1
|
Xiao Q, Liu Y, Shu X, Li Y, Zhang X, Wang C, He S, Li J, Li T, Liu T, Liu Y. Molecular mechanisms of viral oncogenesis in haematological malignancies: perspectives from metabolic reprogramming, epigenetic regulation and immune microenvironment remodeling. Exp Hematol Oncol 2025; 14:69. [PMID: 40349096 PMCID: PMC12065340 DOI: 10.1186/s40164-025-00655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/13/2025] [Indexed: 05/14/2025] Open
Abstract
Haematological malignancies are one of the most common tumors, with a rising incidence noted over recent decades. Viral infections play significant roles in the pathogenesis of these malignancies globally. This review delves into the contributions of various known viruses-specifically Epstein-Barr virus (EBV), human immunodeficiency virus (HIV), human T-cell leukemia virus type 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), human cytomegalovirus (HCMV), hepatitis B virus (HBV), hepatitis C virus (HCV), and human papillomavirus (HPV)-in the development of haematological malignancies. These viruses are shown to drive tumorigenesis through mechanisms, such as metabolic reprogramming, epigenetic modifications, and remodeling of the immune microenvironment. By directly disrupting fundamental cellular functions and altering metabolic and epigenetic pathways, these viruses foster an immune milieu that supports both viral persistence and tumor growth. A thorough understanding of these viral oncogenic processes is crucial not only for etiological discovery but also for developing targeted interventions. This review emphasizes the need for continued research into the specific ways these viruses manipulate the host cell's metabolic and epigenetic environments, aiming to provide insights that could guide future advancements in treatment modalities.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yi Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xuejiao Shu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ya Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaomei Zhang
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Chaoyu Wang
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Sanxiu He
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jun Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yao Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
2
|
Wan LY, Lam SM, Huang HH, Cao WJ, Cao XY, Li XM, Zhang LP, Gao JM, Zhang C, Fan X, Jiao YM, Shui G, Wang FS, Song JW. Multi-omics dissection of metabolic dysregulation associated with immune recovery in people living with HIV-1. J Transl Med 2025; 23:143. [PMID: 39891216 PMCID: PMC11786453 DOI: 10.1186/s12967-025-06168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Despite the success of antiretroviral therapy (ART) in suppressing HIV-1 replication, some people living with HIV-1 (PLWH) fail to achieve an optimal recovery of CD4 T cells, and precise metabolic regulation underlying immune recovery remained poorly understood. METHODS In this cross-sectional study, mass spectrometry was used for quantitative analysis of plasma metabolome and lipidome in 24 treatment-naïve PLWH (TNs), 33 immunological responders (IRs), 35 immunological non-responders (INRs), and 16 healthy controls (HCs). The data were analyzed using the Mann-Whitney U-test, Kruskal-Wallis test, Spearman correlation, and LASSO regression analysis. RESULTS Significant metabolic dysregulation was observed in TNs, IRs and INRs compared to HCs. In TNs, metabolomic analysis revealed increased levels of 3-hydroxyoctanoic acid, 3-oxododecanoic acid, 5-hydroxy-L-tryptophan, 5-hydroxyindoleacetic acid, L-kynurenine, oleoylcarnitine, and pseudouridine that were positively correlated with CD8 T cell activation and inflammation-related markers, and decreased levels of phosphorylcholine, ribothymidine, and thymine that were negatively correlated. Notably, 3-hydroxyoctanoic acid and thymine were consistently associated with CD4 T cell counts and inflammation-related markers in PLWH, regardless of ART. Pathway analysis uncovered the biosynthesis of unsaturated fatty acids as the major dysregulated pathway in TNs, IRs, and INRs, while primary bile acid biosynthesis was the dysregulated pathway specifically in INRs. Lipidomic analysis indicated higher plasma triacylglycerols, free fatty acids, ceramide, and monosialodihexosyl gangliosides (GM3) in TNs, IRs, and INRs compared to HCs. Pathway enrichment and differential correlation analyses underscore perturbed systemic lipid metabolism in treatment response to ART, possibly mediated by host-commensal metabolic interactions. Ultimately, we identified two panels, one consisting of 9 metabolites and another of 8 lipids, that can effectively distinguish INRs from IRs. CONCLUSIONS Metabolic aberrations induced by chronic HIV-1 infection persist and do not recover with ART. Abnormal primary bile acid biosynthesis pathway and levels of DHA-containing lipids are closely associated with CD4 T cell recovery. These finding provide new intervention targets to achieve better immune recovery in PLWH.
Collapse
Affiliation(s)
- Lin-Yu Wan
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- LipidALL Technologies Company Limited, Changzhou, China
| | - Hui-Huang Huang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Wen-Jing Cao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiang-Yi Cao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xue-Meng Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Li-Ping Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jia-Min Gao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Fu-Sheng Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| |
Collapse
|
3
|
Fisher SA, Jao JK, Yee LM, Serghides L, Chadwick EG, Jacobson DL. Association of Fatty Acid Signatures with HIV Viremia in Pregnancy. AIDS Res Hum Retroviruses 2024; 40:257-267. [PMID: 37772708 PMCID: PMC11040191 DOI: 10.1089/aid.2023.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFAs) are vital for fetal metabolic programming and immunomodulation. Higher n-6:n-3 ratios, reflecting a proinflammatory eicosanoid profile, are associated with adverse perinatal outcomes. Limited data exist, however, on n-6 and n-3 PUFAs specifically in the context of HIV and pregnancy. Our objective was to assess HIV clinical factors associated with PUFA signatures in pregnant persons with HIV (PWH). In this observational cohort, third trimester plasma PUFA concentrations (six n-6 PUFAs, four n-3 PUFAs) were measured, each as a percent of total fatty acid content, via esterification and gas chromatography in pregnant PWH enrolled from 2009 to 2011 in the Nutrition substudy of the Pediatric HIV/AIDS Cohort Study. PUFA ratios (n-6:n-3) were calculated. Exposures assessed were first/second trimester CD4 count (<200 vs. >200 cells/mm3), HIV RNA viral load (VL) (VL >400 vs. <400 copies/mL), and protease inhibitor (PI) versus non-PI antiretroviral therapy (ART). Linear regression models using generalized estimating equations were fit to assess mean differences and their 95% confidence intervals (CIs) in n-6:n-3 by each exposure, adjusted for potential confounders. Of 264 eligible pregnant PWH, the median age was 27 years, 12% had CD4 counts <200 cells/mm3, and 56% had VL ≥400 copies/mL in the first/second trimesters. PUFA concentrations and ratios were similar by CD4 count and PI exposure. n-3 concentrations were lower in PWH with VL ≥400 versus <400 copies/mL (median 2.8% vs. 3.0%, p < .01, respectively); no differences were observed for n-6 concentrations by VL. In models adjusted for age, education, tobacco use, body mass index, and PI-based ART, n-6:n-3 was higher in those with VL ≥400 copies/mL (mean difference: 1.6; 95% CI: 0.79-2.48, p = .0001). Therefore, PUFA signatures in viremic pregnant PWH reflect a proinflammatory eicosanoid milieu. Future studies should evaluate associations of proinflammatory PUFA signatures with adverse perinatal outcomes in PWH.
Collapse
Affiliation(s)
- Stephanie A. Fisher
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jennifer K. Jao
- Division of Infectious Diseases, Departments of Pediatrics and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Lynn M. Yee
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Ellen G. Chadwick
- Division of Infectious Diseases, Departments of Pediatrics and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Denise L. Jacobson
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Mu W, Patankar V, Kitchen S, Zhen A. Examining Chronic Inflammation, Immune Metabolism, and T Cell Dysfunction in HIV Infection. Viruses 2024; 16:219. [PMID: 38399994 PMCID: PMC10893210 DOI: 10.3390/v16020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Vaibhavi Patankar
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott Kitchen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Ueland T, Waagsbø B, Berge RK, Trøseid M, Aukrust P, Damås JK. Fatty Acids Composition and HIV Infection: Altered Levels of n-6 Polyunsaturated Fatty Acids Are Associated with Disease Progression. Viruses 2023; 15:1613. [PMID: 37515299 PMCID: PMC10385810 DOI: 10.3390/v15071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Fatty acids (FAs) are important regulators of immune responses and innate defense mechanisms. We hypothesized that disturbed FA metabolism could contribute to the progression of HIV infection. Plasma levels of 45 FAs were analyzed with gas chromatography in healthy controls and HIV-infected patients with regard to Mycobacterium avium complex (MAC) infection. In vitro, we assessed MAC-PPD-induced release of inflammatory cytokines in peripheral and bone marrow mononuclear cells (PBMC and BMMC) according to levels of n-6 polyunsaturated fatty acids (PUFAs). While plasma saturated FAs were higher in HIV infection, PUFAs, and in particular the n-6 PUFA arachidonic acid (AA), were lower in patients with advanced disease. The ratio between AA and precursor dihomo-γ-linolenic acid, reflecting Δ5-desaturase activity, was markedly lower and inversely correlated with plasma HIV RNA levels in these patients. Depletion of AA was observed prior to MAC infection, and MAC-PPD-induced release of TNF and IL-6 in PBMC and BMMC was lower in patients with low plasma AA. Our findings suggest that dysregulated metabolism of n-6 PUFAs may play a role in the progression of HIV infection. While high AA may contribute to chronic inflammation in asymptomatic HIV-infected patients, low AA seems to increase the susceptibility to MAC infection in patients with advanced disease.
Collapse
Affiliation(s)
- Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, NO-0420 Oslo, Norway
- Faculty of Medicine, University of Oslo, NO-0318 Oslo, Norway
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, NO-9038 Tromsø, Norway
| | - Bjørn Waagsbø
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Department of Infectious Diseases, St Olav's Hospital, NO-7006 Trondheim, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, NO-5021 Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, NO-5021 Bergen, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, NO-0420 Oslo, Norway
- Faculty of Medicine, University of Oslo, NO-0318 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, NO-0424 Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, NO-0420 Oslo, Norway
- Faculty of Medicine, University of Oslo, NO-0318 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, NO-0424 Oslo, Norway
| | - Jan K Damås
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Department of Infectious Diseases, St Olav's Hospital, NO-7006 Trondheim, Norway
| |
Collapse
|
6
|
Rajsfus BF, Mohana-Borges R, Allonso D. Diabetogenic viruses: linking viruses to diabetes mellitus. Heliyon 2023; 9:e15021. [PMID: 37064445 PMCID: PMC10102442 DOI: 10.1016/j.heliyon.2023.e15021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Diabetes Mellitus (DM) is a group of chronic metabolic diseases distinguished by elevated glycemia due to the alterations in insulin metabolism. DM is one of the most relevant diseases of the modern world, with high incidence and prevalence worldwide, associated with severe systemic complications and increased morbidity and mortality rates. Although genetic factors and lifestyle habits are two of the main factors involved in DM onset, viral infections, such as enteroviruses, cytomegalovirus, hepatitis C virus, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, among others, have been linked as triggers of type 1 (T1DM) and type 2 (T2DM) diabetes. Over the years, various groups identified different mechanisms as to how viruses can promote these metabolic syndromes. However, this field is still poorly explored and needs further research, as millions of people live with these pathologies. Thus, this review aims to ex-plore the different processes of how viruses can induce DM and their contribution to the prevalence and incidence of DM worldwide.
