1
|
Mortimer T, Smith JG, Muñoz-Cánoves P, Benitah SA. Circadian clock communication during homeostasis and ageing. Nat Rev Mol Cell Biol 2025; 26:314-331. [PMID: 39753699 DOI: 10.1038/s41580-024-00802-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 03/28/2025]
Abstract
Maintaining homeostasis is essential for continued health, and the progressive decay of homeostatic processes is a hallmark of ageing. Daily environmental rhythms threaten homeostasis, and circadian clocks have evolved to execute physiological processes in a manner that anticipates, and thus mitigates, their effects on the organism. Clocks are active in almost all cell types; their rhythmicity and functional output are determined by a combination of tissue-intrinsic and systemic inputs. Numerous inputs for a specific tissue are produced by the activity of circadian clocks of other tissues or cell types, generating a form of crosstalk known as clock communication. In mammals, the central clock in the hypothalamus integrates signals from external light-dark cycles to align peripheral clocks elsewhere in the body. This regulation is complemented by a tissue-specific milieu of external, systemic and niche inputs that modulate and cooperate with the cellular circadian clock machinery of a tissue to tailor its functional output. These mechanisms of clock communication decay during ageing, and growing evidence suggests that this decline might drive ageing-related morbidities. Dietary, behavioural and pharmacological interventions may offer the possibility to overcome these changes and in turn improve healthspan.
Collapse
Affiliation(s)
- Thomas Mortimer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Jacob G Smith
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA, USA.
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
2
|
Tofani GSS, Clarke G, Cryan JF. I "Gut" Rhythm: the microbiota as a modulator of the stress response and circadian rhythms. FEBS J 2025; 292:1454-1479. [PMID: 39841560 PMCID: PMC11927059 DOI: 10.1111/febs.17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Modern habits are becoming more and more disruptive to health. As our days are often filled with circadian disruption and stress exposures, we need to understand how our responses to these external stimuli are shaped and how their mediators can be targeted to promote health. A growing body of research demonstrates the role of the gut microbiota in influencing brain function and behavior. The stress response and circadian rhythms, which are essential to maintaining appropriate responses to the environment, are known to be impacted by the gut microbiota. Gut microbes have been shown to alter the host's response to stress and modulate circadian rhythmicity. Although studies demonstrated strong links between the gut microbiota, circadian rhythms and the stress response, such studies were conducted in an independent manner not conducive to understanding the interface between these factors. Due to the interconnected nature of the stress response and circadian rhythms, in this review we explore how the gut microbiota may play a role in regulating the integration of stress and circadian signals in mammals and the consequences for brain health and disease.
Collapse
Affiliation(s)
- Gabriel S. S. Tofani
- APC MicrobiomeUniversity College CorkIreland
- Department of Anatomy & NeuroscienceUniversity College CorkIreland
| | - Gerard Clarke
- APC MicrobiomeUniversity College CorkIreland
- Department of Psychiatry & Neurobehavioural ScienceUniversity College CorkIreland
| | - John F. Cryan
- APC MicrobiomeUniversity College CorkIreland
- Department of Anatomy & NeuroscienceUniversity College CorkIreland
| |
Collapse
|
3
|
Kuang N, Ma Q, Zheng X, Meng X, Zhai Z, Li Q, Pan J. GeTeSEPdb: A comprehensive database and online tool for the identification and analysis of gene profiles with temporal-specific expression patterns. Comput Struct Biotechnol J 2024; 23:2488-2496. [PMID: 38939556 PMCID: PMC11208770 DOI: 10.1016/j.csbj.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Gene expression is dynamic and varies at different stages of processes. The identification of gene profiles with temporal-specific expression patterns can provide valuable insights into ongoing biological processes, such as the cell cycle, cell development, circadian rhythms, or responses to external stimuli such as drug treatments or viral infections. However, currently, no database defines, identifies or archives gene profiles with temporal-specific expression patterns. Here, using a high-throughput regression analysis approach, eight linear and nonlinear parametric models were fitted to gene expression profiles from time-series experiments to identify eight types of gene profiles with temporal-specific expression patterns. We curated 2684 time-series transcriptome datasets and identified 2644,370 gene profiles exhibiting temporal-specific expression patterns. The results were stored in the database GeTeSEPdb (gene profiles with temporal-specific expression patterns database, http://www.inbirg.com/GeTeSEPdb/). Moreover, we implemented an online tool to identify gene profiles with temporal-specific expression patterns from user-submitted data. In summary, GeTeSEPdb is a comprehensive web service that can be used to identify and analyse gene profiles with temporal-specific expression patterns. This approach facilitates the exploration of transcriptional changes and temporal patterns of responses. We firmly believe that GeTeSEPdb will become a valuable resource for biologists and bioinformaticians.
Collapse
Affiliation(s)
- Ni Kuang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qinfeng Ma
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xiao Zheng
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Xuehang Meng
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhaoyu Zhai
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qiang Li
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Pan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
4
|
Montaner M, Denom J, Simon V, Jiang W, Holt MK, Brierley DI, Rouch C, Foppen E, Kassis N, Jarriault D, Khan D, Eygret L, Mifsud F, Hodson DJ, Broichhagen J, Van Oudenhove L, Fioramonti X, Gault V, Cota D, Reimann F, Gribble FM, Migrenne-Li S, Trapp S, Gurden H, Magnan C. A neuronal circuit driven by GLP-1 in the olfactory bulb regulates insulin secretion. Nat Commun 2024; 15:6941. [PMID: 39138162 PMCID: PMC11322178 DOI: 10.1038/s41467-024-51076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1) stimulates insulin secretion and holds significant pharmacological potential. Nevertheless, the regulation of energy homeostasis by centrally-produced GLP-1 remains partially understood. Preproglucagon cells, known to release GLP-1, are found in the olfactory bulb (OB). We show that activating GLP-1 receptors (GLP-1R) in the OB stimulates insulin secretion in response to oral glucose in lean and diet-induced obese male mice. This is associated with reduced noradrenaline content in the pancreas and blocked by an α2-adrenergic receptor agonist, implicating functional involvement of the sympathetic nervous system (SNS). Inhibiting GABAA receptors in the paraventricular nucleus of the hypothalamus (PVN), the control centre of the SNS, abolishes the enhancing effect on insulin secretion induced by OB GLP-1R. Therefore, OB GLP-1-dependent regulation of insulin secretion relies on a relay within the PVN. This study provides evidence that OB GLP-1 signalling engages a top-down neural mechanism to control insulin secretion via the SNS.
Collapse
Affiliation(s)
- Mireia Montaner
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Jessica Denom
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Vincent Simon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Wanqing Jiang
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK
| | - Marie K Holt
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Daniel I Brierley
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK
| | - Claude Rouch
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Ewout Foppen
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam, Netherlands
| | - Nadim Kassis
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - David Jarriault
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Dawood Khan
- Faculty of Life and Health Sciences, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Louise Eygret
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Francois Mifsud
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - David J Hodson
- University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Oxford, UK
| | | | - Lukas Van Oudenhove
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), University of Leuven, Leuven, Belgium
| | - Xavier Fioramonti
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Victor Gault
- Faculty of Life and Health Sciences, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Frank Reimann
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Stephanie Migrenne-Li
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, UCL, London, UK.
| | - Hirac Gurden
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France.
| | - Christophe Magnan
- Université Paris Cité, Unit of Functional and Adaptive Biology (BFA), UMR 8251 CNRS, Paris, France.
| |
Collapse
|
5
|
Yu X, Hou W, Xiao L. Gamma-Aminobutyric Acid (GABA) Avoids Deterioration of Transport Water Quality, Regulates Plasma Biochemical Indices, Energy Metabolism, and Antioxidant Capacity of Tawny Puffer ( Takifugui flavidus) under Transport Stress. BIOLOGY 2024; 13:474. [PMID: 39056669 PMCID: PMC11273879 DOI: 10.3390/biology13070474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Live fish transportation is crucial for managing aquaculture but can pose health risks to fish due to stressors encountered during transportation. Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter that plays a crucial role in the central nervous system and is considered to exhibit anti-stress effects. This study aims to investigate the effects of GABA on the transport water quality, plasma biochemical indices, energy metabolism, and antioxidant capacity of tawny puffer (Takifugu flavidus) under transport stress. Tawny puffer were pretreated by immersing in aquariums containing GABA (final concentrations at 0, 5, 50, and 150 mg/L) seawater for 3 days; then, simulated transport was conducted using oxygen-filled polyethylene bags containing the same concentration of GABA seawater as the pretreatment period. Water samples, plasma, and liver were collected after 0, 6, and 12 h of transport. The results revealed that with the prolongation of transportation time, the control group's water quality deteriorated, stress-related plasma biochemical indices increased, glycolytic substrate contents decreased, glycolytic enzyme activities and product contents increased, and aerobic metabolic enzyme activities exhibited initial increases followed by declines, ATPase activities decreased, antioxidant enzyme activities decreased, and the lipid peroxidation marker contents increased. It is noteworthy that GABA treatment could avoid water quality deterioration during transportation, inhibit an elevation in stress-related biochemical indicators, regulate energy metabolism, and reduce oxidative damage in tawny puffer, especially at 50 and 150 mg/L concentrations. In summary, GABA treatment can effectively alleviate the transport stress of tawny puffer.
