1
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
2
|
Wahab A, Siddique HR. An update understanding of stemness and chemoresistance of prostate cancer. Expert Rev Anticancer Ther 2025. [PMID: 39935028 DOI: 10.1080/14737140.2025.2466680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/13/2025] [Accepted: 02/10/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION Globally, prostate cancer (CaP) is a leading cause of death and disability among men and a substantial public health burden. Despite advancements in cancer treatment, chemoresistance remains a significant issue in cancer therapy, accounting for the majority of patient relapses and poor survival. Cancer stem cells (CSCs) are considered the main cause of cancer recurrence, chemoresistance, and poor survival of patients. These CSCs acquire stemness and chemoresistance by certain mechanisms such as enhanced DNA repair processes, increased expression of drug efflux pumps, resistance to apoptosis, and altered cell cycle and tumor microenvironment (TME). AREA COVERED We cover the latest developments in this field and give an overview of future research directions. EXPERT OPINION CSCs show dysregulation of several signaling pathways, mostly related to conferring chemoresistance phenotype, such as high drug efflux, apoptotic resistance, quiescent cell cycle, tumor microenvironment, and DNA repair. There are several research articles published on this topic. However, still, this field warrants further investigations to identify the therapeutic molecule that can either chemosensitize CSCs or kill them effectively. This can only be possible when we know the complete mechanisms to comprehend the fundamental causes of cancer stemness and therapy resistance.
Collapse
Affiliation(s)
- Afiya Wahab
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
3
|
Plesselova S, Calar K, Axemaker H, Sahly E, Bhagia A, Faragher JL, Fink DM, de la Puente P. Multicompartmentalized Microvascularized Tumor-on-a-Chip to Study Tumor-Stroma Interactions and Drug Resistance in Ovarian Cancer. Cell Mol Bioeng 2024; 17:345-367. [PMID: 39513004 PMCID: PMC11538101 DOI: 10.1007/s12195-024-00817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/26/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance. Methods We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF). Results The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance. Conclusions Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00817-y.
Collapse
Affiliation(s)
- Simona Plesselova
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
| | - Kristin Calar
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
| | - Hailey Axemaker
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
| | - Emma Sahly
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
- St. Olaf College, Northfield, MN USA
| | - Amrita Bhagia
- MD PhD Program, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Jessica L. Faragher
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
- MD PhD Program, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Darci M. Fink
- Department of Chemistry, Biochemistry & Physics, South Dakota State University, Brookings, SD USA
| | - Pilar de la Puente
- Present Address: Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD USA
- Department of Obstetrics and Gynecology, University of South Dakota Sanford School of Medicine, Sioux Falls, SD USA
- Department of Surgery, University of South Dakota Sanford School of Medicine, Sioux Falls, SD USA
- Flow Cytometry Core, Sanford Research, Sioux Falls, SD USA
| |
Collapse
|
4
|
Plesselova S, Calar K, Axemaker H, Sahly E, de la Puente P. Multicompartmentalized microvascularized tumor-on-a-chip to study tumor-stroma interactions and drug resistance in ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596456. [PMID: 38853974 PMCID: PMC11160770 DOI: 10.1101/2024.05.29.596456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Introduction The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance. Methods We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF). Results The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance. Conclusions Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC.
Collapse
|
5
|
Agbakwuru D, Wetzel SA. The Biological Significance of Trogocytosis. Results Probl Cell Differ 2024; 73:87-129. [PMID: 39242376 PMCID: PMC11784324 DOI: 10.1007/978-3-031-62036-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Trogocytosis is the intercellular transfer of membrane and membrane-associated proteins between cells. Trogocytosis is an underappreciated phenomenon that has historically routinely been dismissed as an artefact. With a greater understanding of the process and the implications it has on biological systems, trogocytosis has the potential to become a paradigm changer. The presence on a cell of molecules they don't endogenously express can alter the biological activity of the cell and could also lead to the acquisition of new functions. To better appreciate this phenomenon, it is important to understand how these intercellular membrane exchanges influence the function and activity of the donor and the recipient cells. In this chapter, we will examine how the molecules acquired by trogocytosis influence the biology of a variety of systems including mammalian fertilization, treatment of hemolytic disease of the newborn, viral and parasitic infections, cancer immunotherapy, and immune modulation.
Collapse
Affiliation(s)
- Deborah Agbakwuru
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Scott A Wetzel
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA.
