1
|
Shi H, Sun M, Wang S, He F, Yang R, Li Z, Chen W, Wang F. Jiawei Dachaihu decoction protects against mitochondrial dysfunction in atherosclerosis (AS) mice with chronic unpredictable mild stress (CUMS) via SIRT1/PGC-1α/TFAM/LON signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118150. [PMID: 38631487 DOI: 10.1016/j.jep.2024.118150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE JiaWei DaChaiHu is composed of Bupleurum chinense, Scutellaria baicalensis, Pinellia ternata, Paeonia lactiflora, Zingiber officinaleRoscoe, Poncirus tuifoliata, Rheum palmatum L., Curcumae Radix, Herba Lysimachiae, Ziziphus. JiaWei DaChaiHu is one of the most common traditional Chinese medicines for the treatment of depression. AIM OF THE STUDY The chronic unpredictable mild stress (CUMS) has been shown to promote atherosclerosis (AS). Dachaihu has been widely used in traditional Chinese medicine and has been known to exert distinct pharmacological effects. This investigation aims to examine the therapeutic effect of Jiawei Dachaihu extract on AS animal models with CUMS. METHODS AS-CUMS mice model was established by Apoe-/- mice. Mice were treated with Jiawei Dachaihu. Serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C) levels were measured using ELISA kits. Aortic tissue pathologic changes detected by oil red O staining. Mice behavioral changes detected by sucrose preference test and sucrose preference test. The relative mRNA expression levels of CRH, ND1, and TFAM were determined by qRT-PCR. 5-HT1A, BDNF, LON, TFAM, PGC-1α, and SIRT1 protein expression determined by western blotting. ATP content detected by ATP kits. RESULTS The treatment with Jiawei Dachaihu extract alleviated the veins plaque and reduced stress signs in vitro and in vivo. It increased the ATP and HDL-C levels while decreased the TC, TG, LDL-C levels. Jiawei Dachaihu extract treatment upregulated Lon, SIRT1, TFAM, PGC-1α, BDNF, and 5-HT1A protein expression and regained mitochondrial function. CONCLUSION Jiawei Dachaihu extract could alleviate AS and reduce CUMS by upregulating the SIRT1/PGC-1α signaling and promoted its crosstalk with Lon protein to maintain mitochondrial stability.
Collapse
Affiliation(s)
- Haijiao Shi
- Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, China
| | - Miao Sun
- Department of Neurology, Shengjing Hospital of China Medical University, China
| | - Shuai Wang
- Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, China
| | - Fanyu He
- Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, China
| | - Ronglai Yang
- Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, China
| | - Zheng Li
- Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, China
| | - Wei Chen
- Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, China
| | - Fengrong Wang
- Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, China.
| |
Collapse
|
2
|
Lu Q, Zhang Y, Botchway BOA, Huang M, Liu X. Syntaphilin Inactivation Can Enhance Axonal Mitochondrial Transport to Improve Spinal Cord Injury. Mol Neurobiol 2023; 60:6556-6565. [PMID: 37458986 DOI: 10.1007/s12035-023-03494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/08/2023] [Indexed: 09/28/2023]
Abstract
Mitochondria are important organelle of eukaryotic cells. They consists of a large number of different proteins that provide most of the ATP and supply power for the growth, function, and regeneration of neurons. Therefore, smitochondrial transport ensures that adequate ATP is supplied for metabolic activities. Spinal cord injury (SCI), a detrimental condition, has high morbidity and mortality rates. Currently, the available treatments only provide symptomatic relief for long-term disabilities. Studies have implicated mitochondrial transport as a critical factor in axonal regeneration. Hence, enhancing mitochondrial transports could be beneficial for ameliorating SCI. Syntaphilin (Snph) is a mitochondrial docking protein that acts as a "static anchor," and its inhibition enhances mitochondrial transports. Therefore, Snph as a key mediator of mitochondrial transports, may contribute to improving axonal regeneration following SCI. Herein, we examine Snph's biological effects and its relation to mitochondrial pathway. Then, we elaborate on mitochondrial transports after SCI, the possible role of Snph in SCI, and some possible therapeutic approaches by Snph.
Collapse
Affiliation(s)
- Qicheng Lu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- Bupa Cromwell Hospital, London, UK
| | - Min Huang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
3
|
Haddish K, Yun JW. Echinacoside Induces UCP1- and ATP-Dependent Thermogenesis in Beige Adipocytes via the Activation of Dopaminergic Receptors. J Microbiol Biotechnol 2023; 33:1268-1280. [PMID: 37463854 PMCID: PMC10619551 DOI: 10.4014/jmb.2306.06041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Echinacoside (ECH) is a naturally occurring phenylethanoid glycoside, isolated from Echinacea angustifolia, and this study aimed to analyze its effect on thermogenesis and its interaction with dopaminergic receptors 1 and 5 (DRD1 and DRD5) in 3T3-L1 white adipocytes and mice models. We employed RT-PCR, immunoblot, immunofluorescence, a staining method, and an assay kit to determine its impact. ECH showed a substantial increase in browning signals in vitro and a decrease in adipogenic signals in vivo. Additionally, analysis of the iWAT showed that the key genes involved in beiging, mitochondrial biogenesis, and ATP-dependent thermogenesis were upregulated while adipogenesis and lipogenesis genes were downregulated. OXPHOS complexes, Ca2+ signaling proteins as well as intracellular Ca2+ levels were also upregulated in 3T3-L1 adipocytes following ECH treatment. This was collectively explained by mechanistic studies which showed that ECH mediated the beiging process via the DRD1/5-cAMP-PKA and subsequent downstream molecules, whereas it co-mediated the α1-AR-signaling thermogenesis via the DRD1/5/SERCA2b/RyR2/CKmt pathway in 3T3-L1 adipocytes. Animal experiments revealed that there was a 12.28% reduction in body weight gain after the ECH treatment for six weeks. The effects of ECH treatment on adipose tissue can offer more insights into the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Kiros Haddish
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| |
Collapse
|
4
|
Pekkurnaz G, Wang X. Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat Metab 2022; 4:802-812. [PMID: 35817853 PMCID: PMC11151822 DOI: 10.1038/s42255-022-00594-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Mitochondria are vital organelles with distinct morphological features and functional properties. The dynamic network of mitochondria undergoes structural and functional adaptations in response to cell-type-specific metabolic demands. Even within the same cell, mitochondria can display wide diversity and separate into functionally distinct subpopulations. Mitochondrial heterogeneity supports unique subcellular functions and is crucial to polarized cells, such as neurons. The spatiotemporal metabolic burden within the complex shape of a neuron requires precisely localized mitochondria. By travelling great lengths throughout neurons and experiencing bouts of immobility, mitochondria meet distant local fuel demands. Understanding mitochondrial heterogeneity and homeostasis mechanisms in neurons provides a framework to probe their significance to many other cell types. Here, we put forth an outline of the multifaceted role of mitochondria in regulating neuronal physiology and cellular functions more broadly.
Collapse
Affiliation(s)
- Gulcin Pekkurnaz
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Wen MH, Xie X, Huang PS, Yang K, Chen TY. Crossroads between membrane trafficking machinery and copper homeostasis in the nerve system. Open Biol 2021; 11:210128. [PMID: 34847776 PMCID: PMC8633785 DOI: 10.1098/rsob.210128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Imbalanced copper homeostasis and perturbation of membrane trafficking are two common symptoms that have been associated with the pathogenesis of neurodegenerative and neurodevelopmental diseases. Accumulating evidence from biophysical, cellular and in vivo studies suggest that membrane trafficking orchestrates both copper homeostasis and neural functions-however, a systematic review of how copper homeostasis and membrane trafficking interplays in neurons remains lacking. Here, we summarize current knowledge of the general trafficking itineraries for copper transporters and highlight several critical membrane trafficking regulators in maintaining copper homeostasis. We discuss how membrane trafficking regulators may alter copper transporter distribution in different membrane compartments to regulate intracellular copper homeostasis. Using Parkinson's disease and MEDNIK as examples, we further elaborate how misregulated trafficking regulators may interplay parallelly or synergistically with copper dyshomeostasis in devastating pathogenesis in neurodegenerative diseases. Finally, we explore multiple unsolved questions and highlight the existing challenges to understand how copper homeostasis is modulated through membrane trafficking.
Collapse
Affiliation(s)
- Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Xihong Xie
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Pei-San Huang
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Karen Yang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
6
|
Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nat Rev Neurosci 2021; 23:4-22. [PMID: 34782781 DOI: 10.1038/s41583-021-00535-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
Synaptic activity imposes large energy demands that are met by local adenosine triphosphate (ATP) synthesis through glycolysis and mitochondrial oxidative phosphorylation. ATP drives action potentials, supports synapse assembly and remodelling, and fuels synaptic vesicle filling and recycling, thus sustaining synaptic transmission. Given their polarized morphological features - including long axons and extensive branching in their terminal regions - neurons face exceptional challenges in maintaining presynaptic energy homeostasis, particularly during intensive synaptic activity. Recent studies have started to uncover the mechanisms and signalling pathways involved in activity-dependent and energy-sensitive regulation of presynaptic energetics, or 'synaptoenergetics'. These conceptual advances have established the energetic regulation of synaptic efficacy and plasticity as an exciting research field that is relevant to a range of neurological disorders associated with bioenergetic failure and synaptic dysfunction.
Collapse
|
7
|
Huang N, Li S, Xie Y, Han Q, Xu XM, Sheng ZH. Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Curr Biol 2021; 31:3098-3114.e7. [PMID: 34087103 PMCID: PMC8319057 DOI: 10.1016/j.cub.2021.04.079] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Mitochondria supply adenosine triphosphate (ATP) essential for neuronal survival and regeneration. Brain injury and ischemia trigger acute mitochondrial damage and a local energy crisis, leading to degeneration. Boosting local ATP supply in injured axons is thus critical to meet increased energy demand during nerve repair and regeneration in adult brains, where mitochondria remain largely stationary. Here, we elucidate an intrinsic energetic repair signaling axis that boosts axonal energy supply by reprogramming mitochondrial trafficking and anchoring in response to acute injury-ischemic stress in mature neurons and adult brains. P21-activated kinase 5 (PAK5) is a brain mitochondrial kinase with declined expression in mature neurons. PAK5 synthesis and signaling is spatiotemporally activated within axons in response to ischemic stress and axonal injury. PAK5 signaling remobilizes and replaces damaged mitochondria via the phosphorylation switch that turns off the axonal mitochondrial anchor syntaphilin. Injury-ischemic insults trigger AKT growth signaling that activates PAK5 and boosts local energy supply, thus protecting axon survival and facilitating regeneration in in vitro and in vivo models. Our study reveals an axonal mitochondrial signaling axis that responds to injury and ischemia by remobilizing damaged mitochondria for replacement, thereby maintaining local energy supply to support central nervous system (CNS) survival and regeneration.