Collapse
Affiliation(s)
- Xiaowen Yu
- Shanghai Fisheries Research Institute, Shanghai 200433, China;
| | - Wenjie Hou
- Shanghai Fisheries Research Institute, Shanghai 200433, China;
| | - Lixia Xiao
- Qidong Fishery Technology Promotion Station, Qidong 226299, China;
| |
Collapse
|
6
|
Engin A. Misalignment of Circadian Rhythms in Diet-Induced Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:27-71. [PMID: 39287848 DOI: 10.1007/978-3-031-63657-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronize them with daily cycles. While the central clock in the suprachiasmatic nucleus (SCN) is mainly synchronized by the light/dark cycles, the peripheral clocks react to other stimuli, including the feeding/fasting state, nutrients, sleep-wake cycles, and physical activity. During the disruption of circadian rhythms due to genetic mutations or social and occupational obligations, incorrect arrangement between the internal clock system and environmental rhythms leads to the development of obesity. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition leads to uncoupling of the peripheral clocks from the central pacemaker and to the development of metabolic disorders. The strong coupling of the SCN to the light-dark cycle creates a situation of misalignment when food is ingested during the "wrong" time of day. Food-anticipatory activity is mediated by a self-sustained circadian timing, and its principal component is a food-entrainable oscillator. Modifying the time of feeding alone greatly affects body weight, whereas ketogenic diet (KD) influences circadian biology, through the modulation of clock gene expression. Night-eating behavior is one of the causes of circadian disruption, and night eaters have compulsive and uncontrolled eating with severe obesity. By contrast, time-restricted eating (TRE) restores circadian rhythms through maintaining an appropriate daily rhythm of the eating-fasting cycle. The hypothalamus has a crucial role in the regulation of energy balance rather than food intake. While circadian locomotor output cycles kaput (CLOCK) expression levels increase with high-fat diet-induced obesity, peroxisome proliferator-activated receptor-alpha (PPARα) increases the transcriptional level of brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1) in obese subjects. In this context, effective timing of chronotherapies aiming to correct SCN-driven rhythms depends on an accurate assessment of the SCN phase. In fact, in a multi-oscillator system, local rhythmicity and its disruption reflects the disruption of either local clocks or central clocks, thus imposing rhythmicity on those local tissues, whereas misalignment of peripheral oscillators is due to exosome-based intercellular communication.Consequently, disruption of clock genes results in dyslipidemia, insulin resistance, and obesity, while light exposure during the daytime, food intake during the daytime, and sleeping during the biological night promote circadian alignment between the central and peripheral clocks. Thus, shift work is associated with an increased risk of obesity, diabetes, and cardiovascular diseases because of unusual eating times as well as unusual light exposure and disruption of the circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
7
|
Cincotta AH. Brain Dopamine-Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects. Int J Mol Sci 2023; 24:13255. [PMID: 37686060 PMCID: PMC10487918 DOI: 10.3390/ijms241713255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine-a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects.
Collapse
|
8
|
Li X, Sun Z. Circadian clock and temporal meal pattern. MEDICAL REVIEW (2021) 2023; 3:85-101. [PMID: 37724110 PMCID: PMC10471112 DOI: 10.1515/mr-2022-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 09/20/2023]
Abstract
The central circadian clock in the brain controls the time-of-the-day variations in acute meal responses, with a low glycemic response but a high satiety/thermogenic response to meals consumed at waking compared to other time points. Consistently, studies show that consuming a significant proportion of calories, particularly carbohydrates, in breakfast is beneficial for the chronic management of obesity and its associated metabolic syndrome, compared to consuming identical meals at dinner. Conversely, breakfast skipping or/and late dinner can have unfavorable metabolic outcomes. It remains controversial how meal frequency affects metabolic health. In contrast, irregular meals, especially irregular breakfasts, show consistent adverse metabolic consequences. Time-restricted feeding (TRF), with all calories consumed within less than 12-h per day, can improve metabolism and extend lifespan. A major component of TRF in humans is caloric restriction, which contributes significantly to the beneficial effects of TRF in humans. By comparison, TRF effects in rodents can be independent of caloric restriction and show day/night phase specificity. TRF could alleviate metabolic abnormalities due to circadian disruption, but its effects appear independent of the circadian clock in rodents. Understanding neuroendocrine mechanisms underlying clock-mediated metabolic regulation will shed light on the metabolic effects of temporal meal patterns.
Collapse
Affiliation(s)
- Xin Li
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Sun
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Xue CY, Gao T, Mao E, Kou ZZ, Dong L, Gao F. Hippocampus Insulin Receptors Regulate Episodic and Spatial Memory Through Excitatory/Inhibitory Balance. ASN Neuro 2023; 15:17590914231206657. [PMID: 37908089 PMCID: PMC10621302 DOI: 10.1177/17590914231206657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 09/23/2023] [Indexed: 11/02/2023] Open
Abstract
It is well known that the hippocampus is a vital brain region playing a key role in both episodic and spatial memory. Insulin receptors (InsRs) are densely distributed in the hippocampus and are important for its function. However, the effects of InsRs on the function of the specific hippocampal cell types remain elusive. In this study, hippocampal InsRs knockout mice had impaired episodic and spatial memory. GABAergic neurons and glutamatergic neurons in the hippocampus are involved in the balance between excitatory and inhibitory (E/I) states and participate in the processes of episodic and spatial memory. InsRs are located mainly at excitatory neurons in the hippocampus, whereas 8.5% of InsRs are glutamic acid decarboxylase 2 (GAD2)::Ai9-positive (GABAergic) neurons. Next, we constructed a transgenic mouse system in which InsR expression was deleted from GABAergic (glutamate decarboxylase 2::InsRfl/fl, GAD2Cre::InsRfl/fl) or glutamatergic neurons (vesicular glutamate transporter 2::InsRfl/fl,Vglut2Cre::InsRfl/fl). Our results showed that in comparison to the InsRfl/fl mice, both episodic and spatial memory were lower in GAD2Cre::InsRfl/fl and Vglut2Cre::InsRfl/fl. In addition, both GAD2Cre::InsRfl/fl and Vglut2Cre::InsRfl/fl were associated with more anxiety and lower glucose tolerance. These findings reveal that hippocampal InsRs might be crucial for episodic and spatial memory through E/I balance hippocampal regulation.
Collapse
Affiliation(s)
- Cai-Yan Xue
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Tian Gao
- Division of Health Management, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - E Mao
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China
| | - Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China
| | - Ling Dong
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
10
|
Lu Q, Kim JY. Mammalian circadian networks mediated by the suprachiasmatic nucleus. FEBS J 2022; 289:6589-6604. [PMID: 34657394 DOI: 10.1111/febs.16233] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
The brain has a complex structure composed of hundreds of regions, forming networks to cooperate body functions. Therefore, understanding how various brain regions communicate with each other and with peripheral organs is important to understand human physiology. The suprachiasmatic nucleus (SCN) in the brain is the circadian pacemaker. The SCN receives photic information from the environment and conveys this to other parts of the brain and body to synchronize all circadian clocks. The circadian clock is an endogenous oscillator that generates daily rhythms in metabolism and physiology in almost all cells via a conserved transcriptional-translational negative feedback loop. So, the information flow from the environment to the SCN to other tissues synchronizes locally distributed circadian clocks to maintain homeostasis. Thus, understanding the circadian networks and how they adjust to environmental changes will better understand human physiology. This review will focus on circadian networks mediated by the SCN to understand how the environment, brain, and peripheral tissues form networks for cooperation.
Collapse
Affiliation(s)
- Qingqing Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Tung Foundation Biomedical Sciences Centre, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
11
|
Lopes-Júnior LC, Veronez LC. Circadian rhythms disruption in cancer. BIOL RHYTHM RES 2022; 53:1382-1399. [DOI: 10.1080/09291016.2021.1951470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Luís Carlos Lopes-Júnior
- Postgraduate Program in Nutrition and Health in Sciences. Health Sciences Center at the Universidade Federal Do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Luciana Chain Veronez
- BSc in Biology., Ph.D. In Immunology. Post-doctoral Fellow at the Department of Childcare and Pediatrics at the Ribeirão PretoMedical School at the University of São Paulo (USP). (FMRP-USP)., Ribeirão Preto, SP, Brazil
| |
Collapse
|
12
|
Tang Q, Assali DR, Güler AD, Steele AD. Dopamine systems and biological rhythms: Let's get a move on. Front Integr Neurosci 2022; 16:957193. [PMID: 35965599 PMCID: PMC9364481 DOI: 10.3389/fnint.2022.957193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
How dopamine signaling regulates biological rhythms is an area of emerging interest. Here we review experiments focused on delineating dopamine signaling in the suprachiasmatic nucleus, nucleus accumbens, and dorsal striatum to mediate a range of biological rhythms including photoentrainment, activity cycles, rest phase eating of palatable food, diet-induced obesity, and food anticipatory activity. Enthusiasm for causal roles for dopamine in the regulation of circadian rhythms, particularly those associated with food and other rewarding events, is warranted. However, determining that there is rhythmic gene expression in dopamine neurons and target structures does not mean that they are bona fide circadian pacemakers. Given that dopamine has such a profound role in promoting voluntary movements, interpretation of circadian phenotypes associated with locomotor activity must be differentiated at the molecular and behavioral levels. Here we review our current understanding of dopamine signaling in relation to biological rhythms and suggest future experiments that are aimed at teasing apart the roles of dopamine subpopulations and dopamine receptor expressing neurons in causally mediating biological rhythms, particularly in relation to feeding, reward, and activity.