Collapse
|
7
|
Yero A, Bouassa RSM, Ancuta P, Estaquier J, Jenabian MA. Immuno-metabolic control of the balance between Th17-polarized and regulatory T-cells during HIV infection. Cytokine Growth Factor Rev 2023; 69:1-13. [PMID: 36681548 DOI: 10.1016/j.cytogfr.2023.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Th17-polarized CD4+ effector T-cells together with their immunosuppressive regulatory T-cell (Treg) counterparts, with transcriptional profiles governed by the lineage transcription factors RORγt/RORC2 and FOXP3, respectively, are important gatekeepers at mucosal interfaces. Alterations in the Th17/Treg ratios, due to the rapid depletion of Th17 cells and increased Treg frequencies, are a hallmark of both HIV and SIV infections and a marker of disease progression. The shift in Th17/Treg balance, in favor of increased Treg frequencies, contributes to gut mucosal permeability, immune dysfunction, and microbial translocation, subsequently leading to chronic immune activation/inflammation and disease progression. Of particular interest, Th17 cells and Tregs share developmental routes, with changes in the Th17 versus Treg fate decision influencing the pro-inflammatory versus anti-inflammatory responses. The differentiation and function of Th17 cells and Tregs rely on independent yet complementary metabolic pathways. Several pathways have been described in the literature to be involved in Th17 versus Treg polarization, including 1) the activity of ectonucleotidases CD39/CD73; 2) the increase in TGF-β1 production; 3) a hypoxic environment, and subsequent upregulation in hypoxia-inducible factor-1α (HIF-1α); 4) the increased mTOR activity and glycolysis induction; 5) the lipid metabolism, including fatty acid synthesis, fatty acids oxidation, cholesterol synthesis, and lipid storage, which are regulated by the AMPK, mevalonate and PPARγ pathways; and 6) the tryptophan catabolism. These metabolic pathways are understudied in the context of HIV-1 infection. The purpose of this review is to summarize the current knowledge on metabolic pathways that are dysregulated during HIV-1 infection and their impact on Th17/Treg balance.
Collapse
Affiliation(s)
- Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Ralph-Sydney Mboumba Bouassa
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Petronela Ancuta
- Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jerome Estaquier
- Centre hospitalier universitaire (CHU) de Québec Research Center, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montréal, QC, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
8
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Fragkou PC, Moschopoulos CD, Dimopoulou D, Triantafyllidi H, Birmpa D, Benas D, Tsiodras S, Kavatha D, Antoniadou A, Papadopoulos A. Cardiovascular disease and risk assessment in people living with HIV: Current practices and novel perspectives. Hellenic J Cardiol 2023; 71:42-54. [PMID: 36646212 DOI: 10.1016/j.hjc.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/28/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection represents a major cardiovascular risk factor, and the cumulative cardiovascular disease (CVD) burden among aging people living with HIV (PLWH) constitutes a leading cause of morbidity and mortality. To date, CVD risk assessment in PLWH remains challenging. Therefore, it is necessary to evaluate and stratify the cardiovascular risk in PLWH with appropriate screening and risk assessment tools and protocols to correctly identify which patients are at a higher risk for CVD and will benefit most from prevention measures and timely management. This review aims to accumulate the current evidence on the association between HIV infection and CVD, as well as the risk factors contributing to CVD in PLWH. Furthermore, considering the need for cardiovascular risk assessment in daily clinical practice, the purpose of this review is also to report the current practices and novel perspectives in cardiovascular risk assessment of PLWH and provide further insights into the development and implementation of appropriate CVD risk stratification and treatment strategies, particularly in countries with high HIV burden and limited resources.
Collapse
Affiliation(s)
- Paraskevi C Fragkou
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Charalampos D Moschopoulos
- Fourth Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimitra Dimopoulou
- Second Department of Pediatrics, Children's Hospital "Panagiotis and Aglaia Kyriakou", National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Helen Triantafyllidi
- Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dionysia Birmpa
- Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimitrios Benas
- Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Sotirios Tsiodras
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimitra Kavatha
- Fourth Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Anastasia Antoniadou
- Fourth Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Antonios Papadopoulos
- Fourth Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
10
|
Li SY, Yin LB, Ding HB, Liu M, Lv JN, Li JQ, Wang J, Tang T, Fu YJ, Jiang YJ, Zhang ZN, Shang H. Altered lipid metabolites accelerate early dysfunction of T cells in HIV-infected rapid progressors by impairing mitochondrial function. Front Immunol 2023; 14:1106881. [PMID: 36875092 PMCID: PMC9981933 DOI: 10.3389/fimmu.2023.1106881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/27/2023] [Indexed: 02/19/2023] Open
Abstract
The complex mechanism of immune-system damage in HIV infection is incompletely understood. HIV-infected "rapid progressors" (RPs) have severe damage to the immune system early in HIV infection, which provides a "magnified" opportunity to study the interaction between HIV and the immune system. In this study, forty-four early HIV-infected patients (documented HIV acquisition within the previous 6 months) were enrolled. By study the plasma of 23 RPs (CD4+ T-cell count < 350 cells/µl within 1 year of infection) and 21 "normal progressors" (NPs; CD4+ T-cell count > 500 cells/μl after 1 year of infection), eleven lipid metabolites were identified that could distinguish most of the RPs from NPs using an unsupervised clustering method. Among them, the long chain fatty acid eicosenoate significantly inhibited the proliferation and secretion of cytokines and induced TIM-3 expression in CD4+ and CD8+ T cells. Eicosenoate also increased levels of reactive oxygen species (ROS) and decreased oxygen consumption rate (OCR) and mitochondrial mass in T cells, indicating impairment in mitochondrial function. In addition, we found that eicosenoate induced p53 expression in T cells, and inhibition of p53 effectively decreased mitochondrial ROS in T cells. More importantly, treatment of T cells with the mitochondrial-targeting antioxidant mito-TEMPO restored eicosenoate-induced T-cell functional impairment. These data suggest that the lipid metabolite eicosenoate inhibits immune T-cell function by increasing mitochondrial ROS by inducing p53 transcription. Our results provide a new mechanism of metabolite regulation of effector T-cell function and provides a potential therapeutic target for restoring T-cell function during HIV infection.
Collapse
Affiliation(s)
- Si-Yao Li
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Lin-Bo Yin
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Department of Clinical Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| | - Hai-Bo Ding
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Mei Liu
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Jun-Nan Lv
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Jia-Qi Li
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Jing Wang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Tian Tang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ya-Jing Fu
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yong-Jun Jiang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Zi-Ning Zhang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hong Shang
- National Health Commission (NHC) Key Laboratory of Acquired Immunodeficiency Syndrome (AIDS) Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Units of Medical Laboratory, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
11
|
Herrington G, Riche DM. Part I: Interactive case: Hyperlipidemia management for special populations. JOURNAL OF THE AMERICAN COLLEGE OF CLINICAL PHARMACY 2022. [DOI: 10.1002/jac5.1688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Immunometabolic Reprogramming in Response to HIV Infection Is Not Fully Normalized by Suppressive Antiretroviral Therapy. Viruses 2022; 14:v14061313. [PMID: 35746785 PMCID: PMC9228482 DOI: 10.3390/v14061313] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background: HIV infection results in immunometabolic reprogramming. While we are beginning to understand how this metabolic reprogramming regulates the immune response to HIV infection, we do not currently understand the impact of ART on immunometabolism in people with HIV (PWH). Methods: Serum obtained from HIV-infected (n = 278) and geographically matched HIV seronegative control subjects (n = 300) from Rakai Uganda were used in this study. Serum was obtained before and ~2 years following the initiation of ART from HIV-infected individuals. We conducted metabolomics profiling of the serum and focused our analysis on metabolic substrates and pathways assocaited with immunometabolism. Results: HIV infection was associated with metabolic adaptations that implicated hyperactive glycolysis, enhanced formation of lactate, increased activity of the pentose phosphate pathway (PPP), decreased β-oxidation of long-chain fatty acids, increased utilization of medium-chain fatty acids, and enhanced amino acid catabolism. Following ART, serum levels of ketone bodies, carnitine, and amino acid metabolism were normalized, however glycolysis, PPP, lactate production, and β-oxidation of long-chain fatty acids remained abnormal. Conclusion: Our findings suggest that HIV infection is associated with an increased immunometabolic demand that is satisfied through the utilization of alternative energetic substrates, including fatty acids and amino acids. ART alone was insufficient to completely restore this metabolic reprogramming to HIV infection, suggesting that a sustained impairment of immunometabolism may contribute to chronic immune activation and comorbid conditions in virally suppressed PWH.
Collapse
|
13
|
Hu S, Buser E, Arredondo J, Relyea D, Santos Rocha C, Dandekar S. Altered Expression of ACE2 and Co-receptors of SARS-CoV-2 in the Gut Mucosa of the SIV Model of HIV/AIDS. Front Microbiol 2022; 13:879152. [PMID: 35495669 PMCID: PMC9048205 DOI: 10.3389/fmicb.2022.879152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 12/02/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of the COVID-19 pandemic, is initiated by its binding to the ACE2 receptor and other co-receptors on mucosal epithelial cells. Variable outcomes of the infection and disease severity can be influenced by pre-existing risk factors. Human immunodeficiency virus (HIV), the cause of AIDS, targets the gut mucosal immune system and impairs epithelial barriers and mucosal immunity. We sought to determine the impact and mechanisms of pre-existing HIV infection increasing mucosal vulnerability to SARS-CoV-2 infection and disease. We investigated changes in the expression of ACE2 and other SARS-CoV-2 receptors and related pathways in virally inflamed gut by using the SIV infected rhesus macaque model of HIV/AIDS. Immunohistochemical analysis showed sustained/enhanced ACE2 expression in the gut epithelium of SIV infected animals compared to uninfected controls. Gut mucosal transcriptomic analysis demonstrated enhanced expression of host factors that support SARS-CoV-2 entry, replication, and infection. Metabolomic analysis of gut luminal contents revealed the impact of SIV infection as demonstrated by impaired mitochondrial function and decreased immune response, which render the host more vulnerable to other pathogens. In summary, SIV infection resulted in sustained or increased ACE2 expression in an inflamed and immune-impaired gut mucosal microenvironment. Collectively, these mucosal changes increase the susceptibility to SARS-CoV-2 infection and disease severity and result in ineffective viral clearance. Our study highlights the use of the SIV model of AIDS to fill the knowledge gap of the enteric mechanisms of co-infections as risk factors for poor disease outcomes, generation of new viral variants and immune escape in COVID-19.
