1
|
Liu Q, Gan Y, Hu X, Liu W, Liao X, Zhang J, Li X, Zhou J, Wang B. KDM6B preferentially promotes bone formation over resorption to facilitate postnatal bone mass accrual through collagen triple helix repeat containing 1-mediated PKCδ/MAPKs signaling. J Bone Miner Res 2025; 40:671-687. [PMID: 39961019 DOI: 10.1093/jbmr/zjaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/29/2025] [Accepted: 02/08/2025] [Indexed: 05/26/2025]
Abstract
Lysine demethylase 6B (KDM6B) plays a role in regulating osteoblast differentiation and fetal bone ossification. Nevertheless, its involvement in regulating postnatal bone homeostasis and bone mass accrual remains unclear. In this study, we generated mice lacking Kdm6b gene specifically in mesenchyme and osteoprogenitor cells using a conditional strategy. The adult mice of both mutant strains had decreased cancellous bone mass. The absence of Kdm6b in mesenchyme led to decreased numbers of osteoblasts and osteoclasts, increased marrow adipocytes, as well as repressed bone formation and resorption. Additionally, Kdm6b-deficient bone marrow stromal cells (BMSCs) displayed impaired osteogenic differentiation and exerted an inhibitory effect on osteoclastogenesis. RNA-seq combined with gene expression analysis uncovered downregulation of collagen triple helix repeat containing 1 (CTHRC1) and a lower RANKL/osteoprotegerin (OPG) ratio in BMSCs of the mutant mice. Further mechanistic explorations demonstrated that KDM6B epigenetically upregulated CTHRC1 expression by removing the repressive H3K27me3 mark from its promoter, thereby triggering PKCδ/MAPKs signaling to facilitate osteoblast differentiation. CTHRC1 was able to mitigate the dysregulated osteogenic and adipogenic differentiation induced by Kdm6b deficiency. This study provides evidence that KDM6B regulates postnatal bone homeostasis through balancing osteoblast and osteoclast differentiation. Given its predominant promotion of osteoblastic bone formation over osteoclastic bone resorption, KDM6B tends to promote postnatal bone mass accrual.
Collapse
Affiliation(s)
- Qian Liu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin 300134, China
| | - Ying Gan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin 300134, China
| | - Xingli Hu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin 300134, China
| | - Wei Liu
- Department of Microbiology, College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoxia Liao
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin 300134, China
| | - Jingyun Zhang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin 300134, China
| | - Xiaoxia Li
- Department of Microbiology, College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin 300134, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin 300134, China
| |
Collapse
|
2
|
Liang HQ, He QH, Wei QJ, Mo QZ, Yang GL, Wei FY, Wei LW, Li YJ, Qin M, Cheng JW. CTHRC1 expresses in cancer-associated fibroblasts and is associated with resistance to anti-androgen therapy in prostate cancer. Genes Genomics 2025; 47:541-557. [PMID: 40009323 DOI: 10.1007/s13258-025-01624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND CTHRC1 overexpresses in prostate cancer and is associated with the proliferation, invasion and migration of prostate cancer cells. However, the roles and mechanisms of CTHRC1 expression in prostate cancer prognosis and treatment outcomes remain unknown. OBJECTIVE This study aimed to explore the expression and gene function of CTHRC1 in prostate cancer, investigate the prognostic value and potential effect in the treatment of prostate cancer. METHODS Bulk and single-cell RNA sequencing analyses were used to evaluate the expression of CTHRC1 in prostate cancer. All data used in the study were obtained from publicly available sources to ensure transparency. Study enrolled 1999 cases of prostate cancer and 531 normal controls. Single-cell RNA sequencing profile included 62,995 cells from seven prostate primary tumors. CTHRC1 expression and prognosis analyses were conducted with these samples and verified by immunohistochemical staining. CIBERSORT algorithm was used to assess the tumor immune infiltrating cells based on bulk mRNA sequencing profiles. Genomics of drug sensitivity in cancer (GDSC) database was used to predict IC50 to anti-androgen therapy (ADT) drugs of the samples. RESULTS CTHRC1 expressed in prostate cancer was higher than that in normal prostate tissue, and the expression increased with the progress of prostate cancer. CTHRC1 was the risk factor of progression-free interval (PFI). CTHRC1 was positively correlated with the infiltration of tumor-associated macrophages (TAMs). Myofibroblast-like cancer-associated fibroblasts (myCAFs) were the major CTHRC1 expressers in prostate cancer. TGF-β signaling activated in CTHRC1-positive myCAFs and was involved in TAMs polarization. Biological functions of myCAFs were enriched in hormone response and metabolism. CTHRC1 may regulate androgen receptor signaling through CCN2/CAV1/AR pathway. Moreover, ADT drug Bicalutamide and AZD3514 were less sensitive in the high CTHRC1 expression tumors. CONCLUSIONS As a potential molecular target of ADT resistance in prostate cancer, CTHRC1 provides a new promising molecular approach for the diagnosis and treatment of prostate cancer.
Collapse
Affiliation(s)
- Hai-Qi Liang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Qi-Huan He
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Qiu-Ju Wei
- Guangxi Medical University, Nanning, China
| | - Qi-Zhou Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Guang-Lin Yang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fa-Ye Wei
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Li-Wei Wei
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Yu-Jian Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Min Qin
- Human Sperm Bank, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China.
| | - Ji-Wen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China.
| |
Collapse
|
3
|
Chen Q, Wang H, Liu Q, Luo C. CTHRC1: a key player in colorectal cancer progression and immune evasion. Front Immunol 2025; 16:1579661. [PMID: 40201173 PMCID: PMC11975584 DOI: 10.3389/fimmu.2025.1579661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
The multifunctional secreted protein, collagen triple helix repeat containing 1 (CTHRC1), has recently emerged as a significant focus within oncology research. CTHRC1 expression in tumors is governed by a complex interplay of regulatory signals, including methylation, glycosylation, and notably, non-coding RNAs, which constitute its predominant regulatory mechanism. Colorectal cancer (CRC), a highly prevalent epithelial malignancy, sees CTHRC1 influencing tumor progression and metastasis through its modulation of several downstream signaling cascades, such as Wnt/PCP, TGF-β/Smad, and MEK/ERK pathways. Furthermore, CTHRC1 contributes to immune evasion in CRC via diverse mechanisms. It is intricately associated with macrophage phenotypic switching within the tumor microenvironment (TME), favoring M2 macrophage polarization and facilitating the infiltration of T cells and neutrophils. CTHRC1 is also instrumental in immune escape by driving the remodeling of the extracellular matrix through interactions with cancer-associated fibroblasts. Additionally, CTHRC1's roles extend to the regulation of hypoxia-related pathways, metabolism of glycolysis and fatty acids, and involvement in tumor angiogenesis, all of which support tumor immune evasion. Considering its multifaceted activities, CTHRC1 emerges as a promising therapeutic target in CRC, with the potential to enhance the outcomes of existing radiotherapeutic and immunotherapeutic regimens. This review endeavors to delineate the mechanistic and therapeutic landscapes of CTHRC1 in CRC. Through a comprehensive discussion of CTHRC1's diverse functions, we aim to provide insights that could pave the way for innovative approaches in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Changjiang Luo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
4
|
Fu YF, Shi SW, Wu JJ, Yuan ZD, Wang LS, Nie H, Zhang ZY, Wu X, Chen YC, Ti HB, Zhang KY, Mao D, Ye JX, Li X, Yuan FL. Osteoclast Secretes Stage-Specific Key Molecules for Modulating Osteoclast-Osteoblast Communication. J Cell Physiol 2025; 240:e31484. [PMID: 39606839 DOI: 10.1002/jcp.31484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
In most cases of bone metabolic disorders, such as osteoporosis and osteomalacia, these conditions are often attributed to dysfunctional osteoclasts, leading to their common characterization as "destructors." In addition to the widely documented regulatory process where osteoblasts direct osteoclastic bone resorption, there is increasing evidence suggesting that osteoclasts also in turn influence osteoblastic bone formation through direct and indirect mechanisms. It is well-known that differentiation of osteoclasts involves several stages, each characterized by specific cellular features and functions. Stage-specific key molecules secreted during these stages play a critical role in mediating osteoclast-osteoblast communication. In this review, we described the different stages of osteoclast differentiation and reviewed stage-specific key molecules involved in osteoclasts-osteoblasts communication. We highlighted that a detailed understanding of these processes and molecular mechanism could facilitate the development of novel treatments for bone metabolic disorders.
Collapse
Affiliation(s)
- Yi-Fei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Shu-Wen Shi
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Lei-Sheng Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Hao Nie
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xian Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Yue-Chun Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Hui-Bo Ti
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Ke-Yue Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Jun-Xing Ye
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xia Li
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Altieri A, Visser GV, Buechler MB. Enter the Matrix: Fibroblast-immune cell interactions shape extracellular matrix deposition in health and disease. F1000Res 2024; 13:119. [PMID: 39886650 PMCID: PMC11781523 DOI: 10.12688/f1000research.143506.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 02/01/2025] Open
Abstract
Fibroblasts, non-hematopoietic cells of mesenchymal origin, are tissue architects which regulate the topography of tissues, dictate tissue resident cell types, and drive fibrotic disease. Fibroblasts regulate the composition of the extracellular matrix (ECM), a 3-dimensional network of macromolecules that comprise the acellular milieu of tissues. Fibroblasts can directly and indirectly regulate immune responses by secreting ECM and ECM-bound molecules to shape tissue structure and influence organ function. In this review, we will highlight recent studies which elucidate the mechanisms by which fibroblast-derived ECM factors (e.g., collagens, fibrillar proteins) regulate ECM architecture and subsequent immune responses, with a focus on macrophages. As examples of fibroblast-derived ECM proteins, we examine Collagen Triple Helix Repeat Containing 1 (CTHRC1) and Transforming Growth Factor-β-inducible protein (TGFBI), also known as BIGH3. We address the need for investigation into how diverse fibroblast populations coordinate immune responses by modulating ECM, including the fibroblast-ECM-immune axis and the precise molecular mediators and pathways which regulate these processes. Finally, we will outline how novel research identifying key regulators of ECM deposition is critical for therapeutic development for fibrotic diseases and cancer.
Collapse
|
6
|
Carrasco-Zanini J, Wheeler E, Uluvar B, Kerrison N, Koprulu M, Wareham NJ, Pietzner M, Langenberg C. Mapping biological influences on the human plasma proteome beyond the genome. Nat Metab 2024; 6:2010-2023. [PMID: 39327534 PMCID: PMC11496106 DOI: 10.1038/s42255-024-01133-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
Broad-capture proteomic platforms now enable simultaneous assessment of thousands of plasma proteins, but most of these are not actively secreted and their origins are largely unknown. Here we integrate genomic with deep phenomic information to identify modifiable and non-modifiable factors associated with 4,775 plasma proteins in ~8,000 mostly healthy individuals. We create a data-driven map of biological influences on the human plasma proteome and demonstrate segregation of proteins into clusters based on major explanatory factors. For over a third (N = 1,575) of protein targets, joint genetic and non-genetic factors explain 10-77% of the variation in plasma (median 19.88%, interquartile range 14.01-31.09%), independent of technical factors (median 2.48%, interquartile range 0.78-6.41%). Together with genetically anchored causal inference methods, our map highlights potential causal associations between modifiable risk factors and plasma proteins for hundreds of protein-disease associations, for example, COL6A3, which possibly mediates the association between reduced kidney function and cardiovascular disease. We provide a map of biological and technical influences on the human plasma proteome to help contextualize findings from proteomic studies.