Collapse
Affiliation(s)
- Qijun Tang
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Dina R. Assali
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Andrew D. Steele
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States
| |
Collapse
|
13
|
Circadian clock, diurnal glucose metabolic rhythm, and dawn phenomenon. Trends Neurosci 2022; 45:471-482. [PMID: 35466006 PMCID: PMC9117496 DOI: 10.1016/j.tins.2022.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 01/28/2023]
Abstract
The circadian clock provides cue-independent anticipatory signals for diurnal rhythms of baseline glucose levels and glucose tolerance. The central circadian clock is located in the hypothalamic suprachiasmatic nucleus (SCN), which comprises primarily GABAergic neurons. The SCN clock regulates physiological diurnal rhythms of endogenous glucose production (EGP) and hepatic insulin sensitivity through neurohumoral mechanisms. Disruption of the molecular circadian clock is associated with the extended dawn phenomenon (DP) in type 2 diabetes (T2D), referring to hyperglycemia in the early morning without nocturnal hypoglycemia. The DP affects nearly half of patients with diabetes, with poorly defined etiology and a lack of targeted therapy. Here we review neural and secreted factors in physiological diurnal rhythms of glucose metabolism and their pathological implications for the DP.
Collapse
|
14
|
Insulin-like Growth Factor I Couples Metabolism with Circadian Activity through Hypo-Thalamic Orexin Neurons. Int J Mol Sci 2022; 23:ijms23094679. [PMID: 35563069 PMCID: PMC9101627 DOI: 10.3390/ijms23094679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Uncoupling of metabolism and circadian activity is associated with an increased risk of a wide spectrum of pathologies. Recently, insulin and the closely related insulin-like growth factor I (IGF-I) were shown to entrain feeding patterns with circadian rhythms. Both hormones act centrally to modulate peripheral glucose metabolism; however, whereas central targets of insulin actions are intensely scrutinized, those mediating the actions of IGF-I remain less defined. We recently showed that IGF-I targets orexin neurons in the lateral hypothalamus, and now we evaluated whether IGF-I modulates orexin neurons to align circadian rhythms with metabolism. Mice with disrupted IGF-IR activity in orexin neurons (Firoc mice) showed sexually dimorphic alterations in daily glucose rhythms and feeding activity patterns which preceded the appearance of metabolic disturbances. Thus, Firoc males developed hyperglycemia and glucose intolerance, while females developed obesity. Since IGF-I directly modulates orexin levels and hepatic expression of KLF genes involved in circadian and metabolic entrainment in an orexin-dependent manner, it seems that IGF-I entrains metabolism and circadian rhythms by modulating the activity of orexin neurons.
Collapse
|
15
|
Papakonstantinou E, Oikonomou C, Nychas G, Dimitriadis GD. Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance. Nutrients 2022; 14:823. [PMID: 35215472 PMCID: PMC8878449 DOI: 10.3390/nu14040823] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
As years progress, we are found more often in a postprandial than a postabsorptive state. Chrononutrition is an integral part of metabolism, pancreatic function, and hormone secretion. Eating most calories and carbohydrates at lunch time and early afternoon, avoiding late evening dinner, and keeping consistent number of daily meals and relative times of eating occasions seem to play a pivotal role for postprandial glycemia and insulin sensitivity. Sequence of meals and nutrients also play a significant role, as foods of low density such as vegetables, salads, or soups consumed first, followed by protein and then by starchy foods lead to ameliorated glycemic and insulin responses. There are several dietary schemes available, such as intermittent fasting regimes, which may improve glycemic and insulin responses. Weight loss is important for the treatment of insulin resistance, and it can be achieved by many approaches, such as low-fat, low-carbohydrate, Mediterranean-style diets, etc. Lifestyle interventions with small weight loss (7-10%), 150 min of weekly moderate intensity exercise and behavioral therapy approach can be highly effective in preventing and treating type 2 diabetes. Similarly, decreasing carbohydrates in meals also improves significantly glycemic and insulin responses, but the extent of this reduction should be individualized, patient-centered, and monitored. Alternative foods or ingredients, such as vinegar, yogurt, whey protein, peanuts and tree nuts should also be considered in ameliorating postprandial hyperglycemia and insulin resistance. This review aims to describe the available evidence about the effects of diet, chrononutrition, alternative dietary interventions and exercise on postprandial glycemia and insulin resistance.
Collapse
Affiliation(s)
- Emilia Papakonstantinou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;
| | - Christina Oikonomou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;
| | - George Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Agricultural University of Athens, 11855 Athens, Greece;
| | - George D. Dimitriadis
- Sector of Medicine, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| |
Collapse
|
16
|
Kolben Y, Weksler-Zangen S, Ilan Y. Adropin as a potential mediator of the metabolic system-autonomic nervous system-chronobiology axis: Implementing a personalized signature-based platform for chronotherapy. Obes Rev 2021; 22:e13108. [PMID: 32720402 DOI: 10.1111/obr.13108] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Adropin is a peptide hormone, which plays a role in energy homeostasis and controls glucose and fatty acid metabolism. Its levels correlate with changes in carbohydrate-lipid metabolism, metabolic diseases, central nervous system function, endothelial function and cardiovascular disease. Both metabolic pathways and adropin are regulated by the circadian clocks. Here, we review the roles of the autonomic nervous system and circadian rhythms in regulating metabolic pathways and energy homeostasis. The beneficial effects of chronotherapy in various systems are discussed. We suggest a potential role for adropin as a mediator of the metabolic system-autonomic nervous system axis. We discuss the possibility of establishing an individualized adropin and circadian rhythm-based platform for implementing chronotherapy, and variability signatures for improving the efficacy of adropin-based therapies are discussed.
Collapse
Affiliation(s)
- Yotam Kolben
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Sarah Weksler-Zangen
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
17
|
Kalsbeek A, Buijs RM. Organization of the neuroendocrine and autonomic hypothalamic paraventricular nucleus. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:45-63. [PMID: 34225948 DOI: 10.1016/b978-0-12-820107-7.00004-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A major function of the nervous system is to maintain a relatively constant internal environment. The distinction between our external environment (i.e., the environment that we live in and that is subject to major changes, such as temperature, humidity, and food availability) and our internal environment (i.e., the environment formed by the fluids surrounding our bodily tissues and that has a very stable composition) was pointed out in 1878 by Claude Bernard (1814-1878). Later on, it was indicated by Walter Cannon (1871-1945) that the internal environment is not really constant, but rather shows limited variability. Cannon named the mechanism maintaining this limited variability homeostasis. Claude Bernard envisioned that, for optimal health, all physiologic processes in the body needed to maintain homeostasis and should be in perfect harmony with each other. This is illustrated by the fact that, for instance, during the sleep-wake cycle important elements of our physiology such as body temperature, circulating glucose, and cortisol levels show important variations but are in perfect synchrony with each other. These variations are driven by the biologic clock in interaction with hypothalamic target areas, among which is the paraventricular nucleus of the hypothalamus (PVN), a core brain structure that controls the neuroendocrine and autonomic nervous systems and thus is key for integrating central and peripheral information and implementing homeostasis. This chapter focuses on the anatomic connections between the biologic clock and the PVN to modulate homeostasis according to the daily sleep-wake rhythm. Experimental studies have revealed a highly specialized organization of the connections between the clock neurons and neuroendocrine system as well as preautonomic neurons in the PVN. These complex connections ensure a logical coordination between behavioral, endocrine, and metabolic functions that helps the organism maintain homeostasis throughout the day.
Collapse
Affiliation(s)
- Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (Amsterdam UMC), University of Amsterdam, Amsterdam, The Netherlands; Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Ruud M Buijs
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
18
|
Gopalakrishnan S, Kannan NN. Only time will tell: the interplay between circadian clock and metabolism. Chronobiol Int 2020; 38:149-167. [PMID: 33345624 DOI: 10.1080/07420528.2020.1842436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most organisms ranging from cyanobacteria to humans, the endogenous timekeeping system temporally coordinates the behavioral, physiological, and metabolic processes with a periodicity close to 24 h. The timing of these daily rhythms is orchestrated by the synchronized oscillations of both the central pacemaker in the brain and the peripheral clocks located across multiple organs and tissues. A growing body of evidence suggests that the central circadian clock and peripheral clocks residing in the metabolically active tissues are incredibly well coordinated to confer coherent metabolic homeostasis. The interplay between nutrient metabolism and circadian rhythms can occur at various levels supported by the molecular clock network, multiple systemic mechanisms, and the neuroendocrine signaling pathways. While studies suggest the reciprocal regulation between circadian clock and metabolism, it is important to understand the precise mechanisms and the underlying pathways involved in the cross-talk among circadian oscillators and diverse metabolic networks. In addition to the internal synchronization of the metabolic rhythms, feeding time is considered as a potential external synchronization cue that fine tunes the timing of the circadian rhythms in metabolic peripheral clocks. A deeper understanding of how the timing of food intake and the diet composition drive the tissue-specific metabolic rhythms across the body is concomitantly important to develop novel therapeutic strategies for the metabolic disorders arising from circadian misalignment. This review summarizes the recent advancements in the circadian clock regulation of nutrient metabolism and discusses the current understanding of the metabolic feedback signals that link energy metabolism with the circadian clock.