Collapse
Affiliation(s)
- Shuang Hu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Elise Buser
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Juan Arredondo
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Dylan Relyea
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Clarissa Santos Rocha
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses 2022; 14:602. [PMID: 35337009 PMCID: PMC8955778 DOI: 10.3390/v14030602] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer and has proven to be critical in viral infections. Metabolic reprogramming provides the cell with energy and biomass for large-scale biosynthesis. Based on studies of the cellular changes that contribute to metabolic reprogramming, seven main hallmarks can be identified: (1) increased glycolysis and lactic acid, (2) increased glutaminolysis, (3) increased pentose phosphate pathway, (4) mitochondrial changes, (5) increased lipid metabolism, (6) changes in amino acid metabolism, and (7) changes in other biosynthetic and bioenergetic pathways. Viruses depend on metabolic reprogramming to increase biomass to fuel viral genome replication and production of new virions. Viruses take advantage of the non-metabolic effects of metabolic reprogramming, creating an anti-apoptotic environment and evading the immune system. Other non-metabolic effects can negatively affect cellular function. Understanding the role metabolic reprogramming plays in viral pathogenesis may provide better therapeutic targets for antivirals.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
- Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
15
|
Jao J, Balmert LC, Sun S, McComsey GA, Brown TT, Tien PC, Currier JS, Stein JH, Qiu Y, LeRoith D, Kurland IJ. Distinct Lipidomic Signatures in People Living With HIV: Combined Analysis of ACTG 5260s and MACS/WIHS. J Clin Endocrinol Metab 2022; 107:119-135. [PMID: 34498048 PMCID: PMC8684537 DOI: 10.1210/clinem/dgab663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Disentangling contributions of HIV from antiretroviral therapy (ART) and understanding the effects of different ART on metabolic complications in persons living with HIV (PLHIV) has been challenging. OBJECTIVE We assessed the effect of untreated HIV infection as well as different antiretroviral therapy (ART) on the metabolome/lipidome. METHODS Widely targeted plasma metabolomic and lipidomic profiling was performed on HIV-seronegative individuals and people living with HIV (PLHIV) before and after initiating ART (tenofovir/emtricitabine plus atazanavir/ritonavir [ATV/r] or darunavir/ritonavir [DRV/r] or raltegravir [RAL]). Orthogonal partial least squares discriminant analysis was used to assess metabolites/lipid subspecies that discriminated between groups. Graphical lasso estimated group-specific metabolite/lipid subspecies networks associated with the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). Correlations between inflammatory markers and metabolites/lipid subspecies were visualized using heat maps. RESULTS Of 435 participants, 218 were PLHIV. Compared to HIV-seronegative individuals, ART-naive PLHIV exhibited higher levels of saturated triacylglycerols/triglycerides (TAGs) and 3-hydroxy-kynurenine, lower levels of unsaturated TAGs and N-acetyl-tryptophan, and a sparser and less heterogeneous network of metabolites/lipid subspecies associated with HOMA-IR. PLHIV on RAL vs ATV/r or DRV/r had lower saturated and unsaturated TAGs. Positive correlations were found between medium-long chain acylcarnitines (C14-C6 ACs), palmitate, and HOMA-IR for RAL but not ATV/r or DRV/r. Stronger correlations were seen for TAGs with interleukin 6 and high-sensitivity C-reactive protein after RAL vs ATV/r or DRV/r initiation; these correlations were absent in ART-naive PLHIV. CONCLUSION Alterations in the metabolome/lipidome suggest increased lipogenesis for ART-naive PLHIV vs HIV-seronegative individuals, increased TAG turnover for RAL vs ATV/r or DRV/r, and increased inflammation associated with this altered metabolome/lipidome after initiating ART. Future studies are needed to understand cardiometabolic consequences of lipogenesis and inflammation in PLHIV.
Collapse
Affiliation(s)
- Jennifer Jao
- Northwestern University Feinberg School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Diseases, Department of Medicine, Division of Adult Infectious Diseases, Chicago, Illinois 60611, USA
| | - Lauren C Balmert
- Northwestern University Feinberg School of Medicine, Department of Preventive Medicine, Division of Biostatistics, Chicago, Illinois 60611, USA
| | - Shan Sun
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Division of Pediatric Infectious Diseases, Chicago, Illinois 60611, USA
| | - Grace A McComsey
- University Hospitals Cleveland Medical Center and Case Western Reserve University, Department of Pediatrics, Department of Medicine, Cleveland, Ohio 44106, USA
| | - Todd T Brown
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Phyllis C Tien
- University of California, San Francisco, Department of Medicine and Department of Veterans Affairs Medical Center, Division of Infectious Diseases, San Francisco, California 94121, USA
| | - Judith S Currier
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California 90095, USA
| | - James H Stein
- University of Wisconsin School of Medicine and Public Health, Department of Medicine, Cardiovascular Medicine Division, Madison, Wisconsin 53726, USA
| | - Yunping Qiu
- Stable Isotope and Metabolomics Core Facility, Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Derek LeRoith
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Division of Endocrinology, New York, New York 10029, USA
| | - Irwin J Kurland
- Stable Isotope and Metabolomics Core Facility, Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
16
|
Malhi M, Norris MJ, Duan W, Moraes TJ, Maynes JT. Statin-mediated disruption of Rho GTPase prenylation and activity inhibits respiratory syncytial virus infection. Commun Biol 2021; 4:1239. [PMID: 34716403 PMCID: PMC8556396 DOI: 10.1038/s42003-021-02754-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/06/2021] [Indexed: 11/28/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe respiratory tract infections in children. To uncover new antiviral therapies, we developed a live cell-based high content screening approach for rapid identification of RSV inhibitors and characterized five drug classes which inhibit the virus. Among the molecular targets for each hit, there was a strong functional enrichment in lipid metabolic pathways. Modulation of lipid metabolites by statins, a key hit from our screen, decreases the production of infectious virus through a combination of cholesterol and isoprenoid-mediated effects. Notably, RSV infection globally upregulates host protein prenylation, including the prenylation of Rho GTPases. Treatment by statins or perillyl alcohol, a geranylgeranyltransferase inhibitor, reduces infection in vitro. Of the Rho GTPases assayed in our study, a loss in Rac1 activity strongly inhibits the virus through a decrease in F protein surface expression. Our findings provide new insight into the importance of host lipid metabolism to RSV infection and highlight geranylgeranyltransferases as an antiviral target for therapeutic development.
Collapse
Affiliation(s)
- Manpreet Malhi
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael J Norris
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Wenming Duan
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Theo J Moraes
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jason T Maynes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
17
|
Nyirenda M. Assessment of cardiovascular disease risks using Framingham risk scores (FRS) in HIV-positive and HIV-negative older adults in South Africa. Prev Med Rep 2021; 22:101352. [PMID: 33816089 PMCID: PMC8010471 DOI: 10.1016/j.pmedr.2021.101352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 01/28/2023] Open
Abstract
The relationship between HIV and cardiovascular diseases (CVDs) remains complex. The aim of this study was to estimate the 10-year CVD risk among HIV-positive and HIV-negative people. The validated Framingham Risk Score (FRS) based on the Framingham Heart study was used to predict the CVD risk. Data for this analysis came from a 2016 cross-sectional study of South African community-dwelling older adults (≥50 years). Logistic regression models were constructed to assess the association between CVD risk and HIV. 403 respondents with a mean age 60 (SD = 6.7) years were enrolled, of whom 70% were female, 75% black African, 21.9% smokers, 77.2% never did any vigorous physical activity, and 17% were HIV-positive. The average 10-year CVD risk was 17%; significantly higher in men than women (23.2 vs 14.3%, p < 0.001). Overall, 33% had low CVD risk (FRS < 10%), 39% intermediate (FRS 10-19%) and 28% high risk (FRS ≥ 20%). Furthermore, participants who were HIV-positive were less likely than HIV-negative participants to have high CVD risk (aOR 0.27, 95% CI 0.11-0.66, p = 0.004). These findings of HIV-positive respondents having lower CVD risk than HIV-negative respondents could be due to three issues i) HIV-positive people having lesser cardio-metabolic disease risk factors; ii) possibly higher health care utilization by HIV-positive people; and/or iii) the neglect of HIV-negative people in HIV focused health systems. Periodic cardiovascular disease monitoring using tools like the Framingham Risk Scores is needed. Furthermore, studies with more robust designs are needed to further elucidate the relationship between HIV and CVD risks in HIV endemic sub-Saharan Africa.
Collapse
Affiliation(s)
- Makandwe Nyirenda
- South African Medical Research Council, Burden of Disease Research Unit, Francie Van Zijl Drive, Cape Town, South Africa
- University of KwaZulu-Natal, School of Public Health and Nursing, Howard Campus, Durban, South Africa
| |
Collapse
|
18
|
Oliveira MS, da Silva Torquato BG, Tsuji SY, Aguiar LS, Juliano GR, da Silveira LAM, Miranda Corrêa RR, Rocha LB, da Fonseca Ferraz ML. Morphological and Histopathological Study of Autopsied Patients with Atherosclerosis and HIV. Curr HIV Res 2021; 19:121-127. [PMID: 33135614 DOI: 10.2174/1570162x18999201029123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/18/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic infection by HIV evolves with a vascular inflammatory action causing endothelial dysfunction. The action of the virus, as well as the side effects of antiretroviral drugs, contribute to the progression of cardiovascular diseases. The present study aimed to evaluate the percentage of collagen fibers and the density of mast cells, chymase and tryptase, in aortas of patients with and without HIV, and also patients with and without atherosclerosis. METHODS Aortic fragments were obtained from autopsied patients aged 22-69 years and selected regardless of the cause of death or underlying disease. The samples were divided into four groups, (1) Group with HIV and with atherosclerosis; (2) Group with HIV and without atherosclerosis; (3) Group without HIV and with atherosclerosis; (4) Group without HIV and without atherosclerosis (Control). The percentage of collagen fibers was analyzed in the intima-media layer and the density of mast cells was analyzed in all aortic layers. Graphpad Prism 5.0® software was used for statistical analysis. RESULTS There were more collagen fibers in HIV patients, with or without atherosclerosis. The group with HIV and atherosclerosis presented a higher density of chymase and tryptase mast cells. The correlation between collagen fibers and age was negative in the non-HIV group and with atherosclerosis. CONCLUSION The inflammatory process resulting from HIV infection may be relevant in the alteration of aortic collagen fibers and in triggering or accelerating atherosclerosis. The study is important because HIV patients have increased risks for the development of cardiovascular diseases, and follow-up is necessary to prevent such diseases.
Collapse
Affiliation(s)
- Mariana Silva Oliveira
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Bianca Gonçalves da Silva Torquato
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Simone Yumi Tsuji
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Laura Sanches Aguiar
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Guilherme Ribeiro Juliano
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Luciano Alves Matias da Silveira
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Rosana Rosa Miranda Corrêa
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Lenaldo Branco Rocha
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Mara Lúcia da Fonseca Ferraz
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
19
|
Abstract
Antiretroviral therapies efficiently block HIV-1 replication but need to be maintained for life. Moreover, chronic inflammation is a hallmark of HIV-1 infection that persists despite treatment. There is, therefore, an urgent need to better understand the mechanisms driving HIV-1 pathogenesis and to identify new targets for therapeutic intervention. In the past few years, the decisive role of cellular metabolism in the fate and activity of immune cells has been uncovered, as well as its impact on the outcome of infectious diseases. Emerging evidence suggests that immunometabolism has a key role in HIV-1 pathogenesis. The metabolic pathways of CD4+ T cells and macrophages determine their susceptibility to infection, the persistence of infected cells and the establishment of latency. Immunometabolism also shapes immune responses against HIV-1, and cell metabolic products are key drivers of inflammation during infection. In this Review, we summarize current knowledge of the links between HIV-1 infection and immunometabolism, and we discuss the potential opportunities and challenges for therapeutic interventions.