Collapse
Affiliation(s)
- Julia Carrasco-Zanini
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Burulça Uluvar
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nicola Kerrison
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Mine Koprulu
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Maik Pietzner
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Claudia Langenberg
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK.
| |
Collapse
|
7
|
Ji P, Li Y, Wang Z, Jia S, Jiang X, Chen H, Wang Q. Advances in precision gene editing for liver fibrosis: From technology to therapeutic applications. Biomed Pharmacother 2024; 177:117003. [PMID: 38908207 DOI: 10.1016/j.biopha.2024.117003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
This review presents a comprehensive exploration of gene editing technologies and their potential applications in the treatment of liver fibrosis, a condition often leading to serious complications such as liver cancer. Through an in-depth review of current literature and critical analysis, the study delves into the intricate signaling pathways underlying liver fibrosis development and examines the promising role of gene editing in alleviating this disease burden. Gene editing technologies offer precise, efficient, and reproducible tools for manipulating genetic material, holding significant promise for basic research and clinical practice. The manuscript highlights the challenges and potential risks associated with gene editing technology. By synthesizing existing knowledge and exploring future perspectives, this study aims to provide valuable insights into the potential of precision gene editing to combat liver fibrosis and its associated complications, ultimately contributing to advances in liver fibrosis research and therapy.
Collapse
Affiliation(s)
- Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China; Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Yan Li
- Department of International Medicine, The Second Hospital of Dalian Medical University, Dalian 116000, PR China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Siyu Jia
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Xinyi Jiang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Hui Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Qun Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China.
| |
Collapse
|
8
|
Daponte V, Henke K, Drissi H. Current perspectives on the multiple roles of osteoclasts: Mechanisms of osteoclast-osteoblast communication and potential clinical implications. eLife 2024; 13:e95083. [PMID: 38591777 PMCID: PMC11003748 DOI: 10.7554/elife.95083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Bone remodeling is a complex process involving the coordinated actions of osteoblasts and osteoclasts to maintain bone homeostasis. While the influence of osteoblasts on osteoclast differentiation is well established, the reciprocal regulation of osteoblasts by osteoclasts has long remained enigmatic. In the past few years, a fascinating new role for osteoclasts has been unveiled in promoting bone formation and facilitating osteoblast migration to the remodeling sites through a number of different mechanisms, including the release of factors from the bone matrix following bone resorption and direct cell-cell interactions. Additionally, considerable evidence has shown that osteoclasts can secrete coupling factors known as clastokines, emphasizing the crucial role of these cells in maintaining bone homeostasis. Due to their osteoprotective function, clastokines hold great promise as potential therapeutic targets for bone diseases. However, despite long-standing work to uncover new clastokines and their effect in vivo, more substantial efforts are still required to decipher the mechanisms and pathways behind their activity in order to translate them into therapies. This comprehensive review provides insights into our evolving understanding of the osteoclast function, highlights the significance of clastokines in bone remodeling, and explores their potential as treatments for bone diseases suggesting future directions for the field.
Collapse
Affiliation(s)
- Valentina Daponte
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
- VA Medical CenterAtlantaUnited States
| | - Katrin Henke
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
- VA Medical CenterAtlantaUnited States
| |
Collapse
|
9
|
Jiang W, Caruana DL, Back J, Lee FY. Unique Spatial Transcriptomic Profiling of the Murine Femoral Fracture Callus: A Preliminary Report. Cells 2024; 13:522. [PMID: 38534368 PMCID: PMC10969736 DOI: 10.3390/cells13060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Fracture callus formation is a dynamic stage of bone activity and repair with precise, spatially localized gene expression. Metastatic breast cancer impairs fracture healing by disrupting bone homeostasis and imparting an altered genomic profile. Previous sequencing techniques such as single-cell RNA and in situ hybridization are limited by missing spatial context and low throughput, respectively. We present a preliminary approach using the Visium CytAssist spatial transcriptomics platform to provide the first spatially intact characterization of genetic expression changes within an orthopedic model of impaired fracture healing. Tissue slides prepared from BALB/c mice with or without MDA-MB-231 metastatic breast cancer cells were used. Both unsupervised clustering and histology-based annotations were performed to identify the hard callus, soft callus, and interzone for differential gene expression between the wild-type and pathological fracture model. The spatial transcriptomics platform successfully localized validated genes of the hard (Dmp1, Sost) and soft callus (Acan, Col2a1). The fibrous interzone was identified as a region of extensive genomic heterogeneity. MDA-MB-231 samples demonstrated downregulation of the critical bone matrix and structural regulators that may explain the weakened bone structure of pathological fractures. Spatial transcriptomics may represent a valuable tool in orthopedic research by providing temporal and spatial context.
Collapse
Affiliation(s)
| | | | | | - Francis Y. Lee
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, 47 College Place, New Haven, CT 06510, USA
| |
Collapse
|
10
|
Gao CW, Lin W, Riddle RC, Kushwaha P, Boukas L, Björnsson HT, Hansen KD, Fahrner JA. A mouse model of Weaver syndrome displays overgrowth and excess osteogenesis reversible with KDM6A/6B inhibition. JCI Insight 2024; 9:e173392. [PMID: 38015625 PMCID: PMC10906465 DOI: 10.1172/jci.insight.173392] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters, indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-Seq comparing osteoblasts differentiated from Ezh2R684C/+, and Ezh2+/+ BM-mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases KDM6A and KDM6B substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.
Collapse
Affiliation(s)
- Christine W. Gao
- Department of Genetic Medicine
- Department of Molecular Biology and Genetics, and
| | | | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leandros Boukas
- Department of Genetic Medicine
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Hans T. Björnsson
- Department of Genetic Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Kasper D. Hansen
- Department of Genetic Medicine
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jill A. Fahrner
- Department of Genetic Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Luján-Amoraga L, Delgado-Martín B, Lourenço-Marques C, Gavaia PJ, Bravo J, Bandarra NM, Dominguez D, Izquierdo MS, Pousão-Ferreira P, Ribeiro L. Exploring Omega-3's Impact on the Expression of Bone-Related Genes in Meagre ( Argyrosomus regius). Biomolecules 2023; 14:56. [PMID: 38254657 PMCID: PMC10813611 DOI: 10.3390/biom14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Dietary supplementation with Omega-3 fatty acids seems to promote skeletal health. Therefore, their consumption at imbalanced or excessive levels has offered less beneficial or even prejudicial effects. Fish produced in aquaculture regimes are prone to develop abnormal skeletons. Although larval cultures are usually fed with diets supplemented with Omega-3 Long Chain Polyunsaturated fatty acids (LC-PUFAs), the lack of knowledge about the optimal requirements for fatty acids or about their impact on mechanisms that regulate skeletal development has impeded the design of diets that could improve bone formation during larval stages when the majority of skeletal anomalies appear. In this study, Argyrosomus regius larvae were fed different levels of Omega-3s (2.6% and 3.6% DW on diet) compared to a commercial diet. At 28 days after hatching (DAH), their transcriptomes were analyzed to study the modulation exerted in gene expression dynamics during larval development and identify impacted genes that can contribute to skeletal formation. Mainly, both levels of supplementation modulated bone-cell proliferation, the synthesis of bone components such as the extracellular matrix, and molecules involved in the interaction and signaling between bone components or in important cellular processes. The 2.6% level impacted several genes related to cartilage development, denoting a special impact on endochondral ossification, delaying this process. However, the 3.6% level seemed to accelerate this process by enhancing skeletal development. These results offered important insights into the impact of dietary Omega-3 LC-PUFAs on genes involved in the main molecular mechanism and cellular processes involved in skeletal development.
Collapse
Affiliation(s)
- Leticia Luján-Amoraga
- Aquaculture Research Station (EPPO), Portuguese Institute for the Ocean and Atmosphere (IPMA), 8700-194 Olhão, Portugal; (L.L.-A.); (C.L.-M.); (P.P.-F.)
| | - Belén Delgado-Martín
- Department of Microbiology and Crop Protection, Institute of Subtropical and Mediterranean Horticulture (IHSM-UMA-CSIC), 29010 Malaga, Spain;
| | - Cátia Lourenço-Marques
- Aquaculture Research Station (EPPO), Portuguese Institute for the Ocean and Atmosphere (IPMA), 8700-194 Olhão, Portugal; (L.L.-A.); (C.L.-M.); (P.P.-F.)
- Collaborative Laboratory on Sustainable and Smart Aquaculture (S2AQUACOLAB) Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve (UALG), 8005-139 Faro, Portugal;
| | - Jimena Bravo
- Aquaculture Research Group (GIA), University of Las Palmas de Gran Canaria (ULPGC) Crta. Taliarte s/n, 35214 Telde, Spain; (J.B.); (D.D.); (M.S.I.)
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho, 7, 1495-006 Lisbon, Portugal;
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - David Dominguez
- Aquaculture Research Group (GIA), University of Las Palmas de Gran Canaria (ULPGC) Crta. Taliarte s/n, 35214 Telde, Spain; (J.B.); (D.D.); (M.S.I.)
| | - Marisol S. Izquierdo
- Aquaculture Research Group (GIA), University of Las Palmas de Gran Canaria (ULPGC) Crta. Taliarte s/n, 35214 Telde, Spain; (J.B.); (D.D.); (M.S.I.)
| | - Pedro Pousão-Ferreira
- Aquaculture Research Station (EPPO), Portuguese Institute for the Ocean and Atmosphere (IPMA), 8700-194 Olhão, Portugal; (L.L.-A.); (C.L.-M.); (P.P.-F.)
- Collaborative Laboratory on Sustainable and Smart Aquaculture (S2AQUACOLAB) Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Laura Ribeiro
- Aquaculture Research Station (EPPO), Portuguese Institute for the Ocean and Atmosphere (IPMA), 8700-194 Olhão, Portugal; (L.L.-A.); (C.L.-M.); (P.P.-F.)
| |
Collapse
|
12
|
Chen D, Li Y, Wang Q, Zhan P. Identification of Key Osteoporosis Genes Through Comparative Analysis of Men's and Women's Osteoblast Transcriptomes. Calcif Tissue Int 2023; 113:618-629. [PMID: 37878026 DOI: 10.1007/s00223-023-01147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
Osteoporosis disproportionately affects older women, yet gender differences in human osteoblasts remain unexplored. Identifying mechanisms and biomarkers of osteoporosis will enable the development of preventative and therapeutic approaches. Transcriptome data of 187 osteoblast samples from men and women were compared. Differentially expressed genes (DEGs) were identified, and weighted gene co-expression network analysis (WGCNA) was used to discover co-expressed modules. Enrichment analysis was performed to annotate DEGs. Preservation analysis determined whether modules and pathways were similar between genders. Blood methylation, transcriptome data, mouse phenotype data, and drug treatment data were utilized to identify key osteoporosis genes. We identified 1460 DEGs enriched in immune response, neurogenesis, and GWAS osteoporosis-related genes. WGCNA uncovered 8 modules associated with immune response, development, collagen metabolism, mitochondrion, and amino acid synthesis. Preservation analysis indicated modules and pathways were generally similar between genders. Incorporating GWAS and mouse phenotype data revealed 9 key genes, including GMDS, SMOC2, SASH1, MMP2, AHCYL1, ARRDC2, IGHMBP2, ATP6V1A, and CTSK. These genes were differentially methylated in patient blood and differentiated high and low bone mineral density patients in pre- and postmenopausal women. Denosumab treatment in postmenopausal women down-regulated 6 key genes, up-regulated T cell proportions, and down-regulated fibroblast proportion. qRT-PCR was used to confirm the genes in postmenopausal women. We identified 9 key osteoporosis genes by comparing the transcriptome of osteoblasts in women and men. Our findings' clinical implications were confirmed by multi-omics data and qRT-PCR, and our study provides novel biomarkers and therapeutic targets for osteoporosis diagnosis and treatment.