Collapse
Affiliation(s)
- Swetha Gopalakrishnan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| |
Collapse
|
19
|
Kim ER, Xu Y, Cassidy RM, Lu Y, Yang Y, Tian J, Li DP, Van Drunen R, Ribas-Latre A, Cai ZL, Xue M, Arenkiel BR, Eckel-Mahan K, Xu Y, Tong Q. Paraventricular hypothalamus mediates diurnal rhythm of metabolism. Nat Commun 2020; 11:3794. [PMID: 32732906 PMCID: PMC7393104 DOI: 10.1038/s41467-020-17578-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
Defective rhythmic metabolism is associated with high-fat high-caloric diet (HFD) feeding, ageing and obesity; however, the neural basis underlying HFD effects on diurnal metabolism remains elusive. Here we show that deletion of BMAL1, a core clock gene, in paraventricular hypothalamic (PVH) neurons reduces diurnal rhythmicity in metabolism, causes obesity and diminishes PVH neuron activation in response to fast-refeeding. Animal models mimicking deficiency in PVH neuron responsiveness, achieved through clamping PVH neuron activity at high or low levels, both show obesity and reduced diurnal rhythmicity in metabolism. Interestingly, the PVH exhibits BMAL1-controlled rhythmic expression of GABA-A receptor γ2 subunit, and dampening rhythmicity of GABAergic input to the PVH reduces diurnal rhythmicity in metabolism and causes obesity. Finally, BMAL1 deletion blunts PVH neuron responses to external stressors, an effect mimicked by HFD feeding. Thus, BMAL1-driven PVH neuron responsiveness in dynamic activity changes involving rhythmic GABAergic neurotransmission mediates diurnal rhythmicity in metabolism and is implicated in diet-induced obesity.
Collapse
Affiliation(s)
- Eun Ran Kim
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Yuanzhong Xu
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Ryan M Cassidy
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
- Graduate Program in Neuroscience of MD Anderson and UTHealth Graduate School, Houston, TX, 77030, USA
| | - Yungang Lu
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jinbin Tian
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
- Department of Integrative Physiology and Pharmacology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - De-Pei Li
- Department of Critical Care and Respiratory Care, Division of Anesthesiology, Critical Care and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rachel Van Drunen
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
- Graduate Program in Neuroscience of MD Anderson and UTHealth Graduate School, Houston, TX, 77030, USA
| | - Aleix Ribas-Latre
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Zhao-Lin Cai
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Benjamin R Arenkiel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Kristin Eckel-Mahan
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
- Graduate Program in Neuroscience of MD Anderson and UTHealth Graduate School, Houston, TX, 77030, USA.
- Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Moore MC, Smith MS, Swift LL, Cincotta AH, Ezrokhi M, Cominos N, Zhang Y, Farmer B, Cherrington AD. Bromocriptine mesylate improves glucose tolerance and disposal in a high-fat-fed canine model. Am J Physiol Endocrinol Metab 2020; 319:E133-E145. [PMID: 32459527 PMCID: PMC7468784 DOI: 10.1152/ajpendo.00479.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bromocriptine mesylate treatment was examined in dogs fed a high fat diet (HFD) for 8 wk. After 4 wk on HFD, daily bromocriptine (Bromo; n = 6) or vehicle (CTR; n = 5) injections were administered. Oral glucose tolerance tests were performed before beginning HFD (OGTT1), 4 wk after HFD began (Bromo only), and after 7.5 wk on HFD (OGTT3). After 8 wk on HFD, clamp studies were performed, with infusion of somatostatin and intraportal replacement of insulin (4× basal) and glucagon (basal). From 0 to 90 min (P1), glucose was infused via peripheral vein to double the hepatic glucose load; and from 90 to 180 min (P2), glucose was infused via the hepatic portal vein at 4 mg·kg-1·min-1, with the HGL maintained at 2× basal. Bromo decreased the OGTT glucose ΔAUC0-30 and ΔAUC0-120 by 62 and 27%, respectively, P < 0.05 for both) without significantly altering the insulin response. Bromo dogs exhibited enhanced net hepatic glucose uptake (NHGU) compared with CTR (~33 and 21% greater, P1 and P2, respectively, P < 0.05). Nonhepatic glucose uptake (non-HGU) was increased ~38% in Bromo in P2 (P < 0.05). Bromo vs. CTR had higher (P < 0.05) rates of glucose infusion (36 and 30%) and non-HGU (~40 and 27%) than CTR during P1 and P2, respectively. In Bromo vs. CTR, hepatic 18:0/16:0 and 16:1/16:0 ratios tended to be elevated in triglycerides and were higher (P < 0.05) in phospholipids, consistent with a beneficial effect of bromocriptine on liver fat accumulation. Thus, bromocriptine treatment improved glucose disposal in a glucose-intolerant model, enhancing both NHGU and non-HGU.
Collapse
Affiliation(s)
- Mary Courtney Moore
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marta S Smith
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Larry L Swift
- Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | - Ben Farmer
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alan D Cherrington
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
21
|
Gnocchi D, Custodero C, Sabbà C, Mazzocca A. Circadian rhythms: a possible new player in non-alcoholic fatty liver disease pathophysiology. J Mol Med (Berl) 2019; 97:741-759. [PMID: 30953079 DOI: 10.1007/s00109-019-01780-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022]
Abstract
Over the last decades, a better knowledge of the molecular machinery supervising the regulation of circadian clocks has been achieved, and numerous findings have helped in unravelling the outstanding significance of the molecular clock for the proper regulation of our physiologic and metabolic homeostasis. Non-alcoholic fatty liver disease (NAFLD) is currently considered as one of the emerging liver pathologies in the Western countries due to the modification of eating habits and lifestyle. Although NAFLD is considered a pretty benign condition, it can progress towards non-alcoholic steatohepatitis (NASH) and eventually hepatocellular carcinoma (HCC). The pathogenic mechanisms involved in NAFLD development are complex, since this disease is a multifactorial condition. Major metabolic deregulations along with a genetic background are believed to take part in this process. In this light, the aim of this review is to give a comprehensive description of how our circadian machinery is regulated and to describe to what extent our internal clock is involved in the regulation of hormonal and metabolic homeostasis, and by extension in the development and progression of NAFLD/NASH and eventually in the onset of HCC.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Carlo Custodero
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
22
|
Paul JR, Davis JA, Goode LK, Becker BK, Fusilier A, Meador-Woodruff A, Gamble KL. Circadian regulation of membrane physiology in neural oscillators throughout the brain. Eur J Neurosci 2019; 51:109-138. [PMID: 30633846 DOI: 10.1111/ejn.14343] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022]
Abstract
Twenty-four-hour rhythmicity in physiology and behavior are driven by changes in neurophysiological activity that vary across the light-dark and rest-activity cycle. Although this neural code is most prominent in neurons of the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus, there are many other regions in the brain where region-specific function and behavioral rhythmicity may be encoded by changes in electrical properties of those neurons. In this review, we explore the existing evidence for molecular clocks and/or neurophysiological rhythms (i.e., 24 hr) in brain regions outside the SCN. In addition, we highlight the brain regions that are ripe for future investigation into the critical role of circadian rhythmicity for local oscillators. For example, the cerebellum expresses rhythmicity in over 2,000 gene transcripts, and yet we know very little about how circadian regulation drives 24-hr changes in the neural coding responsible for motor coordination. Finally, we conclude with a discussion of how our understanding of circadian regulation of electrical properties may yield insight into disease mechanisms which may lead to novel chronotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer A Davis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lacy K Goode
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bryan K Becker
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Allison Fusilier
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aidan Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
23
|
Sunstrum JK, Inoue W. Heterosynaptic modulation in the paraventricular nucleus of the hypothalamus. Neuropharmacology 2018; 154:87-95. [PMID: 30408488 DOI: 10.1016/j.neuropharm.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/18/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022]
Abstract
The stress response-originally described by Hans Selye as "the nonspecific response of the body to any demand made upon it"-is chiefly mediated by the hypothalamic-pituitary-adrenal (HPA) axis and is activated by diverse sensory stimuli that inform threats to homeostasis. The diversity of signals regulating the HPA axis is partly achieved by the complexity of afferent inputs that converge at the apex of the HPA axis: this apex is formed by a group of neurosecretory neurons that synthesize corticotropin-releasing hormone (CRH) in the paraventricular nucleus of the hypothalamus (PVN). The afferent synaptic inputs onto these PVN-CRH neurons originate from a number of brain areas, and PVN-CRH neurons respond to a long list of neurotransmitters/neuropeptides. Considering this complexity, an important question is how these diverse afferent signals independently and/or in concert influence the excitability of PVN-CRH neurons. While many of these inputs directly act on the postsynaptic PVN-CRH neurons for the summation of signals, accumulating data indicates that they also modulate each other's transmission in the PVN. This mode of transmission, termed heterosynaptic modulation, points to mechanisms through which the activity of a specific modulatory input (conveying a specific sensory signal) can up- or down-regulate the efficacy of other afferent synapses (mediating other stress modalities) depending on receptor expression for and spatial proximity to the heterosynaptic signals. Here, we review examples of heterosynaptic modulation in the PVN and discuss its potential role in the regulation of PVN-CRH neurons' excitability and resulting HPA axis activity. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Julia K Sunstrum
- Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Wataru Inoue
- Neuroscience Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
24
|
Carnagarin R, Matthews VB, Herat LY, Ho JK, Schlaich MP. Autonomic Regulation of Glucose Homeostasis: a Specific Role for Sympathetic Nervous System Activation. Curr Diab Rep 2018; 18:107. [PMID: 30232652 DOI: 10.1007/s11892-018-1069-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Cardiometabolic disorders such as obesity, metabolic syndrome and diabetes are increasingly common and associated with adverse cardiovascular outcomes. The mechanisms driving these developments are incompletely understood but likely to include autonomic dysregulation. The latest evidence for such a role is briefly reviewed here. RECENT FINDINGS Recent findings highlight the relevance of autonomic regulation in glucose metabolism and identify sympathetic activation, in concert with parasympathetic withdrawal, as a major contributor to the development of metabolic disorders and an important mediator of the associated adverse cardiovascular consequences. Methods targeting sympathetic overactivity using pharmacological and device-based approaches are available and appear as logical additional approaches to curb the burden of metabolic disorders and alleviate the associated morbidity from cardiovascular causes. While the available data are encouraging, the role of therapeutic inhibition of sympathetic overdrive in the prevention of the metabolic disorders and the associated adverse outcomes requires adequate testing in properly sized randomised controlled trials.