Collapse
|
20
|
Gonzales GB, Njunge JM, Gichuki BM, Wen B, Potani I, Voskuijl W, Bandsma RHJ, Berkley JA. Plasma proteomics reveals markers of metabolic stress in HIV infected children with severe acute malnutrition. Sci Rep 2020; 10:11235. [PMID: 32641735 PMCID: PMC7343797 DOI: 10.1038/s41598-020-68143-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/17/2020] [Indexed: 01/20/2023] Open
Abstract
HIV infection affects up to 30% of children presenting with severe acute malnutrition (SAM) in Africa and is associated with increased mortality. Children with SAM are treated similarly regardless of HIV status, although mechanisms of nutritional recovery in HIV and/or SAM are not well understood. We performed a secondary analysis of a clinical trial and plasma proteomics data among children with complicated SAM in Kenya and Malawi. Compared to children with SAM without HIV (n = 113), HIV-infected children (n = 54) had evidence (false discovery rate (FDR) corrected p < 0.05) of metabolic stress, including enriched pathways related to inflammation and lipid metabolism. Moreover, we observed reduced plasma levels of zinc-α-2-glycoprotein, butyrylcholinesterase, and increased levels of complement C2 resembling findings in metabolic syndrome, diabetes and other non-communicable diseases. HIV was also associated (FDR corrected p < 0.05) with higher plasma levels of inflammatory chemokines. Considering evidence of biomarkers of metabolic stress, it is of potential concern that our current treatment strategy for SAM regardless of HIV status involves a high-fat therapeutic diet. The results of this study suggest a need for clinical trials of therapeutic foods that meet the specific metabolic needs of children with HIV and SAM.
Collapse
Affiliation(s)
- Gerard Bryan Gonzales
- Department of Gastroenterology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium. .,VIB Inflammation Research Centre, Ghent, Belgium.
| | - James M Njunge
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya.,KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Bonface M Gichuki
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya.,KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Bijun Wen
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Isabel Potani
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
| | - Wieger Voskuijl
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya.,Global Child Health Group, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Robert H J Bandsma
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya.,Centre for Global Child Health, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - James A Berkley
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya.,KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya.,Nuffield Department of Medicine, Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Tryptophan Metabolism Activates Aryl Hydrocarbon Receptor-Mediated Pathway To Promote HIV-1 Infection and Reactivation. mBio 2019; 10:mBio.02591-19. [PMID: 31848275 PMCID: PMC6918076 DOI: 10.1128/mbio.02591-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple cellular metabolic pathways are altered by HIV-1 infection, with an impact on immune activation, inflammation, and acquisition of non-AIDS comorbid diseases. The dysfunction of tryptophan (Trp) metabolism has been observed clinically in association with accelerated HIV-1 pathogenesis, but the underlying mechanism remains unknown. In this study, we demonstrated that the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, is activated by Trp metabolites to promote HIV-1 infection and reactivation. AHR directly binds to the HIV-1 5' long terminal repeat (5'-LTR) at the molecular level to activate viral transcription and infection, and AHR activation by Trp metabolites increases its nuclear translocation and association with the HIV 5'-LTR; moreover, the binding of AHR with HIV-1 Tat facilitates the recruitment of positive transcription factors to viral promoters. These findings not only elucidate a previously unappreciated mechanism through which cellular Trp metabolites affect HIV pathogenesis but also suggest that a downstream target AHR may be a potential target for modulating HIV-1 infection.IMPORTANCE Cellular metabolic pathways that are altered by HIV-1 infection may accelerate disease progression. Dysfunction in tryptophan (Trp) metabolism has been observed clinically in association with accelerated HIV-1 pathogenesis, but the mechanism responsible was not known. This study demonstrates that Trp metabolites augment the activation of aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, to promote HIV-1 infection and transcription. These findings not only elucidate a previously unappreciated mechanism through which cellular Trp metabolites affect HIV pathogenesis but also suggest that a downstream target AHR may be a potential target for modulating HIV-1 infection.
Collapse
|
22
|
Pallett LJ, Schmidt N, Schurich A. T cell metabolism in chronic viral infection. Clin Exp Immunol 2019; 197:143-152. [PMID: 31038727 PMCID: PMC6642876 DOI: 10.1111/cei.13308] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
T cells are a fundamental component of the adaptive immune response in the context of both acute and chronic viral infection. Tight control over the metabolic processes within T cells provides an additional level of immune regulation that is interlinked with nutrient sensing and the continued balancing of co-stimulatory and co-inhibitory signals. Underpinning T cell responsiveness for viral control are a number of phenotypic and functional adaptations ensuring adequate nutrient uptake and their utilization. T cells responding to persistent viral infections often exhibit a profile associated with immune cell exhaustion and a dysregulated metabolic profile, driven by a combination of chronic antigenic stimulation and signals from the local microenvironment. Understanding alterations in these metabolic processes provides an important basis for immunotherapeutic strategies to treat persistent infections.
Collapse
Affiliation(s)
- L. J. Pallett
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - N. Schmidt
- Division of Infection and ImmunityUniversity College LondonLondonUK
| | - A. Schurich
- Department of Infectious DiseasesKing’s College LondonLondonUK
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to examine the evidence describing adipose tissue as a reservoir for HIV-1 and how this often expansive anatomic compartment contributes to HIV persistence. RECENT FINDINGS Memory CD4 T cells and macrophages, the major host cells for HIV, accumulate in adipose tissue during HIV/SIV infection of humans and rhesus macaques. Whereas HIV and SIV proviral DNA is detectable in CD4 T cells of multiple fat depots in virtually all infected humans and monkeys examined, viral RNA is less frequently detected, and infected macrophages may be less prevalent in adipose tissue. However, based on viral outgrowth assays, adipose-resident CD4 T cells are latently infected with virus that is replication-competent and infectious. Additionally, adipocytes interact with CD4 T cells and macrophages to promote immune cell activation and inflammation which may be supportive for HIV persistence. Antiviral effector cells, such as CD8 T cells and NK/NKT cells, are abundant in adipose tissue during HIV/SIV infection and typically exceed CD4 T cells, whereas B cells are largely absent from adipose tissue of humans and monkeys. Additionally, CD8 T cells in adipose tissue of HIV patients are activated and have a late differentiated phenotype, with unique TCR clonotypes of less diversity relative to blood CD8 T cells. With respect to the distribution of antiretroviral drugs in adipose tissue, data is limited, but there may be class-specific penetration of fat depots. The trafficking of infected immune cells within adipose tissues is a common event during HIV/SIV infection of humans and monkeys, but the virus may be mostly transcriptionally dormant. Viral replication may occur less in adipose tissue compared to other major reservoirs, such as lymphoid tissue, but replication competence and infectiousness of adipose latent virus are comparable to other tissues. Due to the ubiquitous nature of adipose tissue, inflammatory interactions among adipocytes and CD4 T cells and macrophages, and selective distribution of antiretroviral drugs, the sequestration of infected immune cells within fat depots likely represents a major challenge for cure efforts.
Collapse
Affiliation(s)
- Jacob Couturier
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.112, Houston, TX, 77030, USA
| | - Dorothy E Lewis
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.112, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Ahmed D, Roy D, Cassol E. Examining Relationships between Metabolism and Persistent Inflammation in HIV Patients on Antiretroviral Therapy. Mediators Inflamm 2018; 2018:6238978. [PMID: 30363715 PMCID: PMC6181007 DOI: 10.1155/2018/6238978] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/06/2018] [Indexed: 12/30/2022] Open
Abstract
With the advent of antiretroviral therapy (ART), HIV-infected individuals are now living longer and healthier lives. However, ART does not completely restore health and treated individuals are experiencing increased rates of noncommunicable diseases such as dyslipidemia, insulin resistance, type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. While it is well known that persistent immune activation and inflammation contribute to the development of these comorbid diseases, the mechanisms underlying this chronic activation remain incompletely understood. In this review, we will discuss emerging evidence that suggests that alterations in cellular metabolism may play a central role in driving this immune dysfunction in HIV patients on ART.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - David Roy
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Determination of dehydroepiandrosterone and its biologically active oxygenated metabolites in human plasma evinces a hormonal imbalance during HIV-TB coinfection. Sci Rep 2018; 8:6692. [PMID: 29703963 PMCID: PMC5923237 DOI: 10.1038/s41598-018-24771-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022] Open
Abstract
An estimated one third of the world's population is affected by latent tuberculosis (TB), which once active represents a leading cause of death among infectious diseases. Human immunodeficiency virus (HIV) infection is a main predisposing factor to TB reactivation. Individuals HIV-TB co-infected develop a chronic state of inflammation associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation. This results in a hormonal imbalance, disturbing the physiological levels of cortisol and dehydroepiandrosterone (DHEA). DHEA and its oxygenated metabolites androstenediol (AED), androstenetriol (AET) and 7-oxo-DHEA are immunomodulatory compounds that may regulate physiopathology in HIV-TB co-infection. In order to study possible changes in plasma levels of these hormones, we developed an approach based on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). To our knowledge, this represents the first report of their simultaneous measurement in HIV-TB individuals and the comparison with healthy donors, obtaining statistically higher plasma levels of DHEA, AET and 7-oxo-DHEA in patients. Moreover, we found that concentrations of 7-oxo-DHEA positively correlated with absolute CD4+ T cell counts, nadir CD4+ T cell values and with individuals who presented TB restricted to the lungs. This research contributes to understanding the role of these hormones in HIV-TB and emphasizes the importance of deepening their study in this context.
Collapse
|
26
|
Pedro MN, Rocha GZ, Guadagnini D, Santos A, Magro DO, Assalin HB, Oliveira AG, Pedro RDJ, Saad MJA. Insulin Resistance in HIV-Patients: Causes and Consequences. Front Endocrinol (Lausanne) 2018; 9:514. [PMID: 30233499 PMCID: PMC6133958 DOI: 10.3389/fendo.2018.00514] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022] Open
Abstract
Here we review how immune activation and insulin resistance contribute to the metabolic alterations observed in HIV-infected patients, and how these alterations increase the risk of developing CVD. The introduction and evolution of antiretroviral drugs over the past 25 years has completely changed the clinical prognosis of HIV-infected patients. The deaths of these individuals are now related to atherosclerotic CVDs, rather than from the viral infection itself. However, HIV infection, cART, and intestinal microbiota are associated with immune activation and insulin resistance, which can lead to the development of a variety of diseases and disorders, especially with regards to CVDs. The increase in LPS and proinflammatory cytokines circulating levels and intracellular mechanisms activate serine kinases, resulting in insulin receptor substrate-1 (IRS-1) serine phosphorylation and consequently a down regulation in insulin signaling. While lifestyle modifications and pharmaceutical interventions can be employed to treat these altered metabolic functions, the mechanisms involved in the development of these chronic complications remain largely unresolved. The elucidation and understanding of these mechanisms will give rise to new classes of drugs that will further improve the quality of life of HIV-infected patients, over the age of 50.
