1
|
Chen Y, Yin Z, Westover KD, Zhou Z, Shu L. Advances and Challenges in RAS Signaling Targeted Therapy in Leukemia. Mol Cancer Ther 2025; 24:33-46. [PMID: 39404173 DOI: 10.1158/1535-7163.mct-24-0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 01/03/2025]
Abstract
RAS mutations are prevalent in leukemia, including mutations at G12, G13, T58, Q61, K117, and A146. These mutations are often crucial for tumor initiation, maintenance, and recurrence. Although much is known about RAS function in the last 40 years, a substantial knowledge gap remains in understanding the mutation-specific biological activities of RAS in cancer and the approaches needed to target specific RAS mutants effectively. The recent approval of KRASG12C inhibitors, adagrasib and sotorasib, has validated KRAS as a direct therapeutic target and demonstrated the feasibility of selectively targeting specific RAS mutants. Nevertheless, KRASG12C remains the only RAS mutant successfully targeted with FDA-approved inhibitors for cancer treatment in patients, limiting its applicability for other oncogenic RAS mutants, such as G12D, in leukemia. Despite these challenges, new approaches have generated optimism about targeting specific RAS mutations in an allele-dependent manner for cancer therapy, supported by compelling biochemical and structural evidence, which inspires further exploration of RAS allele-specific vulnerabilities. This review will discuss the recent advances and challenges in the development of therapies targeting RAS signaling, highlight emerging therapeutic strategies, and emphasize the importance of allele-specific approaches for leukemia treatment.
Collapse
Affiliation(s)
- Yu Chen
- Department of Immunology, Guizhou Province Key Laboratory for Regenerative Medicine, Clinical Research Center, School of Basic Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Zhenghao Yin
- Department of Immunology, Guizhou Province Key Laboratory for Regenerative Medicine, Clinical Research Center, School of Basic Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Kenneth D Westover
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Zhiwei Zhou
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Liping Shu
- Department of Immunology, Guizhou Province Key Laboratory for Regenerative Medicine, Clinical Research Center, School of Basic Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, China
| |
Collapse
|
2
|
Zhou W, Ghersi JJ, Ristori E, Semanchik N, Prendergast A, Zhang R, Carneiro P, Baldissera G, Sessa WC, Nicoli S. Akt is a mediator of artery specification during zebrafish development. Development 2024; 151:dev202727. [PMID: 39101673 PMCID: PMC11441982 DOI: 10.1242/dev.202727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
The dorsal aorta (DA) is the first major blood vessel to develop in the embryonic cardiovascular system. Its formation is governed by a coordinated process involving the migration, specification, and arrangement of angioblasts into arterial and venous lineages, a process conserved across species. Although vascular endothelial growth factor a (VEGF-A) is known to drive DA specification and formation, the kinases involved in this process remain ambiguous. Thus, we investigated the role of protein kinase B (Akt) in zebrafish by generating a quadruple mutant (aktΔ/Δ), in which expression and activity of all Akt genes - akt1, -2, -3a and -3b - are strongly decreased. Live imaging of developing aktΔ/Δ DA uncovers early arteriovenous malformations. Single-cell RNA-sequencing analysis of aktΔ/Δ endothelial cells corroborates the impairment of arterial, yet not venous, cell specification. Notably, endothelial specific expression of ligand-independent activation of Notch or constitutively active Akt1 were sufficient to re-establish normal arterial specification in aktΔ/Δ. The Akt loss-of-function mutant unveils that Akt kinase can act upstream of Notch in arterial endothelial cells, and is involved in proper embryonic artery specification. This sheds light on cardiovascular development, revealing a mechanism behind congenital malformations.
Collapse
Affiliation(s)
- Wenping Zhou
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joey J Ghersi
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Pathologies Foetomaternelles et Néonatales, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Emma Ristori
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nicole Semanchik
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrew Prendergast
- Department of Comparative Medicine, Yale zebrafish Research Core, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rong Zhang
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Paola Carneiro
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gabriel Baldissera
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William C Sessa
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stefania Nicoli
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Lee H, Park W, An G, Park J, Lim W, Song G. Hexaconazole induces developmental toxicities via apoptosis, inflammation, and alterations of Akt and MAPK signaling cascades. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109872. [PMID: 38423198 DOI: 10.1016/j.cbpc.2024.109872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Hexaconazole is a highly effective triazole fungicide that is frequently applied in various countries to elevate crop productivity. Given its long half-life and high water solubility, this fungicide is frequently detected in the environment, including water sources. Moreover, hexaconazole exerts hazardous effects on nontarget organisms. However, little is known about the toxic effects of hexaconazole on animal development. Thus, this study aimed to investigate the developmental toxicity of hexaconazole to zebrafish, a valuable animal model for toxicological studies, and elucidate the underlying mechanisms. Results showed that hexaconazole affected the viability and hatching rate of zebrafish at 96 h postfertilization. Hexaconazole-treated zebrafish showed phenotypic defects, such as reduced size of head and eyes and enlarged pericardiac edema. Moreover, hexaconazole induced apoptosis, DNA fragmentation, and inflammation in developing zebrafish. Various organ defects, including neurotoxicity, cardiovascular toxicity, and hepatotoxicity, were observed in transgenic zebrafish models olig2:dsRed, fli1:eGFP, and l-fabp:dsRed. Furthermore, hexaconazole treatment altered the Akt and MAPK signaling pathways, which possibly triggered the organ defects and other toxic mechanisms. This study demonstrated the developmental toxicity of hexaconazole to zebrafish and elucidated the underlying mechanisms.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Wonhyoung Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
An G, Park J, You J, Park H, Hong T, Lim W, Song G. Developmental toxicity of flufenacet including vascular, liver, and pancreas defects is mediated by apoptosis and alters the Mapk and PI3K/Akt signal transduction in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109735. [PMID: 37659609 DOI: 10.1016/j.cbpc.2023.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Release of agrochemicals from agricultural fields could unintentionally harm organisms that not targeted by pesticides. Flufenacet is one of the oxyacetamide herbicide applied in cultivation fields of crops and this has a possibility of unintentional exposure to diverse ecosystems including streams and surface water. Despite these environmental risks, limited information regarding toxicity of flufenacet on vertebrates is available. This study is aimed to assess environmental hazards and underlying toxic mechanisms of flufenacet by using a zebrafish model. Mortality measurements and morphological observations after the treatment of flufenacet suggested developmental toxicity of flufenacet in zebrafish. In addition, its toxicity on specific organs was evaluated using transgenic fluorescent zebrafish embryo. Adverse effects of flufenacet on vascular and hepatopancreatic development were demonstrated using Tg(flk1:EGFP) and Tg(fabp10a:DsRed; ela3l:EGFP) respectively. To address intracellular actions of flufenacet in zebrafish, cellular responses including apoptosis, cell cycle modulation, and Mapk and Akt signaling pathway were verified in transcriptional and protein levels. These results demonstrated developmental toxicity of flufenacet using the zebrafish model, providing essential information for assessing its potential hazards on vertebrates that are not directly targeted by the pesticide and for elucidating molecular mechanisms.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeankyoung You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
5
|
Karhana S, Dabral S, Garg A, Bano A, Agarwal N, Khan MA. Network pharmacology and molecular docking analysis on potential molecular targets and mechanism of action of BRAF inhibitors for application in wound healing. J Cell Biochem 2023. [PMID: 37334778 DOI: 10.1002/jcb.30430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Topical application of BRAF inhibitors has been shown to accelerate wound healing in murine models, which can be extrapolated into clinical applications. The aim of the study was to identify suitable pharmacological targets of BRAF inhibitors and elucidate their mechanisms of action for therapeutic applicability in wound healing, by employing bioinformatics tools including network pharmacology and molecular docking. The potential targets for BRAF inhibitors were obtained from SwissTargetPrediction, DrugBank, CTD, Therapeutic Target Database, and Binding Database. Targets of wound healing were obtained using online databases DisGeNET and OMIM (Online Mendelian Inheritance in Man). Common targets were found by using the online GeneVenn tool. Common targets were then imported to STRING to construct interaction networks. Topological parameters were assessed using Cytoscape and core targets were identified. FunRich was employed to uncover the signaling pathways, cellular components, molecular functions, and biological processes in which the core targets participate. Finally, molecular docking was performed using MOE software. Key targets for the therapeutic application of BRAF inhibitors for wound healing are peroxisome proliferator-activated receptor γ, matrix metalloproteinase 9, AKT serine/threonine kinase 1, mammalian target of rapamycin, and Ki-ras2 Kirsten rat sarcoma viral oncogene homolog. The most potent BRAF inhibitors that can be exploited for their paradoxical activity for wound healing applications are Encorafenib and Dabrafenib. By using network pharmacology and molecular docking, it can be predicted that the paradoxical activity of BRAF inhibitors can be used for their potential application in wound healing.