Collapse
Affiliation(s)
- Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Lakshini Y Herat
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Jan K Ho
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine - Royal Perth Hospital Unit / Medical Research Foundation, University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia.
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia.
- Neurovascular Hypertension & Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
25
|
Kim M, de la Peña JB, Cheong JH, Kim HJ. Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2. Biomol Ther (Seoul) 2018; 26:358-367. [PMID: 29223143 PMCID: PMC6029676 DOI: 10.4062/biomolther.2017.131] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS.
Collapse
Affiliation(s)
- Mikyung Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - June Bryan de la Peña
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - Hee Jin Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
26
|
Luo S, Zhang Y, Ezrokhi M, Li Y, Tsai T, Cincotta AH. Circadian peak dopaminergic activity response at the biological clock pacemaker (suprachiasmatic nucleus) area mediates the metabolic responsiveness to a high-fat diet. J Neuroendocrinol 2018; 30:e12563. [PMID: 29224246 PMCID: PMC5817247 DOI: 10.1111/jne.12563] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/24/2022]
Abstract
Among vertebrate species of the major vertebrate classes in the wild, a seasonal rhythm of whole body fuel metabolism, oscillating from a lean to obese condition, is a common biological phenomenon. This annual cycle is driven in part by annual changes in the circadian dopaminergic signalling at the suprachiasmatic nuclei (SCN), with diminution of circadian peak dopaminergic activity at the SCN facilitating development of the seasonal obese insulin-resistant condition. The present study investigated whether such an ancient circadian dopamine-SCN activity system for expression of the seasonal obese, insulin-resistant phenotype may be operative in animals made obese amd insulin resistant by high-fat feeding and, if so, whether reinstatement of the circadian dopaminergic peak at the SCN would be sufficient to reverse the adverse metabolic impact of the high-fat diet without any alteration of caloric intake. First, we identified the supramammillary nucleus as a novel site providing the majority of dopaminergic neuronal input to the SCN. We further identified dopamine D2 receptors within the peri-SCN region as being functional in mediating SCN responsiveness to local dopamine. In lean, insulin-sensitive rats, the peak in the circadian rhythm of dopamine release at the peri-SCN coincided with the daily peak in SCN electrophysiological responsiveness to local dopamine administration. However, in rats made obese and insulin resistant by high-fat diet (HFD) feeding, these coincident circadian peak activities were both markedly attenuated or abolished. Reinstatement of the circadian peak in dopamine level at the peri-SCN by its appropriate circadian-timed daily microinjection to this area (but not outside this circadian time-interval) abrogated the obese, insulin-resistant condition without altering the consumption of the HFD. These findings suggest that the circadian peak of dopaminergic activity at the peri-SCN/SCN is a key modulator of metabolism and the responsiveness to adverse metabolic consequences of HFD consumption.
Collapse
Affiliation(s)
- S. Luo
- VeroScience LLCTivertonRIUSA
| | | | | | - Y. Li
- VeroScience LLCTivertonRIUSA
| | | | | |
Collapse
|
27
|
Central Circadian Clock Regulates Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1090:79-103. [PMID: 30390286 DOI: 10.1007/978-981-13-1286-1_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our body not only responds to environmental changes but also anticipates them. The light and dark cycle with the period of about 24 h is a recurring environmental change that determines the diurnal variation in food availability and safety from predators in nature. As a result, the circadian clock is evolved in most animals to align locomotor behaviors and energy metabolism with the light cue. The central circadian clock in mammals is located at the suprachiasmatic nucleus (SCN) of the hypothalamus in the brain. We here review the molecular and anatomic architecture of the central circadian clock in mammals, describe the experimental and observational evidence that suggests a critical role of the central circadian clock in shaping systemic energy metabolism, and discuss the involvement of endocrine factors, neuropeptides, and the autonomic nervous system in the metabolic functions of the central circadian clock.
Collapse
|
28
|
Plano SA, Casiraghi LP, García Moro P, Paladino N, Golombek DA, Chiesa JJ. Circadian and Metabolic Effects of Light: Implications in Weight Homeostasis and Health. Front Neurol 2017; 8:558. [PMID: 29097992 PMCID: PMC5653694 DOI: 10.3389/fneur.2017.00558] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022] Open
Abstract
Daily interactions between the hypothalamic circadian clock at the suprachiasmatic nucleus (SCN) and peripheral circadian oscillators regulate physiology and metabolism to set temporal variations in homeostatic regulation. Phase coherence of these circadian oscillators is achieved by the entrainment of the SCN to the environmental 24-h light:dark (LD) cycle, coupled through downstream neural, neuroendocrine, and autonomic outputs. The SCN coordinate activity and feeding rhythms, thus setting the timing of food intake, energy expenditure, thermogenesis, and active and basal metabolism. In this work, we will discuss evidences exploring the impact of different photic entrainment conditions on energy metabolism. The steady-state interaction between the LD cycle and the SCN is essential for health and wellbeing, as its chronic misalignment disrupts the circadian organization at different levels. For instance, in nocturnal rodents, non-24 h protocols (i.e., LD cycles of different durations, or chronic jet-lag simulations) might generate forced desynchronization of oscillators from the behavioral to the metabolic level. Even seemingly subtle photic manipulations, as the exposure to a “dim light” scotophase, might lead to similar alterations. The daily amount of light integrated by the clock (i.e., the photophase duration) strongly regulates energy metabolism in photoperiodic species. Removing LD cycles under either constant light or darkness, which are routine protocols in chronobiology, can also affect metabolism, and the same happens with disrupted LD cycles (like shiftwork of jetlag) and artificial light at night in humans. A profound knowledge of the photic and metabolic inputs to the clock, as well as its endocrine and autonomic outputs to peripheral oscillators driving energy metabolism, will help us to understand and alleviate circadian health alterations including cardiometabolic diseases, diabetes, and obesity.
Collapse
Affiliation(s)
- Santiago A Plano
- Chronophysiology Laboratory, Institute for Biomedical Research (BIOMED - CONICET), School of Medical Sciences, Universidad Católica Argentina (UCA), Buenos Aires, Argentina.,Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Leandro P Casiraghi
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Paula García Moro
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Natalia Paladino
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Diego A Golombek
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Juan J Chiesa
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| |
Collapse
|
29
|
Manoogian ENC, Panda S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res Rev 2017; 39:59-67. [PMID: 28017879 PMCID: PMC5814245 DOI: 10.1016/j.arr.2016.12.006] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 12/29/2022]
Abstract
Circadian rhythms optimize physiology and health by temporally coordinating cellular function, tissue function, and behavior. These endogenous rhythms dampen with age and thus compromise temporal coordination. Feeding-fasting patterns are an external cue that profoundly influence the robustness of daily biological rhythms. Erratic eating patterns can disrupt the temporal coordination of metabolism and physiology leading to chronic diseases that are also characteristic of aging. However, sustaining a robust feeding-fasting cycle, even without altering nutrition quality or quantity, can prevent or reverse these chronic diseases in experimental models. In humans, epidemiological studies have shown erratic eating patterns increase the risk of disease, whereas sustained feeding-fasting cycles, or prolonged overnight fasting, is correlated with protection from breast cancer. Therefore, optimizing the timing of external cues with defined eating patterns can sustain a robust circadian clock, which may prevent disease and improve prognosis.
Collapse
Affiliation(s)
- Emily N C Manoogian
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Satchidananda Panda
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA; University of California Center for Circadian Biology, 9500, Gilman Drive, La Jolla, 92093, USA.
| |
Collapse
|
30
|
Wang D, Opperhuizen AL, Reznick J, Turner N, Su Y, Cooney GJ, Kalsbeek A. Effects of feeding time on daily rhythms of neuropeptide and clock gene expression in the rat hypothalamus. Brain Res 2017; 1671:93-101. [DOI: 10.1016/j.brainres.2017.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/09/2017] [Accepted: 07/10/2017] [Indexed: 01/18/2023]
|
31
|
Glass MJ, Chan J, Pickel VM. Ultrastructural characterization of tumor necrosis factor alpha receptor type 1 distribution in the hypothalamic paraventricular nucleus of the mouse. Neuroscience 2017; 352:262-272. [PMID: 28385632 PMCID: PMC5522011 DOI: 10.1016/j.neuroscience.2017.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/21/2017] [Accepted: 03/26/2017] [Indexed: 12/17/2022]
Abstract
The immune/inflammatory signaling molecule tumor necrosis factor α (TNFα) is an important mediator of both constitutive and plastic signaling in the brain. In particular, TNFα is implicated in physiological processes, including fever, energy balance, and autonomic function, known to involve the hypothalamic paraventricular nucleus (PVN). Many critical actions of TNFα are transduced by the TNFα type 1 receptor (TNFR1), whose activation has been shown to potently modulate classical neural signaling. There is, however, little known about the cellular sites of action for TNFR1 in the PVN. In the present study, high-resolution electron microscopic immunocytochemistry was used to demonstrate the ultrastructural distribution of TNFR1 in the PVN. Labeling for TNFR1 was found in somata and dendrites, and to a lesser extent in axon terminals and glia in the PVN. In dendritic profiles, TNFR1 was mainly present in the cytoplasm, and in association with presumably functional sites on the plasma membrane. Dendritic profiles expressing TNFR1 were contacted by axon terminals, which formed non-synaptic appositions, as well as excitatory-type and inhibitory-type synaptic specializations. A smaller population of TNFR1-labeled axon terminals making non-synaptic appositions, and to a lesser extent synaptic contacts, with unlabeled dendrites was also identified. These findings indicate that TNFR1 is structurally positioned to modulate postsynaptic signaling in the PVN, suggesting a mechanism whereby TNFR1 activation contributes to cardiovascular and other autonomic functions.