Collapse
Affiliation(s)
- Marcelo N. Pedro
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Andrey Santos
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Daniela O. Magro
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Heloisa B. Assalin
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Alexandre G. Oliveira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
- Biosciences Institute, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Rogerio de Jesus Pedro
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| | - Mario J. A. Saad
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
- *Correspondence: Mario J. A. Saad
| |
Collapse
|
27
|
Kulkarni MM, Ratcliff AN, Bhat M, Alwarawrah Y, Hughes P, Arcos J, Loiselle D, Torrelles JB, Funderburg NT, Haystead TA, Kwiek JJ. Cellular fatty acid synthase is required for late stages of HIV-1 replication. Retrovirology 2017; 14:45. [PMID: 28962653 PMCID: PMC5622536 DOI: 10.1186/s12977-017-0368-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022] Open
Abstract
Background
Like all viruses, HIV-1 relies on host systems to replicate. The human purinome consists of approximately two thousand proteins that bind and use purines such as ATP, NADH, and NADPH. By virtue of their purine binding pockets, purinome proteins are highly druggable, and many existing drugs target purine-using enzymes. Leveraging a protein affinity media that uses the purine-binding pocket to capture the entire purinome, we sought to define purine-binding proteins regulated by HIV-1 infection. Results Using purinome capture media, we observed that HIV-1 infection increases intracellular levels of fatty acid synthase (FASN), a NADPH-using enzyme critical to the synthesis of de novo fatty acids. siRNA mediated knockdown of FASN reduced HIV-1 particle production by 80%, and treatment of tissue culture cells or primary PBMCs with Fasnall, a newly described selective FASN inhibitor, reduced HIV-1 virion production by 90% (EC50 = 213 nM). Despite the requirement of FASN for nascent virion production, FASN activity was not required for intracellular Gag protein production, indicating that FASN dependent de novo fatty acid biosynthesis contributes to a late step of HIV-1 replication. Conclusions Here we show that HIV-1 replication both increases FASN levels and requires host FASN activity. We also report that Fasnall, a novel FASN inhibitor that demonstrates anti-tumor activity in vivo, is a potent and efficacious antiviral, blocking HIV-1 replication in both tissue culture and primary cell models of HIV-1 replication. In adults, most fatty acids are obtained exogenously from the diet, thus making FASN a plausible candidate for pharmacological intervention. In conclusion, we hypothesize that FASN is a novel host dependency factor and that inhibition of FASN activity has the potential to be exploited as an antiretroviral strategy.
Collapse
Affiliation(s)
- Manjusha M Kulkarni
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| | - Annette N Ratcliff
- Department of Microbiology, Center for Retrovirus Research, The Ohio State University, 476 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA.,Promega Corporation, 2800 Woods Hollow Rd, Madison, WI, 53711-5399, USA
| | - Menakshi Bhat
- Department of Microbiology, Center for Retrovirus Research, The Ohio State University, 476 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Yazan Alwarawrah
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA
| | - Philip Hughes
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA
| | - Jesus Arcos
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| | - David Loiselle
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA.,Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Nicholas T Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Timothy A Haystead
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C118 LSRC, Box 3813, Durham, NC, 27710, USA.
| | - Jesse J Kwiek
- Department of Microbiology, Center for Retrovirus Research, The Ohio State University, 476 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
28
|
Palma G, Gutiérrez-Spillari L. Glycemic Control in HIV Patients. CURRENT TROPICAL MEDICINE REPORTS 2017. [DOI: 10.1007/s40475-017-0114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Arnold N, Messaoudi I. Simian varicella virus causes robust transcriptional changes in T cells that support viral replication. Virus Res 2017; 238:226-235. [PMID: 28698046 PMCID: PMC7114558 DOI: 10.1016/j.virusres.2017.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/24/2017] [Accepted: 07/04/2017] [Indexed: 12/13/2022]
Abstract
T cells play a major role in varicella viruses dissemination to ganglia and skin. SVV infection of T cells increases the expression of cell cycle genes. SVV infection downregulates genes important for antigen presentation in T cells. SVV T cell infection disrupts expression of genes vital for metabolism and immunity.
Varicella zoster virus (VZV) causes varicella (chickenpox) during acute infection. Several studies have shown that T cells are early and preferential targets of VZV infection that play a critical role in disseminating VZV in to the skin and ganglia. However, the transcriptional changes that occur in VZV-infected T cells remain unclear due to limited access to clinical samples and robust translational animal models. In this study, we used a nonhuman primate model of VZV infection where rhesus macaques are infected with the closely related Simian Varicella Virus (SVV) to provide novel insights into VZV-T cell interactions. RNA sequencing of bronchial alveolar lavage-resident T cells isolated from infected rhesus macaques show that SVV infection alters expression of genes important for regulation of gene expression, cell cycle progression, metabolism, and antiviral immunity. These data provide insight into cellular processes that may support viral replication, facilitate SVV dissemination, and evade host defense.
Collapse
Affiliation(s)
- Nicole Arnold
- Graduate Program in Microbiology, University of California, Riverside, CA, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
30
|
Non LR, Escota GV, Powderly WG. HIV and its relationship to insulin resistance and lipid abnormalities. Transl Res 2017; 183:41-56. [PMID: 28068521 DOI: 10.1016/j.trsl.2016.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/18/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022]
Abstract
Antiretroviral therapy has revolutionized the care of people with human immunodeficiency virus (HIV) by reducing morbidity and mortality from acquired immunodeficiency syndrome-related conditions. Despite longer life expectancy, however, HIV-infected individuals continue to have a higher risk of death compared with the general population. This has been attributed to the increasing incidence of noncommunicable diseases, in particular, atherosclerotic cardiovascular diseases. This is driven, in part, by the emergence of metabolic disorders, particularly dyslipidemia, insulin resistance, and lipodystrophy, in those on antiretroviral therapy. The pathogenesis of these metabolic derangements is complex and multifactorial, and could be a consequence of an interplay between traditional age-related risk factors, HIV infection, antiretroviral therapy effects, and the inflammatory state and immune activation in this population. Understanding the contributions of each of these factors could not just impact the current management of these individuals and help mitigate the risk for premature cardiovascular disease, but also shape the future direction of research in HIV.
Collapse
Affiliation(s)
- Lemuel R Non
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Mo.
| | - Gerome V Escota
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Mo
| | - William G Powderly
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Mo
| |
Collapse
|
31
|
Nampijja D, Kumbakumba E, Bajunirwe F, Kiwanuka J. Dyslipidemia and its Correlates among HIV Infected Children on HAART Attending Mbarara Regional Referral Hospital. INTERNATIONAL CLINICAL PATHOLOGY JOURNAL 2017; 4:00098. [PMID: 29333525 PMCID: PMC5766276 DOI: 10.15406/icpjl.2017.04.00098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND HAART and chronic HIV associated inflammation has been attributed to abnormal lipids in HIV infected people. Little is known about dyslipidemia among children in Uganda in the era of increasing Highly Active Anti Retroviral Therapy (HAART) use. We determined the prevalence of lipid abnormalities, the correlation of the lipid abnormalities to CD4 count, HIV clinical stage and duration on HAART among HIV infected children. METHODS This was a cross-sectional, descriptive and analytical study of HIV infected children age 1-17 years receiving HAART for more than 6 months in Mbarara Regional Referral Hospital. Consent and assent were obtained as appropriate. Sociodemographic, clinical and immunological data were collected and recorded in a questionnaire. A blood sample was taken for lipid profiling. Dyslipidemia was defined as any low HDL (<=40mg/dl), high LDL (>130mg/dl), high TG (>130mg/dl) and a high total cholesterol (>200mg/dl) or a combination of these in the study population. The proportion of children with dyslipidemia was calculated and logistic regression analysis for associated factors. RESULTS The mean age was 118 months (SD 49 months) with 49.5% of the children male and 62.1% had severe HIV disease at initiation of HAART. Mean duration of HAART was 55.6 months (SD 31.2 months). The prevalence of dyslipidemia was 74%. Among the children with dyslipidemia, 56.6% exhibited low HDL, 22% had hypertriglyceridemia, 15.6% had high LDL and 11% had hypercholesterolemia. We found significant association between dyslipidemia and WHO clinical stage at initiation of HAART (AOR 2.9 1.05 - 8.45 p=0.040). CONCLUSION There was a high prevalence of dyslipidemia associated with severe HIV disease at initiation of HAART among HIV-infected children on HAART.
Collapse
|
32
|
Mittal S, Choudhary P, Callaghan C, Hilton R, Drage M. First case of pancreas transplant alone in a patient with diabetes and HIV infection. Int J STD AIDS 2016; 27:1350-1353. [PMID: 27099169 DOI: 10.1177/0956462416645996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/07/2016] [Indexed: 12/29/2022]
Abstract
Chronic conditions have largely replaced opportunistic infections as the leading causes of mortality in human immunodeficiency virus (HIV) infection. Pancreas transplantation alone can be performed for people with difficult to manage diabetes associated with severe hypoglycaemic unawareness. For carefully selected patients, pancreas transplantation alone has the potential to dramatically improve quality and quantity of life. Historically, HIV was considered a contraindication to transplantation; however, today renal transplantation for people with end-stage kidney disease and HIV infection is increasingly common. We describe the use of a standard immunosuppression regimen in combination with effective antiretroviral control using a stable highly active antiretroviral therapy regimen with minimal interaction with immunosuppressants. We describe what is, to our knowledge, the first case of pancreas transplantation alone performed for this particularly challenging group, resulting in complete resolution of hypoglycaemic symptoms. We suggest that this group of patients should receive optimal diabetes management, including access to transplantation where appropriate, and demonstrate that pancreas transplantation alone is feasible for people with HIV infection.
Collapse
Affiliation(s)
- Shruti Mittal
- Department of Renal Transplantation, Directorate of Abdominal Medicine and Surgery, Guy's Hospital, London, UK
| | - Pratik Choudhary
- Department of Diabetic Medicine, Kings College Hospital, London, UK
| | - Chris Callaghan
- Department of Renal Transplantation, Directorate of Abdominal Medicine and Surgery, Guy's Hospital, London, UK
| | - Rachel Hilton
- Department of Renal Transplantation, Directorate of Abdominal Medicine and Surgery, Guy's Hospital, London, UK
| | - Martin Drage
- Department of Renal Transplantation, Directorate of Abdominal Medicine and Surgery, Guy's Hospital, London, UK
| |
Collapse
|
33
|
Villeneuve LM, Purnell PR, Stauch KL, Callen SE, Buch SJ, Fox HS. HIV-1 transgenic rats display mitochondrial abnormalities consistent with abnormal energy generation and distribution. J Neurovirol 2016; 22:564-574. [PMID: 26843384 DOI: 10.1007/s13365-016-0424-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/04/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023]
Abstract
With the advent of the combination antiretroviral therapy era (cART), the development of AIDS has been largely limited in the USA. Unfortunately, despite the development of efficacious treatments, HIV-1-associated neurocognitive disorders (HAND) can still develop, and as many HIV-1 positive individuals age, the prevalence of HAND is likely to rise because HAND manifests in the brain with very low levels of virus. However, the mechanism producing this viral disorder is still debated. Interestingly, HIV-1 infection exposes neurons to proteins including Tat, Nef, and Vpr which can drastically alter mitochondrial properties. Mitochondrial dysfunction has been posited to be a cornerstone of the development of numerous neurodegenerative diseases. Therefore, we investigated mitochondria in an animal model of HAND. Using an HIV-1 transgenic rat model expressing seven of the nine HIV-1 viral proteins, mitochondrial functional and proteomic analysis were performed on a subset of mitochondria that are particularly sensitive to cellular changes, the neuronal synaptic mitochondria. Quantitative mass spectroscopic studies followed by statistical analysis revealed extensive proteome alteration in this model paralleling mitochondrial abnormalities identified in HIV-1 animal models and HIV-1-infected humans. Novel mitochondrial protein changes were discovered in the electron transport chain (ETC), the glycolytic pathways, mitochondrial trafficking proteins, and proteins involved in various energy pathways, and these findings correlated well with the function of the mitochondria as assessed by a mitochondrial coupling and flux assay. By targeting these proteins and proteins upstream in the same pathway, we may be able to limit the development of HAND.