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
6
|
Song X, Lan Y, Zheng X, Zhu Q, Liao X, Liu K, Zhang W, Peng Q, Zhu Y, Zhao L, Chen X, Shu Y, Yang K, Hu J. Targeting drug-tolerant cells: A promising strategy for overcoming acquired drug resistance in cancer cells. MedComm (Beijing) 2023; 4:e342. [PMID: 37638338 PMCID: PMC10449058 DOI: 10.1002/mco2.342] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Drug resistance remains the greatest challenge in improving outcomes for cancer patients who receive chemotherapy and targeted therapy. Surmounting evidence suggests that a subpopulation of cancer cells could escape intense selective drug treatment by entering a drug-tolerant state without genetic variations. These drug-tolerant cells (DTCs) are characterized with a slow proliferation rate and a reversible phenotype. They reside in the tumor region and may serve as a reservoir for resistant phenotypes. The survival of DTCs is regulated by epigenetic modifications, transcriptional regulation, mRNA translation remodeling, metabolic changes, antiapoptosis, interactions with the tumor microenvironment, and activation of signaling pathways. Thus, targeting the regulators of DTCs opens a new avenue for the treatment of therapy-resistant tumors. In this review, we first provide an overview of common characteristics of DTCs and the regulating networks in DTCs development. We also discuss the potential therapeutic opportunities to target DTCs. Last, we discuss the current challenges and prospects of the DTC-targeting approach to overcome acquired drug resistance. Reviewing the latest developments in DTC research could be essential in discovering of methods to eliminate DTCs, which may represent a novel therapeutic strategy for preventing drug resistance in the future.
Collapse
Affiliation(s)
- Xiaohai Song
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Lan
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiuli Zheng
- Department of RadiologyHuaxi MR Research Center (HMRRC) and Critical Care MedicinePrecision Medicine Center, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Qianyu Zhu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xuliang Liao
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Kai Liu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Weihan Zhang
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - QiangBo Peng
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yunfeng Zhu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Linyong Zhao
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiaolong Chen
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Shu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Kun Yang
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jiankun Hu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
7
|
Jazwinska DE, Kulawiec DG, Zervantonakis IK. Cancer-mesothelial and cancer-macrophage interactions in the ovarian cancer microenvironment. Am J Physiol Cell Physiol 2023; 325:C721-C730. [PMID: 37545408 PMCID: PMC10635648 DOI: 10.1152/ajpcell.00461.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The metastatic ovarian cancer microenvironment is characterized by an intricate interaction network between cancer cells and host cells. This complex heterotypic cancer-host cell crosstalk results in an environment that promotes cancer cell metastasis and treatment resistance, leading to poor patient prognosis and survival. In this review, we focus on two host cell types found in the ovarian cancer microenvironment: mesothelial cells and tumor-associated macrophages. Mesothelial cells make up the protective lining of organs in the abdominal cavity. Cancer cells attach and invade through the mesothelial monolayer to form metastatic lesions. Crosstalk between mesothelial and cancer cells can contribute to metastatic progression and chemotherapy resistance. Tumor-associated macrophages are the most abundant immune cell type in the ovarian cancer microenvironment with heterogeneous subpopulations exhibiting protumor or antitumor functions. Macrophage reprogramming toward a protumor or antitumor state can be influenced by chemotherapy and communication with cancer cells, resulting in cancer cell invasion and treatment resistance. A better understanding of cancer-mesothelial and cancer-macrophage crosstalk will uncover biomarkers of metastatic progression and therapeutic targets to restore chemotherapy sensitivity.
Collapse
Affiliation(s)
- Dorota E Jazwinska
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Diana G Kulawiec
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ioannis K Zervantonakis
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
8
|
Slama Y, Ah-Pine F, Khettab M, Arcambal A, Begue M, Dutheil F, Gasque P. The Dual Role of Mesenchymal Stem Cells in Cancer Pathophysiology: Pro-Tumorigenic Effects versus Therapeutic Potential. Int J Mol Sci 2023; 24:13511. [PMID: 37686315 PMCID: PMC10488262 DOI: 10.3390/ijms241713511] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells involved in numerous physiological events, including organogenesis, the maintenance of tissue homeostasis, regeneration, or tissue repair. MSCs are increasingly recognized as playing a major, dual, and complex role in cancer pathophysiology through their ability to limit or promote tumor progression. Indeed, these cells are known to interact with the tumor microenvironment, modulate the behavior of tumor cells, influence their functions, and promote distant metastasis formation through the secretion of mediators, the regulation of cell-cell interactions, and the modulation of the immune response. This dynamic network can lead to the establishment of immunoprivileged tissue niches or the formation of new tumors through the proliferation/differentiation of MSCs into cancer-associated fibroblasts as well as cancer stem cells. However, MSCs exhibit also therapeutic effects including anti-tumor, anti-proliferative, anti-inflammatory, or anti-oxidative effects. The therapeutic interest in MSCs is currently growing, mainly due to their ability to selectively migrate and penetrate tumor sites, which would make them relevant as vectors for advanced therapies. Therefore, this review aims to provide an overview of the double-edged sword implications of MSCs in tumor processes. The therapeutic potential of MSCs will be reviewed in melanoma and lung cancers.