Collapse
Affiliation(s)
- Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States.
| | - June Chan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States
| | - Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
32
|
Mi Y, Qi G, Fan R, Ji X, Liu Z, Liu X. EGCG ameliorates diet-induced metabolic syndrome associating with the circadian clock. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1575-1589. [PMID: 28412321 DOI: 10.1016/j.bbadis.2017.04.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
In response to the daily light-dark (LD) cycle, organisms on Earth have evolved with the approximately 24-h endogenous oscillations to coordinate behavioral and physiological processes, including feeding, sleep, and metabolism homeostasis. Circadian desynchrony triggered by an energy-dense diet rich in fats and fructose is intimately connected with a series of metabolic disorders. Previous studies revealed that (-)-Epigallocatechin-3-gallate (EGCG) could mitigate metabolic misalignment; however, only a few reports have focused on its potential effect on directly manipulating circadian rhythms to ameliorate metabolic syndrome. Our goal was to investigate the regulating effect of EGCG treatment on metabolic misalignment triggered by a high-fat and high-fructose diet (HFFD) associating with the circadian clock. Our results indicated that HFFD treatment partially exhibited poor circadian oscillations of the core clock gene and the clock-controlled gene in the liver and fat relative to the control group. EGCG administration may ameliorate the diet-dependent decline in circadian function by controlling the Sirt1-PGC1αloop, implying the existence of an EGCG-entrainable oscillator. Subsequently, reducing fatty acid synthesis and elevating β-oxidation in the liver coupled with the increasing brown adipose tissue (BAT) energy expenditure observed in the EGCG group of mice prevented the adipocyte hypertrophy and fat accumulations common to BAT and white adipose tissue (WAT) derived from the HFFD mice. This study is the first to provide compelling evidences that EGCG may ameliorate diet-induced metabolic misalignment by regulating the rhythmic expression of the circadian clock genes in the liver and fat.
Collapse
Affiliation(s)
- Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guoyuan Qi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rong Fan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohua Ji
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
33
|
Jaeger C, Khazaal AQ, Xu C, Sun M, Krager SL, Tischkau SA. Aryl Hydrocarbon Receptor Deficiency Alters Circadian and Metabolic Rhythmicity. J Biol Rhythms 2017; 32:109-120. [PMID: 28347186 DOI: 10.1177/0748730417696786] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
PAS domain-containing proteins can act as environmental sensors that capture external stimuli to allow coordination of organismal physiology with the outside world. These proteins permit diverse ligand binding and heterodimeric partnership, allowing for varied combinations of PAS-dependent protein-protein interactions and promoting crosstalk among signaling pathways. Previous studies report crosstalk between circadian clock proteins and the aryl hydrocarbon receptor (AhR). Activated AhR forms a heterodimer with the circadian clock protein Bmal1 and thereby functionally inhibits CLOCK/Bmal1 activity. If physiological activation of AhR through naturally occurring, endogenous ligands inhibits clock function, it seems plausible to hypothesize that decreased AhR expression releases AhR-induced inhibition of circadian rhythms. Because both AhR and the clock are important regulators of glucose metabolism, it follows that decreased AhR will also alter metabolic function. To test this hypothesis, rhythms of behavior, metabolic outputs, and circadian and metabolic gene expression were measured in AhR-deficient mice. Genetic depletion of AhR enhanced behavioral responses to changes in the light-dark cycle, increased rhythmic amplitude of circadian clock genes in the liver, and altered rhythms of glucose and insulin. This study provides evidence of AhR-induced inhibition that influences circadian rhythm amplitude.
Collapse
Affiliation(s)
- Cassie Jaeger
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Ali Q Khazaal
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Biotechnology Department, College of Science, Baghdad University, Baghdad, Iraq
| | - Canxin Xu
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Mingwei Sun
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Stacey L Krager
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Shelley A Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
34
|
Gnocchi D, Bruscalupi G. Circadian Rhythms and Hormonal Homeostasis: Pathophysiological Implications. BIOLOGY 2017; 6:biology6010010. [PMID: 28165421 PMCID: PMC5372003 DOI: 10.3390/biology6010010] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Over recent years, a deeper comprehension of the molecular mechanisms that control biological clocks and circadian rhythms has been achieved. In fact, many studies have contributed to unravelling the importance of the molecular clock for the regulation of our physiology, including hormonal and metabolic homeostasis. Here we will review the structure, organisation and molecular machinery that make our circadian clock work, and its relevance for the proper functioning of physiological processes. We will also describe the interconnections between circadian rhythms and endocrine homeostasis, as well as the underlying consequences that circadian dysregulations might have in the development of several pathologic affections. Finally, we will discuss how a better knowledge of such relationships might prove helpful in designing new therapeutic approaches for endocrine and metabolic diseases.
Collapse
Affiliation(s)
- Davide Gnocchi
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm 14186, Sweden.
| | - Giovannella Bruscalupi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
35
|
Yang WQ, Li H. [Research advances in circadian rhythm of epileptic seizures]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:126-129. [PMID: 28100336 PMCID: PMC7390121 DOI: 10.7499/j.issn.1008-8830.2017.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
The time phase of epileptic seizures has attracted more and more attention. Epileptic seizures have their own circadian rhythm. The same type of epilepsy has different seizure frequencies in different time periods and states (such as sleeping/awakening state and natural day/night cycle). The circadian rhythm of epileptic seizures has complex molecular and endocrine mechanisms, and currently there are several hypotheses. Clarification of the circadian rhythm of epileptic seizures and prevention and administration according to such circadian rhythm can effectively control seizures and reduce the adverse effects of drugs. The research on the circadian rhythm of epileptic seizures provides a new idea for the treatment of epilepsy.
Collapse
Affiliation(s)
- Wen-Qi Yang
- Pediatric Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | | |
Collapse
|
36
|
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
37
|
Albers HE, Walton JC, Gamble KL, McNeill JK, Hummer DL. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol 2017; 44:35-82. [PMID: 27894927 PMCID: PMC5225159 DOI: 10.1016/j.yfrne.2016.11.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022]
Abstract
Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.
Collapse
Affiliation(s)
- H Elliott Albers
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States.
| | - James C Walton
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - John K McNeill
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Daniel L Hummer
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Department of Psychology, Morehouse College, Atlanta, GA 30314, United States
| |
Collapse
|
38
|
Yang WQ, Li H. [Research advances in circadian rhythm of epileptic seizures]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:126-129. [PMID: 28100336 PMCID: PMC7390121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/10/2016] [Indexed: 08/01/2024]
Abstract
The time phase of epileptic seizures has attracted more and more attention. Epileptic seizures have their own circadian rhythm. The same type of epilepsy has different seizure frequencies in different time periods and states (such as sleeping/awakening state and natural day/night cycle). The circadian rhythm of epileptic seizures has complex molecular and endocrine mechanisms, and currently there are several hypotheses. Clarification of the circadian rhythm of epileptic seizures and prevention and administration according to such circadian rhythm can effectively control seizures and reduce the adverse effects of drugs. The research on the circadian rhythm of epileptic seizures provides a new idea for the treatment of epilepsy.
Collapse
Affiliation(s)
- Wen-Qi Yang
- Pediatric Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | | |
Collapse
|
39
|
Simko F, Baka T, Paulis L, Reiter RJ. Elevated heart rate and nondipping heart rate as potential targets for melatonin: a review. J Pineal Res 2016; 61:127-37. [PMID: 27264986 DOI: 10.1111/jpi.12348] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/03/2016] [Indexed: 01/08/2023]
Abstract
Elevated heart rate is a risk factor for cardiovascular and all-cause mortalities in the general population and various cardiovascular pathologies. Insufficient heart rate decline during the night, that is, nondipping heart rate, also increases cardiovascular risk. Abnormal heart rate reflects an autonomic nervous system imbalance in terms of relative dominance of sympathetic tone. There are only a few prospective studies concerning the effect of heart rate reduction in coronary heart disease and heart failure. In hypertensive patients, retrospective analyses show no additional benefit of slowing down the heart rate by beta-blockade to blood pressure reduction. Melatonin, a secretory product of the pineal gland, has several attributes, which predict melatonin to be a promising candidate in the struggle against elevated heart rate and its consequences in the hypertensive population. First, melatonin production depends on the sympathetic stimulation of the pineal gland. On the other hand, melatonin inhibits the sympathetic system in several ways representing potentially the counter-regulatory mechanism to normalize excessive sympathetic drive. Second, administration of melatonin reduces heart rate in animals and humans. Third, the chronobiological action of melatonin may normalize the insufficient nocturnal decline of heart rate. Moreover, melatonin reduces the development of endothelial dysfunction and atherosclerosis, which are considered a crucial pathophysiological disorder of increased heart rate and pulsatile blood flow. The antihypertensive and antiremodeling action of melatonin along with its beneficial effects on lipid profile and insulin resistance may be of additional benefit. A clinical trial investigating melatonin actions in hypertensive patients with increased heart rate is warranted.