Collapse
Affiliation(s)
- Dongfeng Chen
- Department of Bone and Joint Sports Medicine, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, 364000, Fujian, People's Republic of China
| | - Ying Li
- Department of Bone and Joint Sports Medicine, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, 364000, Fujian, People's Republic of China
| | - Qiang Wang
- Department of Bone and Joint Sports Medicine, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, 364000, Fujian, People's Republic of China
| | - Peng Zhan
- Department of Bone and Joint Sports Medicine, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, 364000, Fujian, People's Republic of China.
| |
Collapse
|
13
|
Krasnova O, Neganova I. Assembling the Puzzle Pieces. Insights for in Vitro Bone Remodeling. Stem Cell Rev Rep 2023; 19:1635-1658. [PMID: 37204634 DOI: 10.1007/s12015-023-10558-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
As a highly dynamic organ, bone changes during throughout a person's life. This process is referred to as 'bone remodeling' and it involves two stages - a well-balanced osteoclastic bone resorption and an osteoblastic bone formation. Under normal physiological conditions bone remodeling is highly regulated that ensures tight coupling between bone formation and resorption, and its disruption results in a bone metabolic disorder, most commonly osteoporosis. Though osteoporosis is one of the most prevalent skeletal ailments that affect women and men aged over 40 of all races and ethnicities, currently there are few, if any safe and effective therapeutic interventions available. Developing state-of-the-art cellular systems for bone remodeling and osteoporosis can provide important insights into the cellular and molecular mechanisms involved in skeletal homeostasis and advise better therapies for patients. This review describes osteoblastogenesis and osteoclastogenesis as two vital processes for producing mature, active bone cells in the context of interactions between cells and the bone matrix. In addition, it considers current approaches in bone tissue engineering, pointing out cell sources, core factors and matrices used in scientific practice for modeling bone diseases and testing drugs. Finally, it focuses on the challenges that bone regenerative medicine is currently facing.
Collapse
Affiliation(s)
- O Krasnova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - I Neganova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia.
| |
Collapse
|
14
|
Lu W, Sun C, Hou J. Predicting key gene related to immune infiltration and myofibroblast-like valve interstitial cells in patients with calcified aortic valve disease based on bioinformatics analysis. J Thorac Dis 2023; 15:3726-3740. [PMID: 37559614 PMCID: PMC10407485 DOI: 10.21037/jtd-23-72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/09/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Calcified aortic valve disease (CAVD) is the most prevalent valvular disease that can be treated only through valve replacement. We aimed to explore potential biomarkers and the role of immune cell infiltration in CAVD progression through bioinformatics analysis. METHODS Differentially ex-pressed genes (DEGs) were screened out based on three microarray datasets: GSE12644, GSE51472 and GSE83453. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to evaluate gene expression differences. Machine learning algorithms and DEGs were used to screen key gene. We used CIBERSORT to evaluate the immune cell infiltration of CAVD and evaluated the correlation between the biomarkers and infiltrating immune cells. We also compared bioinformatics analysis results with the valve interstitial cells (VICs) gene expression in single-cell RNA sequencing. RESULTS Collagen triple helix repeat containing 1 (CTHRC1) was identified as the key gene of CAVD. We identified a cell subtype valve interstitial cells-fibroblast, which was closely associated with fibro-calcific progress of aortic valve. CTHRC1 highly expressed in the VIC subpopulation. Immune infiltration analysis demonstrated that mast cells, B cells, dendritic cells and eosinophils were involved in pathogenesis of CAVD. Correlation analysis demonstrated that CTHRC1 was correlated with mast cells mostly. CONCLUSIONS In summary, the study suggested that CTHRC1 was a key gene of CAVD and CTHRC1 might participate in the potential molecular pathways involved in the connection between infiltrating immune cells and myofibroblast phenotype VICs.
Collapse
Affiliation(s)
- Wenyuan Lu
- Cardiac Surgery Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Sun
- Cardiac Surgery Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianfeng Hou
- Cardiac Surgery Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Gao CW, Lin W, Riddle RC, Kushwaha P, Boukas L, Björnsson HT, Hansen KD, Fahrner JA. Novel mouse model of Weaver syndrome displays overgrowth and excess osteogenesis reversible with KDM6A/6B inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546270. [PMID: 37425751 PMCID: PMC10327066 DOI: 10.1101/2023.06.23.546270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-seq comparing osteoblasts differentiated from Ezh2R684C/+ and Ezh2+/+ bone marrow mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases Kdm6a/6b substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state, and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.
Collapse
Affiliation(s)
- Christine W Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - WanYing Lin
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, MD
| | - Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Leandros Boukas
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD
| | - Hans T Björnsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Kasper D Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
16
|
Wei J, Ou Z, Tong B, Liao Z, Yang C. Engineered extracellular vesicles as therapeutics of degenerative orthopedic diseases. Front Bioeng Biotechnol 2023; 11:1162263. [PMID: 37362216 PMCID: PMC10289007 DOI: 10.3389/fbioe.2023.1162263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Degenerative orthopedic diseases, as a global public health problem, have made serious negative impact on patients' quality of life and socio-economic burden. Traditional treatments, including chemical drugs and surgical treatments, have obvious side effects and unsatisfactory efficacy. Therefore, biological therapy has become the focus of researches on degenerative orthopedic diseases. Extracellular vesicles (EVs), with superior properties of immunoregulatory, growth support, and drug delivery capabilities, have emerged as a new cell-free strategy for the treatment of many diseases, including degenerative orthopedic diseases. An increasing number of studies have shown that EVs can be engineered through cargo loading, surface modification, and chemical synthesis to improve efficiency, specificity, and safety. Herein, a comprehensive overview of recent advances in engineering strategies and applications of engineered EVs as well as related researches in degenerative orthopedic diseases, including osteoarthritis (OA), osteoporosis (OP), intervertebral disc degeneration (IDD) and osteonecrosis of the femoral head (ONFH), is provided. In addition, we analyze the potential and challenges of applying engineered EVs to clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Cao Yang
- *Correspondence: Zhiwei Liao, ; Cao Yang,
| |
Collapse
|
17
|
Liu YJ, Du J, Li J, Tan XP, Zhang Q. CTHRC1, a novel gene with multiple functions in physiology, disease and solid tumors (Review). Oncol Lett 2023; 25:266. [PMID: 37216164 PMCID: PMC10193374 DOI: 10.3892/ol.2023.13852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/01/2023] [Indexed: 05/24/2023] Open
Abstract
Collagen triple helix repeat containing 1 (CTHRC1) is a gene discovered in 2005; it is highly conserved, and no homologous proteins have been disclosed thus far. A number of studies have shown that CTHRC1 is present in normal tissues and organs, and it has vital functions in physiological processes, including participating in the regulation of metabolism, arterial remodeling, bone formation and myelination of the peripheral nervous system. It has been reported that abnormal expression of CTHRC1 is involved in the carcinogenesis of various human organs, such as the breast, colon, pancreas, lung, stomach and liver. Therefore, the present review aims to collate all known findings and results on the regulation of CTHRC1 expression and related signaling pathways. To conclude, this review also provides a hypothesis of the functional mechanism of this gene.
Collapse
Affiliation(s)
- Ya-Juan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
- Medical College of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jing Du
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jie Li
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xiao-Ping Tan
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qing Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
- Medical College of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
18
|
Ding H, Yin C, Yang M, Zhou R, Wang X, Pan X. Screening of differentially methylated genes in skeletal fluorosis of rats with different types and involvement of aberrant methylation of Cthrc1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121931. [PMID: 37268221 DOI: 10.1016/j.envpol.2023.121931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Fluoride is a widespread pollutant in the environment. There is a high risk of developing skeletal fluorosis from excessive fluoride exposure. Skeletal fluorosis has different phenotypes (including osteosclerotic, osteoporotic and osteomalacic) under the same fluoride exposure and depends on dietary nutrition. However, the existing mechanistic hypothesis of skeletal fluorosis cannot well explain the condition's different pathological manifestations and their logical relation with nutritional factors. Recent studies have shown that DNA methylation is involved in the occurrence and development of skeletal fluorosis. DNA methylation is dynamic throughout life and may be affected by nutrition and environmental factors. We speculated that fluoride exposure leads to the abnormal methylation of genes related to bone homeostasis under different nutritional statuses, resulting in different skeletal fluorosis phenotypes. The mRNA-Seq and target bisulfite sequencing (TBS) result showed differentially methylated genes in rats with different skeletal fluorosis types. The role of the differentially methylated gene Cthrc1 in the formation of different skeletal fluorosis types was explored in vivo and in vitro. Under normal nutritional conditions, fluoride exposure led to hypomethylation and high expression of Cthrc1 in osteoblasts through TET2 demethylase, which promoted osteoblast differentiation by activating Wnt3a/β-catenin signalling pathway, and participated in the occurrence of osteosclerotic skeletal fluorosis. Meanwhile, the high CTHRC1 protein expression also inhibited osteoclast differentiation. Under poor dietary conditions, fluoride exposure led to hypermethylation and low expression of Cthrc1 in osteoblasts through DNMT1 methyltransferase, and increased the RANKL/OPG ratio, which promoted the osteoclast differentiation and participated in the occurrence of osteoporotic/osteomalacic skeletal fluorosis. Our study expands the understanding of the role of DNA methylation in regulating the formation of different skeletal fluorosis types and provides insights into new prevention and treatment strategies for patients with skeletal fluorosis.
Collapse
Affiliation(s)
- Hongwei Ding
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Congyu Yin
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Menglan Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Ruiqi Zhou
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xilan Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xueli Pan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
19
|
Kim JS, Lee BN, Chang HS, Hwang IN, Oh WM, Hwang YC. Effects of CTHRC1 on odontogenic differentiation and angiogenesis in human dental pulp stem cells. Restor Dent Endod 2023; 48:e18. [PMID: 37284346 PMCID: PMC10240092 DOI: 10.5395/rde.2023.48.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 06/08/2023] Open
Abstract
Objectives This study aimed to determine whether collagen triple helix repeat containing-1 (CTHRC1), which is involved in vascular remodeling and bone formation, can stimulate odontogenic differentiation and angiogenesis when administered to human dental pulp stem cells (hDPSCs). Materials and Methods The viability of hDPSCs upon exposure to CTHRC1 was assessed with the WST-1 assay. CTHRC1 doses of 5, 10, and 20 µg/mL were administered to hDPSCs. Reverse-transcription polymerase reaction was used to detect dentin sialophosphoprotein, dentin matrix protein 1, vascular endothelial growth factor, and fibroblast growth factor 2. The formation of mineralization nodules was evaluated using Alizarin red. A scratch wound assay was conducted to evaluate the effect of CTHRC1 on cell migration. Data were analyzed using 1-way analysis of variance followed by the Tukey post hoc test. The threshold for statistical significance was set at p < 0.05. Results CTHRC1 doses of 5, 10, and 20 µg/mL had no significant effect on the viability of hDPSCs. Mineralized nodules were formed and odontogenic markers were upregulated, indicating that CTHRC1 promoted odontogenic differentiation. Scratch wound assays demonstrated that CTHRC1 significantly enhanced the migration of hDPSCs. Conclusions CTHRC1 promoted odontogenic differentiation and mineralization in hDPSCs.