Collapse
Affiliation(s)
- Youssef Slama
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Franck Ah-Pine
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Mohamed Khettab
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Angelique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Mickael Begue
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Fabien Dutheil
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
| |
Collapse
|
9
|
Shakiba D, Genin GM, Zustiak SP. Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms. Adv Drug Deliv Rev 2023; 196:114771. [PMID: 36889646 PMCID: PMC10133187 DOI: 10.1016/j.addr.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/17/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Mechanical forces are central to how cancer treatments such as chemotherapeutics and immunotherapies interact with cells and tissues. At the simplest level, electrostatic forces underlie the binding events that are critical to therapeutic function. However, a growing body of literature points to mechanical factors that also affect whether a drug or an immune cell can reach a target, and to interactions between a cell and its environment affecting therapeutic efficacy. These factors affect cell processes ranging from cytoskeletal and extracellular matrix remodeling to transduction of signals by the nucleus to metastasis of cells. This review presents and critiques the state of the art of our understanding of how mechanobiology impacts drug and immunotherapy resistance and responsiveness, and of the in vitro systems that have been of value in the discovery of these effects.
Collapse
Affiliation(s)
- Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| | - Silviya P Zustiak
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
10
|
Bates M, Mohamed BM, Ward MP, Kelly TE, O'Connor R, Malone V, Brooks R, Brooks D, Selemidis S, Martin C, O'Toole S, O'Leary JJ. Circulating tumour cells: The Good, the Bad and the Ugly. Biochim Biophys Acta Rev Cancer 2023; 1878:188863. [PMID: 36796527 DOI: 10.1016/j.bbcan.2023.188863] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
This review is an overview of the current knowledge regarding circulating tumour cells (CTCs), which are potentially the most lethal type of cancer cell, and may be a key component of the metastatic cascade. The clinical utility of CTCs (the "Good"), includes their diagnostic, prognostic, and therapeutic potential. Conversely, their complex biology (the "Bad"), including the existence of CD45+/EpCAM+ CTCs, adds insult to injury regarding their isolation and identification, which in turn hampers their clinical translation. CTCs are capable of forming microemboli composed of both non-discrete phenotypic populations such as mesenchymal CTCs and homotypic and heterotypic clusters which are poised to interact with other cells in the circulation, including immune cells and platelets, which may increase their malignant potential. These microemboli (the "Ugly") represent a prognostically important CTC subset, however, phenotypic EMT/MET gradients bring additional complexities to an already challenging situation.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland.
| | - Bashir M Mohamed
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Mark P Ward
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Tanya E Kelly
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Roisin O'Connor
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Victoria Malone
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Robert Brooks
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Doug Brooks
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC 3083, Australia
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin 2, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| |
Collapse
|
11
|
Hoarau-Véchot J, Blot-Dupin M, Pauly L, Touboul C, Rafii S, Rafii A, Pasquier J. Akt-Activated Endothelium Increases Cancer Cell Proliferation and Resistance to Treatment in Ovarian Cancer Cell Organoids. Int J Mol Sci 2022; 23:ijms232214173. [PMID: 36430649 PMCID: PMC9694384 DOI: 10.3390/ijms232214173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer (OC) is a heterogeneous disease characterized by its late diagnosis (FIGO stages III and IV) and the importance of abdominal metastases often observed at diagnosis. Detached ovarian cancer cells (OCCs) float in ascites and form multicellular spheroids. Here, we developed endothelial cell (EC)-based 3D spheroids to better represent in vivo conditions. When co-cultured in 3D conditions, ECs and OCCs formed organized tumor angiospheres with a core of ECs surrounded by proliferating OCCs. We established that Akt and Notch3/Jagged1 pathways played a role in angiosphere formation and peritoneum invasion. In patients' ascites we found angiosphere-like structures and demonstrated in patients' specimens that tumoral EC displayed Akt activation, which supports the importance of Akt activation in ECs in OC. Additionally, we demonstrated the importance of FGF2, Pentraxin 3 (PTX3), PD-ECGF and TIMP-1 in angiosphere organization. Finally, we confirmed the role of Notch3/Jagged1 in OCC-EC crosstalk relating to OCC proliferation and during peritoneal invasion. Our results support the use of multicellular spheroids to better model tumoral and stromal interaction. Such models could help decipher the complex pathways playing critical roles in metastasis spread and predict tumor response to chemotherapy or anti-angiogenic treatment.