Collapse
Affiliation(s)
- Fedor Simko
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
- 3rd Clinic of Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
- Institute of Experimental Endocrinology BMC, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Tomas Baka
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Ludovit Paulis
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
40
|
Abstract
Use of artificial light resulted in relative independence from the natural light-dark (LD) cycle, allowing human subjects to shift the timing of food intake and work to convenient times. However, the increase in artificial light exposure parallels the increase in obesity prevalence. Light is the dominant Zeitgeber for the central circadian clock, which resides within the hypothalamic suprachiasmatic nucleus, and coordinates daily rhythm in feeding behaviour and metabolism. Eating during inappropriate light conditions may result in metabolic disease via changes in the biological clock. In this review, we describe the physiological role of light in the circadian timing system and explore the interaction between the circadian timing system and metabolism. Furthermore, we discuss the acute and chronic effects of artificial light exposure on food intake and energy metabolism in animals and human subjects. We propose that living in synchrony with the natural daily LD cycle promotes metabolic health and increased exposure to artificial light at inappropriate times of day has adverse effects on metabolism, feeding behaviour and body weight regulation. Reducing the negative side effects of the extensive use of artificial light in human subjects might be useful in the prevention of metabolic disease.
Collapse
|
41
|
Modulation of Circadian Gene Expression and Metabolic Compensation by the RCO-1 Corepressor of Neurospora crassa. Genetics 2016; 204:163-76. [PMID: 27449058 DOI: 10.1534/genetics.116.191064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/14/2016] [Indexed: 11/18/2022] Open
Abstract
Neurospora crassa is a model organism for the study of circadian clocks, molecular machineries that confer ∼24-hr rhythms to different processes at the cellular and organismal levels. The FREQUENCY (FRQ) protein is a central component of the Neurospora core clock, a transcription/translation negative feedback loop that controls genome-wide rhythmic gene expression. A genetic screen aimed at determining new components involved in the latter process identified regulation of conidiation 1 (rco-1), the ortholog of the Saccharomyces cerevisiae Tup1 corepressor, as affecting period length. By employing bioluminescent transcriptional and translational fusion reporters, we evaluated frq and FRQ expression levels in the rco-1 mutant background observing that, in contrast to prior reports, frq and FRQ expression are robustly rhythmic in the absence of RCO-1, although both amplitude and period length of the core clock are affected. Moreover, we detected a defect in metabolic compensation, such that high-glucose concentrations in the medium result in a significant decrease in period when RCO-1 is absent. Proteins physically interacting with RCO-1 were identified through co-immunoprecipitation and mass spectrometry; these include several components involved in chromatin remodeling and transcription, some of which, when absent, lead to a slight change in period. In the aggregate, these results indicate a dual role for RCO-1: although it is not essential for core-clock function, it regulates proper period and amplitude of core-clock dynamics and is also required for the rhythmic regulation of several clock-controlled genes.
Collapse
|
42
|
Han C, Rice MW, Cai D. Neuroinflammatory and autonomic mechanisms in diabetes and hypertension. Am J Physiol Endocrinol Metab 2016; 311:E32-41. [PMID: 27166279 PMCID: PMC4967151 DOI: 10.1152/ajpendo.00012.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
Interdisciplinary studies in the research fields of endocrinology and immunology show that obesity-associated overnutrition leads to neuroinflammatory molecular changes, in particular in the hypothalamus, chronically causing various disorders known as elements of metabolic syndrome. In this process, neural or hypothalamic inflammation impairs the neuroendocrine and autonomic regulation of the brain over blood pressure and glucose homeostasis as well as insulin secretion, and elevated sympathetic activation has been appreciated as a critical mediator. This review describes the involved physiology and mechanisms, with a focus on glucose and blood pressure balance, and suggests that neuroinflammation employs the autonomic nervous system to mediate the development of diabetes and hypertension.
Collapse
Affiliation(s)
- Cheng Han
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| | - Matthew W Rice
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
43
|
Foppen E, Tan AAT, Ackermans MT, Fliers E, Kalsbeek A. Suprachiasmatic Nucleus Neuropeptides and Their Control of Endogenous Glucose Production. J Neuroendocrinol 2016; 28. [PMID: 26791158 DOI: 10.1111/jne.12365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/21/2022]
Abstract
Defective control of endogenous glucose production is an important factor responsible for hyperglycaemia in the diabetic individual. During the past decade, progressively more evidence has appeared indicating a strong and potentially causal relationship between disturbances of the circadian system and defects of metabolic regulation, including glucose metabolism. The detrimental effects of disturbed circadian rhythms may have their origin in disturbances of the molecular clock mechanisms in peripheral organs, such as the pancreas and liver, or in the central brain clock in the hypothalamic suprachiasmatic nuclei (SCN). To assess the role of SCN output per se on glucose metabolism, we investigated (i) the effect of several SCN neurotransmitters on endogenous glucose production and (ii) the effect of SCN neuronal activity on hepatic and systemic insulin sensitivity. We show that silencing of SCN neuronal activity results in decreased hepatic insulin sensitivity and increased peripheral insulin sensitivity. Furthermore, both oxytocin neurones in the paraventricular nucleus of the hypothalamus (PVN) and orexin neurones in the lateral hypothalamus may be important targets for the SCN control of glucose metabolism. These data further highlight the role of the central clock in the pathophysiology of insulin resistance.
Collapse
Affiliation(s)
- E Foppen
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - A A T Tan
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - M T Ackermans
- Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - E Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - A Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| |
Collapse
|
44
|
Kumar Jha P, Challet E, Kalsbeek A. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Mol Cell Endocrinol 2015; 418 Pt 1:74-88. [PMID: 25662277 DOI: 10.1016/j.mce.2015.01.024] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/12/2015] [Accepted: 01/19/2015] [Indexed: 12/22/2022]
Abstract
Most aspects of energy metabolism display clear variations during day and night. This daily rhythmicity of metabolic functions, including hormone release, is governed by a circadian system that consists of the master clock in the suprachiasmatic nuclei of the hypothalamus (SCN) and many secondary clocks in the brain and peripheral organs. The SCN control peripheral timing via the autonomic and neuroendocrine system, as well as via behavioral outputs. The sleep-wake cycle, the feeding/fasting rhythm and most hormonal rhythms, including that of leptin, ghrelin and glucocorticoids, usually show an opposite phase (relative to the light-dark cycle) in diurnal and nocturnal species. By contrast, the SCN clock is most active at the same astronomical times in these two categories of mammals. Moreover, in both species, pineal melatonin is secreted only at night. In this review we describe the current knowledge on the regulation of glucose and lipid metabolism by central and peripheral clock mechanisms. Most experimental knowledge comes from studies in nocturnal laboratory rodents. Nevertheless, we will also mention some relevant findings in diurnal mammals, including humans. It will become clear that as a consequence of the tight connections between the circadian clock system and energy metabolism, circadian clock impairments (e.g., mutations or knock-out of clock genes) and circadian clock misalignments (such as during shift work and chronic jet-lag) have an adverse effect on energy metabolism, that may trigger or enhancing obese and diabetic symptoms.
Collapse
Affiliation(s)
- Pawan Kumar Jha
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France; International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, France and the Netherlands
| | - Etienne Challet
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France; International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, France and the Netherlands
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, France and the Netherlands; Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Seoane-Collazo P, Fernø J, Gonzalez F, Diéguez C, Leis R, Nogueiras R, López M. Hypothalamic-autonomic control of energy homeostasis. Endocrine 2015; 50:276-91. [PMID: 26089260 DOI: 10.1007/s12020-015-0658-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
Regulation of energy homeostasis is tightly controlled by the central nervous system (CNS). Several key areas such as the hypothalamus and brainstem receive and integrate signals conveying energy status from the periphery, such as leptin, thyroid hormones, and insulin, ultimately leading to modulation of food intake, energy expenditure (EE), and peripheral metabolism. The autonomic nervous system (ANS) plays a key role in the response to such signals, innervating peripheral metabolic tissues, including brown and white adipose tissue (BAT and WAT), liver, pancreas, and skeletal muscle. The ANS consists of two parts, the sympathetic and parasympathetic nervous systems (SNS and PSNS). The SNS regulates BAT thermogenesis and EE, controlled by central areas such as the preoptic area (POA) and the ventromedial, dorsomedial, and arcuate hypothalamic nuclei (VMH, DMH, and ARC). The SNS also regulates lipid metabolism in WAT, controlled by the lateral hypothalamic area (LHA), VMH, and ARC. Control of hepatic glucose production and pancreatic insulin secretion also involves the LHA, VMH, and ARC as well as the dorsal vagal complex (DVC), via splanchnic sympathetic and the vagal parasympathetic nerves. Muscle glucose uptake is also controlled by the SNS via hypothalamic nuclei such as the VMH. There is recent evidence of novel pathways connecting the CNS and ANS. These include the hypothalamic AMP-activated protein kinase-SNS-BAT axis which has been demonstrated to be a key modulator of thermogenesis. In this review, we summarize current knowledge of the role of the ANS in the modulation of energy balance.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain.
| | - Johan Fernø
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
- Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, 5021, Bergen, Norway
| | - Francisco Gonzalez
- Department of Surgery, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
- Service of Ophthalmology, Complejo Hospitalario Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Carlos Diéguez
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Rosaura Leis
- Unit of Investigation in Nutrition, Growth and Human Development of Galicia, Pediatric Department (USC), Complexo Hospitalario Universitario de Santiago (IDIS/SERGAS), Santiago de Compostela, Spain
| | - Rubén Nogueiras
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain.