Collapse
Affiliation(s)
- Jong-soon Kim
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Hoon-Sang Chang
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - In-Nam Hwang
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Won-Mann Oh
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
20
|
Moura SR, Freitas J, Ribeiro-Machado C, Lopes J, Neves N, Canhão H, Rodrigues AM, Barbosa MA, Almeida MI. Long non-coding RNA H19 regulates matrisome signature and impacts cell behavior on MSC-engineered extracellular matrices. Stem Cell Res Ther 2023; 14:37. [PMID: 36882843 PMCID: PMC9993741 DOI: 10.1186/s13287-023-03250-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/25/2022] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The vast and promising class of long non-coding RNAs (lncRNAs) has been under investigation for distinct therapeutic applications. Nevertheless, their role as molecular drivers of bone regeneration remains poorly studied. The lncRNA H19 mediates osteogenic differentiation of Mesenchymal Stem/Stromal Cells (MSCs) through the control of intracellular pathways. However, the effect of H19 on the extracellular matrix (ECM) components is still largely unknown. This research study was designed to decode the H19-mediated ECM regulatory network, and to reveal how the decellularized siH19-engineered matrices influence MSC proliferation and fate. This is particularly relevant for diseases in which the ECM regulation and remodeling processes are disrupted, such as osteoporosis. METHODS Mass spectrometry-based quantitative proteomics analysis was used to identify ECM components, after oligonucleotides delivery to osteoporosis-derived hMSCs. Moreover, qRT-PCR, immunofluorescence and proliferation, differentiation and apoptosis assays were performed. Engineered matrices were decellularized, characterized by atomic force microscopy and repopulated with hMSC and pre-adipocytes. Clinical bone samples were characterized by histomorphometry analysis. RESULTS Our study provides an in-depth proteome-wide and matrisome-specific analysis of the ECM proteins controlled by the lncRNA H19. Using bone marrow-isolated MSC from patients with osteoporosis, we identified fibrillin-1 (FBN1), vitronectin (VTN) and collagen triple helix repeat containing 1 (CTHRC1), among others, as having different pattern levels following H19 silencing. Decellularized siH19-engineered matrices are less dense and have a decreased collagen content compared with control matrices. Repopulation with naïve MSCs promotes a shift towards the adipogenic lineage in detriment of the osteogenic lineage and inhibits proliferation. In pre-adipocytes, these siH19-matrices enhance lipid droplets formation. Mechanistically, H19 is targeted by miR-29c, whose expression is decreased in osteoporotic bone clinical samples. Accordingly, miR-29c impacts MSC proliferation and collagen production, but does not influence ALP staining or mineralization, revealing that H19 silencing and miR-29c mimics have complementary but not overlapping functions. CONCLUSION Our data suggest H19 as a therapeutic target to engineer the bone ECM and to control cell behavior.
Collapse
Affiliation(s)
- Sara Reis Moura
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade Do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade Do Porto, Porto, Portugal
| | - Jaime Freitas
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade Do Porto, Porto, Portugal
| | - Cláudia Ribeiro-Machado
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade Do Porto, Porto, Portugal
| | - Jorge Lopes
- Departamento de Ortopedia, Centro Hospitalar Universitário São João (CHUSJ), Porto, Portugal
| | - Nuno Neves
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade Do Porto, Porto, Portugal.,Departamento de Ortopedia, Centro Hospitalar Universitário São João (CHUSJ), Porto, Portugal.,Hospital CUF, Porto, Portugal.,Faculdade de Medicina (FMUP), Universidade Do Porto, Porto, Portugal
| | - Helena Canhão
- NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Maria Rodrigues
- NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,Comprehensive Health Research Center (CHRC), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Mário Adolfo Barbosa
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade Do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade Do Porto, Porto, Portugal
| | - Maria Inês Almeida
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Instituto de Engenharia Biomédica (INEB), Universidade Do Porto, Porto, Portugal. .,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
21
|
Wang D, Zhang Y, Ye T, Zhang R, Zhang L, Shi D, Li T, Xia G, Niu K, Zhao Z, Chen Y, Pan W, Liu L, Jin X, Shen C. Cthrc1 deficiency aggravates wound healing and promotes cardiac rupture after myocardial infarction via non-canonical WNT5A signaling pathway. Int J Biol Sci 2023; 19:1299-1315. [PMID: 36923925 PMCID: PMC10008688 DOI: 10.7150/ijbs.79260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/03/2023] [Indexed: 03/13/2023] Open
Abstract
Cardiac fibroblasts are crucial for scar formation and cardiac repair after myocardial infarction (MI). Collagen triple helix repeat containing 1 (CTHRC1), an extracellular matrix protein, is involved in the pathogenesis of vascular remodeling, bone formation, and tumor progression. However, the role and underlying mechanism of CTHRC1 in post-MI wound repair are not fully clear. Bioinformatics analysis demonstrated CTHRC1 up-regulation in cardiac fibroblasts after ischemic cardiac injury. Serum levels of CTHRC1 were increased in MI mice and CTHRC1 expression was up-regulated in cardiac fibroblasts after MI. In vitro results showed that the induction of CTHRC1 expression in cardiac fibroblasts was mediated by canonical TGFβ1-Smad2/3 signaling axis. Moreover, CTHRC1 improved wound healing and boosted cardiac fibroblast activation in vitro. Cthrc1 deficiency aggravated cardiac function and reduced collagen deposition as well as increased mortality attributable to cardiac rupture after MI. Consistent with above phenotypes, reduced the levels of myocardial CD31, α-smooth muscle actin, collagen I, and collagen III was observed, whereas myocardial expression of matrix metalloproteinase 2 and matrix metalloproteinase 9 were increased in Cthrc1 knockout mice post-MI. Above effects could be partly reversed by rCTHRC1 protein or rWNT5A protein. Our study indicates that cardiac fibroblast-derived, canonical TGFβ1-Smad2/3-dependent CTHRC1 could improve wound repair and prevent cardiac rupture after MI via selectively activating non-canonical WNT5A-PCP signaling pathway.
Collapse
Affiliation(s)
- Di Wang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Yaping Zhang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Tianbao Ye
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Runlei Zhang
- Department of General Practice, Qibao Community Health Service Center Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Zhang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Dongmei Shi
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Taixi Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Guofang Xia
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Kaifan Niu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Zhe Zhao
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu Chen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Liang Liu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Xian Jin
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
- ✉ Corresponding authors: Xian Jin, MD. Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China, 200233. ; Chengxing Shen, MD, PhD. Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China, 200233.
| | - Chengxing Shen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
- ✉ Corresponding authors: Xian Jin, MD. Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China, 200233. ; Chengxing Shen, MD, PhD. Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China, 200233.
| |
Collapse
|
22
|
Abstract
Osteoclasts are the only cells that can efficiently resorb bone. They do so by sealing themselves on to bone and removing the mineral and organic components. Osteoclasts are essential for bone homeostasis and are involved in the development of diseases associated with decreased bone mass, like osteoporosis, or abnormal bone turnover, like Paget's disease of bone. In addition, compromise of their development or resorbing machinery is pathogenic in multiple types of osteopetrosis. However, osteoclasts also have functions other than bone resorption. Like cells of the innate immune system, they are derived from myeloid precursors and retain multiple immune cell properties. In addition, there is now strong evidence that osteoclasts regulate osteoblasts through a process known as coupling, which coordinates rates of bone resorption and bone formation during bone remodeling. In this article we review the non-resorbing functions of osteoclasts and highlight their importance in health and disease.
Collapse
Affiliation(s)
- Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Joseph Lorenzo
- The Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
23
|
Chlebek C, Moore JA, Ross FP, van der Meulen MCH. Molecular Identification of Spatially Distinct Anabolic Responses to Mechanical Loading in Murine Cortical Bone. J Bone Miner Res 2022; 37:2277-2287. [PMID: 36054133 DOI: 10.1002/jbmr.4686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 11/08/2022]
Abstract
Osteoporosis affects over 200 million women worldwide, one-third of whom are predicted to suffer from an osteoporotic fracture in their lifetime. The most promising anabolic drugs involve administration of expensive antibodies. Because mechanical loading stimulates bone formation, our current data, using a mouse model, replicates the anabolic effects of loading in humans and may identify novel pathways amenable to oral treatment. Murine tibial compression produces axially varying deformations along the cortical bone, inducing highest strains at the mid-diaphysis and lowest at the metaphyseal shell. To test the hypothesis that load-induced transcriptomic responses at different axial locations of cortical bone would vary as a function of strain magnitude, we loaded the left tibias of 10-week-old female C57Bl/6 mice in vivo in compression, with contralateral limbs as controls. Animals were euthanized at 1, 3, or 24 hours post-loading or loaded for 1 week (n = 4-5/group). Bone marrow and cancellous bone were removed, cortical bone was segmented into the metaphyseal shell, proximal diaphysis, and mid-diaphysis, and load-induced differential gene expression and enriched biological processes were examined for the three segments. At each time point, the mid-diaphysis (highest strain) had the greatest transcriptomic response. Similarly, biological processes regulating bone formation and turnover increased earlier and to the greatest extent at the mid-diaphysis. Higher strain induced greater levels of osteoblast and osteocyte genes, whereas expression was lower in osteoclasts. Among the top differentially expressed genes at 24-hours post-loading, 17 had known functions in bone biology, of which 12 were present only in osteoblasts, 3 exclusively in osteoclasts, and 2 were present in both cell types. Based on these results, we conclude that murine tibial loading induces spatially unique transcriptomic responses correlating with strain magnitude in cortical bone. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Carolyn Chlebek
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jacob A Moore
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | | | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
24
|
A pan-cancer analysis of matrisome proteins reveals CTHRC1 and a related network as major ECM regulators across cancers. PLoS One 2022; 17:e0270063. [PMID: 36190948 PMCID: PMC9529084 DOI: 10.1371/journal.pone.0270063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/02/2022] [Indexed: 11/07/2022] Open
Abstract
The extracellular matrix in the tumour microenvironment can regulate cancer cell growth and progression. A pan-cancer analysis of TCGA data from 30 cancer types, identified the top 5% of matrisome genes with amplifications or deletions in their copy number, that affect their expression and cancer survival. A similar analysis of matrisome genes in individual cancers identified CTHRC1 to be significantly altered. CTHRC1, a regulator of collagen synthesis, was identified as the most prominently upregulated matrisome gene of interest across cancers. Differential gene expression analysis identified 19 genes whose expression is increased with CTHRC1. STRING analysis of these genes classified them as ‘extracellular’, involved most prominently in ECM organization and cell adhesion. KEGG analysis showed their involvement in ECM-receptor and growth factor signalling. Cytohubba analysis of these genes revealed 13 hub genes, of which MMP13, POSTN, SFRP4, ADAMTS16 and FNDC1 were significantly altered in their expression with CTHRC1 and seen to affect survival across cancers. This could in part be mediated by their overlapping roles in regulating ECM (collagen or fibronectin) expression and organisation. In breast cancer tumour samples CTHRC1 protein levels are significantly upregulated with POSTN and MMP13, further supporting the need to evaluate their crosstalk in cancers.
Collapse
|
25
|
Huang X, Guan W. CTHRC1 expressed in periodontitis and human periodontal fibroblasts exposed to inflammatory stimuli. Oral Dis 2022; 29:1738-1746. [PMID: 35150048 DOI: 10.1111/odi.14151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Collagen triple helix repeat containing-1 (CTHRC1) is a glycoprotein that can be secreted extracellularly and is involved in the regulation of collagen matrix in a variety of diseases. The expression level of CTHRC1 in periodontitis was detected in the present study. MATERIALS AND METHODS The gingival tissues from clinically healthy subjects (15 cases) and those with periodontitis (30 cases) were taken for immunohistochemical staining. Lipopolysaccharide of the Porphyromonas gingivalis was added in the periodontal ligament fibroblast culture in vitro. Cells were collected and the mRNA levels of the intracellular CTHRC1 and protein expression of the extracellular CTHRC1 were detected. RESULTS The protein expression of CTHRC1 in the periodontitis group was higher than that of the clinically healthy group. The in vitro cell experiments showed that 10 μg/mL of P.g LPS could induce a significant increase in protein secretion of CTHRC1, and 5 μg/mL P.g LPS had a significant effect on promoting the mRNA expression of CTHRC1. CONCLUSION CTHRC1 might be involved in the development of periodontitis and the expression level might be significantly correlated with the stimulation of P.g LPS on fibroblasts. Different stimulation intensities of P.g LPS might result in different expression patterns of CTHRC1.