Collapse
Affiliation(s)
- Sonali Karhana
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Swarna Dabral
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Aakriti Garg
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Aysha Bano
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nidhi Agarwal
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Ashif Khan
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Khalid E, Chang JP. Small GTPase control of pituitary hormone secretion: Evidence from studies in the goldfish (Carassius auratus) neuroendocrine model. Gen Comp Endocrinol 2023; 339:114287. [PMID: 37060929 DOI: 10.1016/j.ygcen.2023.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
The secretion of vertebrate pituitary hormones is regulated by multiple hypothalamic factors, which, while generally activating unique receptor systems, ultimately propagate signals through interacting intracellular regulatory elements to modulate hormone exocytosis. One important family of intracellular regulators is the monomeric small GTPases, a subset of which (Arf1/6, Rac, RhoA, and Ras) is highly conserved across vertebrates and regulates secretory vesicle exocytosis in many cell types. In this study, we investigated the roles of these small GTPases in basal and agonist-dependent hormone release from dispersed goldfish (Carassius auratus) pituitary cells in perifusion experiments. Inhibition of these small GTPases elevated basal LH and GH secretion, except for Ras inhibition which only increased basal LH release. However, variable responses were observed with regard to LH and GH responses to the two goldfish native gonadotropin-releasing hormones (GnRH2 and GnRH3). GnRH-dependent LH release, but not GH secretion, was mediated by Arf1/6 GTPases. In contrast, inhibition of Rac and RhoA GTPases selectively enhanced GnRH3- and GnRH2-dependent GH release, respectively, while Ras inhibition only enhanced GnRH3-evoked LH secretion. Together, our results reveal novel divergent cell-type- and ligand-specific roles for small GTPases in the control of goldfish pituitary hormone exocytosis in unstimulated and GnRH-evoked release.
Collapse
Affiliation(s)
- Enezi Khalid
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9.
| |
Collapse
|
7
|
Wang J, Cui X, Weng Y, Wei J, Chen X, Wang P, Wang T, Qin J, Peng M. Application of an angiogenesis-related genes risk model in lung adenocarcinoma prognosis and immunotherapy. Front Genet 2023; 14:1092968. [PMID: 36816016 PMCID: PMC9929558 DOI: 10.3389/fgene.2023.1092968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is an essential pathological subtype of non-small cell lung cancer and offers a severe problem for worldwide public health. There is mounting proof that angiogenesis is a crucial player in LUAD progression. Consequently, the purpose of this research was to construct a novel LUAD risk assessment model based on genetic markers related to angiogenesis. We accessed The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases for LUAD mRNA sequencing data and clinical information. Based on machine algorithms and bioinformatics, angiogenic gene-related risk scores (RS) were calculated. Patients in the high-risk category had a worse prognosis (p < 0.001) in the discovery TCGA cohort, and the results were confirmed by these three cohorts (validation TCGA cohort, total TCGA cohort, and GSE68465 cohort). Moreover, risk scores for genes involved in angiogenesis were independent risk factors for lung cancer in all four cohorts. The low-risk group was associated with better immune status and lower tumor mutational load. In addition, the somatic mutation study revealed that the low-risk group had a lower mutation frequency than the high-risk group. According to an analysis of tumor stem cell infiltration, HLA expression, and TIDE scores, the low-risk group had higher TIDE scores and HLA expression levels than the high-risk group, and the amount of tumor stem cell infiltration correlated with the risk score. In addition, high-risk groups may benefit from immune checkpoint inhibitors and targeted therapies. In conclusion, we developed an angiogenesis-related gene risk model to predict the prognosis of LUAD patients, which may aid in the classification of patients with LUAD and select medications for LUAD patients.
Collapse
Affiliation(s)
- Jinsong Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Cui
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiming Weng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiayan Wei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peiwei Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tong Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Qin
- Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China,*Correspondence: Jian Qin, ; Min Peng,
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China,*Correspondence: Jian Qin, ; Min Peng,
| |
Collapse
|
8
|
Novel Insights into the Role of Kras in Myeloid Differentiation: Engaging with Wnt/β-Catenin Signaling. Cells 2023; 12:cells12020322. [PMID: 36672256 PMCID: PMC9857056 DOI: 10.3390/cells12020322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Cells of the HL-60 myeloid leukemia cell line can be differentiated into neutrophil-like cells by treatment with dimethyl sulfoxide (DMSO). The molecular mechanisms involved in this differentiation process, however, remain unclear. This review focuses on the differentiation of HL-60 cells. Although the Ras proteins, a group of small GTP-binding proteins, are ubiquitously expressed and highly homologous, each has specific molecular functions. Kras was shown to be essential for normal mouse development, whereas Hras and Nras are not. Kras knockout mice develop profound hematopoietic defects, indicating that Kras is required for hematopoiesis in adults. The Wnt/β-catenin signaling pathway plays a crucial role in regulating the homeostasis of hematopoietic cells. The protein β-catenin is a key player in the Wnt/β-catenin signaling pathway. A great deal of evidence shows that the Wnt/β-catenin signaling pathway is deregulated in malignant tumors, including hematological malignancies. Wild-type Kras acts as a tumor suppressor during DMSO-induced differentiation of HL-60 cells. Upon DMSO treatment, Kras translocates to the plasma membrane, and its activity is enhanced. Inhibition of Kras attenuates CD11b expression. DMSO also elevates levels of GSK3β phosphorylation, resulting in the release of unphosphorylated β-catenin from the β-catenin destruction complex and its accumulation in the cytoplasm. The accumulated β-catenin subsequently translocates into the nucleus. Inhibition of Kras attenuates Lef/Tcf-sensitive transcription activity. Thus, upon treatment of HL-60 cells with DMSO, wild-type Kras reacts with the Wnt/β-catenin pathway, thereby regulating the granulocytic differentiation of HL-60 cells. Wild-type Kras and the Wnt/β-catenin signaling pathway are activated sequentially, increasing the levels of expression of C/EBPα, C/EBPε, and granulocyte colony-stimulating factor (G-CSF) receptor.
Collapse
|
9
|
Urade R, Chiu YH, Chiu CC, Wu CY. Small GTPases and Their Regulators: A Leading Road toward Blood Vessel Development in Zebrafish. Int J Mol Sci 2022; 23:4991. [PMID: 35563380 PMCID: PMC9099977 DOI: 10.3390/ijms23094991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
Members of the Ras superfamily have been found to perform several functions leading to the development of eukaryotes. These small GTPases are divided into five major subfamilies, and their regulators can "turn on" and "turn off" signals. Recent studies have shown that this superfamily of proteins has various roles in the process of vascular development, such as vasculogenesis and angiogenesis. Here, we discuss the role of these subfamilies in the development of the vascular system in zebrafish.
Collapse
Affiliation(s)
- Ritesh Urade
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.U.); (Y.-H.C.)
| | - Yan-Hui Chiu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.U.); (Y.-H.C.)
| | - Chien-Chih Chiu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.U.); (Y.-H.C.)
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.U.); (Y.-H.C.)
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
10
|
Zheng S, Zhang Z, Ding N, Sun J, Lin Y, Chen J, Zhong J, Shao L, Lin Z, Xue M. Identification of the angiogenesis related genes for predicting prognosis of patients with gastric cancer. BMC Gastroenterol 2021; 21:146. [PMID: 33794777 PMCID: PMC8017607 DOI: 10.1186/s12876-021-01734-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Angiogenesis is a key factor in promoting tumor growth, invasion and metastasis. In this study we aimed to investigate the prognostic value of angiogenesis-related genes (ARGs) in gastric cancer (GC). METHODS mRNA sequencing data with clinical information of GC were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. The differentially expressed ARGs between normal and tumor tissues were analyzed by limma package, and then prognosis‑associated genes were screened using Cox regression analysis. Nine angiogenesis genes were identified as crucially related to the overall survival (OS) of patients through least absolute shrinkage and selection operator (LASSO) regression. The prognostic model and corresponding nomograms were establish based on 9 ARGs and verified in in both TCGA and GEO GC cohorts respectively. RESULTS Eighty-five differentially expressed ARGs and their enriched pathways were confirmed. Significant enrichment analysis revealed that ARGs-related signaling pathway genes were highly related to tumor angiogenesis development. Kaplan-Meier analysis revealed that patients in the high-risk group had worse OS rates compared with the low-risk group in training cohort and validation cohort. In addition, RS had a good prognostic effect on GC patients with different clinical features, especially those with advanced GC. Besides, the calibration curves verified fine concordance between the nomogram prediction model and actual observation. CONCLUSIONS We developed a nine gene signature related to the angiogenesis that can predict overall survival for GC. It's assumed to be a valuable prognosis model with high efficiency, providing new perspectives in targeted therapy.