Collapse
Affiliation(s)
- Lance M Villeneuve
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center-DRC1 3008, Omaha, NE, 68198-5800, USA
| | - Phillip R Purnell
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center-DRC1 3008, Omaha, NE, 68198-5800, USA
| | - Kelly L Stauch
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center-DRC1 3008, Omaha, NE, 68198-5800, USA
| | - Shannon E Callen
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center-DRC1 3008, Omaha, NE, 68198-5800, USA
| | - Shilpa J Buch
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center-DRC1 3008, Omaha, NE, 68198-5800, USA
| | - Howard S Fox
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center-DRC1 3008, Omaha, NE, 68198-5800, USA.
| |
Collapse
|
34
|
Dagenais-Lussier X, Mouna A, Routy JP, Tremblay C, Sekaly RP, El-Far M, Grevenynghe JV. Current topics in HIV-1 pathogenesis: The emergence of deregulated immuno-metabolism in HIV-infected subjects. Cytokine Growth Factor Rev 2015; 26:603-13. [PMID: 26409789 DOI: 10.1016/j.cytogfr.2015.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/04/2015] [Indexed: 01/17/2023]
Abstract
HIV-1 infection results in long-lasting activation of the immune system including elevated production of pro-inflammatory cytokine/chemokines, and bacterial product release from gut into blood and tissue compartments, which are not fully restored by antiretroviral therapies. HIV-1 has also developed numerous strategies via viral regulatory proteins to hijack cell molecular mechanisms to enhance its own replication and dissemination. Here, we reviewed the relationship between viral proteins, immune activation/inflammation, and deregulated metabolism occurring in HIV-1-infected patients that ultimately dampens the protective innate and adaptive arms of immunity. Defining precisely the molecular mechanisms related to deregulated immuno-metabolism during HIV-1 infection could ultimately help in the development of novel clinical approaches to restore proper immune functions in these patients.
Collapse
Affiliation(s)
| | - Aounallah Mouna
- INRS-Institut Armand Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Glen site, Montreal, Quebec H4A 3J1, Canada
| | | | | | | | - Julien van Grevenynghe
- INRS-Institut Armand Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada.
| |
Collapse
|
35
|
Ramezani A, Dubrovsky L, Pushkarsky T, Sviridov D, Karandish S, Raj DS, Fitzgerald ML, Bukrinsky M. Stimulation of Liver X Receptor Has Potent Anti-HIV Effects in a Humanized Mouse Model of HIV Infection. J Pharmacol Exp Ther 2015; 354:376-83. [PMID: 26126533 PMCID: PMC4538872 DOI: 10.1124/jpet.115.224485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/29/2015] [Indexed: 01/24/2023] Open
Abstract
Previous studies demonstrated that liver X receptor (LXR) agonists inhibit human immunodeficiency virus (HIV) replication by upregulating cholesterol transporter ATP-binding cassette A1 (ABCA1), suppressing HIV production, and reducing infectivity of produced virions. In this study, we extended these observations by analyzing the effect of the LXR agonist T0901317 [N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide] on the ongoing HIV infection and investigating the possibility of using LXR agonist for pre-exposure prophylaxis of HIV infection in a humanized mouse model. Pre-exposure of monocyte-derived macrophages to T0901317 reduced susceptibility of these cells to HIV infection in vitro. This protective effect lasted for up to 4 days after treatment termination and correlated with upregulated expression of ABCA1, reduced abundance of lipid rafts, and reduced fusion of the cells with HIV. Pre-exposure of peripheral blood leukocytes to T0901317 provided only a short-term protection against HIV infection. Treatment of HIV-exposed humanized mice with LXR agonist starting 2 weeks postinfection substantially reduced viral load. When eight humanized mice were pretreated with LXR agonist prior to HIV infection, five animals were protected from infection, two had viral load at the limit of detection, and one had viral load significantly reduced relative to mock-treated controls. T0901317 pretreatment also reduced HIV-induced dyslipidemia in infected mice. In conclusion, these results reveal a novel link between LXR stimulation and cell resistance to HIV infection and suggest that LXR agonists may be good candidates for development as anti-HIV agents, in particular for pre-exposure prophylaxis of HIV infection.
Collapse
Affiliation(s)
- Ali Ramezani
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Larisa Dubrovsky
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Tatiana Pushkarsky
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Dmitri Sviridov
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Sara Karandish
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Dominic S Raj
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Michael L Fitzgerald
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| | - Michael Bukrinsky
- George Washington University School of Medicine and Health Sciences, Washington, DC (A.R., L.D., T.P., S.K., D.S.R., M.B.); Baker International Diabetes Institute, Heart and Diabetes Institute, Melbourne, Victoria, Australia (D.S.); and Harvard Medical School, Lipid Metabolism Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts (M.L.F.)
| |
Collapse
|
36
|
Zhou DT, Kodogo V, Chokuona KFV, Gomo E, Oektedalen O, Stray-Pedersen B. Dyslipidemia and cardiovascular disease risk profiles of patients attending an HIV treatment clinic in Harare, Zimbabwe. HIV AIDS (Auckl) 2015; 7:145-55. [PMID: 25999764 PMCID: PMC4435239 DOI: 10.2147/hiv.s78523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The chronic inflammation induced by human immunodeficiency virus (HIV) contributes to increased risk of coronary heart disease (CHD) in HIV-infected individuals. HIV-infected patients generally benefit from being treated with antiretroviral drugs, but some antiretroviral agents have side effects, such as dyslipidemia and hyperglycemia. There is general consensus that antiretroviral drugs induce a long-term risk of CHD, although the levels of that risk are somewhat controversial. The intention of this cross-sectional study was to describe the lipid profile and the long-term risk of CHD among HIV-positive outpatients at an HIV treatment clinic in Harare, Zimbabwe. Two hundred and fifteen patients were investigated (females n=165, mean age 39.8 years; males n=50; mean age 42.0 years). Thirty of the individuals were antiretroviral-naïve and 185 had been on antiretroviral therapy (ART) for a mean 3.9±3.4 years. All participants had average lipid and glucose values within normal ranges, but there was a small difference between the ART and ART-for total cholesterol (TC) and high-density lipoprotein (HDL). Those on a combination of D4T or ZDV/NVP/3TC and PI-based ART were on average oldest and had the highest TC levels. Framingham risk showed 1.4% prevalence of high CHD risk within the next ten years. After univariate analysis age, sex, TC/HDL ratio, HDL, economic earnings and systolic BP were associated with medium to high risk of CHD. After multivariate regression analysis and adjusting for age or sex only age, sex and economic earnings were associated with medium to high risk of CHD. There is small risk of developing CHD, during the next decade in HIV infected patients at an HIV treatment clinic in Harare.
Collapse
Affiliation(s)
- Danai Tavonga Zhou
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Zimbabwe, Avondale, Zimbabwe
- Institute of Clinical Medicine, University in Oslo, Oslo University Hospital, Oslo, Norway
| | - Vitaris Kodogo
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Zimbabwe, Avondale, Zimbabwe
| | | | - Exnevia Gomo
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Zimbabwe, Avondale, Zimbabwe
| | - Olav Oektedalen
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Babill Stray-Pedersen
- Institute of Clinical Medicine, University in Oslo, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
37
|
Transcriptomic Analysis of mRNAs in Human Monocytic Cells Expressing the HIV-1 Nef Protein and Their Exosomes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:492395. [PMID: 25961023 PMCID: PMC4413250 DOI: 10.1155/2015/492395] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023]
Abstract
The Nef protein of human immunodeficiency virus (HIV) promotes viral replication and progression to AIDS. Besides its well-studied effects on intracellular signaling, Nef also functions through its secretion in exosomes, which are nanovesicles containing proteins, microRNAs, and mRNAs and are important for intercellular communication. Nef expression enhances exosome secretion and these exosomes can enter uninfected CD4 T cells leading to apoptotic death. We have recently reported the first miRNome analysis of exosomes secreted from Nef-expressing U937monocytic cells. Here we show genome-wide transcriptome analysis of Nef-expressing U937 cells and their exosomes. We identified four key mRNAs preferentially retained in Nef-expressing cells; these code for MECP2, HMOX1, AARSD1, and ATF2 and are important for chromatin modification and gene expression. Interestingly, their target miRNAs are exported out in exosomes. We also identified three key mRNAs selectively secreted in exosomes from Nef-expressing U937 cells and their corresponding miRNAs being preferentially retained in cells. These are AATK, SLC27A1, and CDKAL and are important in apoptosis and fatty acid transport. Thus, our study identifies selectively expressed mRNAs in Nef-expressing U937 cells and their exosomes and supports a new mode on intercellular regulation by the HIV-1 Nef protein.
Collapse
|
38
|
Nell TA, Kruger MJ, Beukes DC, Calitz E, Essop R, Essop MF. Distinct gender differences in anthropometric profiles of a peri-urban South African HIV population: a cross sectional study. BMC Infect Dis 2015; 15:85. [PMID: 25887844 PMCID: PMC4340112 DOI: 10.1186/s12879-015-0836-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/13/2015] [Indexed: 11/28/2022] Open
Abstract
Background Highly active antiretroviral therapy (HAART) has extended life expectancy and enhanced the well-being of HIV-positive individuals. Since there are concerns regarding HAART-mediated onset of cardio-metabolic diseases in the long-term, we evaluated the anthropometric profile of black HIV-infected individuals in a peri-urban setting (Western Cape, South Africa). Methods A cross sectional study design was followed to describe the gender differences in different HAART treatment groups. HIV-positive patients (n = 44 males, n = 102 females; 20–40 years) were recruited for three groups: 1) control (HIV-positive, HAART-naïve), 2) HIV-positive (<3 years HAART), and 3) HIV-positive (>3 years HAART). Results All participants underwent comprehensive anthropometric and bio-electrical impedance analyses. No significant differences were observed in the male treatment groups. HAART-naïve females are mostly overweight (73.90 ± 2.79). This is followed by a period of muscle wasting seen in the triceps skinfold (29.30 ± 2.19 vs 20.63 ± 1.83; p < 0.01), muscle mass (22.23 ± 0.46 vs 19.82 ± 0.54; p < 0.01), and fat free mass (49.40 ± 1.08 vs 44.16 ± 1.21; p < 0.01) upon HAART initiation (<3 years HAART). Thereafter all parameters measured had levels similar to that seen for the female HAART-naïve group. Females on <3 years HAART exhibited significantly decreased body cell mass (p < 0.01), protein mass (p < 0.01), muscle mass (p < 0.01), fat free mass (p < 0.01), and fat mass (p < 0.001) versus matched HAART-naïve controls. The W:H ratio for the female treatment groups placed the females overall at a higher risk for developing cardiovascular disease compared to the males. Conclusions This study found striking gender-based anthropometric differences in black South African HIV-positive individuals on HAART. We also conclude from this observational study that no significant differences were found in the different male treatment groups. All female body composition parameters initially showed lower values (<3 years HAART). The female treatment group (>3 years HAART) displayed values similar to that seen in the HAART-naïve group. Higher W:H ratios in females receiving longer-term HAART potentially increases their risk for the future onset of cardio-metabolic complications.