Collapse
Affiliation(s)
- Jessica Hoarau-Véchot
- Department of Genetic Medicine and Obstetrics and Gynecology, Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Morgane Blot-Dupin
- Faculté de Médecine de Créteil UPEC—Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000 Créteil, France
| | - Léa Pauly
- Faculté de Médecine de Créteil UPEC—Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000 Créteil, France
| | - Cyril Touboul
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), UMR_S 938, Centre de Recherche Saint-Antoine, Team Cancer Biology and Therapeutics, Institut Universitaire de Cancérologie, Sorbonne Université, 75012 Paris, France
- Department of Obstetrics and Gynecology, Hôpital Tenon, Assistance Publique Des Hôpitaux de Paris, GRC-6 UPMC, Université Pierre et Marie Curie, 75005 Paris, France
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Arash Rafii
- Department of Genetic Medicine and Obstetrics and Gynecology, Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jennifer Pasquier
- Department of Genetic Medicine and Obstetrics and Gynecology, Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
- Correspondence:
| |
Collapse
|
12
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
13
|
Wilczyński JR. Cancer Stem Cells: An Ever-Hiding Foe. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:219-251. [PMID: 35165866 DOI: 10.1007/978-3-030-91311-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer stem cells are a population of cells enable to reproduce the original phenotype of the tumor and capable to self-renewal, which is crucial for tumor proliferation, differentiation, recurrence, and metastasis, as well as chemoresistance. Therefore, the cancer stem cells (CSCs) have become one of the main targets for anticancer therapy and many ongoing clinical trials test anti-CSCs efficacy of plenty of drugs. This chapter describes CSCs starting from general description of this cell population, through CSCs markers, signaling pathways, genetic and epigenetic regulation, role of epithelial-mesenchymal transition (EMT) transition and autophagy, cooperation with microenvironment (CSCs niche), and finally role of CSCs in escaping host immunosurveillance against cancer.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
14
|
Pascual-Antón L, Cardeñes B, Sainz de la Cuesta R, González-Cortijo L, López-Cabrera M, Cabañas C, Sandoval P. Mesothelial-to-Mesenchymal Transition and Exosomes in Peritoneal Metastasis of Ovarian Cancer. Int J Mol Sci 2021; 22:ijms222111496. [PMID: 34768926 PMCID: PMC8584135 DOI: 10.3390/ijms222111496] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Most patients with ovarian cancer (OvCA) present peritoneal disseminated disease at the time of diagnosis. During peritoneal metastasis, cancer cells detach from the primary tumor and disseminate through the intraperitoneal fluid. The peritoneal mesothelial cell (PMC) monolayer that lines the abdominal cavity is the first barrier encountered by OvCA cells. Subsequent progression of tumors through the peritoneum leads to the accumulation into the peritoneal stroma of a sizeable population of carcinoma-associated fibroblasts (CAFs), which is mainly originated from a mesothelial-to-mesenchymal transition (MMT) process. A common characteristic of OvCA patients is the intraperitoneal accumulation of ascitic fluid, which is composed of cytokines, chemokines, growth factors, miRNAs, and proteins contained in exosomes, as well as tumor and mesothelial suspended cells, among other components that vary in proportion between patients. Exosomes are small extracellular vesicles that have been shown to mediate peritoneal metastasis by educating a pre-metastatic niche, promoting the accumulation of CAFs via MMT, and inducing tumor growth and chemoresistance. This review summarizes and discusses the pivotal role of exosomes and MMT as mediators of OvCA peritoneal colonization and as emerging diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Lucía Pascual-Antón
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | - Beatriz Cardeñes
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | | | | | - Manuel López-Cabrera
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | - Carlos Cabañas
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Lymphocyte Immunobiology Group, Inflammatory and Immune Disorders Area, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
- Correspondence: (C.C.); (P.S.); Tel.: +34-91-196-4513 (C.C.); +34-91-196-4707 (P.S.)
| | - Pilar Sandoval
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
- Correspondence: (C.C.); (P.S.); Tel.: +34-91-196-4513 (C.C.); +34-91-196-4707 (P.S.)
| |
Collapse
|
15
|
Miyake K, Karasuyama H. The Role of Trogocytosis in the Modulation of Immune Cell Functions. Cells 2021; 10:cells10051255. [PMID: 34069602 PMCID: PMC8161413 DOI: 10.3390/cells10051255] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Trogocytosis is an active process, in which one cell extracts the cell fragment from another cell, leading to the transfer of cell surface molecules, together with membrane fragments. Recent reports have revealed that trogocytosis can modulate various biological responses, including adaptive and innate immune responses and homeostatic responses. Trogocytosis is evolutionally conserved from protozoan parasites to eukaryotic cells. In some cases, trogocytosis results in cell death, which is utilized as a mechanism for antibody-dependent cytotoxicity (ADCC). In other cases, trogocytosis-mediated intercellular protein transfer leads to both the acquisition of novel functions in recipient cells and the loss of cellular functions in donor cells. Trogocytosis in immune cells is typically mediated by receptor–ligand interactions, including TCR–MHC interactions and Fcγ receptor-antibody-bound molecule interactions. Additionally, trogocytosis mediates the transfer of MHC molecules to various immune and non-immune cells, which confers antigen-presenting activity on non-professional antigen-presenting cells. In this review, we summarize the recent advances in our understanding of the role of trogocytosis in immune modulation.