Collapse
Affiliation(s)
- Sheng Zheng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Zizhen Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Ning Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jiawei Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yifeng Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jingyu Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jing Zhong
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Liming Shao
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Zhenghua Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Meng Xue
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Gautam DK, Chimata AV, Gutti RK, Paddibhatla I. Comparative hematopoiesis and signal transduction in model organisms. J Cell Physiol 2021; 236:5592-5619. [PMID: 33492678 DOI: 10.1002/jcp.30287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
Hematopoiesis is a continuous phenomenon involving the formation of hematopoietic stem cells (HSCs) giving rise to diverse functional blood cells. This developmental process of hematopoiesis is evolutionarily conserved, yet comparably different in various model organisms. Vertebrate HSCs give rise to all types of mature cells of both the myeloid and the lymphoid lineages sequentially colonizing in different anatomical tissues. Signal transduction in HSCs facilitates their potency and specifies branching of lineages. Understanding the hematopoietic signaling pathways is crucial to gain insights into their deregulation in several blood-related disorders. The focus of the review is on hematopoiesis corresponding to different model organisms and pivotal role of indispensable hematopoietic pathways. We summarize and discuss the fundamentals of blood formation in both invertebrate and vertebrates, examining the requirement of key signaling nexus in hematopoiesis. Knowledge obtained from such comparative studies associated with developmental dynamics of hematopoiesis is beneficial to explore the therapeutic options for hematopoietic diseases.
Collapse
Affiliation(s)
- Dushyant Kumar Gautam
- Department of Biochemistry, School of Life Sciences (SLS), University of Hyderabad, Hyderabad, Telangana, India
| | | | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences (SLS), University of Hyderabad, Hyderabad, Telangana, India
| | - Indira Paddibhatla
- Department of Biochemistry, School of Life Sciences (SLS), University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
12
|
Cho HJ, Lee J, Yoon SR, Lee HG, Jung H. Regulation of Hematopoietic Stem Cell Fate and Malignancy. Int J Mol Sci 2020; 21:ijms21134780. [PMID: 32640596 PMCID: PMC7369689 DOI: 10.3390/ijms21134780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The regulation of hematopoietic stem cell (HSC) fate decision, whether they keep quiescence, self-renew, or differentiate into blood lineage cells, is critical for maintaining the immune system throughout one’s lifetime. As HSCs are exposed to age-related stress, they gradually lose their self-renewal and regenerative capacity. Recently, many reports have implicated signaling pathways in the regulation of HSC fate determination and malignancies under aging stress or pathophysiological conditions. In this review, we focus on the current understanding of signaling pathways that regulate HSC fate including quiescence, self-renewal, and differentiation during aging, and additionally introduce pharmacological approaches to rescue defects of HSC fate determination or hematopoietic malignancies by kinase signaling pathways.
Collapse
Affiliation(s)
- Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Department of Biomolecular Science, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (H.G.L.); (H.J.)
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Correspondence: (H.G.L.); (H.J.)
| |
Collapse
|
13
|
Jang H, Oakley E, Forbes-Osborne M, Kesler MV, Norcross R, Morris AC, Galperin E. Hematopoietic and neural crest defects in zebrafish shoc2 mutants: a novel vertebrate model for Noonan-like syndrome. Hum Mol Genet 2019; 28:501-514. [PMID: 30329053 DOI: 10.1093/hmg/ddy366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
The extracellular signal-related kinase 1 and 2 (ERK1/2) pathway is a highly conserved signaling cascade with numerous essential functions in development. The scaffold protein Shoc2 amplifies the activity of the ERK1/2 pathway and is an essential modulator of a variety of signaling inputs. Germline mutations in Shoc2 are associated with the human developmental disease known as the Noonan-like syndrome with loose anagen hair. Clinical manifestations of this disease include congenital heart defects, developmental delays, distinctive facial abnormalities, reduced growth and cognitive deficits along with hair anomalies. The many molecular details of pathogenesis of the Noonan-like syndrome and related developmental disorders, cumulatively called RASopathies, remain poorly understood. Mouse knockouts for Shoc2 are embryonic lethal, emphasizing the need for additional animal models to study the role of Shoc2 in embryonic development. Here, we characterize a zebrafish shoc2 mutant, and show that Shoc2 is essential for development, and that its loss is detrimental for the development of the neural crest and for hematopoiesis. The zebrafish model of the Noonan-like syndrome described here provides a novel system for the study of structure-function analyses and for genetic screens in a tractable vertebrate system.
Collapse
Affiliation(s)
- HyeIn Jang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Erin Oakley
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | | | - Melissa V Kesler
- Division of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Rebecca Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Ann C Morris
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
14
|
Yokoyama N, Kim YJ, Hirabayashi Y, Tabe Y, Takamori K, Ogawa H, Iwabuchi K. Kras promotes myeloid differentiation through Wnt/β-catenin signaling. FASEB Bioadv 2019; 1:435-449. [PMID: 32123842 PMCID: PMC6996383 DOI: 10.1096/fba.2019-00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Wild-type Kras, a small GTPase, inactivates Ras growth-promoting signaling. However, the role of Kras in differentiation of myeloid cells remains unclear. This study showed the involvement of Kras in a novel regulatory mechanism underlying the dimethyl sulfoxide (DMSO)-induced differentiation of human acute myeloid leukemia HL-60 cells. Kras was found to positively regulate DMSO-induced differentiation, with the activity of Kras increasing upon DMSO. Inhibition of Kras attenuated CD11b expression in differentiated HL-60 cells. GSK3β, an important component of Wnt signaling, was found to be a downstream signal of Kras. Phosphorylation of GSK3β was markedly enhanced by DMSO treatment. Moreover, inhibition of GSK3β enhanced CD11b expression and triggered the accumulation in the nucleus of β-catenin and Tcf in response to DMSO. Inhibitors of β-catenin-mediated pathways blocked CD11b expression, further indicating that β-catenin is involved in the differentiation of HL-60 cells. Elevated expression of C/EBPα and C/EBPɛ accompanied by the expression of granulocyte colony-stimulating factor (G-CSF) receptor was observed during differentiation. Taken together, these findings suggest that Kras engages in cross talk with the Wnt/β-catenin pathway upon DMSO treatment of HL-60 cells, thereby regulating the granulocytic differentiation of HL-60 cells. These results indicate that Kras acts as a tumor suppressor during the differentiation of myeloid cells.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
| | - Yeon-Jeong Kim
- Laboratory for Neuronal Growth Mechanisms Riken Brain Science Institutes Saitama Japan
| | - Yoshio Hirabayashi
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
- Cellular Informatics Laboratory RIKEN Wako Saitama Japan
| | - Yoko Tabe
- Department of Laboratory Medicine Juntendo University School of Medicine Hospital Hongo Tokyo Japan
| | - Kenji Takamori
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
- Infection Control Nursing Juntendo University Graduate School of Health Care and Nursing Urayasu Chiba Japan
- Laboratory of Biochemistry Juntendo University Faculty of Health Care and Nursing Urayasu Chiba Japan
| |
Collapse
|
15
|
Oh S, Park JT. Zebrafish model of KRAS-initiated pancreatic endocrine tumor. Anim Cells Syst (Seoul) 2019; 23:209-218. [PMID: 31231585 PMCID: PMC6566937 DOI: 10.1080/19768354.2019.1610058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 11/22/2022] Open
Abstract
Pancreatic cancer constitutes a genetic disease in which somatic mutations in the KRAS proto-oncogene are detected in 95% of cases. Activation of the KRAS proto-oncogene represents an initiating event in pancreatic tumorigenesis. Here, we established a zebrafish pancreatic neoplasia model that recapitulates human pancreatic tumors. Toward this end, we generated a stable CRE/Lox-based zebrafish model system to express oncogenic KRASG12D in the elastase3I domain of the zebrafish pancreas. Lineage tracing experiments showed that early KRASG12D-responsive pancreatic progenitors contribute to endocrine in addition to exocrine cells. In this system, 10% and 40% of zebrafish developed pancreatic tumors by 6 and 12 months, respectively. The histological profiles of these experimental tumors bore a striking resemblance to those of pancreatic endocrine tumors. Immunohistochemical analysis including the endocrine cell-specific marker confirmed the pancreatic tumor region as a characteristic endocrine tumor. Taken together, our zebrafish model data revealed that pancreatic endocrine tumors originate from early KRASG12D-responsive pancreatic progenitor cells. These findings demonstrated that this zebrafish model may be suitable as an experimental and preclinical system to evaluate different strategies for targeting pancreatic endocrine tumors and ultimately improve the outcome for patients with pancreatic endocrine tumors.
Collapse
Affiliation(s)
- Sekyung Oh
- Department of Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea.,Institute for Biomedical Research, Catholic Kwandong University International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
16
|
Pro-angiogenic activity of isoliquiritin on HUVECs in vitro and zebrafish in vivo through Raf/MEK signaling pathway. Life Sci 2019; 223:128-136. [DOI: 10.1016/j.lfs.2019.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/05/2019] [Accepted: 03/10/2019] [Indexed: 12/21/2022]
|
17
|
Ding J, Cheng XY, Liu S, Ji HY, Lin M, Ma R, Meng FL. Apatinib exerts anti-tumour effects on ovarian cancer cells. Gynecol Oncol 2019; 153:165-174. [PMID: 30651189 DOI: 10.1016/j.ygyno.2019.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Apatinib, a small molecule inhibitor of VEGFR-2 tyrosine kinase, shows strong anti-tumour activity against various tumours. The function of apatinib in ovarian cancer, however, remains unclear. This study was conducted to investigate the effects and potential mechanisms by which apatinib modulates the biological function of ovarian cancer cells in vitro and in vivo. METHODS The effects of apatinib on ovarian cancer cells were determined by assessing cell viability, migration and invasion. The cell cycle distribution and apoptosis of ovarian cancer cells were analysed using flow cytometry. Western blotting was performed to determine the levels of signalling pathway markers. A mouse xenograft model was used to evaluate the efficacy of apatinib in preventing tumour growth. RESULTS Apatinib did not appreciably affect ovarian cancer cell proliferation and vitality, but did inhibit ovarian cancer cell migration. Apatinib suppressed the epithelial-mesenchymal transition in ovarian cancer cells by inhibiting the JAK/STAT3, PI3K/AKT and Notch signalling pathways. Apatinib effectively inhibited tumour growth in vivo. CONCLUSION Based on our findings, apatinib is a highly potent, orally active anti-angiogenic and anti-ovarian cancer agent.