Collapse
Affiliation(s)
- Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Yuxiang Xie
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN 46202, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
8
|
Wong KY, Roy J, Fung ML, Heng BC, Zhang C, Lim LW. Relationships between Mitochondrial Dysfunction and Neurotransmission Failure in Alzheimer's Disease. Aging Dis 2020; 11:1291-1316. [PMID: 33014538 PMCID: PMC7505271 DOI: 10.14336/ad.2019.1125] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Besides extracellular deposition of amyloid beta and formation of phosphorylated tau in the brains of patients with Alzheimer's disease (AD), the pathogenesis of AD is also thought to involve mitochondrial dysfunctions and altered neurotransmission systems. However, none of these components can describe the diverse cognitive, behavioural, and psychiatric symptoms of AD without the pathologies interacting with one another. The purpose of this review is to understand the relationships between mitochondrial and neurotransmission dysfunctions in terms of (1) how mitochondrial alterations affect cholinergic and monoaminergic systems via disruption of energy metabolism, oxidative stress, and apoptosis; and (2) how different neurotransmission systems drive mitochondrial dysfunction via increasing amyloid beta internalisation, oxidative stress, disruption of mitochondrial permeabilisation, and mitochondrial trafficking. All these interactions are separately discussed in terms of neurotransmission systems. The association of mitochondrial dysfunctions with alterations in dopamine, norepinephrine, and histamine is the prospective goal in this research field. By unfolding the complex interactions surrounding mitochondrial dysfunction in AD, we can better develop potential treatments to delay, prevent, or cure this devastating disease.
Collapse
Affiliation(s)
- Kan Yin Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Jaydeep Roy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Boon Chin Heng
- Peking University School of Stomatology, Beijing, China.
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Trostnikov MV, Veselkina ER, Krementsova AV, Boldyrev SV, Roshina NV, Pasyukova EG. Modulated Expression of the Protein Kinase GSK3 in Motor and Dopaminergic Neurons Increases Female Lifespan in Drosophila melanogaster. Front Genet 2020; 11:668. [PMID: 32695143 PMCID: PMC7339944 DOI: 10.3389/fgene.2020.00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Most eukaryotic genes express multiple transcripts and proteins, and a sophisticated gene expression strategy plays a crucial role in ensuring the cell-specificity of genetic information and the correctness of phenotypes. The Drosophila melanogaster gene shaggy encodes several isoforms of the conserved glycogen synthase kinase 3 (GSK3), which is vitally important for multiple biological processes. To characterize the phenotypic effects of differential shaggy expression, we explored how the multidirectional modulation of the expression of the main GSK3 isoform, Shaggy-PB, in different tissues and cells affects lifespan. To this end, we used lines with transgenic constructs that encode mutant variants of the protein. The effect of shaggy misexpression on lifespan depended on the direction of the presumed change in GSK3 activity and the type of tissue/cell. The modulation of GSK3 activity in motor and dopaminergic neurons improved female lifespan but caused seemingly negative changes in the structural (mitochondrial depletion; neuronal loss) and functional (perturbed locomotion) properties of the nervous system, indicating the importance of analyzing the relationship between lifespan and healthspan in invertebrate models. Our findings provide new insights into the molecular and cellular bases of lifespan extension, demonstrating that the fine-tuning of transcript-specific shaggy expression in individual groups of neurons is sufficient to provide a sex-specific increase in survival and slow aging.
Collapse
Affiliation(s)
- Mikhail V Trostnikov
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina R Veselkina
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Krementsova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Kinetics and Mechanisms of Enzymatic and Catalytic Reactions, N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Stepan V Boldyrev
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genetic Basis of Biodiversity, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Roshina
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genetic Basis of Biodiversity, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elena G Pasyukova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Chan ST, McCarthy MJ, Vawter MP. Psychiatric drugs impact mitochondrial function in brain and other tissues. Schizophr Res 2020; 217:136-147. [PMID: 31744750 PMCID: PMC7228833 DOI: 10.1016/j.schres.2019.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022]
Abstract
Mitochondria have been linked to the etiology of schizophrenia (SZ). However, studies of mitochondria in SZ might be confounded by the effects of pharmacological treatment with antipsychotic drugs (APDs) and other common medications. This review summarizes findings on relevant mitochondria mechanisms underlying SZ, and the potential impact of psychoactive drugs including primarily APDs, but also antidepressants and anxiolytics. The summarized data suggest that APDs impair mitochondria function by decreasing Complex I activity and ATP production and dissipation of the mitochondria membrane potential. At the same time, in the brains of patients with SZ, antipsychotic drug treatment normalizes gene expression modules enriched in mitochondrial genes that are decreased in SZ. This indicates that APDs may have both positive and negative effects on mitochondria. The available evidence suggests three conclusions i) alterations in mitochondria functions in SZ exist prior to APD treatment, ii) mitochondria alterations in SZ can be reversed by APD treatment, and iii) APDs directly cause impairment of mitochondria function. Overall, the mechanisms of action of psychiatric drugs on mitochondria are both direct and indirect; we conclude the effects of APDs on mitochondria may contribute to both their therapeutic and metabolic side effects. These studies support the hypothesis that neuronal mitochondria are an etiological factor in SZ. Moreover, APDs and other drugs must be considered in the evaluation of this pathophysiological role of mitochondria in SZ. Considering these effects, pharmacological actions on mitochondria may be a worthwhile target for further APD development.
Collapse
Affiliation(s)
- Shawna T Chan
- Functional Genomics Laboratory, Department of Human Behavior and Psychiatry, University of California, Irvine, USA; School of Medicine University of California, Irvine, USA
| | - Michael J McCarthy
- Psychiatry Service VA San Diego Healthcare System, Department of Psychiatry, University of California, San Diego, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Human Behavior and Psychiatry, University of California, Irvine, USA.
| |
Collapse
|
11
|
Abstract
People with bipolar disorder (BD) all too often have suboptimal long-term outcomes with existing treatment options. They experience relapsing episodes of depression and mania and also have interepisodic mood and anxiety symptoms. We need to have a better understanding of the pathophysiology of BD if we are to make progress in improving these outcomes. This chapter will focus on the critical role of mitochondria in human functioning, oxidative stress, and the biological mechanisms of mitochondria in BD. Additionally, this chapter will present the evidence that, at least for some people, BD is a product of mitochondrial dysregulation. We review the modulators of mitochondria, the connection between current BD medication treatments and mitochondria, and additional medications that have theoretical potential to treat BD.
Collapse
|
12
|
Serotonin regulates mitochondrial biogenesis and function in rodent cortical neurons via the 5-HT 2A receptor and SIRT1-PGC-1α axis. Proc Natl Acad Sci U S A 2019; 116:11028-11037. [PMID: 31072928 PMCID: PMC6561197 DOI: 10.1073/pnas.1821332116] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neuronal mitochondria are crucial organelles that regulate bioenergetics and also modulate survival and function under environmental challenges. Here, we show that the neurotransmitter serotonin (5-HT) plays an important role in the making of new mitochondria (mitochondrial biogenesis) in cortical neurons, through the 5-HT2A receptor and via master regulators of mitochondrial biogenesis, SIRT1 and PGC-1α. Mitochondrial function is also enhanced by 5-HT, increasing cellular respiration and ATP, the energy currency of the cell. We found 5-HT reduces cellular reactive oxygen species and exerts potent neuroprotective action in neurons challenged with stress, an effect that requires SIRT1. These findings highlight a role for the mitochondrial effects of 5-HT in the facilitation of stress adaptation and identify drug targets to ameliorate mitochondrial dysfunction in neurons. Mitochondria in neurons, in addition to their primary role in bioenergetics, also contribute to specialized functions, including regulation of synaptic transmission, Ca2+ homeostasis, neuronal excitability, and stress adaptation. However, the factors that influence mitochondrial biogenesis and function in neurons remain poorly elucidated. Here, we identify an important role for serotonin (5-HT) as a regulator of mitochondrial biogenesis and function in rodent cortical neurons, via a 5-HT2A receptor-mediated recruitment of the SIRT1–PGC-1α axis, which is relevant to the neuroprotective action of 5-HT. We found that 5-HT increased mitochondrial biogenesis, reflected through enhanced mtDNA levels, mitotracker staining, and expression of mitochondrial components. This resulted in higher mitochondrial respiratory capacity, oxidative phosphorylation (OXPHOS) efficiency, and a consequential increase in cellular ATP levels. Mechanistically, the effects of 5-HT were mediated via the 5-HT2A receptor and master modulators of mitochondrial biogenesis, SIRT1 and PGC-1α. SIRT1 was required to mediate the effects of 5-HT on mitochondrial biogenesis and function in cortical neurons. In vivo studies revealed that 5-HT2A receptor stimulation increased cortical mtDNA and ATP levels in a SIRT1-dependent manner. Direct infusion of 5-HT into the neocortex and chemogenetic activation of 5-HT neurons also resulted in enhanced mitochondrial biogenesis and function in vivo. In cortical neurons, 5-HT enhanced expression of antioxidant enzymes, decreased cellular reactive oxygen species, and exhibited neuroprotection against excitotoxic and oxidative stress, an effect that required SIRT1. These findings identify 5-HT as an upstream regulator of mitochondrial biogenesis and function in cortical neurons and implicate the mitochondrial effects of 5-HT in its neuroprotective action.