Collapse
Affiliation(s)
- Theodore A Nell
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Mike De Vries Building, Merriman Avenue, Stellenbosch, 7600, South Africa. .,Division of Community Health, Tygerberg Campus, Stellenbosch, 7600, South Africa.
| | - Maritza J Kruger
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Mike De Vries Building, Merriman Avenue, Stellenbosch, 7600, South Africa.
| | - Dillan C Beukes
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Mike De Vries Building, Merriman Avenue, Stellenbosch, 7600, South Africa.
| | - Esme Calitz
- TC Newman Community Day Care Centre, Paarl, 7646, South Africa.
| | - Rehana Essop
- ANOVA Health Institute, Kohler Street, Paarl, 7646, South Africa.
| | - M Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Mike De Vries Building, Merriman Avenue, Stellenbosch, 7600, South Africa.
| |
Collapse
|
39
|
Rasheed S, Hashim R, Yan JS. Possible Biomarkers for the Early Detection of HIV-associated Heart Diseases: A Proteomics and Bioinformatics Prediction. Comput Struct Biotechnol J 2015; 13:145-52. [PMID: 25750702 PMCID: PMC4348431 DOI: 10.1016/j.csbj.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 12/30/2014] [Accepted: 02/11/2015] [Indexed: 12/12/2022] Open
Abstract
The frequency of cardiovascular disorders is increasing in HIV-infected individuals despite a significant reduction in the viral load by antiretroviral therapies (ART). Since the CD4 + T-cells are responsible for the viral load as well as immunological responses, we hypothesized that chronic HIV-infection of T-cells produces novel proteins/enzymes that cause cardiac dysfunctions. To identify specific factors that might cause cardiac disorders without the influence of numerous cofactors produced by other pathogenic microorganisms that co-inhabit most HIV-infected individuals, we analyzed genome-wide proteomes of a CD4 + T-cell line at different stages of HIV replication and cell growth over > 6 months. Subtractive analyses of several hundred differentially regulated proteins from HIV-infected and uninfected counterpart cells and comparisons with proteins expressed from the same cells after treating with the antiviral drug Zidovudine/AZT and inhibiting virus replication, identified a well-coordinated network of 12 soluble/diffusible proteins in HIV-infected cells. Functional categorization, bioinformatics and statistical analyses of each protein predicted that the expression of cardiac-specific Ca2 + kinase together with multiple Ca2 + release channels causes a sustained overload of Ca2 + in the heart which induces fetal/cardiac myosin heavy chains (MYH6 and MYH7) and a myosin light-chain kinase. Each of these proteins has been shown to cause cardiac stress, arrhythmia, hypertrophic signaling, cardiomyopathy and heart failure (p = 8 × 10− 11). Translational studies using the newly discovered proteins produced by HIV infection alone would provide additional biomarkers that could be added to the conventional markers for an early diagnosis and/or development of specific therapeutic interventions for heart diseases in HIV-infected individuals.
Collapse
Affiliation(s)
- Suraiya Rasheed
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Cancer Research Laboratory Building, 1303 North Mission Rd, Los Angeles, CA 90033, USA
| | - Rahim Hashim
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Cancer Research Laboratory Building, 1303 North Mission Rd, Los Angeles, CA 90033, USA
| | - Jasper S Yan
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Cancer Research Laboratory Building, 1303 North Mission Rd, Los Angeles, CA 90033, USA
| |
Collapse
|
40
|
Li M. Proteomics in the investigation of HIV-1 interactions with host proteins. Proteomics Clin Appl 2015; 9:221-34. [PMID: 25523935 DOI: 10.1002/prca.201400101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/30/2014] [Accepted: 12/16/2014] [Indexed: 01/09/2023]
Abstract
Productive HIV-1 infection depends on host machinery, including a broad array of cellular proteins. Proteomics has played a significant role in the discovery of HIV-1 host proteins. In this review, after a brief survey of the HIV-1 host proteins that were discovered by proteomic analyses, I focus on analyzing the interactions between the virion and host proteins, as well as the technologies and strategies used in those proteomic studies. With the help of proteomics, the identification and characterization of HIV-1 host proteins can be translated into novel antiretroviral therapeutics.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Retrovirology, Division of Infectious Diseases, Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
41
|
Abstract
It is becoming apparent that infections by a major class of viruses, those with envelopes, can be inhibited during their entry at the step of fusion with cellular membranes. In this review, we discuss multiple innate immune mechanisms that have evolved to modify the lipid composition of cellular and viral membranes to inhibit virion fusion of enveloped viruses.
Collapse
Affiliation(s)
- John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
42
|
Plasma lipidomic profiling of treated HIV-positive individuals and the implications for cardiovascular risk prediction. PLoS One 2014; 9:e94810. [PMID: 24733512 PMCID: PMC3986244 DOI: 10.1371/journal.pone.0094810] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/20/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The increased risk of coronary artery disease in human immunodeficiency virus (HIV) positive patients is collectively contributed to by the human immunodeficiency virus and antiretroviral-associated dyslipidaemia. In this study, we investigate the characterisation of the plasma lipid profiles of treated HIV patients and the relationship of 316 plasma lipid species across multiple lipid classes with the risk of future cardiovascular events in HIV-positive patients. METHODS In a retrospective case-control study, we analysed plasma lipid profiles of 113 subjects. Cases (n = 23) were HIV-positive individuals with a stored blood sample available 12 months prior to their diagnosis of coronary artery disease (CAD). They were age and sex matched to HIV-positive individuals without a diagnosis of CAD (n = 45) and with healthy HIV-negative volunteers (n = 45). RESULTS Association of plasma lipid species and classes with HIV infection and cardiovascular risk in HIV were determined. In multiple logistic regression, we identified 83 lipids species and 7 lipid classes significantly associated with HIV infection and a further identified 74 lipid species and 8 lipid classes significantly associated with future cardiovascular events in HIV-positive subjects. Risk prediction models incorporating lipid species attained an area under the receiver operator characteristic curve (AUC) of 0.78 (0.775, 0.785)) and outperformed all other tested markers and risk scores in the identification of HIV-positive subjects with increased risk of cardiovascular events. CONCLUSIONS Our results demonstrate that HIV-positive patients have significant differences in their plasma lipid profiles compared with healthy HIV-negative controls and that numerous lipid species were significantly associated with elevated cardiovascular risk. This suggests a potential novel application for plasma lipids in cardiovascular risk screening of HIV-positive patients.
Collapse
|
43
|
Teto G, Kanmogne GD, Torimiro JN, Alemnji G, Nguemaim FN, Takou D, Nanfack A, Tazoacha A. Lipid peroxidation and total cholesterol in HAART-naïve patients infected with circulating recombinant forms of human immunodeficiency virus type-1 in Cameroon. PLoS One 2013; 8:e65126. [PMID: 23762297 PMCID: PMC3676401 DOI: 10.1371/journal.pone.0065126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/23/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND HIV infection has commonly been found to affect lipid profile and antioxidant defense. OBJECTIVES To determine the effects of Human Immunodeficiency Virus (HIV) infection and viral subtype on patient's cholesterol and oxidative stress markers, and determine whether in the absence of Highly Active Antiretroviral Therapy (HAART), these biochemical parameters could be useful in patient's management and monitoring disease progression in Cameroon. For this purpose, we measured total cholesterol (TC), LDL cholesterol (LDLC), HDL cholesterol (HDLC), total antioxidant ability (TAA), lipid peroxidation indices (LPI), and malondialdehyde (MDA) in HIV negative persons and HIV positive HAART-naïve patients infected with HIV-1 group M subtypes. METHODS We measured serum TC, LDLC, HDLC, plasma MDA, and TAA concentrations, and calculated LPI indices in 151 HIV-positive HAART-naïve patients and 134 seronegative controls. We also performed gene sequence analysis on samples from 30 patients to determine the effect of viral genotypes on these biochemical parameters. We also determined the correlation between CD4 cell count and the above biochemical parameters. RESULTS We obtained the following controls/patients values for TC (1.96±0.54/1. 12±0. 48 g/l), LDLC (0. 67±0. 46/0. 43±0. 36 g/l), HDLC (105. 51±28. 10/46. 54±23. 36 mg/dl) TAA (0. 63±0. 17/0. 16±0. 16 mM), MDA (0. 20±0. 07/0. 41±0. 10 µM) and LPI (0. 34±0. 14/26. 02±74. 40). In each case, the difference between the controls and patients was statistically significant (p<0.05). There was a positive and statistically significant Pearson correlation between CD4 cell count and HDLC (r = +0.272; p<0.01), TAA (r = +0.199; p<0.05) and a negative and statistically significant Pearson correlation between CD4 cell count and LPI (r = -0.166; p<0.05). Pearson correlation between CD4 cell count and TC, CD4cell count and LDLC was positive but not statistically significant while it was negative but not statistically significant with MDA. The different subtypes obtained after sequencing were CRF02_AG (43.3%), CRF01_AE (20%), A1 (23.3%), H (6.7%), and G (6.7%). None of the HIV-1 subtypes significantly influenced the levels of the biochemical parameters, but by grouping them as pure subtypes and circulating recombinant forms (CRFs), the CRF significantly influenced TC levels. TC was significantly lower in patients infected with CRF (0.87±0.27 g/l) compared to patients infected with pure HIV-1 subtypes (1.32±0.68 g/l) (p<0.017). MDA levels were also significantly higher in patients infected with HIV-1CRF01_AE (0.50±0.10 µM), compared to patients infected with CRF02_AG (0. 38±0. 08 µM) (p<0.018). CONCLUSION These results show that HIV infection in Cameroon is associated with significant decrease in TAA, LDLC, HDLC and TC, and increased MDA concentration and LPI indices which seem to be linked to the severity of HIV infection as assessed by CD4 cell count. The data suggests increased oxidative stress and lipid peroxidation in HIV-infected patients in Cameroon, and an influence of CRFs on TC and MDA levels.
Collapse
Affiliation(s)
- Georges Teto
- Laboratory of Immunology, Biochemistry and Biotechnology, University of Yaoundé I, Yaoundé, Cameroon.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Alonso-Villaverde C, Menéndez JA, Joven J. Metabolic stress in infected cells may represent a therapeutic target for human immunodeficiency virus infection. Med Hypotheses 2013; 81:125-30. [PMID: 23639282 DOI: 10.1016/j.mehy.2013.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/16/2013] [Accepted: 04/08/2013] [Indexed: 01/14/2023]
Abstract
Worldwide, there are thousands of new cases of human immunodeficiency virus-1 (HIV-1) infection per day. The effectiveness of current combination antiretroviral therapy (ART) is relative; to prioritize finding vaccines and/or cure-oriented initiatives should be reinforced because there is little room, if any, for procrastination. Basic and clinical findings on HIV-1 reservoirs suggest that disruption of virus latency is feasible. Because the goal is curing HIV-1 infection, we should be aware that the challenge is to eradicate the viruses of every single infected cell and consequently acting upon virus latency is necessary but not sufficient. The large majority of the virus reservoir, CD4(+) T lymphocytes, is readily accessible but other minor reservoirs, where ART does not diffuse, require innovative strategies. The situation closely resembles that currently faced in the treatment of cancer. Exploiting the fact that histone deacetylase inhibitors, mainly vorinostat, may disrupt the latency of HIV-1, we propose to supplement this effect with a programmed interference in the metabolic stress of infected cells. Metformin and chloroquine are cheap and accessible modulators of pro-survival mechanisms to which viruses are constantly confronted to generate alternative energy sources and maximize virus production. Metformin restrains the use of the usurped cellular biosynthetic machinery by viral genes and chloroquine contributes to death of infected cells. We suggest that the combination of vorinostat, chloroquine and metformin should be combined with ART to pursue viral eradication in infected cells.