Collapse
Affiliation(s)
- Xueying Huang
- Stomatology Department of Fujian Medical, University Union Hospital.,Stomatological Key Laboratory of Fujian College and University
| | - Weiqun Guan
- Stomatology department of Fujian Medical University Union Hospital
| |
Collapse
|
26
|
Terkawi MA, Matsumae G, Shimizu T, Takahashi D, Kadoya K, Iwasaki N. Interplay between Inflammation and Pathological Bone Resorption: Insights into Recent Mechanisms and Pathways in Related Diseases for Future Perspectives. Int J Mol Sci 2022; 23:1786. [PMID: 35163708 PMCID: PMC8836472 DOI: 10.3390/ijms23031786] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Bone is a mineralized and elastic connective tissue that provides fundamental functions in the human body, including mechanical support to the muscles and joints, protection of vital organs and storage of minerals. Bone is a metabolically active organ that undergoes continuous remodeling processes to maintain its architecture, shape, and function throughout life. One of the most important medical discoveries of recent decades has been that the immune system is involved in bone remodeling. Indeed, chronic inflammation has been recognized as the most significant factor influencing bone homeostasis, causing a shift in the bone remodeling process toward pathological bone resorption. Bone osteolytic diseases typified by excessive bone resorption account for one of the greatest causes of disability worldwide, with significant economic and public health burdens. From this perspective, we discuss the recent findings and discoveries highlighting the cellular and molecular mechanisms that regulate this process in the bone microenvironment, in addition to the current therapeutic strategies for the treatment of osteolytic bone diseases.
Collapse
Affiliation(s)
- M Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; (G.M.); (T.S.); (D.T.); (K.K.); (N.I.)
| |
Collapse
|
27
|
Li Y, Cheng X, Yan J, Jiang S. CTHRC1 facilitates bladder cancer cell proliferation and invasion through regulating the PI3K/Akt signaling pathway. Arch Med Sci 2022; 18:183-194. [PMID: 35154539 PMCID: PMC8827022 DOI: 10.5114/aoms.2019.85718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/27/2019] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Emerging evidence has illustrated that Collagen triple helix repeat containing 1 (CTHRC1) is crucial for tumorigenesis and development. However, the effects of CTHRC1 on bladder cancer progression remain largely unclear. Here, we aim to investigate the function and mechanism of CTHRC1 in behaviors of bladder cancer cells in vitro and in vivo. MATERIAL AND METHODS Interference assays were applied to determine the biological functions of CTHRC1. The expression of CTHRC1 was examined by quantitative real time-PCR (qRT-PCR), Western blot and immunohistochemical (IHC) analysis. Effects of CTHRC1 on proliferation, migration and invasion were evaluated by CCK-8, colony formation, flow cytometry, EdU staining, wound healing, transwell and western blot assays. Bladder cancer cells transfected with sh-CTHRC1 were injected into nude mice to explore the effect of CTHRC1 on tumorigenesis in vivo. RESULTS CTHRC1 expression was increased in bladder cancer tissues and cell lines compared with normal controls, and associated with advanced clinical stage and lymph node metastasis. Also, patients with high levels of CTHRC1 expression were found to have a poor prognosis. Knockdown of CTHRC1 alleviated bladder cancer cell proliferation, migration and invasion in vitro and impeded tumorigenesis in vivo. Moreover, mechanistic investigation indicated that CTHRC1 could regulate the PI3K/Akt signaling pathway. CONCLUSIONS Our data demonstrated that CTHRC1 played an oncogenic role in bladder cancer by modulating the PI3K/Akt signaling pathway, which sheds novel light on diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Yubing Li
- Department of Urology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiangdong Cheng
- Department of Abdominal Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jiasheng Yan
- Department of Urology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shaobo Jiang
- Department of Urology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Zhang XL, Hu LP, Yang Q, Qin WT, Wang X, Xu CJ, Tian GA, Yang XM, Yao LL, Zhu L, Nie HZ, Li Q, Xu Q, Zhang ZG, Zhang YL, Li J, Wang YH, Jiang SH. CTHRC1 promotes liver metastasis by reshaping infiltrated macrophages through physical interactions with TGF-β receptors in colorectal cancer. Oncogene 2021; 40:3959-3973. [PMID: 33986509 DOI: 10.1038/s41388-021-01827-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 02/03/2023]
Abstract
Metastasis is a major cause of cancer-related deaths. Tumor-intrinsic properties can determine whether tumor metastasis occurs or not. Here, by comparing the gene expression patterns in primary colorectal cancer (CRC) patients with or without metastasis, we found that Collagen Triple Helix Repeat Containing 1 (CTHRC1) in primary CRC served as a metastasis-associated gene. Animal experiments verified that CTHRC1 secreted by CRC cells promoted hepatic metastasis, which was closely correlated with macrophage infiltration. Depletion of macrophages by liposomal clodronate largely abolished the promoting effect of CTHRC1 on CRC liver metastasis. Furthermore, we demonstrated that CTHRC1 modulated macrophage polarization to M2 phenotypes through TGF-β signaling. A mechanistic study revealed that CTHRC1 bound directly to TGF-β receptor II and TGF-β receptor III, stabilized the TGF-β receptor complex, and activated TGF-β signaling. The combination treatment of CTHRC1 monoclonal antibody and anti-PD-1 blocking antibody effectively suppressed CRC hepatic metastasis. Taken together, our data demonstrated that CTHRC1 is an intrinsic marker of CRC metastasis and further revealed that CTHRC1 promoted CRC liver metastasis by reshaping infiltrated macrophages through TGF-β signaling, suggesting that CTHRC1 could be a potential biomarker for the early prediction of and a therapeutic target of CRC hepatic metastasis.
Collapse
Affiliation(s)
- Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Ting Qin
- Department of Radiation Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Jie Xu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Ang Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Li Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Zhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Xu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ya-Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
29
|
Shen Z, Su T, Chen J, Xie Z, Li J. Collagen triple helix repeat containing-1 exerts antifibrotic effects on human skin fibroblast and bleomycin-induced dermal fibrosis models. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:801. [PMID: 34268414 PMCID: PMC8246160 DOI: 10.21037/atm-21-1884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/08/2021] [Indexed: 11/29/2022]
Abstract
Background Systemic scleroderma (SSc) is an acquired disorder characterized by excessive deposition of extracellular matrix in the skin and internal organs. So far, the molecular mechanisms underpinning the pathogenesis of SSc have remained unknown. Collagen triple helix repeat containing-1 (CTHRC1) has been indicated to be a cell type-specific inhibitor of transforming growth factor-β (TGF-β), which could have the potential for extensive clinical application owing to its ability to reduce collagen deposition. Our previous studies showed that CTHRC1 inhibited TGF-β1-induced collagen type I synthesis in keloid fibroblasts. In our present research, we attempted to probe the role of CTHRC1 in dermal fibrosis in bleomycin (BLM)-treated mice. Methods CTHRC1 and TGF-β1 expression was detected in dermal tissues from patients with SSc and BLM-treated mice by immunohistochemistry. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay was used to assess TGF-β1-induced proliferation of human dermal fibroblasts. Collagen expression and fibroblast synthesis were evaluated by quantitative real-time polymerase chain reaction and the 3H-proline incorporation. Masson’s trichrome staining and western blotting were carried out to analyze the deposits and protein levels of type I collagen, respectively. Results Compared with those in normal tissues, the levels of CTHRC1 and TGF-β1 were elevated in dermal tissues from patients with SSc and in skin tissues from BLM-treated mice, respectively. Furthermore, recombinant CTHRC1 was found to inhibit TGF-β1-stimulated collagen deposition by fibroblasts. Finally, the in vivo experiments showed that CTHRC1 alleviated BLM-induced dermal fibrotic changes. Conclusions CTHRC1 can inhibit human dermal fibroblast collagen deposition and can also exert protective effects against BLM-induced dermal fibrosis in mice. This research provides an indication that CTHRC1 may be a promising treatment choice for dermal fibrosis in SSc patients.
Collapse
Affiliation(s)
- Zhu Shen
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Tangfeng Su
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Chen
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhen Xie
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Juan Li
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
30
|
The Role of Collagen Triple Helix Repeat-Containing 1 Protein (CTHRC1) in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms22052426. [PMID: 33670905 PMCID: PMC7957534 DOI: 10.3390/ijms22052426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease causing inflammation of joints, cartilage destruction and bone erosion. Biomarkers and new drug targets are actively sought and progressed to improve available options for patient treatment. The Collagen Triple Helix Repeat Containing 1 protein (CTHRC1) may have an important role as a biomarker for rheumatoid arthritis, as CTHRC1 protein concentration is significantly elevated in the peripheral blood of rheumatoid arthritis patients compared to osteoarthritis (OA) patients and healthy individuals. CTHRC1 is a secreted glycoprotein that promotes cell migration and has been implicated in arterial tissue-repair processes. Furthermore, high CTHRC1 expression is observed in many types of cancer and is associated with cancer metastasis to the bone and poor patient prognosis. However, the function of CTHRC1 in RA is still largely undefined. The aim of this review is to summarize recent findings on the role of CTHRC1 as a potential biomarker and pathogenic driver of RA progression. We will discuss emerging evidence linking CTHRC1 to the pathogenic behavior of fibroblast-like synoviocytes and to cartilage and bone erosion through modulation of the balance between bone resorption and repair.
Collapse
|
31
|
Wang JS, Mazur CM, Wein MN. Sclerostin and Osteocalcin: Candidate Bone-Produced Hormones. Front Endocrinol (Lausanne) 2021; 12:584147. [PMID: 33776907 PMCID: PMC7988212 DOI: 10.3389/fendo.2021.584147] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
In addition to its structural role, the skeleton serves as an endocrine organ that controls mineral metabolism and energy homeostasis. Three major cell types in bone - osteoblasts, osteoclasts, and osteocytes - dynamically form and maintain bone and secrete factors with systemic activity. Osteocalcin, an osteoblast-derived factor initially described as a matrix protein that regulates bone mineralization, has been suggested to be an osteoblast-derived endocrine hormone that regulates multiple target organs including pancreas, liver, muscle, adipose, testes, and the central and peripheral nervous system. Sclerostin is predominantly produced by osteocytes, and is best known as a paracrine-acting regulator of WNT signaling and activity of osteoblasts and osteoclasts on bone surfaces. In addition to this important paracrine role for sclerostin within bone, sclerostin protein has been noted to act at a distance to regulate adipocytes, energy homeostasis, and mineral metabolism in the kidney. In this article, we aim to bring together evidence supporting an endocrine function for sclerostin and osteocalcin, and discuss recent controversies regarding the proposed role of osteocalcin outside of bone. We summarize the current state of knowledge on animal models and human physiology related to the multiple functions of these bone-derived factors. Finally, we highlight areas in which future research is expected to yield additional insights into the biology of osteocalcin and sclerostin.
Collapse
Affiliation(s)
- Jialiang S. Wang
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Courtney M. Mazur
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marc N. Wein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
- *Correspondence: Marc N. Wein,
| |
Collapse
|
32
|
Garbutt TA, Konganti K, Konneker T, Hillhouse A, Phelps D, Jones A, Aylor D, Threadgill DW. Derivation of stable embryonic stem cell-like, but transcriptionally heterogenous, induced pluripotent stem cells from non-permissive mouse strains. Mamm Genome 2020; 31:263-286. [PMID: 33015751 PMCID: PMC9113365 DOI: 10.1007/s00335-020-09849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/22/2020] [Indexed: 11/26/2022]
Abstract
Genetic background is known to play a role in the ability to derive pluripotent, embryonic stem cells (ESC), a trait referred to as permissiveness. Previously we demonstrated that induced pluripotent stem cells (iPSC) can be readily derived from non-permissive mouse strains by addition of serum-based media supplemented with GSK3B and MEK inhibitors, termed 2iS media, 3 days into reprogramming. Here, we describe the derivation of second type of iPSC colony from non-permissive mouse strains that can be stably maintained independently of 2iS media. The resulting cells display transcriptional heterogeneity similar to that observed in ESC from permissive genetic backgrounds derived in conventional serum containing media supplemented with leukemia inhibitor factor. However, unlike previous studies that report exclusive subpopulations, we observe both exclusive and simultaneous expression of naive and primed cell surface markers. Herein, we explore shifts in pluripotency in the presence of 2iS and characterize heterogenous subpopulations to determine their pluripotent state and role in heterogenous iPSCs derived from the non-permissive NOD/ShiLtJ strain. We conclude that heterogeneity is a naturally occurring, necessary quality of stem cells that allows for the maintenance of pluripotency. This study further demonstrates the efficacy of the 2iS reprogramming technique. It is also the first study to derive stable ESC-like stem cells from the non-permissive NOD/ShiLtJ and WSB/EiJ strains, enabling easier and broader research possibilities into pluripotency for these and similar non-permissive mouse strains and species.