Collapse
Affiliation(s)
- Jing Ding
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin 150040, Heilongjiang Province, China
| | - Xiao-Yan Cheng
- Beijing Center for Physical and Chemical Analysis, No. 7 Fengxianzhong Road, Haidian District, Beijing 100094, China
| | - Shuang Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin 150040, Heilongjiang Province, China
| | - Hong-Ying Ji
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin 150040, Heilongjiang Province, China
| | - Mu Lin
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin 150040, Heilongjiang Province, China
| | - Rong Ma
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin 150040, Heilongjiang Province, China.
| | - Fan-Ling Meng
- Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin 150040, Heilongjiang Province, China.
| |
Collapse
|
18
|
Park JT, Leach SD. Zebrafish model of KRAS-initiated pancreatic cancer. Anim Cells Syst (Seoul) 2018; 22:353-359. [PMID: 30533257 PMCID: PMC6282427 DOI: 10.1080/19768354.2018.1530301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer constitutes a genetic disease in which somatic mutations in the KRAS proto-oncogene are detected in a majority of tumors. KRAS mutations represent an early event during pancreatic tumorigenesis that crucial for cancer initiation and progression. Here, we established a zebrafish pancreatic cancer model that highly recapitulates human pancreatic intraepithelial neoplasia (PanIN) development. We established a novel system combining CRE/Lox technology with the GAL4/UAS system to express oncogenic KRAS in the ptf1a domain temporarily. In this system, zebrafish developed PanIN at an 11.1% rate by 24 and 36 weeks after KRASG12V induction. The histological and immunohistochemical profiles of these experimental tumors bore striking resemblance to human PanIN. Within the whole abnormal area, the entire spectrum of differentiation ranging from PanIN-1 to PanIN-3 was noted. Immunohistochemical analysis including Alcian blue, CK-18, cadhedrin-1, and DCLK1 staining confirmed the PanIN region as a characteristic pancreatic cancer precursor lesion. Taken together, these findings demonstrate that this zebrafish model may offer the possibility of an experimental and preclinical system to evaluate different strategies for targeting pancreatic tumors and finally improve the outcome for the patients with pancreatic tumors.
Collapse
Affiliation(s)
- Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Steven D Leach
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
19
|
Krygowska AA, Castellano E. PI3K: A Crucial Piece in the RAS Signaling Puzzle. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031450. [PMID: 28847905 DOI: 10.1101/cshperspect.a031450] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RAS proteins are key signaling switches essential for control of proliferation, differentiation, and survival of eukaryotic cells. RAS proteins are mutated in 30% of human cancers. In addition, mutations in upstream or downstream signaling components also contribute to oncogenic activation of the pathway. RAS proteins exert their functions through activation of several signaling pathways and dissecting the contributions of these effectors in normal cells and in cancer is an ongoing challenge. In this review, we summarize our current knowledge about how RAS regulates type I phosphatidylinositol 3-kinase (PI3K), one of the main RAS effectors. RAS signaling through PI3K is necessary for normal lymphatic vasculature development and for RAS-induced transformation in vitro and in vivo, especially in lung cancer, where it is essential for tumor initiation and necessary for tumor maintenance.
Collapse
Affiliation(s)
- Agata Adelajda Krygowska
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Esther Castellano
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
20
|
Tiwari P, Sahay S, Pandey M, Qadri SSYH, Gupta KP. Preventive effects of butyric acid, nicotinamide, calcium glucarate alone or in combination during the 7, 12-dimethylbenz (a) anthracene induced mouse skin tumorigenesis via modulation of K-Ras-PI3K-AKTpathway and associated micro RNAs. Biochimie 2015; 121:112-22. [PMID: 26655363 DOI: 10.1016/j.biochi.2015.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
Skin cancer is among the most common cancers worldwide and identifiable molecular changes for early and late stage of skin tumorigenesis can suggest the better targets for its control. In this study, we investigated the status of K-Ras-PI3K-AKTpathway followed by NF-κB, cyclin D1, MMP-9 and regulatory micro RNA during 7, 12-dimethylbenz[a]anthracene (DMBA) induced mouse skin tumorigenesis and its prevention by butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG), individually or in combination with respect to time. DMBA upregulated the K-Ras, PI3K, Akt, NF-κB, cyclin D1 and MMP-9, but downregulated the PTEN in a time dependent manner. DMBA also reduced the levels of micoRNA let-7a but induced the levels of miR-21 and miR-20a as a function of time. BA, NA and CAG were found to prevent DMBA induced changes, but they were most effective when used together in a combination. Reduced let-7a and miR-211 were correlated with the overexpression of K-Ras and MMP-9. Overexpression of miR-21 and miR-20a was correlated with the down regulation of PTEN and overexpression of Cyclin D1. Collectively, the enhanced chemopreventive potential of natural compound in combination via regulation of K-Ras-PI3K-AKTpathway along with regulatory micro RNAs provide a newer and effective mean for cancer management.
Collapse
Affiliation(s)
- Prakash Tiwari
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, 226001, India; PhD Programme, Academy of Scientific and Innovative Research (AcSIR), India
| | - Satya Sahay
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, 226001, India; PhD Programme, Academy of Scientific and Innovative Research (AcSIR), India
| | - Manuraj Pandey
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, 226001, India
| | - Syed S Y H Qadri
- Pathology Division, National Institute of Nutrition, Hyderabad, India
| | - Krishna P Gupta
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, 226001, India.
| |
Collapse
|
21
|
Jeffery J, Neyt C, Moore W, Paterson S, Bower NI, Chenevix‐Trench G, Verkade H, Hogan BM, Khanna KK. Cep55 regulates embryonic growth and development by promoting Akt stability in zebrafish. FASEB J 2015; 29:1999-2009. [DOI: 10.1096/fj.14-265090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Jessie Jeffery
- Signal Transduction Laboratory, QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Christine Neyt
- Vascular Biology and Development Laboratory, Institute for Molecular Bioscience, The University of QueenslandBrisbaneQueenslandAustralia
| | - Wade Moore
- Zebrafish Developmental Genetics Laboratory, Monash UniversityClaytonVictoriaAustralia
| | - Scott Paterson
- Vascular Biology and Development Laboratory, Institute for Molecular Bioscience, The University of QueenslandBrisbaneQueenslandAustralia
| | - Neil I. Bower
- Vascular Biology and Development Laboratory, Institute for Molecular Bioscience, The University of QueenslandBrisbaneQueenslandAustralia
| | - Georgia Chenevix‐Trench
- Cancer Genetics Laboratory, QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Heather Verkade
- Zebrafish Developmental Genetics Laboratory, Monash UniversityClaytonVictoriaAustralia
| | - Benjamin M. Hogan
- Vascular Biology and Development Laboratory, Institute for Molecular Bioscience, The University of QueenslandBrisbaneQueenslandAustralia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| |
Collapse
|
22
|
MiR-24 is required for hematopoietic differentiation of mouse embryonic stem cells. PLoS Genet 2015; 11:e1004959. [PMID: 25634354 PMCID: PMC4310609 DOI: 10.1371/journal.pgen.1004959] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Overexpression of miRNA, miR-24, in mouse hematopoietic progenitors increases monocytic/ granulocytic differentiation and inhibits B cell development. To determine if endogenous miR-24 is required for hematopoiesis, we antagonized miR-24 in mouse embryonic stem cells (ESCs) and performed in vitro differentiations. Suppression of miR-24 resulted in an inability to produce blood and hematopoietic progenitors (HPCs) from ESCs. The phenotype is not a general defect in mesoderm production since we observe production of nascent mesoderm as well as mesoderm derived cardiac muscle and endothelial cells. Results from blast colony forming cell (BL-CFC) assays demonstrate that miR-24 is not required for generation of the hemangioblast, the mesoderm progenitor that gives rise to blood and endothelial cells. However, expression of the transcription factors Runx1 and Scl is greatly reduced, suggesting an impaired ability of the hemangioblast to differentiate. Lastly, we observed that known miR-24 target, Trib3, is upregulated in the miR-24 antagonized embryoid bodies (EBs). Overexpression of Trib3 alone in ESCs was able to decrease HPC production, though not as great as seen with miR-24 knockdown. These results demonstrate an essential role for miR-24 in the hematopoietic differentiation of ESCs. Although many miRNAs have been implicated in regulation of hematopoiesis, this is the first miRNA observed to be required for the specification of mammalian blood progenitors from early mesoderm. Studies of mouse embryos and embryonic stem cells (ESCs) have defined the ontogeny of mammalian embryonic hematopoietic cells. The ESC differentiation system has been valuable for dissecting the molecular regulation of the development of mesoderm into HPCs. Extracellular signals regulate a complex network of transcription factors to direct embryonic hematopoietic development. Mammalian miRNAs have previously not been described to regulate this genetic network during embryonic hematopoiesis. However, a role for miRNAs in producing the hemangioblast, and hemogenic endothelium in Xenopus has been described. Our work with ESCs demonstrates a specific requirement for the miRNA, miR-24, in the development of hematopoietic progenitors cells (HPCs). Antagonizing miR-24 in ESCs does not affect generation of BL-CFCs, the in vitro equivalent of the hemangioblast, but does compromise the ability of those BL-CFCs to produced HPCs. Expression of transcription factors required for HPC production downstream of the hemangioblast, Scl, and Runx1, is greatly reduced by antagonizing miR-24. These results identify miR-24, as a mammalian miRNA required for the development of blood from newly formed mesoderm.