Collapse
|
13
|
Disordered Expression of shaggy, the Drosophila Gene Encoding a Serine-Threonine Protein Kinase GSK3, Affects the Lifespan in a Transcript-, Stage-, and Tissue-Specific Manner. Int J Mol Sci 2019; 20:ijms20092200. [PMID: 31060255 PMCID: PMC6540023 DOI: 10.3390/ijms20092200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022] Open
Abstract
GSK3 (glycogen synthase kinase 3) is a conserved protein kinase governing numerous regulatory pathways. In Drosophila melanogaster, GSK3 is encoded by shaggy (sgg), which forms 17 annotated transcripts corresponding to 10 protein isoforms. Our goal was to demonstrate how differential sgg transcription affects lifespan, which GSK3 isoforms are important for the nervous system, and which changes in the nervous system accompany accelerated aging. Overexpression of three sgg transcripts affected the lifespan in a stage- and tissue-specific way: sgg-RA and sgg-RO affected the lifespan only when overexpressed in muscles and in embryos, respectively; the essential sgg-RB transcript affected lifespan when overexpressed in all tissues tested. In the nervous system, only sgg-RB overexpression affected lifespan, causing accelerated aging in a neuron-specific way, with the strongest effects in dopaminergic neurons and the weakest effects in GABAergic neurons. Pan-neuronal sgg-RB overexpression violated the properties of the nervous system, including the integrity of neuron bodies; the number, distribution, and structure of mitochondria; cytoskeletal characteristics; and synaptic activity. Such changes observed in young individuals indicated premature aging of their nervous system, which paralleled a decline in survival. Our findings demonstrated the key role of GSK3 in ensuring the link between the pathology of neurons and lifespan.
Collapse
|
14
|
Zheng YR, Zhang XN, Chen Z. Mitochondrial transport serves as a mitochondrial quality control strategy in axons: Implications for central nervous system disorders. CNS Neurosci Ther 2019; 25:876-886. [PMID: 30900394 PMCID: PMC6566064 DOI: 10.1111/cns.13122] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Axonal mitochondrial quality is essential for neuronal health and functions. Compromised mitochondrial quality, reflected by loss of membrane potential, collapse of ATP production, abnormal morphology, burst of reactive oxygen species generation, and impaired Ca2+ buffering capacity, can alter mitochondrial transport. Mitochondrial transport in turn maintains axonal mitochondrial homeostasis in several ways. Newly generated mitochondria are anterogradely transported along with axon from soma to replenish axonal mitochondrial pool, while damaged mitochondria undergo retrograde transport for repair or degradation. Besides, mitochondria are also arrested in axon to quarantine damages locally. Accumulating evidence suggests abnormal mitochondrial transport leads to mitochondrial dysfunction and axon degeneration in a variety of neurological and psychiatric disorders. Further investigations into the details of this process would help to extend our understanding of various neurological diseases and shed light on the corresponding therapies.
Collapse
Affiliation(s)
- Yan-Rong Zheng
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Sarapultsev AP, Vassiliev PM, Sarapultsev PA, Chupakhin ON, Ianalieva LR, Sidorova LP. Immunomodulatory Action of Substituted 1,3,4-Thiadiazines on the Course of Myocardial Infarction. Molecules 2018; 23:E1611. [PMID: 30004445 PMCID: PMC6099947 DOI: 10.3390/molecules23071611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the biological action of the compounds from the group of substituted 1,3,4-thiadiazines on stress response and myocardial infarction. The aim of this review is to propose the possible mechanisms of action of 1,3,4-thiadiazines and offer prospectives in the development of new derivatives as therapeutic agents. It is known, that compounds that have biological effects similar to those used as antidepressants can down-regulate the secretion of proinflammatory cytokines, up-regulate the release of anti-inflammatory ones and affect cell recruitment, which allows them to be considered immunomodulators as well. The results of pharmacological evaluation, in silico studies, and in vivo experiments of several compounds from the group of substituted 1,3,4-thiadiazines with antidepressant properties are presented. It is proposed that the cardioprotective effects of substituted 1,3,4-thiadiazines might be explained by the peculiarities of their multi-target action: the ability of the compounds to interact with various types of receptors and transporters of dopaminergic, serotonergic and acetylcholinergic systems and to block the kinase signal pathway PI3K-AKT. The described effects of substituted 1,3,4-thiadiazines suggest that it is necessary to search for a new agents for limiting the peripheral inflammatory/ischemic damage through the entral mechanisms of stress reaction and modifying pro-inflammatory cytokine signaling pathways in the brain.
Collapse
Affiliation(s)
- Alexey P Sarapultsev
- Institute of Immunology and Physiology of the Ural Branch of RAS, Pervomayskaya 106, Ekaterinburg 620049, Russia.
| | - Pavel M Vassiliev
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov Square 1, Volgograd 400131, Russia.
| | - Petr A Sarapultsev
- Institute of Immunology and Physiology of the Ural Branch of RAS, Pervomayskaya 106, Ekaterinburg 620049, Russia.
| | - Oleg N Chupakhin
- The IJ Postovsky Institute of Organic Synthesis of the Ural Branch of RAS, Akademicheskaya/S. Kovalevskoi, 22/20, Ekaterinburg 620990, Russia.
- Ural Federal University named after the First President of Russia B. N. Yeltsin, 19 Mira Street, Ekaterinburg 620002, Russia.
| | - Laura R Ianalieva
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov Square 1, Volgograd 400131, Russia.
| | - Larisa P Sidorova
- Ural Federal University named after the First President of Russia B. N. Yeltsin, 19 Mira Street, Ekaterinburg 620002, Russia.
| |
Collapse
|
16
|
Exposure to Far Infrared Ray Protects Methamphetamine-Induced Behavioral Sensitization in Glutathione Peroxidase-1 Knockout Mice via Attenuating Mitochondrial Burdens and Dopamine D1 Receptor Activation. Neurochem Res 2018; 43:1118-1135. [DOI: 10.1007/s11064-018-2528-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 01/09/2023]
|
17
|
Liu W, Wang H, Xue X, Xia J, Liu J, Qi Z, Ji L. OGT-related mitochondrial motility is associated with sex differences and exercise effects in depression induced by prenatal exposure to glucocorticoids. J Affect Disord 2018; 226:203-215. [PMID: 28992584 DOI: 10.1016/j.jad.2017.09.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/19/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Prenatal exposure to glucocorticoids (GCs) has been found to trigger abnormal behaviors and deleterious neurological effects on offspring both in animals and in humans. The sex differences in depression have been replicated in numerous studies across cultures, persisting throughout the reproductive years. As an X-linked gene in rodents and in humans, O-GlcNAc transferase (OGT) may provide a novel perspective for the sex differences in depression. METHODS In the last third of pregnancy (gestational day 14-21), rats were subcutaneously administered either 0.13mg/kg dexamethasone-21-phosphate disodium salt (0.1mg/kg DEX) or vehicle (0.9% saline) once a day for 7 days. Adolescent (4 weeks) offspring were then trained in a swimming program or not. RESULTS Here we found that adult offspring rats exposed to DEX prenatally exhibited sex-specific depression-like behaviors, males being more vulnerable than females. Swimming exercise ameliorated the above-mentioned depressive syndromes, which may be a compensatory effect for male disadvantage suffering from prenatal stress. Furthermore, the effects of prenatal DEX exposure and swimming exercise on depression were associated with OGT-related mitochondrial motility, including PINK1/Parkin pathway and AKT/GSK3β pathway. LIMITATIONS Representative kymographs of mitochondrial motility were not detected and no causal effects were obtained by OGT gene overexpression or gene knockout in this study. CONCLUSIONS Our results provide a new perspective for better understanding sex differences and exercise effects in depression and may offer new mechanism-based therapeutic targets for depression.
Collapse
Affiliation(s)
- Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Hongmei Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Xiangli Xue
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Jie Xia
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Jiatong Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China.
| | - Liu Ji
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
18
|
Hollis F, Kanellopoulos AK, Bagni C. Mitochondrial dysfunction in Autism Spectrum Disorder: clinical features and perspectives. Curr Opin Neurobiol 2017. [PMID: 28628841 DOI: 10.1016/j.conb.2017.05.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autism Spectrum Disorder (ASD) is a prototypic pervasive developmental disorder characterized by social interaction, and communication deficits, repetitive, stereotypic patterns of behavior, and impairments in language and development. Clinical studies have identified mitochondrial disturbances at the levels of DNA, activity, complexes, oxidative stress, and metabolites in blood and urine of ASD patients. However, these observations from postmortem brains or peripheral tissues do not provide a direct link between autism and mitochondria. The synaptic abnormality of autistic patients has not been investigated yet. Here we review the findings of clinical studies investigating mitochondrial involvement in ASD patients, focusing particularly on the brain and the limitations and future directions needed in order to fully understand the role of mitochondria in ASD pathology.
Collapse
Affiliation(s)
- Fiona Hollis
- University of Lausanne, Department of Fundamental Neuroscience, Lausanne, Switzerland
| | | | - Claudia Bagni
- University of Lausanne, Department of Fundamental Neuroscience, Lausanne, Switzerland; University of Rome Tor Vergata, Department of Biomedicine and Prevention, Rome, Italy.
| |
Collapse
|
19
|
Di Benedetto G, Gerbino A, Lefkimmiatis K. Shaping mitochondrial dynamics: The role of cAMP signalling. Biochem Biophys Res Commun 2017; 500:65-74. [PMID: 28501614 DOI: 10.1016/j.bbrc.2017.05.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 12/25/2022]
Abstract
In recent years, our idea of mitochondria evolved from "mere" energy and metabolite producers to key regulators of many cellular functions. In order to preserve and protect their functional status, these organelles engage a number of dynamic processes that allow them to decrease accumulated burden and maintain their homeostasis. Indeed, mitochondria can unite (fusion), divide (fission), position themselves strategically in the cell (motility/trafficking) and if irreversibly damaged or dysfunctional eliminated (mitophagy). These dynamic processes can be controlled both by mitochondrial and cellular signalling pathways, hence allowing mitochondria to tune their function to the cellular needs. Among the regulatory mechanisms, reversible phosphorylation downstream the cyclic AMP (cAMP) signalling cascade was shown to deeply influence mitochondrial dynamics. This review explores the emerging evidence suggesting that cAMP is a key player in the orchestration of mitochondrial fusion/fission, motility and mitophagy, extending the repertoire of this second messenger, which is now recognised as a major regulator of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, Italian National Research Council (CNR), Venetian Institute of Molecular Medicine, 35131, Padova, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Konstantinos Lefkimmiatis
- Neuroscience Institute, Italian National Research Council (CNR), Venetian Institute of Molecular Medicine, 35131, Padova, Italy.