Collapse
Affiliation(s)
- Tiffany A Garbutt
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Thomas Konneker
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Drake Phelps
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alexis Jones
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - David Aylor
- Program in Genetics, Department of Biological Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - David W Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA.
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
33
|
Phan QT, Liu R, Tan WH, Imangali N, Cheong B, Schartl M, Winkler C. Macrophages Switch to an Osteo-Modulatory Profile Upon RANKL Induction in a Medaka ( Oryzias latipes) Osteoporosis Model. JBMR Plus 2020; 4:e10409. [PMID: 33210062 PMCID: PMC7657398 DOI: 10.1002/jbm4.10409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/16/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
In mammals, osteoclasts differentiate from macrophages in the monocyte lineage. Although many factors driving osteoclast formation are known, the detailed processes underlying precursor recruitment, differentiation, and interaction of macrophages with other cell types involved in bone remodeling are poorly understood. Using live imaging in a transgenic medaka osteoporosis model, where ectopic osteoclasts are induced by RANKL expression, we show that a subset of macrophages is recruited to bone matrix to physically interact with bone-forming osteoblast progenitors. These macrophages subsequently differentiate into cathepsin K- (ctsk-) positive osteoclasts. One day later, other macrophages are recruited to clear dying osteoclasts from resorbed bone by phagocytosis. To better understand the molecular changes underlying these dynamic processes, we performed transcriptome profiling of activated macrophages upon RANKL induction. This revealed an upregulation of several bone-related transcripts. Besides osteoclast markers, we unexpectedly also found expression of osteoblast-promoting signals in activated macrophages, suggesting a possible non-cell autonomous role in osteogenesis. Finally, we show that macrophage differentiation into osteoclasts is dependent on inflammatory signals. Medaka deficient for TNFα or treated with the TNFα-inhibitor pentoxifylline exhibited impaired macrophage recruitment and osteoclast differentiation. These results show the involvement of inflammatory signals and the dynamics of a distinct subset of macrophages during osteoclast formation. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Quang Tien Phan
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Ranran Liu
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Nurgul Imangali
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Benedict Cheong
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Manfred Schartl
- Department of Developmental Biochemistry, BiocenterUniversity of WürzburgWürzburgGermany
- The Xiphophorus Genetic Stock CenterTexas State UniversitySan MarcosTexasUSA
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
34
|
Part 1: profiling extra cellular matrix core proteome of human fetal nucleus pulposus in search for regenerative targets. Sci Rep 2020; 10:15684. [PMID: 32973250 PMCID: PMC7519061 DOI: 10.1038/s41598-020-72859-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/19/2020] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc degeneration is accompanied by a loss of Extra-cellular matrix (ECM) due to an imbalance in anabolic and catabolic pathways. Identifying ECM proteins with anabolic and/or regenerative potential could be the key to developing regenerative therapies. Since human fetal discs grow and develop rapidly, studying these discs may provide valuable insights on proteins with regenerative potential. This study compares core matrisome of 9 fetal and 7 healthy adult (age 22-79) nucleus pulposus (NP), using a proteomic and bioinformatic approach. Of the 33 upregulated proteins in fetus NP's, 20 of which were involved in ECM assembly pathways: fibromodulin, biglycan, heparan sulfate proteoglycan 2, chondroitin sulfate proteoglycan 4, procollagen C-endopeptidase enhancer and Collagen-type 1a1, 1a2, 6a1, 6a3, 11a1, 11a2, 12a1, 14a1 and 15a1. Moreover, 10 of the upregulated proteins were involved in growth pathways 'PI3L-Akt signaling' and 'regulation of insulin like growth factor transport and uptake.' Thrombospondin 1,3 and 4, tenascin C, matrilin-3, and collagen- type 1a1, 1a2, 6a1, 6a3 and 9a1. Additionally, matrillin-2 and 'Collagen triple helix repeat containing 1' were identified as possible regenerative proteins due to their involvement in 'Regeneration' and 'tissue development' respectively. In conclusion, the consistency of human fetal NP's differs greatly from that of healthy adults. In view of these outcomes, the core matrisome of human fetal discs contains an abundant number of proteins that could potentially show regenerative properties, and their potential should be explored in future machinal experiments.
Collapse
|
35
|
Bian Q, Cheng YH, Wilson JP, Su EY, Kim DW, Wang H, Yoo S, Blackshaw S, Cahan P. A single cell transcriptional atlas of early synovial joint development. Development 2020; 147:dev185777. [PMID: 32580935 PMCID: PMC7390639 DOI: 10.1242/dev.185777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Synovial joint development begins with the formation of the interzone, a region of condensed mesenchymal cells at the site of the prospective joint. Recently, lineage-tracing strategies have revealed that Gdf5-lineage cells native to and from outside the interzone contribute to most, if not all, of the major joint components. However, there is limited knowledge of the specific transcriptional and signaling programs that regulate interzone formation and fate diversification of synovial joint constituents. To address this, we have performed single cell RNA-Seq analysis of 7329 synovial joint progenitor cells from the developing murine knee joint from E12.5 to E15.5. By using a combination of computational analytics, in situ hybridization and in vitro characterization of prospectively isolated populations, we have identified the transcriptional profiles of the major developmental paths for joint progenitors. Our freely available single cell transcriptional atlas will serve as a resource for the community to uncover transcriptional programs and cell interactions that regulate synovial joint development.
Collapse
Affiliation(s)
- Qin Bian
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Yu-Hao Cheng
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Jordan P Wilson
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Emily Y Su
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Hong Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Seth Blackshaw
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Patrick Cahan
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| |
Collapse
|
36
|
Ma Z, Chao F, Wang S, Song Z, Zhuo Z, Zhang J, Xu G, Chen G. CTHRC1 affects malignant tumor cell behavior and is regulated by miR-30e-5p in human prostate cancer. Biochem Biophys Res Commun 2020; 525:418-424. [PMID: 32102754 DOI: 10.1016/j.bbrc.2020.02.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 01/29/2023]
Abstract
Collagen Triple Helix Repeat Containing 1 (CTHRC1) has been picked out as a cancer-related, secreted glycoprotein that possesses multifaceted functions such as wound repair, the formation of adipose tissue, hepatocytes fibrosis, and bone remodeling. This study aims to explore the biological function and the profound regulative mechanism of CTHRC1 in human prostate cancer (PCa). We found that CTHRC1 was upregulated in patients with PCa. The knockdown of CTHRC1 suppressed PCa cell proliferation, invasion, migration, and colony formation significantly. The expression of CTHRC1 was down-regulated and up-regulated by miR-30e-5p mimics and inhibitors, respectively, in PCa cells. The dual-luciferase reporter assay validated the binding of miR-30e-5p with CTHRC1 mRNA, indicating the regulation of CTHC1 by miR-30e-5p. In consequence, this study demonstrated that CTHRC1 acts as an oncogenic gene and targeting the miR-30e-5p-CTHRC1 axis may provide novel therapeutic treatment for PCa.
Collapse
Affiliation(s)
- Zhe Ma
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Shiyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Zhenyu Song
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Zhiyuan Zhuo
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Jinguo Zhang
- Research Center for Clinical Research, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Guoxiong Xu
- Research Center for Clinical Research, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
37
|
Benova A, Tencerova M. Obesity-Induced Changes in Bone Marrow Homeostasis. Front Endocrinol (Lausanne) 2020; 11:294. [PMID: 32477271 PMCID: PMC7235195 DOI: 10.3389/fendo.2020.00294] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is characterized by low-grade inflammation, which is accompanied by increased accumulation of immune cells in peripheral tissues including adipose tissue (AT), skeletal muscle, liver and pancreas, thereby impairing their primary metabolic functions in the regulation of glucose homeostasis. Obesity has also shown to have a detrimental effect on bone homeostasis by altering bone marrow and hematopoietic stem cell differentiation and thus impairing bone integrity and immune cell properties. The origin of immune cells arises in the bone marrow, which has been shown to be affected with the obesogenic condition via increased cellularity and shifting differentiation and function of hematopoietic and bone marrow mesenchymal stem cells in favor of myeloid progenitors and increased bone marrow adiposity. These obesity-induced changes in the bone marrow microenvironment lead to dramatic bone marrow remodeling and compromising immune cell functions, which in turn affect systemic inflammatory conditions and regulation of whole-body metabolism. However, there is limited information on the inflammatory secretory factors creating the bone marrow microenvironment and how these factors changed during metabolic complications. This review summarizes recent findings on inflammatory and cellular changes in the bone marrow in relation to obesity and further discuss whether dietary intervention or physical activity may have beneficial effects on the bone marrow microenvironment and whole-body metabolism.
Collapse
|
38
|
Sims NA, Martin TJ. Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms. Annu Rev Physiol 2019; 82:507-529. [PMID: 31553686 DOI: 10.1146/annurev-physiol-021119-034425] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bone remodeling is essential for the repair and replacement of damaged and old bone. The major principle underlying this process is that osteoclast-mediated resorption of a quantum of bone is followed by osteoblast precursor recruitment; these cells differentiate to matrix-producing osteoblasts, which form new bone to replace what was resorbed. Evidence from osteopetrotic syndromes indicate that osteoclasts not only resorb bone, but also provide signals to promote bone formation. Osteoclasts act upon osteoblast lineage cells throughout their differentiation by facilitating growth factor release from resorbed matrix, producing secreted proteins and microvesicles, and expressing membrane-bound factors. These multiple mechanisms mediate the coupling of bone formation to resorption in remodeling. Additional interactions of osteoclasts with osteoblast lineage cells, including interactions with canopy and reversal cells, are required to achieve coordination between bone formation and resorption during bone remodeling.
Collapse
Affiliation(s)
- Natalie A Sims
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - T John Martin
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| |
Collapse
|
39
|
Extracellular vesicles from human urine-derived stem cells prevent osteoporosis by transferring CTHRC1 and OPG. Bone Res 2019; 7:18. [PMID: 31263627 PMCID: PMC6594995 DOI: 10.1038/s41413-019-0056-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is a debilitating bone disease affecting millions of people. Here, we used human urine-derived stem cells (USCs), which were noninvasively harvested from unlimited and easily available urine, as a “factory” to obtain extracellular vesicles (USC-EVs) and demonstrated that the systemic injection of USC-EVs effectively alleviates bone loss and maintains bone strength in osteoporotic mice by enhancing osteoblastic bone formation and suppressing osteoclastic bone resorption. More importantly, the anti-osteoporotic properties of USC-EVs are not notably disrupted by the age, gender, or health condition (with or without osteoporosis) of the USC donor. Mechanistic studies determined that collagen triple-helix repeat containing 1 (CTHRC1) and osteoprotegerin (OPG) proteins are enriched in USC-EVs and required for USC-EV-induced pro-osteogenic and anti-osteoclastic effects. Our results suggest that autologous USC-EVs represent a promising novel therapeutic agent for osteoporosis by promoting osteogenesis and inhibiting osteoclastogenesis by transferring CTHRC1 and OPG.