| |
Collapse
|
46
|
Clinical influence of early follow-up glycosylated hemoglobin levels on cardiovascular outcomes in diabetic patients with ST-segment elevation myocardial infarction after coronary reperfusion. Coron Artery Dis 2015; 26:555-61. [DOI: 10.1097/mca.0000000000000258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Hypothalamic Non-AgRP, Non-POMC GABAergic Neurons Are Required for Postweaning Feeding and NPY Hyperphagia. J Neurosci 2015. [PMID: 26203139 DOI: 10.1523/jneurosci.1110-15.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The hypothalamus is critical for feeding and body weight regulation. Prevailing studies focus on hypothalamic neurons that are defined by selectively expressing transcription factors or neuropeptides including those expressing proopiomelanocortin (POMC) and agouti-related peptides (AgRP). The Cre expression driven by the pancreas-duodenum homeobox 1 promoter is abundant in several hypothalamic nuclei but not in AgRP or POMC neurons. Using this line, we generated mice with disruption of GABA release from a major subset of non-POMC, non-AgRP GABAergic neurons in the hypothalamus. These mice exhibited a reduction in postweaning feeding and growth, and disrupted hyperphagic responses to NPY. Disruption of GABA release severely diminished GABAergic input to the paraventricular hypothalamic nucleus (PVH). Furthermore, disruption of GABA-A receptor function in the PVH also reduced postweaning feeding and blunted NPY-induced hyperphagia. Given the limited knowledge on postweaning feeding, our results are significant in identifying GABA release from a major subset of less appreciated hypothalamic neurons as a key mediator for postweaning feeding and NPY hyperphagia, and the PVH as one major downstream site that contributes significantly to the GABA action. Significance statement: Prevalent studies on feeding in the hypothalamus focus on well characterized, selective groups neurons [e.g., proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons], and as a result, the role of the majority of other hypothalamic neurons is largely neglected. Here, we demonstrated an important role for GABAergic projections from non-POMC non-AgRP neurons to the paraventricular hypothalamic nucleus in promoting postweaning (mainly nocturnal) feeding and mediating NPY-induced hyperphagia. Thus, these results signify an importance to study those yet to be defined hypothalamic neurons in the regulation of energy balance and reveal a neural basis for postweaning (nocturnal) feeding and NPY-mediated hyperphagia.
Collapse
|
48
|
Jha PK, Foppen E, Challet E, Kalsbeek A. Effects of central gastrin-releasing peptide on glucose metabolism. Brain Res 2015; 1625:135-41. [PMID: 26358150 DOI: 10.1016/j.brainres.2015.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
Abstract
Gastrin-releasing peptide (GRP) mediated signals in the central nervous system (CNS) influence many functions associated with energy metabolism. The purpose of the present study was to investigate the central effect of GRP on glucose metabolism in the male rat. Intracerebroventricular (icv) administration of GRP caused an immediate hyperglycaemia which was sustained till the end of the infusion. The rise in plasma glucose levels was accompanied by an increase in endogenous glucose production (EGP), as well as increases in plasma glucagon and insulin concentrations. Furthermore, no differences in plasma corticosterone levels were noted between control and GRP treated rats. These results demonstrate that central GRP increases plasma glucose levels, probably by stimulating pancreatic glucagon release and concomitantly or subsequently endogenous glucose production.
Collapse
Affiliation(s)
- Pawan Kumar Jha
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Regulation of Circadian Clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France; International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, France and the Netherlands.
| | - Ewout Foppen
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, The Netherlands.
| | - Etienne Challet
- Regulation of Circadian Clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France; International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, France and the Netherlands.
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, The Netherlands; International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, France and the Netherlands.
| |
Collapse
|
49
|
Peschke E, Bähr I, Mühlbauer E. Experimental and clinical aspects of melatonin and clock genes in diabetes. J Pineal Res 2015; 59:1-23. [PMID: 25904189 DOI: 10.1111/jpi.12240] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022]
Abstract
The pineal hormone melatonin influences insulin secretion, as well as glucagon and somatostatin secretion, both in vivo and in vitro. These effects are mediated by two specific, high-affinity, seven transmembrane, pertussis toxin-sensitive, Gi-protein-coupled melatonin receptors, MT1 and MT2. Both isoforms are expressed in the β-cells, α-cells as well as δ-cells of the pancreatic islets of Langerhans and are involved in the modulation of insulin secretion, leading to inhibition of the adenylate cyclase-dependent cyclic adenosine monophosphate as well as cyclic guanosine monophosphate formation in pancreatic β-cells by inhibiting the soluble guanylate cyclase, probably via MT2 receptors. In this way, melatonin also likely inhibits insulin secretion, whereas using the inositol triphosphate pathway after previous blocking of Gi-proteins by pertussis toxin, melatonin increases insulin secretion. Desynchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genomewide association studies pinpointing variances of the MT2 receptor as a risk factor for this rapidly spreading metabolic disturbance. As melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. Observations of the circadian expression of clock genes (Clock, Bmal1, Per1,2,3, and Cry1,2) in pancreatic islets, as well as in INS1 rat insulinoma cells, may indicate that circadian rhythms are generated in the β-cells themselves. The circadian secretion of insulin from pancreatic islets is clock-driven. Disruption of circadian rhythms and clock function leads to metabolic disturbances, for example, type 2 diabetes. The study of melatonin-insulin interactions in diabetic rat models has revealed an inverse relationship between these two hormones. Both type 2 diabetic rats and patients exhibit decreased melatonin levels and slightly increased insulin levels, whereas type 1 diabetic rats show extremely reduced levels or the absence of insulin, but statistically significant increases in melatonin levels. Briefly, an increase in melatonin levels leads to a decrease in stimulated insulin secretion and vice versa. Melatonin levels in blood plasma, as well as the activity of the key enzyme of melatonin synthesis, AA-NAT (arylalkylamine-N-acetyltransferase) in pineal, are lower in type 2 diabetic rats compared to controls. In contrast, melatonin and pineal AA-NAT mRNA are increased and insulin receptor mRNA is decreased in type 1 diabetic rats, which also indicates a close relationship between insulin and melatonin. As an explanation, it was hypothesized that catecholamines, which reduce insulin levels and stimulate melatonin synthesis, control insulin-melatonin interactions. This conviction stems from the observation that catecholamines are increased in type 1 but are diminished in type 2 diabetes. In this context, another important line of inquiry involves the fact that melatonin protects β-cells against functional overcharge and, consequently, hinders the development of type 2 diabetes.
Collapse
Affiliation(s)
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
50
|
Brouwer A, van Raalte DH, Diamant M, Rutters F, van Someren EJ, Snoek FJ, Beekman AT, Bremmer MA. Light therapy for better mood and insulin sensitivity in patients with major depression and type 2 diabetes: a randomised, double-blind, parallel-arm trial. BMC Psychiatry 2015; 15:169. [PMID: 26204994 PMCID: PMC4513382 DOI: 10.1186/s12888-015-0543-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Major depression and type 2 diabetes often co-occur. Novel treatment strategies for depression in type 2 diabetes patients are warranted, as depression in type 2 diabetes patients is associated with poor prognosis and treatment results. Major depression and concurrent sleep disorders have been related to disturbances of the biological clock. The biological clock is also involved in regulation of glucose metabolism by modulating peripheral insulin sensitivity. Light therapy has been shown to be an effective antidepressant that 'resets' the biological clock. We here describe the protocol of a study that evaluates the hypothesis that light therapy improves mood as well as insulin sensitivity in patients with a major depressive episode and type 2 diabetes. METHODS/DESIGN This study is a randomised, double-blind, parallel-arm trial in 98 participants with type 2 diabetes and a major depressive episode, according to DSM-IV criteria. We will assess whether light therapy improves depressive symptoms and insulin sensitivity, our primary outcome measures, and additionally investigate whether these effects are mediated by restoration of the circadian rhythmicity, as measured by sleep and hypothalamic-pituitary-adrenal axis activity. Participants will be randomly allocated to a bright white-yellowish light condition or dim green light condition. Participants will undergo light therapy for half an hour every morning for 4 weeks at home. At several time points, namely before the start of light therapy, during light therapy, after completion of 4 weeks of light therapy and after 4 weeks follow-up, several psychometrical, psychophysiological and glucometabolic measures will be performed. DISCUSSION If light therapy effectively improves mood and insulin sensitivity in type 2 diabetes patients with a major depressive episode, light therapy may be a valuable patient friendly addition to the currently available treatment strategies. Additionally, if our data support the role of restoration of circadian rhythmicity, such an observation may guide further development of chronobiological treatment strategies in this patient population. TRIAL REGISTRATION The Netherlands Trial Register (NTR) NTR4942 . Registered 13 January 2015.
Collapse
Affiliation(s)
- Annelies Brouwer
- Department of Psychiatry, EMGO Institute for Health and Care Research, VU University Medical Centre and GGZ inGeest, Amsterdam, The Netherlands. .,VU University Medical Centre (ZH4A63), Postal Box 7057, 1007, MB, Amsterdam, The Netherlands.
| | | | - Michaela Diamant
- Diabetes Centre, VU University Medical Centre, Amsterdam, The Netherlands
| | - Femke Rutters
- Department of Epidemiology and Biostatistics, EMGO Institute for Health and Care Research, VU University Medical Centre, Amsterdam, The Netherlands.
| | - Eus J.W. van Someren
- Departments of Integrative Neurophysiology and Medical Psychology, Centre for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University and Medical Centre, Amsterdam, The Netherlands
| | - Frank J. Snoek
- Department of Medical Psychology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Aartjan T.F. Beekman
- Department of Psychiatry, EMGO Institute for Health and Care Research, VU University Medical Centre and GGZ inGeest, Amsterdam, The Netherlands
| | - Marijke A. Bremmer
- Department of Psychiatry, EMGO Institute for Health and Care Research, VU University Medical Centre and GGZ inGeest, Amsterdam, The Netherlands
| |
Collapse
|