| |
Collapse
|
20
|
Morris G, Walder K, McGee SL, Dean OM, Tye SJ, Maes M, Berk M. A model of the mitochondrial basis of bipolar disorder. Neurosci Biobehav Rev 2017; 74:1-20. [PMID: 28093238 DOI: 10.1016/j.neubiorev.2017.01.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
|
21
|
Spano M, Signorelli M, Vitaliani R, Aguglia E, Giometto B. The possible involvement of mitochondrial dysfunctions in Lewy body dementia: a systematic review. FUNCTIONAL NEUROLOGY 2016; 30:151-8. [PMID: 26346695 DOI: 10.11138/fneur/2015.30.3.151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The hallmark of dementia with Lewy bodies (DLB) is the “Lewy body”, an abnormal aggregation of alpha-synuclein found in some areas of the brain. The brain is the organ/system that is most vulnerable to this oxidative damage, and reactive oxygen species can cause neurodegenerative diseases. Different models of mitochondrial deregulation have been compared in DLB. The results are consistent with the hypothesis that alpha-synuclein affects the mitochondria themselves, increasing their sensitivity or leading to cell death through protective (neurosin) and accelerating (cytochrome c) factors. This systematic review suggests that mitochondria play an important role in neurodegeneration and a crucial role in the formation of Lewy bodies. DLB is a disease characterized by abnormal accumulation of alpha-synuclein that could result in the release of cytochrome c and subsequent activation of the apoptotic cascade.
Collapse
|
22
|
Mitochondrial traffic jams in Alzheimer's disease - pinpointing the roadblocks. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1909-17. [PMID: 27460705 DOI: 10.1016/j.bbadis.2016.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 12/24/2022]
Abstract
The vigorous axonal transport of mitochondria, which serves to distribute these organelles in a dynamic and non-uniform fashion, is crucial to fulfill neuronal energetic requirements allowing the maintenance of neurons structure and function. Particularly, axonal transport of mitochondria and their spatial distribution among the synapses are directly correlated with synaptic activity and integrity. Despite the basis of Alzheimer's disease (AD) remains enigmatic, axonal pathology and synaptic dysfunction occur prior the occurrence of amyloid-β (Aβ) deposition and tau aggregation, the two classical hallmarks of this devastating neurodegenerative disease. Importantly, the early stages of AD are marked by defects on axonal transport of mitochondria as denoted by the abnormal accumulation of mitochondria within large swellings along dystrophic and degenerating neuritis. Within this scenario, this review is devoted to identify the molecular "roadblocks" underlying the abnormal axonal transport of mitochondria and consequent synaptic "starvation" and neuronal degeneration in AD. Understanding the molecular nature of defective mitochondrial transport may provide a new avenue to counteract AD pathology.
Collapse
|
23
|
Abstract
Neurons demand vast and vacillating supplies of energy. As the key contributors of this energy, as well as primary pools of calcium and signaling molecules, mitochondria must be where the neuron needs them, when the neuron needs them. The unique architecture and length of neurons, however, make them a complex system for mitochondria to navigate. To add to this difficulty, mitochondria are synthesized mainly in the soma, but must be transported as far as the distant terminals of the neuron. Similarly, damaged mitochondria-which can cause oxidative stress to the neuron-must fuse with healthy mitochondria to repair the damage, return all the way back to the soma for disposal, or be eliminated at the terminals. Increasing evidence suggests that the improper distribution of mitochondria in neurons can lead to neurodegenerative and neuropsychiatric disorders. Here, we will discuss the machinery and regulatory systems used to properly distribute mitochondria in neurons, and how this knowledge has been leveraged to better understand neurological dysfunction.
Collapse
Affiliation(s)
- Meredith M Course
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
24
|
Ogawa F, Murphy LC, Malavasi ELV, O’Sullivan ST, Torrance HS, Porteous DJ, Millar JK. NDE1 and GSK3β Associate with TRAK1 and Regulate Axonal Mitochondrial Motility: Identification of Cyclic AMP as a Novel Modulator of Axonal Mitochondrial Trafficking. ACS Chem Neurosci 2016; 7:553-64. [PMID: 26815013 DOI: 10.1021/acschemneuro.5b00255] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mitochondria are essential for neuronal function, providing the energy required to power neurotransmission, and fulfilling many important additional roles. In neurons, mitochondria must be efficiently transported to sites, including synapses, where their functions are required. Neurons, with their highly elongated morphology, are consequently extremely sensitive to defective mitochondrial trafficking which can lead to neuronal ill-health/death. We recently demonstrated that DISC1 associates with mitochondrial trafficking complexes where it associates with the core kinesin and dynein adaptor molecule TRAK1. We now show that the DISC1 interactors NDE1 and GSK3β also associate robustly with TRAK1 and demonstrate that NDE1 promotes retrograde axonal mitochondrial movement. GSK3β is known to modulate axonal mitochondrial motility, although reports of its actual effect are conflicting. We show that, in our system, GSK3β promotes anterograde mitochondrial transport. Finally, we investigated the influence of cAMP elevation upon mitochondrial motility, and found a striking increase in mitochondrial motility and retrograde movement. DISC1, NDE1, and GSK3β are implicated as risk factors for major mental illness. Our demonstration that they function together within mitochondrial trafficking complexes suggests that defective mitochondrial transport may be a contributory disease mechanism in some cases of psychiatric disorder.
Collapse
Affiliation(s)
- Fumiaki Ogawa
- University
of Edinburgh Centre
for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | - Laura C. Murphy
- University
of Edinburgh Centre
for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | - Elise L. V. Malavasi
- University
of Edinburgh Centre
for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | - Shane T. O’Sullivan
- University
of Edinburgh Centre
for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | - Helen S. Torrance
- University
of Edinburgh Centre
for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | - David J. Porteous
- University
of Edinburgh Centre
for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | - J. Kirsty Millar
- University
of Edinburgh Centre
for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| |
Collapse
|
25
|
Abstract
Antipsychotics, risperidone, and risperidone’s active metabolite, paliperidone (9-hydroxyrisperidone), are related molecules used for the treatment of schizophrenia and related disorders. Differences in receptor binding, 5-HT2A/D2 (serotonin/dopamine) binding ratios, and mitochondrial proteomics suggest that the effects of risperidone and paliperidone on neuronal firing, regulation of mitochondrial function, and movement are different. This review seeks to explore the most significant differences at the molecular level between risperidone and paliperidone, as reported in preclinical studies. Although risperidone shows higher affinity for 5-HT receptors, paliperidone does not fit this profile. Thus, the risperidone 5-HT2A/D2 binding ratio is significantly lower than the paliperidone 5-HT2A/D2 binding ratio. Paliperidone, similar to lithium and valproate, affects expression levels and phosphorylation of complex I and V proteins in synaptoneurosomal preparations of rat prefrontal cortex, suggesting that paliperidone behaves as a mood stabilizer. It is apparent that the presence of a hydroxyl group in the paliperidone molecule confers increased hydrophilicity to this drug compared with its parent, risperidone; thus, this contributes to differential effects on mitochondrial movement, protein expression, and phosphorylation. These differences are reflected in synaptic plasticity and neuronal firing and have only recently been implicated in the mechanisms of mitochondrial function and movement.
Collapse
|
26
|
Lindberg D, Shan D, Ayers-Ringler J, Oliveros A, Benitez J, Prieto M, McCullumsmith R, Choi DS. Purinergic signaling and energy homeostasis in psychiatric disorders. Curr Mol Med 2016; 15:275-95. [PMID: 25950756 DOI: 10.2174/1566524015666150330163724] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/22/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022]
Abstract
Purinergic signaling regulates numerous vital biological processes in the central nervous system (CNS). The two principle purines, ATP and adenosine act as excitatory and inhibitory neurotransmitters, respectively. Compared to other classical neurotransmitters, the role of purinergic signaling in psychiatric disorders is not well understood or appreciated. Because ATP exerts its main effect on energy homeostasis, neuronal function of ATP has been underestimated. Similarly, adenosine is primarily appreciated as a precursor of nucleotide synthesis during active cell growth and division. However, recent findings suggest that purinergic signaling may explain how neuronal activity is associated neuronal energy charge and energy homeostasis, especially in mental disorders. In this review, we provide an overview of the synaptic function of mitochondria and purines in neuromodulation, synaptic plasticity, and neuron-glia interactions. We summarize how mitochondrial and purinergic dysfunction contribute to mental illnesses such as schizophrenia, bipolar disorder, autism spectrum disorder (ASD), depression, and addiction. Finally, we discuss future implications regarding the pharmacological targeting of mitochondrial and purinergic function for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - D-S Choi
- Neurobiology of Disease Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
27
|
Loss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism. Neurobiol Dis 2016; 89:112-25. [PMID: 26836693 DOI: 10.1016/j.nbd.2016.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 12/24/2022] Open
Abstract
The oncogene DJ-1 has been originally identified as a suppressor of PTEN. Further on, loss-of-function mutations have been described as a causative factor in Parkinson's disease (PD). DJ-1 has an important function in cellular antioxidant responses, but its role in central metabolism of neurons is still elusive. We applied stable isotope assisted metabolic profiling to investigate the effect of a functional loss of DJ-1 and show that DJ-1 deficient neuronal cells exhibit decreased glutamine influx and reduced serine biosynthesis. By providing precursors for GSH synthesis, these two metabolic pathways are important contributors to cellular antioxidant response. Down-regulation of these pathways, as a result of loss of DJ-1 leads to an impaired antioxidant response. Furthermore, DJ-1 deficient mouse microglia showed a weak but constitutive pro-inflammatory activation. The combined effects of altered central metabolism and constitutive activation of glia cells raise the susceptibility of dopaminergic neurons towards degeneration in patients harboring mutated DJ-1. Our work reveals metabolic alterations leading to increased cellular instability and identifies potential new intervention points that can further be studied in the light of novel translational medicine approaches.