Collapse
|
16
|
Kongsomros S, Manopwisedjaroen S, Chaopreecha J, Wang SF, Borwornpinyo S, Thitithanyanont A. Rapid and Efficient Cell-to-Cell Transmission of Avian Influenza H5N1 Virus in MDCK Cells Is Achieved by Trogocytosis. Pathogens 2021; 10:483. [PMID: 33923524 PMCID: PMC8074074 DOI: 10.3390/pathogens10040483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023] Open
Abstract
Viruses have developed direct cell-to-cell transfer strategies to enter target cells without being released to escape host immune responses and antiviral treatments. These strategies are more rapid and efficient than transmission through indirect mechanisms of viral infection between cells. Here, we demonstrate that an H5N1 influenza virus can spread via direct cell-to-cell transfer in Madin-Darby canine kidney (MDCK) cells. We compared cell-to-cell transmission of the H5N1 virus to that of a human influenza H1N1 virus. The H5N1 virus has been found to spread to recipient cells faster than the human influenza H1N1 virus. Additionally, we showed that plasma membrane exchange (trogocytosis) occurs between co-cultured infected donor cells and uninfected recipient cells early point, allowing the intercellular transfer of viral material to recipient cells. Notably, the H5N1 virus induced higher trogocytosis levels than the H1N1 virus, which could explain the faster cell-to-cell transmission rate of H5N1. Importantly, this phenomenon was also observed in A549 human lung epithelial cells, which are representative cells in the natural infection site. Altogether, our results provide evidence demonstrating that trogocytosis could be the additional mechanism utilized by the H5N1 virus for rapid and efficient cell-to-cell transmission.
Collapse
Affiliation(s)
- Supasek Kongsomros
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.M.); (J.C.)
| | - Suwimon Manopwisedjaroen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.M.); (J.C.)
| | - Jarinya Chaopreecha
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.M.); (J.C.)
| | - Sheng-Fan Wang
- Department of Medical Laboratory Sciences and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Suparerk Borwornpinyo
- Excellence Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.M.); (J.C.)
| |
Collapse
|
17
|
Le Naour A, Prat M, Thibault B, Mével R, Lemaitre L, Leray H, Joubert MV, Coulson K, Golzio M, Lefevre L, Mery E, Martinez A, Ferron G, Delord JP, Coste A, Couderc B. Tumor cells educate mesenchymal stromal cells to release chemoprotective and immunomodulatory factors. J Mol Cell Biol 2021; 12:202-215. [PMID: 31504643 PMCID: PMC7181721 DOI: 10.1093/jmcb/mjz090] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Factors released by surrounding cells such as cancer-associated mesenchymal stromal cells (CA-MSCs) are involved in tumor progression and chemoresistance. In this study, we characterize the mechanisms by which naïve mesenchymal stromal cells (MSCs) can acquire a CA-MSCs phenotype. Ovarian tumor cells trigger the transformation of MSCs to CA-MSCs by expressing pro-tumoral genes implicated in the chemoresistance of cancer cells, resulting in the secretion of high levels of CXC chemokine receptors 1 and 2 (CXCR1/2) ligands such as chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL2, and interleukin 8 (IL-8). CXCR1/2 ligands can also inhibit the immune response against ovarian tumor cells. Indeed, through their released factors, CA-MSCs promote the differentiation of monocytes towards M2 macrophages, which favors tumor progression. When CXCR1/2 receptors are inhibited, these CA-MSC-activated macrophages lose their M2 properties and acquire an anti-tumoral phenotype. Both ex vivo and in vivo, we used a CXCR1/2 inhibitor to sensitize ovarian tumor cells to carboplatin and circumvent the pro-tumoral effects of CA-MSCs. Since high concentrations of CXCR1/2 ligands in patients’ blood are associated with chemoresistance, CXCR1/2 inhibition could be a potential therapeutic strategy to revert carboplatin resistance.
Collapse
Affiliation(s)
- Augustin Le Naour
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Mélissa Prat
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Benoît Thibault
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Renaud Mével
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Léa Lemaitre
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Hélène Leray
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Marie-Véronique Joubert
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Kimberley Coulson
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Muriel Golzio
- UMR CNRS 5089, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
| | - Lise Lefevre
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Eliane Mery
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France
| | - Alejandra Martinez
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France
| | - Gwénaël Ferron
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France
| | - Jean-Pierre Delord
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Agnès Coste
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Bettina Couderc
- Institut Claudius Regaud -IUCT Oncopole, Université de Toulouse, Toulouse, France.,INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| |
Collapse
|
18
|
Trogocytosis between Non-Immune Cells for Cell Clearance, and among Immune-Related Cells for Modulating Immune Responses and Autoimmunity. Int J Mol Sci 2021; 22:ijms22052236. [PMID: 33668117 PMCID: PMC7956485 DOI: 10.3390/ijms22052236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 12/21/2022] Open
Abstract
The term trogocytosis refers to a rapid bidirectional and active transfer of surface membrane fragment and associated proteins between cells. The trogocytosis requires cell-cell contact, and exhibits fast kinetics and the limited lifetime of the transferred molecules on the surface of the acceptor cells. The biological actions of trogocytosis include information exchange, cell clearance of unwanted tissues in embryonic development, immunoregulation, cancer surveillance/evasion, allogeneic cell survival and infectious pathogen killing or intercellular transmission. In the present review, we will extensively review all these aspects. In addition to its biological significance, aberrant trogocytosis in the immune system leading to autoimmunity and immune-mediated inflammatory diseases will also be discussed. Finally, the prospective investigations for further understanding the molecular basis of trogocytosis and its clinical applications will also be proposed.