Collapse
|
23
|
Cox AD, Der CJ. Ras history: The saga continues. Small GTPases 2014; 1:2-27. [PMID: 21686117 DOI: 10.4161/sgtp.1.1.12178] [Citation(s) in RCA: 536] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/17/2010] [Accepted: 05/24/2010] [Indexed: 12/24/2022] Open
Abstract
Although the roots of Ras sprouted from the rich history of retrovirus research, it was the discovery of mutationally activated RAS genes in human cancer in 1982 that stimulated an intensive research effort to understand Ras protein structure, biochemistry and biology. While the ultimate goal has been developing anti-Ras drugs for cancer treatment, discoveries from Ras have laid the foundation for three broad areas of science. First, they focused studies on the origins of cancer to the molecular level, with the subsequent discovery of genes mutated in cancer that now number in the thousands. Second, elucidation of the biochemical mechanisms by which Ras facilitates signal transduction established many of our fundamental concepts of how a normal cell orchestrates responses to extracellular cues. Third, Ras proteins are also founding members of a large superfamily of small GTPases that regulate all key cellular processes and established the versatile role of small GTP-binding proteins in biology. We highlight some of the key findings of the last 28 years.
Collapse
Affiliation(s)
- Adrienne D Cox
- Department of Radiation Oncology; Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | | |
Collapse
|
24
|
Murillo MM, Zelenay S, Nye E, Castellano E, Lassailly F, Stamp G, Downward J. RAS interaction with PI3K p110α is required for tumor-induced angiogenesis. J Clin Invest 2014; 124:3601-11. [PMID: 25003191 PMCID: PMC4109531 DOI: 10.1172/jci74134] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/29/2014] [Indexed: 12/20/2022] Open
Abstract
Direct interaction of RAS with the PI3K p110α subunit mediates RAS-driven tumor development: however, it is not clear how p110α/RAS-dependant signaling mediates interactions between tumors and host tissues. Here, using a murine tumor cell transfer model, we demonstrated that disruption of the interaction between RAS and p110α within host tissue reduced tumor growth and tumor-induced angiogenesis, leading to improved survival of tumor-bearing mice, even when this interaction was intact in the transferred tumor. Furthermore, functional interaction of RAS with p110α in host tissue was required for efficient establishment and growth of metastatic tumors. Inhibition of RAS and p110α interaction prevented proper VEGF-A and FGF-2 signaling, which are required for efficient angiogenesis. Additionally, disruption of the RAS and p110α interaction altered the nature of tumor-associated macrophages, inducing expression of markers typical for macrophage populations with reduced tumor-promoting capacity. Together, these results indicate that a functional RAS interaction with PI3K p110α in host tissue is required for the establishment of a growth-permissive environment for the tumor, particularly for tumor-induced angiogenesis. Targeting the interaction of RAS with PI3K has the potential to impair tumor formation by altering the tumor-host relationship, in addition to previously described tumor cell-autonomous effects.
Collapse
Affiliation(s)
- Miguel Manuel Murillo
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, United Kingdom. Lung Cancer Group, Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom. Immunobiology Laboratory, Experimental Histopathology Laboratory, and In Vivo Imaging Facility, Cancer Research UK London Research Institute, London, United Kingdom
| | - Santiago Zelenay
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, United Kingdom. Lung Cancer Group, Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom. Immunobiology Laboratory, Experimental Histopathology Laboratory, and In Vivo Imaging Facility, Cancer Research UK London Research Institute, London, United Kingdom
| | - Emma Nye
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, United Kingdom. Lung Cancer Group, Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom. Immunobiology Laboratory, Experimental Histopathology Laboratory, and In Vivo Imaging Facility, Cancer Research UK London Research Institute, London, United Kingdom
| | - Esther Castellano
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, United Kingdom. Lung Cancer Group, Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom. Immunobiology Laboratory, Experimental Histopathology Laboratory, and In Vivo Imaging Facility, Cancer Research UK London Research Institute, London, United Kingdom
| | - Francois Lassailly
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, United Kingdom. Lung Cancer Group, Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom. Immunobiology Laboratory, Experimental Histopathology Laboratory, and In Vivo Imaging Facility, Cancer Research UK London Research Institute, London, United Kingdom
| | - Gordon Stamp
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, United Kingdom. Lung Cancer Group, Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom. Immunobiology Laboratory, Experimental Histopathology Laboratory, and In Vivo Imaging Facility, Cancer Research UK London Research Institute, London, United Kingdom
| | - Julian Downward
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, United Kingdom. Lung Cancer Group, Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom. Immunobiology Laboratory, Experimental Histopathology Laboratory, and In Vivo Imaging Facility, Cancer Research UK London Research Institute, London, United Kingdom
| |
Collapse
|
25
|
Zhang ZR, Li JH, Li S, Liu AL, Hoi PM, Tian HY, Ye WC, Lee SMY, Jiang RW. In vivo angiogenesis screening and mechanism of action of novel tanshinone derivatives produced by one-pot combinatorial modification of natural tanshinone mixture from Salvia miltiorrhiza. PLoS One 2014; 9:e100416. [PMID: 24992590 PMCID: PMC4081027 DOI: 10.1371/journal.pone.0100416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/28/2014] [Indexed: 12/13/2022] Open
Abstract
Background Natural products present in low quantity in herb medicines constitute an important source of chemical diversity. However, the isolation of sufficient amounts of these low abundant constituents for structural modification has been a challenge for several decades and subsequently halts research on the utilization of this important source of chemical entities for drug discovery and development. And, pro-angiogenic therapies are being explored as options to treat cardio-cerebral vascular diseases and wound healing recently. The present study investigates the pro-angiogenic potential of tanshinone derivatives produced by one-pot synthesis using zebrafish model. Methodology/Principal Findings In order to address the difficulty of chemical modification of low abundant constituents in herb medicines, a novel one-pot combinatorial modification was used to diversify a partially purified tanshinone mixture from Salvia miltiorrhiza. This led to the isolation of ten new imidazole-tanshinones (Compounds 1–10) and one oxazole-tanshinone (Compound 11), the structures of which were characterized by spectroscopic methods in combination with single-crystal X-ray crystallographic analysis. The angiogenesis activities of the new tanshinone derivatives were determined in an experimental model of chemical-induced blood vessels damage in zebrafish. Of all the tested new derivatives, compound 10 exhibited the most potent vascular protective and restorative activity with an EC50 value of 0.026 µM. Moreover, the mechanism underlying the pro-angiogenesis effect of 10 probably involved the VEGF/FGF-Src-MAPK and PI3K-P38 signalling pathways by gene expression analysis and a blocking assay with pathways-specific kinase inhibitors. Conclusions/Significance Taken together, our study demonstrated the more distinctive pro-angiogenic properties of 10 than other tanshinones and revealed 10 has potential for development as a pro-angiogenic agent for diseases associated with insufficient angiogenesis. Our results highlighted the great potential of adopting a newly modified one-pot approach to enhance the chemical diversity and biological activities of constituents from natural products regardless of their abundances.
Collapse
Affiliation(s)
- Zhe-Rui Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, P.R. China
| | - Jin-Hang Li
- College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Shang Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, P.R. China
| | - Ai-Lin Liu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, P.R. China
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, P.R. China
| | - Hai-Yan Tian
- College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, P.R. China
- * E-mail: (SMYL); (RWJ)
| | - Ren-Wang Jiang
- College of Pharmacy, Jinan University, Guangzhou, P.R. China
- * E-mail: (SMYL); (RWJ)
| |
Collapse
|
26
|
Abstract
Cerebral cavernous malformation is a clinically well-defined microvascular disorder predisposing to stroke; however, the major phenotype observed in zebrafish is the cardiac defect, specifically an enlarged heart. Less effort has been made to explore this phenotypic discrepancy between human and zebrafish. Given the fact that the gene products from Ccm1/Ccm2 are nearly identical between the two species, the common sense has dictated that the zebrafish animal model would provide a great opportunity to dissect the detailed molecular function of Ccm1/Ccm2 during angiogenesis. We recently reported on the cellular role of the Ccm1 gene in biochemical processes that permit proper angiogenic microvascular development in the zebrafish model. In the course of this experimentation, we encountered a vast amount of recent research on the relationship between dysfunctional angiogenesis and cardiovascular defects in zebrafish. Here we compile the findings of our research with the most recent contributions in this field and glean conclusions about the effect of defective angiogenesis on the developing cardiovascular system. Our conclusion also serves as a bridge for the phenotypic discrepancy between humans and animal models, which might provide some insights into future translational research on human stroke.