Collapse
|
28
|
Rinholm JE, Vervaeke K, Tadross MR, Tkachuk AN, Kopek BG, Brown TA, Bergersen LH, Clayton DA. Movement and structure of mitochondria in oligodendrocytes and their myelin sheaths. Glia 2016; 64:810-25. [PMID: 26775288 DOI: 10.1002/glia.22965] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022]
Abstract
Mitochondria play several crucial roles in the life of oligodendrocytes. During development of the myelin sheath they are essential providers of carbon skeletons and energy for lipid synthesis. During normal brain function their consumption of pyruvate will be a key determinant of how much lactate is available for oligodendrocytes to export to power axonal function. Finally, during calcium-overload induced pathology, as occurs in ischemia, mitochondria may buffer calcium or induce apoptosis. Despite their important functions, very little is known of the properties of oligodendrocyte mitochondria, and mitochondria have never been observed in the myelin sheaths. We have now used targeted expression of fluorescent mitochondrial markers to characterize the location and movement of mitochondria within oligodendrocytes. We show for the first time that mitochondria are able to enter and move within the myelin sheath. Within the myelin sheath the highest number of mitochondria was in the cytoplasmic ridges along the sheath. Mitochondria moved more slowly than in neurons and, in contrast to their behavior in neurons and astrocytes, their movement was increased rather than inhibited by glutamate activating NMDA receptors. By electron microscopy we show that myelin sheath mitochondria have a low surface area of cristae, which suggests a low ATP production. These data specify fundamental properties of the oxidative phosphorylation system in oligodendrocytes, the glial cells that enhance cognition by speeding action potential propagation and provide metabolic support to axons.
Collapse
Affiliation(s)
- Johanne E Rinholm
- Department of Anatomy, The Brain and Muscle Energy Group, University of Oslo, Oslo, Norway.,Department of Oral Biology, The Brain and Muscle Energy Group, Electron Microscopic Laboratory, University of Oslo, Oslo, Norway.,Howard Hughes Medical Institute, Ashburn, Virginia
| | - Koen Vervaeke
- Howard Hughes Medical Institute, Ashburn, Virginia.,Department of Physiology, Laboratory of Neural Computation, University of Oslo, Oslo, Norway
| | | | | | | | | | - Linda H Bergersen
- Department of Oral Biology, The Brain and Muscle Energy Group, Electron Microscopic Laboratory, University of Oslo, Oslo, Norway
| | | |
Collapse
|
29
|
Hjelm BE, Rollins B, Mamdani F, Lauterborn JC, Kirov G, Lynch G, Gall CM, Sequeira A, Vawter MP. Evidence of Mitochondrial Dysfunction within the Complex Genetic Etiology of Schizophrenia. MOLECULAR NEUROPSYCHIATRY 2015; 1:201-19. [PMID: 26550561 DOI: 10.1159/000441252] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/22/2015] [Indexed: 01/19/2023]
Abstract
Genetic evidence has supported the hypothesis that schizophrenia (SZ) is a polygenic disorder caused by the disruption in function of several or many genes. The most common and reproducible cellular phenotype associated with SZ is a reduction in dendritic spines within the neocortex, suggesting alterations in dendritic architecture may cause aberrant cortical circuitry and SZ symptoms. Here, we review evidence supporting a multifactorial model of mitochondrial dysfunction in SZ etiology and discuss how these multiple paths to mitochondrial dysfunction may contribute to dendritic spine loss and/or underdevelopment in some SZ subjects. The pathophysiological role of mitochondrial dysfunction in SZ is based upon genomic analyses of both the mitochondrial genome and nuclear genes involved in mitochondrial function. Previous studies and preliminary data suggest SZ is associated with specific alleles and haplogroups of the mitochondrial genome, and also correlates with a reduction in mitochondrial copy number and an increase in synonymous and nonsynonymous substitutions of mitochondrial DNA. Mitochondrial dysfunction has also been widely implicated in SZ by genome-wide association, exome sequencing, altered gene expression, proteomics, microscopy analyses, and induced pluripotent stem cell studies. Together, these data support the hypothesis that SZ is a polygenic disorder with an enrichment of mitochondrial targets.
Collapse
Affiliation(s)
- Brooke E Hjelm
- Departments of Psychiatry & Human Behavior, University of California, Irvine, Calif., USA
| | - Brandi Rollins
- Departments of Psychiatry & Human Behavior, University of California, Irvine, Calif., USA
| | - Firoza Mamdani
- Departments of Psychiatry & Human Behavior, University of California, Irvine, Calif., USA
| | - Julie C Lauterborn
- Departments of Anatomy & Neurobiology, University of California, Irvine, Calif., USA
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Gary Lynch
- Departments of Psychiatry & Human Behavior, University of California, Irvine, Calif., USA; Departments of Anatomy & Neurobiology, University of California, Irvine, Calif., USA
| | - Christine M Gall
- Departments of Anatomy & Neurobiology, University of California, Irvine, Calif., USA; Departments of Neurobiology & Behavior, University of California, Irvine, Calif., USA
| | - Adolfo Sequeira
- Departments of Psychiatry & Human Behavior, University of California, Irvine, Calif., USA
| | - Marquis P Vawter
- Departments of Psychiatry & Human Behavior, University of California, Irvine, Calif., USA
| |
Collapse
|
30
|
Barbosa DJ, Capela JP, Feio-Azevedo R, Teixeira-Gomes A, Bastos MDL, Carvalho F. Mitochondria: key players in the neurotoxic effects of amphetamines. Arch Toxicol 2015; 89:1695-1725. [PMID: 25743372 DOI: 10.1007/s00204-015-1478-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 02/09/2015] [Indexed: 12/21/2022]
Abstract
Amphetamines are a class of psychotropic drugs with high abuse potential, as a result of their stimulant, euphoric, emphathogenic, entactogenic, and hallucinogenic properties. Although most amphetamines are synthetic drugs, of which methamphetamine, amphetamine, and 3,4-methylenedioxymethamphetamine ("ecstasy") represent well-recognized examples, the use of natural related compounds, namely cathinone and ephedrine, has been part of the history of humankind for thousands of years. Resulting from their amphiphilic nature, these drugs can easily cross the blood-brain barrier and elicit their well-known psychotropic effects. In the field of amphetamines' research, there is a general consensus that mitochondrial-dependent pathways can provide a major understanding concerning pathological processes underlying the neurotoxicity of these drugs. These events include alterations on tricarboxylic acid cycle's enzymes functioning, inhibition of mitochondrial electron transport chain's complexes, perturbations of mitochondrial clearance mechanisms, interference with mitochondrial dynamics, as well as oxidative modifications in mitochondrial macromolecules. Additionally, other studies indicate that amphetamines-induced neuronal toxicity is closely regulated by B cell lymphoma 2 superfamily of proteins with consequent activation of caspase-mediated downstream cell death pathway. Understanding the molecular mechanisms at mitochondrial level involved in amphetamines' neurotoxicity can help in defining target pathways or molecules mediating these effects, as well as in developing putative therapeutic approaches to prevent or treat the acute- or long-lasting neuropsychiatric complications seen in human abusers.
Collapse
Affiliation(s)
- Daniel José Barbosa
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal.
| | - João Paulo Capela
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- FP-ENAS (Unidade de Investigação UFP em energia, Ambiente e Saúde), CEBIMED (Centro de Estudos em Biomedicina), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua 9 de Abril 349, 4249-004, Porto, Portugal
| | - Rita Feio-Azevedo
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Armanda Teixeira-Gomes
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Félix Carvalho
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
31
|
Cherubini M, Puigdellívol M, Alberch J, Ginés S. Cdk5-mediated mitochondrial fission: A key player in dopaminergic toxicity in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2145-60. [PMID: 26143143 DOI: 10.1016/j.bbadis.2015.06.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 01/04/2023]
Abstract
The molecular mechanisms underlying striatal vulnerability in Huntington's disease (HD) are still unknown. However, growing evidence suggest that mitochondrial dysfunction could play a major role. In searching for a potential link between striatal neurodegeneration and mitochondrial defects we focused on cyclin-dependent kinase 5 (Cdk5). Here, we demonstrate that increased mitochondrial fission in mutant huntingtin striatal cells can be a consequence of Cdk5-mediated alterations in Drp1 subcellular distribution and activity since pharmacological or genetic inhibition of Cdk5 normalizes Drp1 function ameliorating mitochondrial fragmentation. Interestingly, mitochondrial defects in mutant huntingtin striatal cells can be worsened by D1 receptor activation a process also mediated by Cdk5 as down-regulation of Cdk5 activity abrogates the increase in mitochondrial fission, the translocation of Drp1 to the mitochondria and the raise of Drp1 activity induced by dopaminergic stimulation. In sum, we have demonstrated a new role for Cdk5 in HD pathology by mediating dopaminergic neurotoxicity through modulation of Drp1-induced mitochondrial fragmentation, which underscores the relevance for pharmacologic interference of Cdk5 signaling to prevent or ameliorate striatal neurodegeneration in HD.
Collapse
Affiliation(s)
- Marta Cherubini
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Mar Puigdellívol
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jordi Alberch
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Silvia Ginés
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
32
|
Lin MY, Sheng ZH. Regulation of mitochondrial transport in neurons. Exp Cell Res 2015; 334:35-44. [PMID: 25612908 DOI: 10.1016/j.yexcr.2015.01.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/12/2015] [Indexed: 01/10/2023]
Abstract
Mitochondria are cellular power plants that supply ATP to power various biological activities essential for neuronal growth, survival, and function. Due to unique morphological features, neurons face exceptional challenges to maintain ATP and Ca(2+) homeostasis. Neurons require specialized mechanisms distributing mitochondria to distal areas where energy and Ca(2+) buffering are in high demand, such as synapses and axonal branches. These distal compartments also undergo development- and activity-dependent remodeling, thereby altering mitochondrial trafficking and distribution. Mitochondria move bi-directionally, pause briefly, and move again, frequently changing direction. In mature neurons, only one-third of axonal mitochondria are motile. Stationary mitochondria serve as local energy sources and buffer intracellular Ca(2+). The balance between motile and stationary mitochondria responds quickly to changes in axonal and synaptic physiology. Furthermore, neurons are postmitotic cells surviving for the lifetime of the organism; thus, mitochondria need to be removed when they become aged or dysfunction. Mitochondria also alter their motility under stress conditions or when their integrity is impaired. Therefore, regulation of mitochondrial transport is essential to meet altered metabolic requirements and to remove aged and damaged mitochondria or replenish healthy ones to distal terminals. Defects in mitochondrial transport and altered distribution are implicated in the pathogenesis of several major neurological disorders. Thus, research into the mechanisms regulating mitochondrial motility is an important emerging frontier in neurobiology. This short review provides an updated overview on motor-adaptor machineries that drive and regulate mitochondrial transport and docking receptors that anchor axonal mitochondria in response to the changes in synaptic activity, metabolic requirement, and altered mitochondrial integrity. The review focuses on microtubule (MT)-based mitochondrial trafficking and anchoring. Additional insight from different perspectives can be found in other in-depth reviews.