Collapse
|
19
|
Mehraj U, Dar AH, Wani NA, Mir MA. Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother Pharmacol 2021; 87:147-158. [PMID: 33420940 DOI: 10.1007/s00280-020-04222-w] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022]
Abstract
Breast cancer is presently the most predominant tumor type and the second leading cause of tumor-related deaths among women. Although advancements in diagnosis and therapeutics have momentously improved, chemoresistance remains an important challenge. Tumors oppose chemotherapeutic agents through a variety of mechanisms, with studies revealing that the tumor microenvironment (TME) is central to this process. The components of TME including stromal cells, immune cells, and non-stromal factors on exposure to chemotherapy promote the acquisition of resistant phenotype. Consequently, limited targeting of tumor cells leads to tumor recurrence after chemotherapy. Here, in this article, we summarize how TME alters chemotherapy responses in breast cancer. Furthermore, the role of different stromal cells viz., CAFs, TAMs, MSCs, endothelial cells, and cancer stem cells (CSC) in breast cancer chemoresistance is discussed in greater detail.
Collapse
Affiliation(s)
- Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, J&K, India
| | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, 191201, India
| | - Nissar A Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, 191201, India
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, J&K, India.
| |
Collapse
|
20
|
Vaidya FU, Sufiyan Chhipa A, Mishra V, Gupta VK, Rawat SG, Kumar A, Pathak C. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep (Hoboken) 2020; 5:e1291. [PMID: 33052041 PMCID: PMC9780431 DOI: 10.1002/cnr2.1291] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The acquisition of resistance to chemotherapy is a major hurdle in the successful application of cancer therapy. Several anticancer approaches, including chemotherapies, radiotherapy, surgery and targeted therapies are being employed for the treatment of cancer. However, cancer cells reprogram themselves in multiple ways to evade the effect of these therapies, and over a period of time, the drug becomes inactive due to the development of multi-drug resistance (MDR). MDR is a complex phenomenon where malignant cells become insensitive to anticancer drugs and attain the ability to survive even after several exposures of anticancer drugs. In this review, we have discussed the molecular and cellular paradigms of multidrug resistance in cancer. RECENT FINDINGS An Extensive research in cancer biology revealed that drug resistance in cancer is the result of perpetuated intracellular and extracellular mechanisms such as drug efflux, drug inactivation, drug target alteration, oncogenic mutations, altered DNA damage repair mechanism, inhibition of programmed cell death signaling, metabolic reprogramming, epithelial mesenchymal transition (EMT), inherent cell heterogeneity, epigenetic changes, redox imbalance, or any combination of these mechanisms. An inevitable cross-link between inflammation and drug resistance has been discussed. This review provided insight molecular mechanism to understand the vulnerabilities of cancer cells to develop drug resistance. CONCLUSION MDR is an outcome of interplays between multiple intricate pathways responsible for the inactivation of drug and development of resistance. MDR is a major obstacle in regimens of successful application of anti-cancer therapy. An improved understanding of the molecular mechanism of multi drug resistance and cellular reprogramming can provide a promising opportunity to combat drug resistance in cancer and intensify anti-cancer therapy for the upcoming future.
Collapse
Affiliation(s)
- Foram U. Vaidya
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Abu Sufiyan Chhipa
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Vinita Mishra
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | | | | | - Ajay Kumar
- Department of ZoologyBanaras Hindu UniversityVaranasiIndia
| | - Chandramani Pathak
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| |
Collapse
|
21
|
Small Extracellular Vesicles Released from Ovarian Cancer Spheroids in Response to Cisplatin Promote the Pro-Tumorigenic Activity of Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20204972. [PMID: 31600881 PMCID: PMC6834150 DOI: 10.3390/ijms20204972] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Despite the different strategies used to treat ovarian cancer, around 70% of women/patients eventually fail to respond to the therapy. Cancer stem cells (CSCs) play a role in the treatment failure due to their chemoresistant properties. This capacity to resist chemotherapy allows CSCs to interact with different components of the tumor microenvironment, such as mesenchymal stem cells (MSCs), and thus contribute to tumorigenic processes. Although the participation of MSCs in tumor progression is well understood, it remains unclear how CSCs induce the pro-tumorigenic activity of MSCs in response to chemotherapy. Small extracellular vesicles, including exosomes, represent one possible way to modulate any type of cell. Therefore, in this study, we evaluate if small extracellular vesicle (sEV) derived from ovarian cancer spheroids (OCS), which are enriched in CSCs, can modify the activity of MSCs to a pro-tumorigenic phenotype. We show that sEV released by OCS in response to cisplatin induce an increase in the migration pattern of bone marrow MSCs (BM-MSCs) and the secretion interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial growth factor A (VEGFA). Moreover, the factors secreted by BM-MSCs induce angiogenesis in endothelial cells and the migration of low-invasive ovarian cancer cells. These findings suggest that cisplatin could modulate the cargo of sEV released by CSCs, and these exosomes can further induce the pro-tumorigenic activity of MSCs.