Collapse
|
27
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
28
|
Chew TW, Liu XJ, Liu L, Spitsbergen JM, Gong Z, Low BC. Crosstalk of Ras and Rho: activation of RhoA abates Kras-induced liver tumorigenesis in transgenic zebrafish models. Oncogene 2013; 33:2717-27. [PMID: 23812423 DOI: 10.1038/onc.2013.240] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/22/2013] [Accepted: 05/03/2013] [Indexed: 12/15/2022]
Abstract
RAS and Rho small GTPases are key molecular switches that control cell dynamics, cell growth and tissue development through their distinct signaling pathways. Although much has been learnt about their individual functions in both cell and animal models, the physiological and pathophysiological consequences of their signaling crosstalk in multi-cellular context in vivo remain largely unknown, especially in liver development and liver tumorigenesis. Furthermore, the roles of RhoA in RAS-mediated transformation and their crosstalk in vitro remain highly controversial. When challenged with carcinogens, zebrafish developed liver cancer that resembles the human liver cancer both molecularly and histopathologically. Capitalizing on the growing importance and relevance of zebrafish (Danio rerio) as an alternate cancer model, we have generated liver-specific, Tet-on-inducible transgenic lines expressing oncogenic Kras(G12V), RhoA, constitutively active RhoA(G14V) or dominant-negative RhoA(T19N). Double-transgenic lines expressing Kras(G12V) with one of the three RhoA genes were also generated. Based on quantitative bioimaging and molecular markers for genetic and signaling aberrations, we showed that the induced expression of oncogenic Kras during early development led to liver enlargement and hepatocyte proliferation, associated with elevated Erk phosphorylation, activation of Akt2 and modulation of its two downstream targets, p21Cip and S6 kinase. Such an increase in liver size and Akt2 expression was augmented by dominant-negative RhoA(T19N), but was abrogated by the constitutive-active RhoA(G14V). Consequently, induced expression of the oncogenic Kras in adult transgenic fish led to the development of hepatocellular carcinomas. Survival studies further revealed that the co-expression of dominant-negative RhoA(T19N) with oncogenic Kras increased the mortality rate compared with the other single or double-transgenic lines. This study provides evidence of the previously unappreciated signaling crosstalk between Kras and RhoA in regulating liver overgrowth and liver tumorigenesis. Our results also implicate that activating Rho could be beneficial to suppress the Kras-induced liver malignancies.
Collapse
Affiliation(s)
- T W Chew
- 1] Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore [2] Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - X J Liu
- Molecular Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - L Liu
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - J M Spitsbergen
- Department of Microbiology and Marine and Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Z Gong
- Molecular Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - B C Low
- 1] Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore [2] Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Kim RK, Suh Y, Lim EJ, Yoo KC, Lee GH, Cui YH, Son A, Hwang E, Uddin N, Yi JM, Kang SG, Lee SJ. A novel 2-pyrone derivative, BHP, impedes oncogenic KRAS-driven malignant progression in breast cancer. Cancer Lett 2013; 337:49-57. [PMID: 23707634 DOI: 10.1016/j.canlet.2013.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/12/2013] [Accepted: 05/07/2013] [Indexed: 12/27/2022]
Abstract
Elevated KRAS expression has been frequently associated with cancer progression including breast cancer; however, therapeutic approaches targeting KRAS have been widely unsuccessful and KRAS mutant cancers remain unsolved problem in cancer therapy. In this study, we found that a new 2-pyrone derivative, 5-bromo-3-(3-hydroxyprop-1-ynyl)-2H-pyran-2-one (BHP) can block KRAS-driven breast cancer progression. Importantly, treatment with BHP effectively suppressed the migratory and invasive properties along with epithelial-mesenchymal transition (EMT) in MDA-MB231 breast cancer cells that carry oncogenic KRAS and mesenchymal malignant phenotypes. In parallel, BHP also sensitized the cells to anticancer treatment. Consistently, forced-expression of oncogenic KRAS bestowed the migratory and invasive properties, mesenchymal transition and resistance to anticancer treatment into normal human mammalian breast cells MCF10A and relatively non-malignant MCF7 and SK-BR3 breast cancer cells; however, treatment with BHP blocked those KRAS-induced malignant phenotypes. Notably, BHP interfered the interaction of KRAS with Raf-1 in concentration-dependent manner, thereby blocking the downstream effectors of KRAS signaling that is PI3K/AKT and ERK. Taken together, our findings indicate that the BHP, an α-pyrone derivative, suppresses malignant breast cancer progression by targeting of oncogenic KRAS signaling pathways.
Collapse
Affiliation(s)
- Rae-Kwon Kim
- Department of Chemistry, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huelsenbeck J, May M, Schulz F, Schelle I, Ronkina N, Hohenegger M, Fritz G, Just I, Gerhard R, Genth H. Cytoprotective effect of the small GTPase RhoB expressed upon treatment of fibroblasts with the Ras-glucosylating Clostridium sordellii lethal toxin. FEBS Lett 2012; 586:3665-73. [PMID: 22982107 DOI: 10.1016/j.febslet.2012.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/24/2012] [Accepted: 08/24/2012] [Indexed: 01/02/2023]
Abstract
Mono-glucosylation of (H/K/N)Ras by Clostridium sordellii lethal toxin (TcsL) blocks critical survival signaling pathways, resulting in apoptosis. In this study, TcsL and K-Ras knock-down by siRNA are presented to result in expression of the cell death-regulating small GTPase RhoB. TcsL-induced RhoB expression is based on transcriptional activation involving p38(alpha) MAP kinase. Newly synthesized RhoB protein is rapidly degraded in a proteasome- and a caspase-dependent manner, providing first evidence for caspase-dependent degradation of a Rho family protein. Although often characterised as a pro-apoptotic protein, RhoB suppresses caspase-3 activation in TcsL-treated fibroblasts. The finding on the cytoprotective activity of RhoB in TcsL-treated cells re-enforces the concept that RhoB exhibits cytoprotective rather than pro-apoptotic activity in a cellular background of inactive Ras.
Collapse
|
31
|
Fokas E, McKenna WG, Muschel RJ. The impact of tumor microenvironment on cancer treatment and its modulation by direct and indirect antivascular strategies. Cancer Metastasis Rev 2012; 31:823-42. [DOI: 10.1007/s10555-012-9394-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Critical function for the Ras-GTPase activating protein RASA3 in vertebrate erythropoiesis and megakaryopoiesis. Proc Natl Acad Sci U S A 2012; 109:12099-104. [PMID: 22773809 DOI: 10.1073/pnas.1204948109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Phenotype-driven approaches to gene discovery using inbred mice have been instrumental in identifying genetic determinants of inherited blood dyscrasias. The recessive mutant scat (severe combined anemia and thrombocytopenia) alternates between crisis and remission episodes, indicating an aberrant regulatory feedback mechanism common to erythrocyte and platelet formation. Here, we identify a missense mutation (G125V) in the scat Rasa3 gene, encoding a Ras GTPase activating protein (RasGAP), and elucidate the mechanism producing crisis episodes. The mutation causes mislocalization of RASA3 to the cytosol in scat red cells where it is inactive, leading to increased GTP-bound Ras. Erythropoiesis is severely blocked in scat crisis mice, and ~94% succumb during the second crisis (~30 d of age) from catastrophic hematopoietic failure in the spleen and bone marrow. Megakaryopoiesis is also defective during crisis. Notably, the scat phenotype is recapitulated in zebrafish when rasa3 is silenced. These results highlight a critical, conserved, and nonredundant role for RASA3 in vertebrate hematopoiesis.
Collapse
|
33
|
Temporal dissection of K-ras(G12D) mutant in vitro and in vivo using a regulatable K-ras(G12D) mouse allele. PLoS One 2012; 7:e37308. [PMID: 22606359 PMCID: PMC3350485 DOI: 10.1371/journal.pone.0037308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/19/2012] [Indexed: 11/19/2022] Open
Abstract
Animal models which allow the temporal regulation of gene activities are valuable for dissecting gene function in tumorigenesis. Here we have constructed a conditional inducible estrogen receptor-K-rasG12D (ER-K-rasG12D) knock-in mice allele that allows us to temporally switch on or off the activity of K-ras oncogenic mutant through tamoxifen administration. In vitro studies using mice embryonic fibroblast (MEF) showed that a dose of tamoxifen at 0.05 µM works optimally for activation of ER-K-rasG12D independent of the gender status. Furthermore, tamoxifen-inducible activation of K-rasG12D promotes cell proliferation, anchor-independent growth, transformation as well as invasion, potentially via activation of downstream MAPK pathway and cell cycle progression. Continuous activation of K-rasG12D in vivo by tamoxifen treatment is sufficient to drive the neoplastic transformation of normal lung epithelial cells in mice. Tamoxifen withdrawal after the tumor formation results in apoptosis and tumor regression in mouse lungs. Taken together, these data have convincingly demonstrated that K-ras mutant is essential for neoplastic transformation and this animal model may provide an ideal platform for further detailed characterization of the role of K-ras oncogenic mutant during different stages of lung tumorigenesis.