Collapse
Affiliation(s)
- Mei-Yao Lin
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
33
|
Yoon DH, Yoon S, Kim D, Kim H, Baik JH. Regulation of dopamine D2 receptor-mediated extracellular signal-regulated kinase signaling and spine formation by GABAA receptors in hippocampal neurons. Neurosci Lett 2014; 586:24-30. [PMID: 25483619 DOI: 10.1016/j.neulet.2014.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/12/2014] [Accepted: 12/02/2014] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) signaling via DA receptors is known to control hippocampal activity that contributes to learning, memory, and synaptic plasticity. In primary hippocampal neuronal culture, we observed that dopamine D2 receptors (D2R) co-localized with certain subtypes of GABAA receptors, namely α1, β3, and γ2 subunits, as revealed by double immunofluorocytochemical analysis. Treatment with the D2R agonist, quinpirole, was shown to elicit an increase in phosphorylation of extracellular signal-regulated kinase (ERK) in hippocampal neurons. This phosphorylation was inhibited by pretreatment with the GABAA receptor agonist, muscimol. Furthermore, treatment of hippocampal neurons with quinpirole increased the dendritic spine density and this regulation was totally blocked by pretreatment with a MAP kinase kinase (MEK) inhibitor (PD98059), D2R antagonist (haloperidol), or by the GABAA receptor agonist, muscimol. These results suggest that D2R-mediated ERK phosphorylation can control spine formation and that the GABAA receptor negatively regulates the D2R-induced spine formation through ERK signaling in hippocampal neurons, thus indicating a potential role of D2R in the control of hippocampal neuronal excitability.
Collapse
Affiliation(s)
- Dong-Hoon Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Sehyoun Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Donghoon Kim
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Brain Korea 21, Seoul 136-705, South Korea
| | - Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea.
| |
Collapse
|
34
|
Diazepam potentiates the antidiabetic, antistress and anxiolytic activities of metformin in type-2 diabetes mellitus with cooccurring stress in experimental animals. BIOMED RESEARCH INTERNATIONAL 2014; 2014:693074. [PMID: 24995322 PMCID: PMC4065719 DOI: 10.1155/2014/693074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 01/03/2023]
Abstract
Psychological stress is considered as one of the limiting factors in the management of type-2 diabetes mellitus (T2DM). Therefore, the basic objective of the present study was to evaluate the antidiabetic effect of metformin, diazepam, and their combination in cooccurring T2DM and stress condition (DMS). T2DM was induced in the male rats by administering streptozotocin (45 mg/kg, i.p.) and nicotinamide (110 mg/kg, i.p.) with time lag of 15 min. Rats were subjected to two sessions of cold restraint stress paradigm for one hour on the sixth and seventh day after streptozotocin injection. Administration of metformin (25 mg/kg, p.o.) and diazepam (1 mg/kg, p.o.) in combination from the seventh to thirteenth day after streptozotocin injection showed better improvement in glucose tolerance and insulin sensitivity compared to monotherapy of either drug. In addition, the combination significantly attenuated DMS-induced hyperglycemia, hypertriglyceridaemia, hypercorticosteronemia, anxiety-like behavior, and insulin resistance through modulating insulin signaling pathway in the liver compared to monotherapy. Further, improvement of mitochondrial function, integrity, and oxidative stress in hippocampus, hypothalamus, prefrontal cortex, striatum, amygdala, and nucleus accumbens was observed with the combination. Therefore, metformin in combination with diazepam may be a better therapeutic option in the management of T2DM with cooccurring stress condition.
Collapse
|
35
|
Ogawa F, Malavasi EL, Crummie DK, Eykelenboom JE, Soares DC, Mackie S, Porteous DJ, Millar JK. DISC1 complexes with TRAK1 and Miro1 to modulate anterograde axonal mitochondrial trafficking. Hum Mol Genet 2014; 23:906-19. [PMID: 24092329 PMCID: PMC3900104 DOI: 10.1093/hmg/ddt485] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/25/2013] [Indexed: 12/12/2022] Open
Abstract
Disrupted-In-Schizophrenia 1 (DISC1) is a candidate risk factor for schizophrenia, bipolar disorder and severe recurrent depression. Here, we demonstrate that DISC1 associates robustly with trafficking-protein-Kinesin-binding-1 which is, in turn, known to interact with the outer mitochondrial membrane proteins Miro1/2, linking mitochondria to the kinesin motor for microtubule-based subcellular trafficking. DISC1 also associates with Miro1 and is thus a component of functional mitochondrial transport complexes. Consistent with these observations, in neuronal axons DISC1 promotes specifically anterograde mitochondrial transport. DISC1 thus participates directly in mitochondrial trafficking, which is essential for neural development and neurotransmission. Any factor affecting mitochondrial DISC1 function is hence likely to have deleterious consequences for the brain, potentially contributing to increased risk of psychiatric illness. Intriguingly, therefore, a rare putatively causal human DISC1 sequence variant, 37W, impairs the ability of DISC1 to promote anterograde mitochondrial transport. This is likely related to a number of mitochondrial abnormalities induced by expression of DISC1-37W, which redistributes mitochondrial DISC1 and enhances kinesin mitochondrial association, while also altering protein interactions within the mitochondrial transport complex.
Collapse
Affiliation(s)
- Fumiaki Ogawa
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Elise L.V. Malavasi
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Darragh K. Crummie
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Jennifer E. Eykelenboom
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
- Now at Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Dinesh C. Soares
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Shaun Mackie
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - David J. Porteous
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - J. Kirsty Millar
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| |
Collapse
|
36
|
Su B, Ji YS, Sun XL, Liu XH, Chen ZY. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission. J Biol Chem 2013; 289:1213-26. [PMID: 24302729 DOI: 10.1074/jbc.m113.526129] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.
Collapse
Affiliation(s)
- Bo Su
- From the Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | | | | | | | | |
Collapse
|
37
|
González-López A, López-Alonso I, Aguirre A, Amado-Rodríguez L, Batalla-Solís E, Astudillo A, Tomás-Zapico C, Fueyo A, dos Santos CC, Talbot K, Albaiceta GM. Mechanical ventilation triggers hippocampal apoptosis by vagal and dopaminergic pathways. Am J Respir Crit Care Med 2013; 188:693-702. [PMID: 23962032 DOI: 10.1164/rccm.201304-0691oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Critically ill patients frequently develop neuropsychological disturbances including acute delirium or memory impairment. The need for mechanical ventilation is a risk factor for these adverse events, but a mechanism that links lung stretch and brain injury has not been identified. OBJECTIVES To identify the mechanisms that lead to brain dysfunction during mechanical ventilation. METHODS Brains from mechanically ventilated mice were harvested, and signals of apoptosis and alterations in the Akt survival pathway were studied. These measurements were repeated in vagotomized or haloperidol-treated mice, and in animals intracerebroventricularly injected with selective dopamine-receptor blockers. Hippocampal slices were cultured and treated with micromolar concentrations of dopamine, with or without dopamine receptor blockers. Last, levels of dysbindin, a regulator of the membrane availability of dopamine receptors, were assessed in the experimental model and in brain samples from ventilated patients. MEASUREMENTS AND MAIN RESULTS Mechanical ventilation triggers hippocampal apoptosis as a result of type 2 dopamine receptor activation in response to vagal signaling. Activation of these receptors blocks the Akt/GSK3β prosurvival pathway and activates the apoptotic cascade, as demonstrated in vivo and in vitro. Vagotomy, systemic haloperidol, or intracerebroventricular raclopride (a type 2 dopamine receptor blocker) ameliorated this effect. Moreover, ventilation induced a concomitant change in the expression of dysbindin-1C. These results were confirmed in brain samples from ventilated patients. CONCLUSIONS These results prove the existence of a pathogenic mechanism of lung stretch-induced hippocampal apoptosis that could explain the neurological changes in ventilated patients and may help to identify novel therapeutic approaches.
Collapse
Affiliation(s)
- Adrián González-López
- 1 Departamento de Biología Funcional, Área de Fisiología, Instituto Universitario de Oncología del Principado de Asturias, and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Serrat R, López-Doménech G, Mirra S, Quevedo M, Garcia-Fernàndez J, Ulloa F, Burgaya F, Soriano E. The non-canonical Wnt/PKC pathway regulates mitochondrial dynamics through degradation of the arm-like domain-containing protein Alex3. PLoS One 2013; 8:e67773. [PMID: 23844091 PMCID: PMC3699457 DOI: 10.1371/journal.pone.0067773] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/24/2013] [Indexed: 11/17/2022] Open
Abstract
The regulation of mitochondrial dynamics is vital in complex cell types, such as neurons, that transport and localize mitochondria in high energy-demanding cell domains. The Armcx3 gene encodes a mitochondrial-targeted protein (Alex3) that contains several arm-like domains. In a previous study we showed that Alex3 protein regulates mitochondrial aggregation and trafficking. Here we studied the contribution of Wnt proteins to the mitochondrial aggregation and dynamics regulated by Alex3. Overexpression of Alex3 in HEK293 cells caused a marked aggregation of mitochondria, which was attenuated by treatment with several Wnts. We also found that this decrease was caused by Alex3 degradation induced by Wnts. While the Wnt canonical pathway did not alter the pattern of mitochondrial aggregation induced by Alex3, we observed that the Wnt/PKC non-canonical pathway regulated both mitochondrial aggregation and Alex3 protein levels, thereby rendering a mitochondrial phenotype and distribution similar to control patterns. Our data suggest that the Wnt pathway regulates mitochondrial distribution and dynamics through Alex3 protein degradation.