Collapse
|
40
|
Mattson AM, Begun DL, Molstad DHH, Meyer MA, Oursler MJ, Westendorf JJ, Bradley EW. Deficiency in the phosphatase PHLPP1 suppresses osteoclast-mediated bone resorption and enhances bone formation in mice. J Biol Chem 2019; 294:11772-11784. [PMID: 31189651 DOI: 10.1074/jbc.ra119.007660] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Enhanced osteoclast-mediated bone resorption and diminished formation may promote bone loss. Pleckstrin homology (PH) domain and leucine-rich repeat protein phosphatase 1 (Phlpp1) regulates protein kinase C (PKC) and other proteins in the control of bone mass. Germline Phlpp1 deficiency reduces bone volume, but the mechanisms remain unknown. Here, we found that conditional Phlpp1 deletion in murine osteoclasts increases their numbers, but also enhances bone mass. Despite elevating osteoclasts, Phlpp1 deficiency did not increase serum markers of bone resorption, but elevated serum markers of bone formation. These results suggest that Phlpp1 suppresses osteoclast formation and production of paracrine factors controlling osteoblast activity. Phlpp1 deficiency elevated osteoclast numbers and size in ex vivo osteoclastogenesis assays, accompanied by enhanced expression of proto-oncogene C-Fms (C-Fms) and hyper-responsiveness to macrophage colony-stimulating factor (M-CSF) in bone marrow macrophages. Although Phlpp1 deficiency increased TRAP+ cell numbers, it suppressed actin-ring formation and bone resorption in these assays. We observed that Phlpp1 deficiency increases activity of PKCζ, a PKC isoform controlling cell polarity, and that addition of a PKCζ pseudosubstrate restores osteoclastogenesis and bone resorption of Phlpp1-deficient osteoclasts. Moreover, Phlpp1 deficiency increased expression of the bone-coupling factor collagen triple helix repeat-containing 1 (Cthrc1). Conditioned growth medium derived from Phlpp1-deficient osteoclasts enhanced mineralization of ex vivo osteoblast cultures, an effect that was abrogated by Cthrc1 knockdown. In summary, Phlpp1 critically regulates osteoclast numbers, and Phlpp1 deficiency enhances bone mass despite higher osteoclast numbers because it apparently disrupts PKCζ activity, cell polarity, and bone resorption and increases secretion of bone-forming Cthrc1.
Collapse
Affiliation(s)
- Anna M Mattson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - Dana L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - David H H Molstad
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - Margaret A Meyer
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901
| | - Merry Jo Oursler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55901.,Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55901.,Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55901
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55901
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55901 .,Department of Biomedical Engineering and Physiology, Mayo Clinic, Rochester, Minnesota 55901
| |
Collapse
|
41
|
Myngbay A, Bexeitov Y, Adilbayeva A, Assylbekov Z, Yevstratenko BP, Aitzhanova RM, Matkarimov B, Adarichev VA, Kunz J. CTHRC1: A New Candidate Biomarker for Improved Rheumatoid Arthritis Diagnosis. Front Immunol 2019; 10:1353. [PMID: 31249576 PMCID: PMC6582781 DOI: 10.3389/fimmu.2019.01353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 05/28/2019] [Indexed: 11/23/2022] Open
Abstract
Background: The purpose of this study was to determine whether plasma levels of the collagen triple helix repeat containing 1 (CTHRC1) protein can serve as a blood-based biomarker for improved diagnosis of rheumatoid arthritis (RA) patients and monitoring of RA disease activity. Methods: We measured levels of CTHRC1 in the plasma of patients diagnosed with RA, osteoarthritis (OA), reactive arthritis (ReA), as well as in healthy individuals. We then assessed the correlation between CTHRC1 protein and a range of indices including the 28-joint disease activity score (DAS28), rheumatoid factor (RF), C-reactive protein (CRP), anti-citrullinated protein antibodies (ACPA), erythrocyte sedimentation rate (ESR), as well as a panel of cytokines, including interleukin 1 beta (IL-1β), interleukin 6 (IL-6), interleukin 8 (IL-8), and interferon gamma (IFNγ). Receiver operating characteristic (ROC) analysis was further performed to assess the diagnostic value of CTHRC1. Results: CTHRC1 plasma levels were significantly elevated in RA patients compared to healthy individuals, OA and ReA patients. ROC curve and risk score analysis suggested that plasma CTHRC1 can accurately discriminate patients with RA from healthy controls and may have practical value for RA diagnosis. CTHRC1 levels were positively associated with RF, ACPA, CRP, and disease activity based on the combined index of DAS28 with CRP (DAS28-CRP), and also strongly correlated with IL-1β, IL-6, IL-8, and IFNγ. Conclusion: Our studies show that CTHRC1 is a sensitive and easy-to-measure plasma marker that differentiates between RA and healthy status and also distinguishes between RA and other forms of arthritis, such as OA and ReA. At the current level of understanding, plasma CTHRC1 levels may improve the diagnosis of RA and these findings warrant confirmation in a larger, more comprehensive patient population.
Collapse
Affiliation(s)
- Askhat Myngbay
- PhD Program in Science, Engineering and Technology, Nazarbayev University, Astana, Kazakhstan.,National Laboratory Astana, Astana, Kazakhstan
| | - Yergali Bexeitov
- National Laboratory Astana, Department of General Biology and Genomics, Faculty of Natural Sciences, L. N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | | | | | | | | | | | - Vyacheslav A Adarichev
- Department of Medicine (Division of Rheumatology), Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jeannette Kunz
- Department of Biology, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
42
|
Si M, Zeng C, Goodluck H, Shen S, Mohan S, Xing W. A small molecular inhibitor of LRRK1 identified by homology modeling and virtual screening suppresses osteoclast function, but not osteoclast differentiation, in vitro. Aging (Albany NY) 2019; 11:3250-3261. [PMID: 31113907 PMCID: PMC6555463 DOI: 10.18632/aging.101977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/12/2019] [Indexed: 01/31/2023]
Abstract
We used TGFβ activation kinase 1 as a template to build a 3D structure of the human LRRK1 kinase domain (hLRRK1 KD) and performed small molecule docking. One of the chemicals (IN04) that docked into the pocket was chosen for evaluation of biological effects on osteoclasts (OCs) in vitro. INO4 at 16 nM completely blocked ATP binding to hLRRK1 KD in an in vitro pulldown assay. In differentiation and pit assays, while the number of OCs on bone slices were comparable for OCs treated with IN04 and DMSO, IN04 treatment of OCs significantly impaired their ability to resorb bone. The area of pits on bone slices was reduced by 43% at 5 μM and 83% at 10 μM as compared to DMSO. Individual pits appeared smaller and shallower. F-actin staining revealed that DMSO-treated OCs displayed clear actin rings, and F-actin forms a peripheral sealing zone. By contrast, IN04-treated OCs showed disarranged F-actin in the cytoplasm, and F-actin failed to form a sealing zone on bone slices. IN04 treatment had no effects on OC-derived coupling factor production nor on osteoblast nodule formation. Our data indicate IN04 is a potent inhibitor of LRRK1, suppressing OC function with no effect on OC formation.
Collapse
Affiliation(s)
- Mingjue Si
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda 92350, CA, USA
- Equal contribution
| | - Canjun Zeng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Equal contribution
| | - Helen Goodluck
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Equal contribution
| | - Sandi Shen
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda 92350, CA, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda 92350, CA, USA
| | - Weirong Xing
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda 92357, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda 92350, CA, USA
| |
Collapse
|
43
|
Li J, Wang Y, Ma M, Jiang S, Zhang X, Zhang Y, Yang X, Xu C, Tian G, Li Q, Wang Y, Zhu L, Nie H, Feng M, Xia Q, Gu J, Xu Q, Zhang Z. Autocrine CTHRC1 activates hepatic stellate cells and promotes liver fibrosis by activating TGF-β signaling. EBioMedicine 2019; 40:43-55. [PMID: 30639416 PMCID: PMC6412555 DOI: 10.1016/j.ebiom.2019.01.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hepatic fibrosis is caused by chronic liver injury and may progress toward liver cirrhosis, and even hepatocellular carcinoma. However, current treatment is not satisfactory. Therefore, there is a mandate to find novel therapeutic targets to improve therapy, and biomarkers to monitor therapeutic response. METHODS Liver fibrosis was induced by carbon tetrachloride (CCl4) or thioacetamide (TAA) in wild type (WT) or CTHRC1-/- mice, followed by immunofluorescence and immunohistochemical analyses. CTHRC1 monoclonal antibody (mAb) was used to abrogate the effect of CTHRC1 in vitro and in vivo. RESULTS Here, we reported that collagen triple helix repeat containing 1 (CTHRC1), a secreted protein derived from hepatic stellate cells (HSCs), was significantly up-regulated in fibrotic liver tissues. CTHRC1 promoted HSCs transformation from a quiescent to an activated state, and enhanced migratory or contractile capacities of HSCs by activating TGF-β signaling. Meanwhile, CTHRC1 competitively bound to Wnt noncononical receptor and promoted the contractility but not activation of HSCs. CCl4 or TAA-induced liver fibrosis was attenuated in CTHRC-/- mice compared with littermate control, while a monoclonal antibody of CTHRC1 suppressed liver fibrosis in WT mice treated with CCl4 or TAA. INTERPRETATION We demonstrated that CTHRC1 is a new regulator of liver fibrosis by modulating TGF-β signaling. Targeting CTHRC1 could be a promising therapeutic approach, which can suppress TGF-β signaling and avoid the side effects caused by directly targeting TGF-β. CTHRC1 could also be a potential biomarker for monitoring response to anti-fibrotic therapy. FUND: This study was supported by the National Natural Science Foundation of China (ID 81672358, 81871923, 81872242, 81802890), the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (ID 20181708), the Natural Science Foundation of Shanghai (ID 17ZR1428300, 18ZR1436900), and Shanghai Municipal Health Bureau (ID 2018BR32). The funders did not play a role in manuscript design, data collection, data analysis, interpretation nor writing of the manuscript.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yahui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingze Ma
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangang Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huizhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingxuan Feng
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
44
|
Ni S, Ren F, Xu M, Tan C, Weng W, Huang Z, Sheng W, Huang D. CTHRC1 overexpression predicts poor survival and enhances epithelial-mesenchymal transition in colorectal cancer. Cancer Med 2018; 7:5643-5654. [PMID: 30302922 PMCID: PMC6247052 DOI: 10.1002/cam4.1807] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/19/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022] Open
Abstract
Collagen triple helix repeat containing (CTHRC1), which was identified as a cancer-related factor, is a promigratory protein involved in multiple processes, including vascular remodeling, antifibrosis, metabolism, bone formation, and cancer. In this study, we aimed to investigate the clinical significance and possible role of CTHRC1 in the process of epithelial-mesenchymal transition (EMT) in colorectal cancer (CRC). Here, we revealed that CTHRC1 mRNA and protein levels are both upregulated in CRC tissues compared with those of paired noncancerous tissues. Moreover, the overexpression of CTHRC1 correlated with poor prognosis in patients with CRC (especially colon cancer). Furthermore, we showed that CTHRC1 induced EMT and promoted cell motility in CRC cells. Importantly, we demonstrated that CTHRC1 promoted EMT by activating transforming growth factor-β (TGF-β) signaling, revealing a possible effective therapeutic treatment for patients with CRC.