Collapse
|
34
|
Razzaque MA, Komoike Y, Nishizawa T, Inai K, Furutani M, Higashinakagawa T, Matsuoka R. Characterization of a novel KRAS mutation identified in Noonan syndrome. Am J Med Genet A 2012; 158A:524-32. [PMID: 22302539 DOI: 10.1002/ajmg.a.34419] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/02/2011] [Indexed: 12/31/2022]
Abstract
Noonan syndrome (NS) is the most common non-chromosomal syndrome seen in children and is characterized by short stature, dysmorphic facial features, chest deformity, a wide range of congenital heart defects and developmental delay of variable degree. Mutations in the Ras/mitogen-activated protein kinase (MAPK) signaling pathways cause about 70% of NS cases with a KRAS mutation present in about 2%. In a cohort of 65 clinically confirmed NS patients of Japanese origin, we screened for mutations in the RAS genes by direct sequencing. We found a novel mutation in KRAS with an amino acid substitution of asparagine to serine at codon 116 (N116S). We analyzed the biological activity of this mutant by ectopic expression of wild-type or mutant KRAS. NS-associated KRAS mutation resulted in Erk activation and active Ras-GTP levels, and exhibited mild cell proliferation. In addition, kras-targeted morpholino knocked-down zebrafish embryos caused heart and craniofacial malformations, while the expression of mutated kras resulted in maldevelopment of the heart. Our findings implicate that N116S change in KRAS is a hyperactive mutation which is a causative agent of NS through maldevelopment of the heart.
Collapse
Affiliation(s)
- Md Abdur Razzaque
- International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Manavathi B, Lo D, Bugide S, Dey O, Imren S, Weiss MJ, Humphries RK. Functional regulation of pre-B-cell leukemia homeobox interacting protein 1 (PBXIP1/HPIP) in erythroid differentiation. J Biol Chem 2011; 287:5600-14. [PMID: 22187427 DOI: 10.1074/jbc.m111.289843] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pre-B-cell leukemia homeobox interacting protein 1 or human PBX1 interacting protein (PBXIP1/HPIP) is a co-repressor of pre-B-cell leukemia homeobox 1 (PBX1) and is also known to regulate estrogen receptor functions by associating with the microtubule network. Despite its initial discovery in the context of hematopoietic cells, little is yet known about the role of HPIP in hematopoiesis. Here, we show that lentivirus-mediated overexpression of HPIP in human CD34(+) cells enhances hematopoietic colony formation in vitro, whereas HPIP knockdown leads to a reduction in the number of such colonies. Interestingly, erythroid colony number was significantly higher in HPIP-overexpressing cells. In addition, forced expression of HPIP in K562 cells, a multipotent erythro-megakaryoblastic leukemia cell line, led to an induction of erythroid differentiation. HPIP overexpression in both CD34(+) and K562 cells was associated with increased activation of the PI3K/AKT pathway, and corresponding treatment with a PI3K-specific inhibitor, LY-294002, caused a reduction in clonogenic progenitor number in HPIP-expressing CD34(+) cells and decreased K562 cell differentiation. Combined, these findings point to an important role of the PI3K/AKT pathway in mediating HPIP-induced effects on the growth and differentiation of hematopoietic cells. Interestingly, HPIP gene expression was found to be induced in K562 cells in response to erythroid differentiation signals such as DMSO and erythropoietin. The erythroid lineage-specific transcription factor GATA1 binds to the HPIP promoter and activates HPIP gene transcription in a CCCTC-binding factor (CTCF)-dependent manner. Co-immunoprecipitation and co-localization experiments revealed the association of CTCF with GATA1 indicating the recruitment of CTCF/GATA1 transcription factor complex onto the HPIP promoter. Together, this study provides evidence that HPIP is a target of GATA1 and CTCF in erythroid cells and plays an important role in erythroid differentiation by modulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad-500046, India.
| | | | | | | | | | | | | |
Collapse
|
36
|
Castellano E, Downward J. RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes Cancer 2011; 2:261-74. [PMID: 21779497 DOI: 10.1177/1947601911408079] [Citation(s) in RCA: 519] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RAS PROTEINS ARE SMALL GTPASES KNOWN FOR THEIR INVOLVEMENT IN ONCOGENESIS: around 25% of human tumors present mutations in a member of this family. RAS operates in a complex signaling network with multiple activators and effectors, which allows them to regulate many cellular functions such as cell proliferation, differentiation, apoptosis, and senescence. Phosphatidylinositol 3-kinase (PI3K) is one of the main effector pathways of RAS, regulating cell growth, cell cycle entry, cell survival, cytoskeleton reorganization, and metabolism. However, it is the involvement of this pathway in human tumors that has attracted most attention. PI3K has proven to be necessary for RAS-induced transformation in vitro, and more importantly, mice with mutations in the PI3K catalytic subunit p110α that block its ability to interact with RAS are highly resistant to endogenous oncogenic KRAS-induced lung tumorigenesis and HRAS-induced skin carcinogenesis. These animals also have a delayed development of the lymphatic vasculature. Many PI3K inhibitors have been developed that are now in clinical trials. However, it is a complex pathway with many feedback loops, and interactions with other pathways make the results of its inhibition hard to predict. Combined therapy with another RAS-regulated pathway such as RAF/MEK/ERK may be the most effective way to treat cancer, at least in animal models mimicking the human disease. In this review, we will summarize current knowledge about how RAS regulates one of its best-known effectors, PI3K.
Collapse
Affiliation(s)
- Esther Castellano
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, UK
| | | |
Collapse
|
37
|
Abstract
In a chemical screening, we tested the antiangiogenic effects of fumagillin derivatives and identified fumagillin as an inhibitor of definitive hematopoiesis in zebrafish embryos. Fumagillin is known to target methionine aminopeptidase II (MetAP2), an enzyme whose function in hematopoiesis is unknown. We investigated the role of MetAP2 in hematopoiesis by using zebrafish embryo and human umbilical cord blood models. Zebrafish metap2 was expressed ubiquitously during early embryogenesis and later in the somitic region, the caudal hematopoietic tissue, and pronephric duct. metap2 was inhibited by morpholino and fumagillin treatment, resulting in increased mpo expression at 18 hours postfertilization and reduced c-myb expression along the ventral wall of dorsal aorta at 36 hours postfertilization. It also disrupted intersegmental vessels in Tg(fli1:gfp) embryos without affecting development of major axial vasculatures. Inhibition of MetAP2 in CB CD34(+) cells by fumagillin had no effect on overall clonogenic activity but significantly reduced their engraftment into immunodeficient nonobese diabetes/severe combined immunodeficiency mice. metap2 knock-down in zebrafish and inhibition by fumagillin in zebrafish and human CB CD34(+) cells inhibited Calmodulin Kinase II activity and induced ERK phosphorylation. This study demonstrated a hitherto-undescribed role of MetAP2 in definitive hematopoiesis and a possible link to noncanonical Wnt and ERK signaling.
Collapse
|
38
|
Li S, Lou S, Lei BUW, Chan TF, Kwan YW, Chan SW, Leung GPH, Tsui SKW, Lee SMY. Transcriptional profiling of angiogenesis activities of calycosin in zebrafish. MOLECULAR BIOSYSTEMS 2011; 7:3112-21. [DOI: 10.1039/c1mb05206c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Abstract
In the past 5 years we have witnessed significant advances in both the diagnostic process and optimal therapy for patients with essential thrombocythemia (ET). Insights into the underlying molecular mechanisms have been accompanied by the development of new diagnostic tests and by an improved understanding of the relationship between ET and other related myeloproliferative neoplasms, such as polycythemia vera and primary myelofibrosis. In the first part of this review, we describe how recent molecular and histologic studies can be integrated into a streamlined diagnostic process that is applicable to everyday clinical practice. We also address areas of current diagnostic controversy, including heterogeneity within ET and the phenotypic overlap between ET, polycythemia vera, and primary myelofibrosis. In the second part, we provide an overview of our current approach to the treatment of ET, including risk stratification, choice of cytoreductive agent, and a consideration of special situations such as the pregnant or perioperative patient. Areas of controversy discussed include the identification of those at high risk of complications and therapeutic decisions in the younger patient.