Collapse
Affiliation(s)
- Román Serrat
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Developmental Neurobiology and Regeneration Lab, Institute for Research in Biomedicine Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Guillermo López-Doménech
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Developmental Neurobiology and Regeneration Lab, Institute for Research in Biomedicine Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Serena Mirra
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Developmental Neurobiology and Regeneration Lab, Institute for Research in Biomedicine Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Martí Quevedo
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Developmental Neurobiology and Regeneration Lab, Institute for Research in Biomedicine Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Faculty of Biology, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Fausto Ulloa
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Developmental Neurobiology and Regeneration Lab, Institute for Research in Biomedicine Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Ferrán Burgaya
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Developmental Neurobiology and Regeneration Lab, Institute for Research in Biomedicine Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Developmental Neurobiology and Regeneration Lab, Institute for Research in Biomedicine Barcelona, Parc Científic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Fundación CIEN, Vallecas, Madrid, Spain
| |
Collapse
|
39
|
Cantuti Castelvetri L, Givogri MI, Hebert A, Smith B, Song Y, Kaminska A, Lopez-Rosas A, Morfini G, Pigino G, Sands M, Brady ST, Bongarzone ER. The sphingolipid psychosine inhibits fast axonal transport in Krabbe disease by activation of GSK3β and deregulation of molecular motors. J Neurosci 2013; 33:10048-56. [PMID: 23761900 PMCID: PMC3682375 DOI: 10.1523/jneurosci.0217-13.2013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/03/2013] [Accepted: 05/10/2013] [Indexed: 01/06/2023] Open
Abstract
Loss of function of galactosylceramidase lysosomal activity causes demyelination and vulnerability of various neuronal populations in Krabbe disease. Psychosine, a lipid-raft-associated sphingolipid that accumulates in this disease, is thought to trigger these abnormalities. Myelin-free in vitro analyses showed that psychosine inhibited fast axonal transport through the activation of axonal PP1 and GSK3β in the axon. Abnormal levels of activated GSK3β and abnormally phosphorylated kinesin light chains were found in nerve samples from a mouse model of Krabbe disease. Administration of GSK3β inhibitors significantly ameliorated transport defects in vitro and in vivo in peripheral axons of the mutant mouse. This study identifies psychosine as a pathogenic sphingolipid able to block fast axonal transport and is the first to provide a molecular mechanism underlying dying-back degeneration in this genetic leukodystrophy.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Axonal Transport/drug effects
- Cells, Cultured
- Cerebral Cortex/pathology
- Disease Models, Animal
- Embryo, Mammalian
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Leukodystrophy, Globoid Cell/drug therapy
- Leukodystrophy, Globoid Cell/genetics
- Leukodystrophy, Globoid Cell/pathology
- Membrane Microdomains/drug effects
- Membrane Microdomains/enzymology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Microscopy, Electron, Transmission
- Mitochondria/drug effects
- Mitochondria/physiology
- Molecular Motor Proteins/metabolism
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Neurons/pathology
- Neurons/ultrastructure
- Psychosine/pharmacology
- Sciatic Nerve/pathology
- Time Factors
Collapse
Affiliation(s)
| | - Maria I. Givogri
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Amy Hebert
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Benjamin Smith
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Yuyu Song
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Agnieszka Kaminska
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Aurora Lopez-Rosas
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Gustavo Pigino
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Mark Sands
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Scott T. Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612, and
| |
Collapse
|
40
|
Corena-McLeod M, Walss-Bass C, Oliveros A, Gordillo Villegas A, Ceballos C, Charlesworth CM, Madden B, Linser PJ, Van Ekeris L, Smith K, Richelson E. New model of action for mood stabilizers: phosphoproteome from rat pre-frontal cortex synaptoneurosomal preparations. PLoS One 2013; 8:e52147. [PMID: 23690912 PMCID: PMC3653908 DOI: 10.1371/journal.pone.0052147] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 11/09/2012] [Indexed: 01/11/2023] Open
Abstract
Background Mitochondrial short and long-range movements are necessary to generate the energy needed for synaptic signaling and plasticity. Therefore, an effective mechanism to transport and anchor mitochondria to pre- and post-synaptic terminals is as important as functional mitochondria in neuronal firing. Mitochondrial movement range is regulated by phosphorylation of cytoskeletal and motor proteins in addition to changes in mitochondrial membrane potential. Movement direction is regulated by serotonin and dopamine levels. However, data on mitochondrial movement defects and their involvement in defective signaling and neuroplasticity in relationship with mood disorders is scarce. We have previously reported the effects of lithium, valproate and a new antipsychotic, paliperidone on protein expression levels at the synaptic level. Hypothesis Mitochondrial function defects have recently been implicated in schizophrenia and bipolar disorder. We postulate that mood stabilizer treatment has a profound effect on mitochondrial function, synaptic plasticity, mitochondrial migration and direction of movement. Methods Synaptoneurosomal preparations from rat pre-frontal cortex were obtained after 28 daily intraperitoneal injections of lithium, valproate and paliperidone. Phosphorylated proteins were identified using 2D-DIGE and nano LC-ESI tandem mass spectrometry. Results Lithium, valproate and paliperidone had a substantial and common effect on the phosphorylation state of specific actin, tubulin and myosin isoforms as well as other proteins associated with neurofilaments. Furthermore, different subunits from complex III and V of the electron transfer chain were heavily phosphorylated by treatment with these drugs indicating selective phosphorylation. Conclusions Mood stabilizers have an effect on mitochondrial function, mitochondrial movement and the direction of this movement. The implications of these findings will contribute to novel insights regarding clinical treatment and the mode of action of these drugs.
Collapse
|
41
|
Lovas JR, Wang X. The meaning of mitochondrial movement to a neuron's life. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:184-94. [PMID: 22548961 PMCID: PMC3413748 DOI: 10.1016/j.bbamcr.2012.04.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/13/2012] [Accepted: 04/14/2012] [Indexed: 11/21/2022]
Abstract
Cells precisely regulate mitochondrial movement in order to balance energy needs and avoid cell death. Neurons are particularly susceptible to disturbance of mitochondrial motility and distribution due to their highly extended structures and specialized function. Regulation of mitochondrial motility plays a vital role in neuronal health and death. Here we review the current understanding of regulatory mechanisms that govern neuronal mitochondrial transport and probe their implication in health and disease. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
Affiliation(s)
- Jonathan R. Lovas
- Stanford Institute for Neuro-innovation and Translational Neurosciences and Department of Neurosurgery, Stanford University School of Medicine
| | - Xinnan Wang
- Stanford Institute for Neuro-innovation and Translational Neurosciences and Department of Neurosurgery, Stanford University School of Medicine
| |
Collapse
|
42
|
Bókkon I, Antal I. Schizophrenia: redox regulation and volume neurotransmission. Curr Neuropharmacol 2012; 9:289-300. [PMID: 22131938 PMCID: PMC3131720 DOI: 10.2174/157015911795596504] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 05/30/2010] [Accepted: 06/04/2010] [Indexed: 02/08/2023] Open
Abstract
Here, we show that volume neurotransmission and the redox property of dopamine, as well as redox-regulated processes at glutamate receptors, can contribute significantly to our understanding of schizophrenia. Namely, volume neurotransmission may play a key role in the development of dysconnectivity between brain regions in schizophrenic patients, which can cause abnormal modulation of NMDA-dependent synaptic plasticity and produce local paroxysms in deafferented neural areas. During synaptic transmission, neuroredox regulations have fundamental functions, which involve the excellent antioxidant properties and nonsynaptic neurotransmission of dopamine. It is possible that the effect of redox-linked volume neurotransmission (diffusion) of dopamine is not as exact as communication by the classical synaptic mechanism, so approaching the study of complex schizophrenic mechanisms from this perspective may be beneficial. However, knowledge of redox signal processes, including the sources and molecular targets of reactive species, is essential for understanding the physiological and pathophysiological signal pathways in cells and the brain, as well as for pharmacological design of various types of new drugs.
Collapse
Affiliation(s)
- I Bókkon
- Doctoral School of Pharmaceutical and Pharmacological Sciences, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
43
|
Johnstone AL, Reierson GW, Smith RP, Goldberg JL, Lemmon VP, Bixby JL. A chemical genetic approach identifies piperazine antipsychotics as promoters of CNS neurite growth on inhibitory substrates. Mol Cell Neurosci 2012; 50:125-35. [PMID: 22561309 DOI: 10.1016/j.mcn.2012.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/23/2012] [Accepted: 04/20/2012] [Indexed: 01/22/2023] Open
Abstract
Injury to the central nervous system (CNS) can result in lifelong loss of function due in part to the regenerative failure of CNS neurons. Inhibitory proteins derived from myelin and the astroglial scar are major barriers for the successful regeneration of injured CNS neurons. Previously, we described the identification of a novel compound, F05, which promotes neurite growth from neurons challenged with inhibitory substrates in vitro, and promotes axonal regeneration in vivo (Usher et al., 2010). To identify additional regeneration-promoting compounds, we used F05-induced gene expression profiles to query the Broad Institute Connectivity Map, a gene expression database of cells treated with >1300 compounds. Despite no shared chemical similarity, F05-induced changes in gene expression were remarkably similar to those seen with a group of piperazine phenothiazine antipsychotics (PhAPs). In contrast to antipsychotics of other structural classes, PhAPs promoted neurite growth of CNS neurons challenged with two different glial derived inhibitory substrates. Our pharmacological studies suggest a mechanism whereby PhAPs promote growth through antagonism of calmodulin signaling, independent of dopamine receptor antagonism. These findings shed light on mechanisms underlying neurite-inhibitory signaling, and suggest that clinically approved antipsychotic compounds may be repurposed for use in CNS injured patients.
Collapse
Affiliation(s)
- Andrea L Johnstone
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1400 NW 12th Ave, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
44
|
Cell signaling and mitochondrial dynamics: Implications for neuronal function and neurodegenerative disease. Neurobiol Dis 2012; 51:13-26. [PMID: 22297163 DOI: 10.1016/j.nbd.2012.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 11/22/2022] Open
Abstract
Nascent evidence indicates that mitochondrial fission, fusion, and transport are subject to intricate regulatory mechanisms that intersect with both well-characterized and emerging signaling pathways. While it is well established that mutations in components of the mitochondrial fission/fusion machinery can cause neurological disorders, relatively little is known about upstream regulators of mitochondrial dynamics and their role in neurodegeneration. Here, we review posttranslational regulation of mitochondrial fission/fusion enzymes, with particular emphasis on dynamin-related protein 1 (Drp1), as well as outer mitochondrial signaling complexes involving protein kinases and phosphatases. We also review recent evidence that mitochondrial dynamics has profound consequences for neuronal development and synaptic transmission and discuss implications for clinical translation.