Collapse
|
22
|
Laplagne C, Domagala M, Le Naour A, Quemerais C, Hamel D, Fournié JJ, Couderc B, Bousquet C, Ferrand A, Poupot M. Latest Advances in Targeting the Tumor Microenvironment for Tumor Suppression. Int J Mol Sci 2019; 20:E4719. [PMID: 31547627 PMCID: PMC6801830 DOI: 10.3390/ijms20194719] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
The tumor bulk is composed of a highly heterogeneous population of cancer cells, as well as a large variety of resident and infiltrating host cells, extracellular matrix proteins, and secreted proteins, collectively known as the tumor microenvironment (TME). The TME is essential for driving tumor development by promoting cancer cell survival, migration, metastasis, chemoresistance, and the ability to evade the immune system responses. Therapeutically targeting tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), regulatory T-cells (T-regs), and mesenchymal stromal/stem cells (MSCs) is likely to have an impact in cancer treatment. In this review, we focus on describing the normal physiological functions of each of these cell types and their behavior in the cancer setting. Relying on the specific surface markers and secreted molecules in this context, we review the potential targeting of these cells inducing their depletion, reprogramming, or differentiation, or inhibiting their pro-tumor functions or recruitment. Different approaches were developed for this targeting, namely, immunotherapies, vaccines, small interfering RNA, or small molecules.
Collapse
Affiliation(s)
- Chloé Laplagne
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Marcin Domagala
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Augustin Le Naour
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut Claudius Regaud, IUCT-Oncopole, 31000 Toulouse, France.
| | - Christophe Quemerais
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Dimitri Hamel
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut de Recherche en Santé Digestive, Inserm U1220, INRA, ENVT, 31024 Toulouse, France.
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Bettina Couderc
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut Claudius Regaud, IUCT-Oncopole, 31000 Toulouse, France.
| | - Corinne Bousquet
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Audrey Ferrand
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut de Recherche en Santé Digestive, Inserm U1220, INRA, ENVT, 31024 Toulouse, France.
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| |
Collapse
|
23
|
Ullah M, Azazzen D, Kaci R, Benabbou N, Pujade Lauraine E, Pocard M, Mirshahi M. High Expression of HLA-G in Ovarian Carcinomatosis: The Role of Interleukin-1β. Neoplasia 2019; 21:331-342. [PMID: 30802770 PMCID: PMC6389653 DOI: 10.1016/j.neo.2019.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 11/27/2022]
Abstract
The present study focuses on the influence of the tumor microenvironment on the expression of HLA-G in ovarian cancer and its impact on immune cells. We used carcinomatosis fluids (n = 16) collected from patients diagnosed with epithelial ovarian cancer, detected by an increase in CA125 levels. Our results indicate that HLA-G is expressed by 1) ascitic cell clusters, 2) stromal cells (hospicells) extracted from cancer cell clusters, and 3) cancer cell lines and tumor cells. The origin of HLA-G was linked to inflammatory cytokines present in the cancer microenvironment. In parallel, the ascitic fluid of patients with ovarian cancer contains soluble HLA-G (sHLA-G). The mesothelial cell layer and submesothelial tissues, as well as the immune cell infiltrate, do not secrete HLA-G. In contrast, sHLA-G is absorbed by peritoneal tissues along with mesothelial layers as well as immune cell infiltrates. We demonstrated that interleukin-1β along with TGF-β can be a major HLA-G-inducing factor that upregulates HLA-G expression through the NF-κB pathway. The level of HLA-G in ascites correlated positively with the expression of T regulatory (T-regs) cells, while it negatively correlated with the expression of natural killer and memory cells in tumor-infiltrating immune cells. In conclusion, the production of HLA-G is associated with the presence of inflammatory cytokines and is strongly correlated with microenvironment tolerant cells such as T-regs and diminution of NK and memory T cells.
Collapse
Affiliation(s)
- Matti Ullah
- INSERM U965, Sorbonne Paris Cité-Paris Diderot University, Carcinomatosis Angiogenesis Translational Research, Hospital Lariboisière, 75010 Paris, France
| | - Dallel Azazzen
- INSERM U965, Sorbonne Paris Cité-Paris Diderot University, Carcinomatosis Angiogenesis Translational Research, Hospital Lariboisière, 75010 Paris, France
| | - Rachid Kaci
- INSERM U965, Sorbonne Paris Cité-Paris Diderot University, Carcinomatosis Angiogenesis Translational Research, Hospital Lariboisière, 75010 Paris, France; Central Department of Anatomy and Pathological Cytology, Hospital Lariboisière, 75010 Paris, France
| | - Nadia Benabbou
- INSERM U965, Sorbonne Paris Cité-Paris Diderot University, Carcinomatosis Angiogenesis Translational Research, Hospital Lariboisière, 75010 Paris, France
| | | | - Marc Pocard
- INSERM U965, Sorbonne Paris Cité-Paris Diderot University, Carcinomatosis Angiogenesis Translational Research, Hospital Lariboisière, 75010 Paris, France
| | - Massoud Mirshahi
- INSERM U965, Sorbonne Paris Cité-Paris Diderot University, Carcinomatosis Angiogenesis Translational Research, Hospital Lariboisière, 75010 Paris, France.