Collapse
Affiliation(s)
- Shujuan Ni
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
| | - Fei Ren
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
| | - Midie Xu
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
| | - Cong Tan
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
| | - Weiwei Weng
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Weiqi Sheng
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
| | - Dan Huang
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
| |
Collapse
|
45
|
Han Y, You X, Xing W, Zhang Z, Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res 2018; 6:16. [PMID: 29844945 PMCID: PMC5967329 DOI: 10.1038/s41413-018-0019-6] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
The skeleton is a dynamic organ that is constantly remodeled. Proteins secreted from bone cells, namely osteoblasts, osteocytes, and osteoclasts exert regulation on osteoblastogenesis, osteclastogenesis, and angiogenesis in a paracrine manner. Osteoblasts secrete a range of different molecules including RANKL/OPG, M-CSF, SEMA3A, WNT5A, and WNT16 that regulate osteoclastogenesis. Osteoblasts also produce VEGFA that stimulates osteoblastogenesis and angiogenesis. Osteocytes produce sclerostin (SOST) that inhibits osteoblast differentiation and promotes osteoclast differentiation. Osteoclasts secrete factors including BMP6, CTHRC1, EFNB2, S1P, WNT10B, SEMA4D, and CT-1 that act on osteoblasts and osteocytes, and thereby influenceaA osteogenesis. Osteoclast precursors produce the angiogenic factor PDGF-BB to promote the formation of Type H vessels, which then stimulate osteoblastogenesis. Besides, the evidences over the past decades show that at least three hormones or "osteokines" from bone cells have endocrine functions. FGF23 is produced by osteoblasts and osteocytes and can regulate phosphate metabolism. Osteocalcin (OCN) secreted by osteoblasts regulates systemic glucose and energy metabolism, reproduction, and cognition. Lipocalin-2 (LCN2) is secreted by osteoblasts and can influence energy metabolism by suppressing appetite in the brain. We review the recent progresses in the paracrine and endocrine functions of the secretory proteins of osteoblasts, osteocytes, and osteoclasts, revealing connections of the skeleton with other tissues and providing added insights into the pathogenesis of degenerative diseases affecting multiple organs and the drug discovery process.
Collapse
Affiliation(s)
- Yujiao Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xiuling You
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Zhong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
46
|
Zhang Q, Yin ZS, Zhang FW, Cao K, Sun HY. CTHRC1 mediates IL‑1β‑induced apoptosis in chondrocytes via JNK1/2 signaling. Int J Mol Med 2018; 41:2270-2278. [PMID: 29393342 DOI: 10.3892/ijmm.2018.3403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/08/2018] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA), also known as degenerative joint disease or degenerative arthritis, is characterized by chondrocyte apoptosis. The aim of the present study was to investigate the effects of collagen triple helix repeat containing 1 (CTHRC1) and the c‑Jun N‑terminal kinase (JNK) 1/2 inhibitor SP600125 on rat chondrocytes cultured in vitro with interleukin (IL)‑1β. Chondrocytes were treated with different doses of IL‑1β and cell viability and CTHRC1 expression were assessed using Cell Counting Kit‑8 and western blot assays, respectively. In separate experiments, chondrocytes were treated with CTHRC1‑expressing constructs (pLVX‑Puro‑CTHRC1) and/or SP600125, or IL‑1β with either CTHRC1 short hairpin (sh)RNA constructs (shNRA‑CTHRC1) or SP600125. The expression of CTHRC1, B‑cell lymphoma (Bcl)‑2, Bcl‑2‑associated X protein (Bax), cleaved caspase‑3, poly ADP ribose polymerase (PARP)‑1 and matrix metalloproteinase (MMP)‑13 was measured using reverse transcription‑quantitative polymerase chain reaction and western blotting assays. A Cell Counting Kit‑8 assay was performed to examine cell viability. Annexin V/propidium iodide staining and flow cytometry assays were used to detect chondrocyte apoptosis. The expression of JNK1/2 and phosphorylated JNK1/2 was measured using western blotting. CTHRC1 was highly expressed in patients with OA compared with normal controls. IL‑1β treatment (5, 10 and 20 ng/ml) increased the protein expression of CTHRC1 in a dose‑dependent manner and decreased the viability of chondrocytes in a time‑dependent manner. pLVX‑Puro‑CTHRC1 mimics the effect of IL‑1β on chondrocyte apoptosis and JNK1/2 activity, and this is reversed by SP600125 treatment. However, transfection with shRNA‑CTHRC1 or treatment with SP600125 inhibited IL‑1β‑induced cell apoptosis and JNK1/2 activation. These results indicate that CTHRC1 downregulation may protect chondrocytes from IL‑1β‑induced apoptosis by inactivating the JNK1/2 pathway.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zong-Sheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Fu-Wen Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Kun Cao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - He-Yan Sun
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
47
|
Zhu B, Ekman M, Svensson D, Lindvall JM, Nilsson BO, Uvelius B, Swärd K. Array profiling reveals contribution of Cthrc1 to growth of the denervated rat urinary bladder. Am J Physiol Renal Physiol 2018; 314:F893-F905. [PMID: 29357417 DOI: 10.1152/ajprenal.00499.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bladder denervation and bladder outlet obstruction are urological conditions that cause bladder growth. Transcriptomic surveys in outlet obstruction have identified differentially expressed genes, but similar studies following denervation have not been done. This was addressed using a rat model in which the pelvic ganglia were cryo-ablated followed by bladder microarray analyses. At 10 days following denervation, bladder weight had increased 5.6-fold, and 2,890 mRNAs and 135 micro-RNAs (miRNAs) were differentially expressed. Comparison with array data from obstructed bladders demonstrated overlap between the conditions, and 10% of mRNAs changed significantly and in the same direction. Many mRNAs, including collagen triple helix repeat containing 1 ( Cthrc1), Prc1, Plod2, and Dkk3, and miRNAs, such as miR-212 and miR-29, resided in the shared signature. Discordantly regulated transcripts in the two models were rare, making up for <0.07% of all changes, and the gene products in this category localized to the urothelium of normal bladders. These transcripts may potentially be used to diagnose sensory denervation. Western blotting demonstrated directionally consistent changes at the protein level, with increases of, e.g., Cthrc1, Prc1, Plod2, and Dkk3. We chose Cthrc1 for further studies and found that Cthrc1 was induced in the smooth muscle cell (SMC) layer following denervation. TGF-β1 stimulation and miR-30d-5p inhibition increased Cthrc1 in bladder SMCs, and knockdown and overexpression of Cthrc1 reduced and increased SMC proliferation. This work defines common and distinguishing features of bladder denervation and obstruction and suggests a role for Cthrc1 in bladder growth following denervation.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Experimental Medical Science, Lund University , Lund , Sweden.,Department of Urology, the Sixth Affiliated Hospital of Guangzhou Medical University , Guangdong , China
| | - Mari Ekman
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| | - Daniel Svensson
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| | - Jessica M Lindvall
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University , Stockholm , Sweden
| | - Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| | - Bengt Uvelius
- Section of Urology, Department of Clinical Science, Lund University , Lund , Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University , Lund , Sweden
| |
Collapse
|
48
|
Mei PJ, Bai J, Miao FA, Chen C, Zhu YS, Li ZL, Zheng JN, Fan YC. CTHRC1 mediates multiple pathways regulating cell invasion, migration and adhesion in glioma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9318-9329. [PMID: 31966804 PMCID: PMC6965956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/22/2017] [Indexed: 06/10/2023]
Abstract
Recently, collagen triple helix repeat containing-1 (CTHRC1) has been reported to be increased in several types of human solid cancers and to be associated with tumor invasion and metastasis. However, the expression and function of CTHRC1 in glioma have not yet been reported. In the present study, we investigated whether CTHRC1 plays a role in glioma pathogenesis. Using the tissue microarray technology, we found that CTHRC1 expression is significantly increased in glioma compared with tumor adjacent normal brain tissue (P<0.01, χ2 test) and increased CTHRC1 staining was associated with WHO stages (P<0.05, χ2 test). The mRNA and protein levels of CTHRC1 were significantly upregulated in human primary glioma tissues (P<0.001, χ2 test). We also found that CTHRC1 was significantly increased in glioma cell lines compared to normal human astrocytes (P<0.01, χ2 test). Furthermore, Knockdown of CTHRC1 suppressed glioma cell invasion and inhibited enzyme activity of MMP-2. Moreover, our data showed that knockdown of CTHRC1 inhibited glioma cell migration and adhesion capacity when compared with the control cells, and CTHRC1-siRNA reduced the levels of phosphorylated Src and FAK protein expression. Taken together, this study suggests that CTHRC1 plays a role in glioma development and progression by regulating invasion, migration and adhesion capabilities of cancer cells.
Collapse
Affiliation(s)
- Peng-Jin Mei
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Jin Bai
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Fa-An Miao
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Chen Chen
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Yi-Shuo Zhu
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Zhong-Lin Li
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Jun-Nian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Yue-Chao Fan
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
| |
Collapse
|
49
|
Wang C, Gu W, Sun B, Zhang Y, Ji Y, Xu X, Wen Y. CTHRC1 promotes osteogenic differentiation of periodontal ligament stem cells by regulating TAZ. J Mol Histol 2017. [PMID: 28647773 DOI: 10.1007/s10735-017-9729-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Collagen triple helix repeat containing 1 (CTHRC1) is associated with bone metabolism. Alveolar bone has an ability to rapidly remodel itself to adapt its biomechanical environment and function. However, whether CTHRC1 is expressed in alveolar bone tissue and the role of CTHRC1 in alveolar bone remodeling remain unclear. We used orthodontic tooth movement (OTM) rat model to study the effects of CHTRC1 in alveolar bone remodeling in vivo. We found that CTHRC1 was expressed in normal physiological condition of osteocytes, bone matrix, and periodontal ligament cells in rat. During the OTM, the expression of CTHRC1, Runx2 and TAZ were increased. We further studied the effects of CTHRC1 on osteogenic differentiation of human periodontal ligament stem cells in vitro. CTHRC1 can positively regulate the expression of TAZ and osteogenic differentiation markers like Col1, ALP, Runx2 and OCN. Overexpression of CHTRC1 increased osteogenic differentiation of PDLSCs, which could be abolished by TAZ siRNA. Our results suggest that CTHRC1 plays an important role in alveolar bone remodeling and osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Chengze Wang
- School of Stomatology, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, People's Republic of China
| | - Weiting Gu
- Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Baiyu Sun
- School of Stomatology, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, People's Republic of China
| | - Yunpeng Zhang
- School of Stomatology, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, People's Republic of China
| | - Yawen Ji
- School of Stomatology, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, People's Republic of China
| | - Xin Xu
- School of Stomatology, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China. .,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, People's Republic of China.
| | - Yong Wen
- School of Stomatology, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China. .,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, People's Republic of China.
| |
Collapse
|
50
|
Zhang Z, Duan Y, Wu Z, Zhang H, Ren J, Huang L. PPARD is an Inhibitor of Cartilage Growth in External Ears. Int J Biol Sci 2017; 13:669-681. [PMID: 28539839 PMCID: PMC5441183 DOI: 10.7150/ijbs.19714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/29/2017] [Indexed: 01/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor beta/delta (PPARD) is an important determinant of multiple biological processes. Our previous studies identified a missense mutation in the PPARD gene that significantly reduces its transcription activity, and consequently causes enlarged external ears in pigs. However, the mechanisms underlying the causality has remained largely unknown. Here, we show that PPARD retards the development of auricular cartilage by accelerating the apoptosis of cartilage stem/progenitor cells (CSPCs), the terminal differentiation of cartilage cells and the degradation of cartilage extracellular matrix in the auricle. At the transcription level, PPARD upregulates a set of genes that are associated with CSPCs apoptosis and chondrogenic differentiation, chondroblast differentiation and extracellular matrix degradation. ChIP-seq identified direct target genes of PPARD, including a well-documented gene for cartilage development: PPARG. We further show that compared to wild-type PPARD, the G32E mutant up-regulates the expression of PPARG and subsequently leads to the downregulation of critical genes that inhibit cartilage growth. These findings allow us to conclude that PPARD is an inhibitor of auricular cartilage growth in pigs. The causative mutation (G32E) in the PPARD gene attenuates the PPARD-mediated retardation of cartilage growth in the auricle, contributing to enlarged ears in pigs. The findings advance our understanding of the mechanisms underlying auricular development in mammals, and shed insight into the studies of innate pinna disorders and cartilage regeneration medicine in humans.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yanyu Duan
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhongping Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hui Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|