Collapse
|
45
|
Holland B, Wong J, Li M, Rasheed S. Identification of human microRNA-like sequences embedded within the protein-encoding genes of the human immunodeficiency virus. PLoS One 2013; 8:e58586. [PMID: 23520522 PMCID: PMC3592801 DOI: 10.1371/journal.pone.0058586] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 02/05/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are highly conserved, short (18-22 nts), non-coding RNA molecules that regulate gene expression by binding to the 3' untranslated regions (3'UTRs) of mRNAs. While numerous cellular microRNAs have been associated with the progression of various diseases including cancer, miRNAs associated with retroviruses have not been well characterized. Herein we report identification of microRNA-like sequences in coding regions of several HIV-1 genomes. RESULTS Based on our earlier proteomics and bioinformatics studies, we have identified 8 cellular miRNAs that are predicted to bind to the mRNAs of multiple proteins that are dysregulated during HIV-infection of CD4+ T-cells in vitro. In silico analysis of the full length and mature sequences of these 8 miRNAs and comparisons with all the genomic and subgenomic sequences of HIV-1 strains in global databases revealed that the first 18/18 sequences of the mature hsa-miR-195 sequence (including the short seed sequence), matched perfectly (100%), or with one nucleotide mismatch, within the envelope (env) genes of five HIV-1 genomes from Africa. In addition, we have identified 4 other miRNA-like sequences (hsa-miR-30d, hsa-miR-30e, hsa-miR-374a and hsa-miR-424) within the env and the gag-pol encoding regions of several HIV-1 strains, albeit with reduced homology. Mapping of the miRNA-homologues of env within HIV-1 genomes localized these sequence to the functionally significant variable regions of the env glycoprotein gp120 designated V1, V2, V4 and V5. CONCLUSIONS We conclude that microRNA-like sequences are embedded within the protein-encoding regions of several HIV-1 genomes. Given that the V1 to V5 regions of HIV-1 envelopes contain specific, well-characterized domains that are critical for immune responses, virus neutralization and disease progression, we propose that the newly discovered miRNA-like sequences within the HIV-1 genomes may have evolved to self-regulate survival of the virus in the host by evading innate immune responses and therefore influencing persistence, replication and/or pathogenicity.
Collapse
Affiliation(s)
- Bryan Holland
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jonathan Wong
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Meng Li
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Suraiya Rasheed
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Schweitzer CJ, Jagadish T, Haverland N, Ciborowski P, Belshan M. Proteomic analysis of early HIV-1 nucleoprotein complexes. J Proteome Res 2013; 12:559-72. [PMID: 23282062 PMCID: PMC3564510 DOI: 10.1021/pr300869h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
After entry into the cell, the early steps of the human immunodeficiency virus type 1 (HIV-1) replication cycle are mediated by two functionally distinct nucleoprotein complexes, the reverse transcription complex (RTC) and preintegration complex (PIC). These two unique viral complexes are responsible for the conversion of the single-stranded RNA genome into double-stranded DNA, transport of the DNA into the nucleus, and integration of the viral DNA into the host cell chromosome. Prior biochemical analyses suggest that these complexes are large and contain multiple undiscovered host cell factors. In this study, functional HIV-1 RTCs and PICs were partially purified by velocity gradient centrifugation and fractionation, concentrated, trypsin digested, and analyzed by LC-MS/MS. A total of seven parallel infected and control biological replicates were completed. Database searches were performed with Proteome Discoverer and a comparison of the HIV-1 samples to parallel uninfected control samples was used to identify unique cellular factors. The analysis produced a total data set of 11055 proteins. Several previously characterized HIV-1 factors were identified, including XRCC6, TFRC, and HSP70. The presence of XRCC6 was confirmed in infected fractions and shown to be associated with HIV-1 DNA by immunoprecipitation-PCR experiments. Overall, the analysis identified 94 proteins unique in the infected fractions and 121 proteins unique to the control fractions with ≥ 2 protein assignments. An additional 54 and 52 were classified as enriched in the infected and control samples, respectively, based on a 3-fold difference in total Proteome Discoverer probability score. The differential expression of several candidate proteins was validated by Western blot analysis. This study contributes additional novel candidate proteins to the growing published bioinformatic data sets of proteins that contribute to HIV-1 replication.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Cell Line
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/virology
- Centrifugation, Density Gradient
- Chromatography, Liquid
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Profiling
- HIV-1/genetics
- HIV-1/metabolism
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Host-Pathogen Interactions
- Humans
- Ku Autoantigen
- Lymphocytes/metabolism
- Lymphocytes/virology
- Nucleoproteins/genetics
- Nucleoproteins/metabolism
- Protein Binding
- Proteome/genetics
- Proteome/metabolism
- Receptors, Transferrin/genetics
- Receptors, Transferrin/metabolism
- Reverse Transcription
- Tandem Mass Spectrometry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Integration
Collapse
Affiliation(s)
| | - Teena Jagadish
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Nicole Haverland
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
- The Nebraska Center for Virology, University of Nebraska, Lincoln, NE
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE
- The Nebraska Center for Virology, University of Nebraska, Lincoln, NE
| |
Collapse
|
47
|
Increased expression of LDL receptor-related protein 1 during human cytomegalovirus infection reduces virion cholesterol and infectivity. Cell Host Microbe 2013; 12:86-96. [PMID: 22817990 DOI: 10.1016/j.chom.2012.05.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/16/2012] [Accepted: 05/04/2012] [Indexed: 12/22/2022]
Abstract
In response to virus infection, cells can alter protein expression to modify cellular functions and limit viral replication. To examine host protein expression during infection with human cytomegalovirus (HCMV), an enveloped DNA virus, we performed a semiquantitative, temporal analysis of the cell surface proteome in infected fibroblasts. We determined that resident low density lipoprotein related receptor 1 (LRP1), a plasma membrane receptor that regulates lipid metabolism, is elevated early after HCMV infection, resulting in decreased intracellular cholesterol. siRNA knockdown or antibody-mediated inhibition of LRP1 increased intracellular cholesterol and concomitantly increased the infectious virus yield. Virions produced under these conditions contained elevated cholesterol, resulting in increased infectivity. Depleting cholesterol from virions reduced their infectivity by blocking fusion of the virion envelope with the cell membrane. Thus, LRP1 restricts HCMV infectivity by controlling the availability of cholesterol for the virion envelope, and increased LRP1 expression is likely a defense response to infection.
Collapse
|
48
|
Joven J, Menéndez JA, Fernandez-Sender L, Espinel E, Rull A, Beltrán-Debón R, Rodríguez-Gallego E, Riera-Borrull M, Pedro-Botet J, Alonso-Villaverde C, Camps J, Aragonès G. Metformin: a cheap and well-tolerated drug that provides benefits for viral infections. HIV Med 2012; 14:233-40. [PMID: 23171036 DOI: 10.1111/hiv.12000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Insulin resistance in viral infections is common. We have explored the effectiveness of metformin for alleviating insulin resistance in HIV-infected patients and assessed the relevance of the ataxia-telangiectasia mutated (ATM) rs11212617 variant in the clinical response with the rationale that metformin modulates cellular bioenergetics in an ATM-dependent process. METHODS HIV-infected patients (n = 385) were compared with controls recruited from the general population (n = 300) with respect to the genotype distribution of the ATM rs11212617 variant and its influence on selected metabolic and inflammatory variables. We also followed up a subset of male patients with HIV and hepatitis C virus (HCV) coinfection (n = 47) who were not receiving antiviral treatment and for whom metformin was prescribed for insulin resistance, which tends to have a higher incidence and severity in coinfected patients. RESULTS Among the HIV-infected patients, human cytomegalovirus (91.9%) and HCV (62.3%) coinfections were frequent. Selected metabolic and/or inflammatory variables were significantly altered in infected patients. Treatment with metformin in HIV and HCV coinfected patients was well tolerated and significantly increased the sensitivity of peripheral tissues to insulin. The minor allele (C) of the rs11212617 variant was associated with treatment success and may affect the course of insulin resistance in response to metformin (odds ratio 1.21; 95% confidence interval 1.07-1.39; P = 0.005). There were no differences between treated and untreated patients in viral loads or variables measuring immune defence, indicating that toxicity is unlikely. CONCLUSIONS We provide novel data suggesting that identification of the ATM rs11212617 variant may be important in assessing the glycaemic response to metformin treatment for insulin resistance in HIV-infected patients.
Collapse
Affiliation(s)
- J Joven
- Unitat de Recerca Biomèdica (URB-CRB), IISPV, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Reus, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Milev MP, Ravichandran M, Khan MF, Schriemer DC, Mouland AJ. Characterization of staufen1 ribonucleoproteins by mass spectrometry and biochemical analyses reveal the presence of diverse host proteins associated with human immunodeficiency virus type 1. Front Microbiol 2012; 3:367. [PMID: 23125841 PMCID: PMC3486646 DOI: 10.3389/fmicb.2012.00367] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/27/2012] [Indexed: 12/02/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) unspliced, 9 kb genomic RNA (vRNA) is exported from the nucleus for the synthesis of viral structural proteins and enzymes (Gag and Gag/Pol) and is then transported to sites of virus assembly where it is packaged into progeny virions. vRNA co-exists in the cytoplasm in the context of the HIV-1 ribonucleoprotein (RNP) that is currently defined by the presence of Gag and several host proteins including the double-stranded RNA-binding protein, Staufen1. In this study we isolated Staufen1 RNP complexes derived from HIV-1-expressing cells using tandem affinity purification and have identified multiple host protein components by mass spectrometry. Four viral proteins, including Gag, Gag/Pol, Env and Nef as well as >200 host proteins were identified in these RNPs. Moreover, HIV-1 induces both qualitative and quantitative differences in host protein content in these RNPs. 22% of Staufen1-associated factors are virion-associated suggesting that the RNP could be a vehicle to achieve this. In addition, we provide evidence on how HIV-1 modulates the composition of cytoplasmic Staufen1 RNPs. Biochemical fractionation by density gradient analyses revealed new facets on the assembly of Staufen1 RNPs. The assembly of dense Staufen1 RNPs that contain Gag and several host proteins were found to be entirely RNA-dependent but their assembly appeared to be independent of Gag expression. Gag-containing complexes fractionated into a lighter and another, more dense pool. Lastly, Staufen1 depletion studies demonstrated that the previously characterized Staufen1 HIV-1-dependent RNPs are most likely aggregates of smaller RNPs that accumulate at juxtanuclear domains. The molecular characterization of Staufen1 HIV-1 RNPs will offer important information on virus-host cell interactions and on the elucidation of the function of these RNPs for the transport of Gag and the fate of the unspliced vRNA in HIV-1-producing cells.
Collapse
Affiliation(s)
- Miroslav P Milev
- HIV-1 Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital Montréal, QC, Canada ; Division of Experimental Medicine, Department of Medicine, McGill University Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
50
|
Martin A, Emery S. Metabolic disorders and cardiovascular consequences of HIV infection and antiretroviral therapy. Expert Rev Clin Pharmacol 2012; 2:381-90. [PMID: 22112182 DOI: 10.1586/ecp.09.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metabolic disturbances associated with HIV disease have become an important factor in patient management and have important implications for long-term outcomes, both in regards to mortality and healthcare burden. Recent research has implicated both HIV infection itself and specific antiretroviral therapies in the development of these disorders. This review examines recent findings from research into insulin and glucose dysregulation, serum lipid abnormalities, adipose tissue and derangements in bone metabolism. This review then describes the cardiovascular consequences and management of these metabolic disorders, and summarizes current thinking on the pathogenesis and effects of antiretroviral therapy. Finally, the review raises some questions regarding ongoing challenges and unmet needs in this field of research.
Collapse
Affiliation(s)
- Allison Martin
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Level 2, 376 Victoria St, Darlinghurst, NSW 2010, Australia.
| | | |
Collapse
|