Collapse
|
45
|
Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 2012; 13:77-93. [PMID: 22218207 DOI: 10.1038/nrn3156] [Citation(s) in RCA: 642] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria have a number of essential roles in neuronal function. Their complex mobility patterns within neurons are characterized by frequent changes in direction. Mobile mitochondria can become stationary or pause in regions that have a high metabolic demand and can move again rapidly in response to physiological changes. Defects in mitochondrial transport are implicated in the pathogenesis of several major neurological disorders. Research into the mechanisms that regulate mitochondrial transport is thus an important emerging frontier.
Collapse
|
46
|
Quinlan KA. Links between electrophysiological and molecular pathology of amyotrophic lateral sclerosis. Integr Comp Biol 2011; 51:913-25. [PMID: 21989221 DOI: 10.1093/icb/icr116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple deficits have been described in amyotrophic lateral sclerosis (ALS), from the first changes in normal functioning of the motoneurons and glia to the eventual loss of spinal and cortical motoneurons. In this review, current results, including changes in size, and electrical properties of motoneurons, glutamate excitotoxicity, calcium buffering, deficits in mitochondrial and cellular transport, impediments to proteostasis which lead to stress of the endoplasmic reticulum (ER), and glial contributions to motoneuronal vulnerability are recapitulated. Results are mainly drawn from the mutant SOD1 mouse model of ALS, and emphasis is placed on early changes that precede the onset of symptoms and the interplay between molecular and electrical processes.
Collapse
Affiliation(s)
- Katharina A Quinlan
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
47
|
Edelman DB, Owens GC, Chen S. Neuromodulation and mitochondrial transport: live imaging in hippocampal neurons over long durations. J Vis Exp 2011:2599. [PMID: 21712797 PMCID: PMC3197030 DOI: 10.3791/2599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
To understand the relationship between mitochondrial transport and neuronal function, it is critical to observe mitochondrial behavior in live cultured neurons for extended durations(1-3). This is now possible through the use of vital dyes and fluorescent proteins with which cytoskeletal components, organelles, and other structures in living cells can be labeled and then visualized via dynamic fluorescence microscopy. For example, in embryonic chicken sympathetic neurons, mitochondrial movement was characterized using the vital dye rhodamine 123(4). In another study, mitochondria were visualized in rat forebrain neurons by transfection of mitochondrially targeted eYFP(5). However, imaging of primary neurons over minutes, hours, or even days presents a number of issues. Foremost among these are: 1) maintenance of culture conditions such as temperature, humidity, and pH during long imaging sessions; 2) a strong, stable fluorescent signal to assure both the quality of acquired images and accurate measurement of signal intensity during image analysis; and 3) limiting exposure times during image acquisition to minimize photobleaching and avoid phototoxicity. Here, we describe a protocol that permits the observation, visualization, and analysis of mitochondrial movement in cultured hippocampal neurons with high temporal resolution and under optimal life support conditions. We have constructed an affordable stage-top incubator that provides good temperature regulation and atmospheric gas flow, and also limits the degree of media evaporation, assuring stable pH and osmolarity. This incubator is connected, via inlet and outlet hoses, to a standard tissue culture incubator, which provides constant humidity levels and an atmosphere of 5-10% CO(2;)/air. This design offers a cost-effective alternative to significantly more expensive microscope incubators that don't necessarily assure the viability of cells over many hours or even days. To visualize mitochondria, we infect cells with a lentivirus encoding a red fluorescent protein that is targeted to the mitochondrion. This assures a strong and persistent signal, which, in conjunction with the use of a stable xenon light source, allows us to limit exposure times during image acquisition and all but precludes photobleaching and phototoxicity. Two injection ports on the top of the stage-top incubator allow the acute administration of neurotransmitters and other reagents intended to modulate mitochondrial movement. In sum, lentivirus-mediated expression of an organelle-targeted red fluorescent protein and the combination of our stage-top incubator, a conventional inverted fluorescence microscope, CCD camera, and xenon light source allow us to acquire time-lapse images of mitochondrial transport in living neurons over longer durations than those possible in studies deploying conventional vital dyes and off-the-shelf life support systems.
Collapse
Affiliation(s)
- David B Edelman
- Department of Experimental Neurobiology, The Neurosciences Institute.
| | | | | |
Collapse
|
48
|
Rosenfeld M, Brenner-Lavie H, Ari SGB, Kavushansky A, Ben-Shachar D. Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol Psychiatry 2011; 69:980-8. [PMID: 21397211 DOI: 10.1016/j.biopsych.2011.01.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mitochondria have been suggested to be involved in the pathology of bipolar disorder (BD) and schizophrenia. However, the mechanism underlying mitochondrial dysfunction is unclear. Mitochondrial network dynamics, which reflects cellular metabolic state, is important for embryonic development, synapse formation, and neurodegeneration. This study aimed to investigate mitochondrial network dynamics and its plausible association with abnormal cellular oxygen consumption in schizophrenia. METHODS Viable Epstein-Barr virus (EBV)-transformed lymphocytes (lymphoblastoids) from DSM-IV diagnosed patients with schizophrenia (n = 17), BD (n = 15), and healthy control subjects (n = 15) were assessed for mitochondrial respiration, mitochondrial dynamics, and relevant protein levels by oxygraph, confocal microscopy, and immunoblotting, respectively. RESULTS Respiration of schizophrenia-derived lymphoblastoids was significantly lower compared with control subjects, and was twice as sensitive to dopamine (DA)-induced inhibition. Unlike DA, haloperidol inhibited complex I-driven respiration to a similar extent in both schizophrenia and the control cells. Both drugs interact with complex I but at different sites. At the site of DA interaction, we found alterations in protein levels of three subunits of complex I in schizophrenia. In addition, we observed structural and connectivity perturbations in the mitochondrial network, associated with alterations in the profusion protein OPA1, which was similarly reduced in schizophrenia prefrontal cortex specimens. None of these alterations were observed in the BD cells, which were similar to control cells. CONCLUSIONS We show impaired mitochondrial network dynamics associated with reduced cellular respiration and complex I abnormalities in schizophrenia but not in BD. If these findings represent disease-specific alterations, they may become an endophenotype biomarker for schizophrenia.
Collapse
Affiliation(s)
- Marina Rosenfeld
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center and B. Rappaport Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Technion, Haifa, Israel
| | | | | | | | | |
Collapse
|
49
|
Clay H, Sillivan S, Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 2011; 29:311-24. [PMID: 20833242 PMCID: PMC3010320 DOI: 10.1016/j.ijdevneu.2010.08.007] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 12/20/2022] Open
Abstract
Bipolar disorder (BPD) and schizophrenia (SZ) are severe psychiatric illnesses with a combined prevalence of 4%. A disturbance of energy metabolism is frequently observed in these disorders. Several pieces of evidence point to an underlying dysfunction of mitochondria: (i) decreased mitochondrial respiration; (ii) changes in mitochondrial morphology; (iii) increases in mitochondrial DNA (mtDNA) polymorphisms and in levels of mtDNA mutations; (iv) downregulation of nuclear mRNA molecules and proteins involved in mitochondrial respiration; (v) decreased high-energy phosphates and decreased pH in the brain; and (vi) psychotic and affective symptoms, and cognitive decline in mitochondrial disorders. Furthermore, transgenic mice with mutated mitochondrial DNA polymerase show mood disorder-like phenotypes. In this review, we will discuss the genetic and physiological components of mitochondria and the evidence for mitochondrial abnormalities in BPD and SZ. We will furthermore describe the role of mitochondria during brain development and the effect of current drugs for mental illness on mitochondrial function. Understanding the role of mitochondria, both developmentally as well as in the ailing brain, is of critical importance to elucidate pathophysiological mechanisms in psychiatric disorders.
Collapse
Affiliation(s)
- Hayley Clay
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, 37232
| | - Stephanie Sillivan
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, 37232
| | - Christine Konradi
- Departments of Pharmacology and Psychiatry, Vanderbilt University, Nashville, Tennessee, 37232
- Center for Molecular Neuroscience, Vanderbilt University, Nashville, Tennessee, 37232
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, 37203
| |
Collapse
|
50
|
Abstract
The structure and function of the mitochondrial network is regulated by mitochondrial biogenesis, fission, fusion, transport and degradation. A well-maintained balance of these processes (mitochondrial dynamics) is essential for neuronal signaling, plasticity and transmitter release. Core proteins of the mitochondrial dynamics machinery play important roles in the regulation of apoptosis, and mutations or abnormal expression of these factors are associated with inherited and age-dependent neurodegenerative disorders. In Parkinson's disease (PD), oxidative stress and mitochondrial dysfunction underlie the development of neuropathology. The recessive Parkinsonism-linked genes PTEN-induced kinase 1 (PINK1) and Parkin maintain mitochondrial integrity by regulating diverse aspects of mitochondrial function, including membrane potential, calcium homeostasis, cristae structure, respiratory activity, and mtDNA integrity. In addition, Parkin is crucial for autophagy-dependent clearance of dysfunctional mitochondria. In the absence of PINK1 or Parkin, cells often develop fragmented mitochondria. Whereas excessive fission may cause apoptosis, coordinated induction of fission and autophagy is believed to facilitate the removal of damaged mitochondria through mitophagy, and has been observed in some types of cells. Compensatory mechanisms may also occur in mice lacking PINK1 that, in contrast to cells and Drosophila, have only mild mitochondrial dysfunction and lack dopaminergic neuron loss. A better understanding of the relationship between the specific changes in mitochondrial dynamics/turnover and cell death will be instrumental to identify potentially neuroprotective pathways steering PINK1-deficient cells towards survival. Such pathways may be manipulated in the future by specific drugs to treat PD and perhaps other neurodegenerative disorders characterized by abnormal mitochondrial function and dynamics.
Collapse
Affiliation(s)
- Hansruedi Büeler
- Department of Anatomy and Neurobiology, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|