Collapse
|
40
|
Catela C, Kratsios P, Hede M, Lang F, Rosenthal N. Serum and glucocorticoid-inducible kinase 1 (SGK1) is necessary for vascular remodeling during angiogenesis. Dev Dyn 2010; 239:2149-60. [PMID: 20568246 DOI: 10.1002/dvdy.22345] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The unquestionable importance of the cardiovascular system for pre- and postnatal life has prompted dissection of the molecular mechanisms underlying its development. Serum and glucocorticoid-inducible kinase 1 (SGK1) is a serine/threonine kinase lying downstream of the phosphoinositide 3 (PI3) kinase pathway, whose embryonic function remains unknown. Here, we show that disruption of Sgk1 in the mouse C57BL/6J genetic background leads to embryonic lethality at embryonic day 10.5-11.5 due to severe embryonic and extraembryonic angiogenic defects and to impaired myocardial trabeculation. Absence of SGK1 results in increased apoptosis of endothelial cells, and of vascular smooth muscle cells highlighting a prosurvival role for SGK1 during angiogenesis. Sgk1 null embryos also display reduced expression levels of Notch signaling genes and decreased expression of the arterial markers Efnb2 and Nrp1. These findings uncover a novel and essential function for SGK1 in cardiovascular development contributing to a better understanding of mammalian angiogenesis.
Collapse
Affiliation(s)
- Catarina Catela
- EMBL Mouse Biology Unit, Campus A. Buzzati-Traverso, Monterotondo-Scalo (RM), Italy.
| | | | | | | | | |
Collapse
|
41
|
Wiens KM, Lee HL, Shimada H, Metcalf AE, Chao MY, Lien CL. Platelet-derived growth factor receptor beta is critical for zebrafish intersegmental vessel formation. PLoS One 2010; 5:e11324. [PMID: 20593033 PMCID: PMC2892519 DOI: 10.1371/journal.pone.0011324] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 05/24/2010] [Indexed: 12/14/2022] Open
Abstract
Background Platelet-derived growth factor receptor β (PDGFRβ) is a tyrosine kinase receptor known to affect vascular development. The zebrafish is an excellent model to study specific regulators of vascular development, yet the role of PDGF signaling has not been determined in early zebrafish embryos. Furthermore, vascular mural cells, in which PDGFRβ functions cell autonomously in other systems, have not been identified in zebrafish embryos younger than 72 hours post fertilization. Methodology/Principal Findings In order to investigate the role of PDGFRβ in zebrafish vascular development, we cloned the highly conserved zebrafish homolog of PDGFRβ. We found that pdgfrβ is expressed in the hypochord, a developmental structure that is immediately dorsal to the dorsal aorta and potentially regulates blood vessel development in the zebrafish. Using a PDGFR tyrosine kinase inhibitor, a morpholino oligonucleotide specific to PDGFRβ, and a dominant negative PDGFRβ transgenic line, we found that PDGFRβ is necessary for angiogenesis of the intersegmental vessels. Significance/Conclusion Our data provide the first evidence that PDGFRβ signaling is required for zebrafish angiogenesis. We propose a novel mechanism for zebrafish PDGFRβ signaling that regulates vascular angiogenesis in the absence of mural cells.
Collapse
Affiliation(s)
- Katie M. Wiens
- Department of Surgery, Keck School of Medicine, University of Southern California and The Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Hyuna L. Lee
- Department of Surgery, Keck School of Medicine, University of Southern California and The Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Hiroyuki Shimada
- Department of Pathology, Keck School of Medicine, University of Southern California and The Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Anthony E. Metcalf
- Department of Biology, California State University San Bernardino, San Bernardino, California, United States of America
| | - Michael Y. Chao
- Department of Biology, California State University San Bernardino, San Bernardino, California, United States of America
| | - Ching-Ling Lien
- Department of Surgery, Keck School of Medicine, University of Southern California and The Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
Cerebral cavernous malformations (CCM) are characterized by abnormal dilated intracranial capillaries that predispose to hemorrhage. The development of some CCMs in humans has been attributed to mutations in the CCM1 genes. Currently, contradictory results have been generated regarding the vascular endothelial cell population changes in Ccm1 deficiency in zebrafish. We hypothesize that the inconsistent results simply reflect the spatial and temporal difference for the observed vascular endothelial cells during zebrafish embryonic development. Using high resolution images in vivo, we demonstrated that the loss of Ccm1 in zebrafish embryos leads to marked increases in apoptosis in vascular endothelium at the end stage of microvascular angiogenesis. In vivo zebrafish studies were further substantiated by in vitro findings in human endothelial cells that elucidated the biochemical pathways of CCM1 deficiency. We found that that loss of CCM1 in vitro promotes apoptosis through decreased activation of the integrin-linked kinase survival signaling pathway. In summary, Ccm1 has been identified as a key modulator in maintaining microvascular integrity during zebrafish embryonic angiogenesis.
Collapse
Affiliation(s)
- Huiling Liu
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Daniele Rigamonti
- Department of Neurological Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ahmed Badr
- COE for Neurosciences, Departments of Anesthesiology, Biomedical Sciences, Neurosurgery, Texas Tech University Health Science Center, 4800 Alberta Avenue, El Paso, TX 79905, USA
| | - Jun Zhang
- COE for Neurosciences, Departments of Anesthesiology, Biomedical Sciences, Neurosurgery, Texas Tech University Health Science Center, 4800 Alberta Avenue, El Paso, TX 79905, USA
| |
Collapse
|
43
|
Cardiac and vascular functions of the zebrafish orthologues of the type I neurofibromatosis gene NFI. Proc Natl Acad Sci U S A 2009; 106:22305-10. [PMID: 19966217 DOI: 10.1073/pnas.0901932106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Von Recklinghausen neurofibromatosis is a common autosomal dominant genetic disorder characterized by benign and malignant tumors of neural crest origin. Significant progress in understanding the pathophysiology of this disease has occurred in recent years, largely aided by the development of relevant animal models. Von Recklinghausen neurofibromatosis is caused by mutations in the NF1 gene, which encodes neurofibromin, a large protein that modulates the activity of Ras. Here, we describe the identification and characterization of zebrafish nf1a and nf1b, orthologues of NF1, and show neural crest and cardiovascular defects resulting from morpholino knockdown, including vascular and cardiac valvular abnormalities. Development of a zebrafish model of von Recklinghausen neurofibromatosis will allow for structure-function analysis and genetic screens in this tractable vertebrate system.
Collapse
|
44
|
Abstract
Phosphatidylinositol 3-kinase (PI3K) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling pathway play an important role in multiple cellular functions such as cell metabolism, proliferation, cell-cycle progression, and survival. PI3K is activated by growth factors and angiogenesis inducers such as vascular endothelial growth factor (VEGF) and angiopoietins. The amplification and mutations of PI3K and the loss of the tumor suppressor PTEN are common in various kinds of human solid tumors. The genetic alterations of upstream and downstream of PI3K signaling molecules such as receptor tyrosine kinases and AKT, respectively, are also frequently altered in human cancer. PI3K signaling regulates tumor growth and angiogenesis by activating AKT and other targets, and by inducing HIF-1 and VEGF expression. Angiogenesis is required for tumor growth and metastasis. In this review, we highlight the recent studies on the roles and mechanisms of PI3K and PTEN in regulating tumorigenesis and angiogenesis, and the roles of the downstream targets of PI3K for transmitting the signals. We also discuss the crosstalk of these signaling molecules and cellular events during tumor growth, metastasis, and tumor angiogenesis. Finally, we summarize the potential applications of PI3K, AKT, and mTOR inhibitors and their outcome in clinical trials for cancer treatment.
Collapse
|
45
|
Han W, Gills JJ, Memmott RM, Lam S, Dennis PA. The chemopreventive agent myoinositol inhibits Akt and extracellular signal-regulated kinase in bronchial lesions from heavy smokers. Cancer Prev Res (Phila) 2009; 2:370-6. [PMID: 19336734 DOI: 10.1158/1940-6207.capr-08-0209] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myoinositol is an isomer of glucose that has chemopreventive activity in animal models of cancer. In a recent phase I clinical trial, myoinositol administration correlated with a statistically significant regression of preexisting bronchial dysplastic lesions in heavy smokers. To shed light on the potential mechanisms involved, activation of Akt and extracellular signal-regulated kinase (ERK), two kinases that control cellular proliferation and survival, was assessed in 206 paired bronchial biopsies from 21 patients who participated in this clinical trial. Before myoinositol treatment, strongly positive staining for activation of Akt was detected in 27% of hyperplastic/metaplastic lesions and 58% of dysplastic lesions (P = 0.05, chi(2) test). There was also a trend toward increased activation of ERK (28% in regions of hyperplasia/metaplasia to 42% of dysplastic lesions). Following myoinositol treatment, significant decreases in Akt and ERK phosphorylation were observed in dysplastic (P < 0.01 and 0.05, respectively) but not hyperplastic/metaplastic lesions (P > 0.05). In vitro, myoinositol decreased endogenous and tobacco carcinogen-induced activation of Akt and ERK in immortalized human bronchial epithelial cells, which decreased cell proliferation and induced a G(1)-S cell cycle arrest. These results show that the phenotypic progression of premalignant bronchial lesions from smokers correlates with increased activation of Akt and ERK and that these kinases are targets of myoinositol. Moreover, they suggest that myoinositol might cause regression of bronchial dysplastic lesions through inhibition of active Akt and ERK.
Collapse
Affiliation(s)
- Wei Han
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20889, USA
| | | | | | | | | |
Collapse
|
46
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2008. [DOI: 10.1089/zeb.2008.9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|