combination, is at least partially tied to their ability to modulate neuroplasticity. We particularly focus on the N-methyl-D-aspartate (NMDA) antagonist, ketamine, which already has well documented rapid antidepressant effects, and the trophic cytokine, erythropoietin (EPO), which we propose as a potential adjunctive antidepressant agent.
Collapse
Affiliation(s)
- Shawn Hayley
- Department of Neuroscience, Carleton University Ottawa, ON, Canada
| | | |
Collapse
|
48
|
Erythropoietin protects against murine cerebral malaria through actions on host cellular immunity. Infect Immun 2013; 82:165-73. [PMID: 24126529 DOI: 10.1128/iai.00929-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cerebral malaria (CM) is associated with excessive host proinflammatory responses and endothelial activation. The hematopoietic hormone erythropoietin (EPO) possesses neuroprotective functions in animal models of ischemic-hypoxic, traumatic, and inflammatory injuries. In the Plasmodium berghei ANKA model of experimental CM (ECM), recombinant human EPO (rhEPO) has shown evident protection against ECM. To elucidate the mechanism of EPO in this ECM model, we investigated the effect of rhEPO on host cellular immune responses. We demonstrated that improved survival of mice with ECM after rhEPO treatment was associated with reduced endothelial activation and improved integrity of the blood-brain barrier. Our results revealed that rhEPO downregulated the inflammatory responses by directly inhibiting the levels and functions of splenic dendritic cells. Conversely, rhEPO treatment led to significant expansion of regulatory T cells and increased expression of the receptor cytotoxic T lymphocyte antigen 4 (CTLA-4). The data presented here provide evidence of the direct effect of rhEPO on host cellular immunity during ECM.
Collapse
|
49
|
Cervellini I, Annenkov A, Brenton T, Chernajovsky Y, Ghezzi P, Mengozzi M. Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor. Mol Med 2013; 19:223-9. [PMID: 23821361 DOI: 10.2119/molmed.2013.00013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/27/2013] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in nonhematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein [MOG] and myelin basic protein [MBP]). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by Western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects.
Collapse
|
50
|
|