| |
Collapse
|
24
|
Jo Y, Choi N, Kim K, Koo HJ, Choi J, Kim HN. Chemoresistance of Cancer Cells: Requirements of Tumor Microenvironment-mimicking In Vitro Models in Anti-Cancer Drug Development. Am J Cancer Res 2018; 8:5259-5275. [PMID: 30555545 PMCID: PMC6276092 DOI: 10.7150/thno.29098] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/04/2018] [Indexed: 01/09/2023] Open
Abstract
For decades, scientists have been using two-dimensional cell culture platforms for high-throughput drug screening of anticancer drugs. Growing evidence indicates that the results of anti-cancer drug screening vary with the cell culture microenvironment, and this variation has been proposed as a reason for the high failure rate of clinical trials. Since the culture condition-dependent drug sensitivity of anti-cancer drugs may negatively impact the identification of clinically effective drug candidates, more reliable in vitro cancer platforms are urgently needed. In this review article, we provide an overview of how cell culture conditions can alter drug efficacy and highlight the importance of developing more reliable cancer drug testing platforms for use in the drug discovery process. The environmental factors that can alter drug delivery and efficacy are reviewed. Based on these observations of chemoresistant tumor physiology, we summarize the recent advances in the fabrication of in vitro cancer models and the model-dependent cytotoxicity of anti-cancer drugs, with a particular focus on engineered environmental factors in these platforms. It is believed that more physiologically relevant cancer models can revolutionize the drug discovery process.
Collapse
|
25
|
Pasquier J, Vidal F, Hoarau-Véchot J, Bonneau C, Daraï E, Touboul C, Rafii A. Surgical peritoneal stress creates a pro-metastatic niche promoting resistance to apoptosis via IL-8. J Transl Med 2018; 16:271. [PMID: 30285881 PMCID: PMC6171219 DOI: 10.1186/s12967-018-1643-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Background The mainstay of treatment of advanced ovarian cancer (AOC) involves chemotherapy, and debulking surgery. However, despite optimal surgical procedure and adjuvant chemotherapy, 60% of patients with AOC will relapse within 5 years. Most recurrences occur in the peritoneal cavity, suggesting the existence of occult sanctuaries where ovarian cancer cells (OCC) are protected. In murine models, surgical stress favors tumor growth; however, it has never been established that surgery may affect OCC sensitivity to subsequent chemotherapy. In this study, we investigated how the surgical stress could affect the chemosensitivity of OCC. Methods To avoid bias due to tumor burden in peritoneal cavity and duration of surgery, we used peritoneal biopsies from patients without a malignancy at precise time points. During laparotomies, peritoneal biopsies at the incision site were performed at the time of incision (H0 sample) and 1 h after initiation of surgery (H1 sample). We evaluated the chemoresistance to Taxol (0–20 µM) induced by H0 or H1 incubation (24 h) in two ovarian cancer cell lines OVCAR3 and SKOV3 and a primary cancer cell lines derived in our laboratory. Results Our results indicate that stressed peritoneum overexpressed cytokines, resulting in OCC increased resistance to therapy. Among these cytokines, IL8 was responsible for the resistance to apoptosis through the AKT pathway activation. Chemoresistance in OCC persists through the establishment of an autocrine IL8 loop. Finally, in a cohort of 32 patients, we showed an impact of IL8 tumoral overexpression on chemosensitivity and survival outcomes with a significant association to earlier recurrence. Conclusions Our study demonstrated that precision surgery where targeted treatment would be used in combination with surgery is essential to obtain better tumor control. Electronic supplementary material The online version of this article (10.1186/s12967-018-1643-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, PO: 24144, Doha, Qatar.,Department Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.,INSERM U955, Equipe 7, Créteil, France
| | - Fabien Vidal
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, PO: 24144, Doha, Qatar.,Department Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jessica Hoarau-Véchot
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, PO: 24144, Doha, Qatar
| | - Claire Bonneau
- Service de Gynécologie Obstétrique, Hopital Tenon (Assistance Publique-Hôpitaux de Paris), 4 rue de la Chine, 75020, Paris, France
| | - Emile Daraï
- Service de Gynécologie Obstétrique, Hopital Tenon (Assistance Publique-Hôpitaux de Paris), 4 rue de la Chine, 75020, Paris, France
| | - Cyril Touboul
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Faculté de médecine de Créteil UPEC-Paris XII, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000, Créteil, France
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, PO: 24144, Doha, Qatar. .,Department Genetic Medicine, Weill Cornell Medical College, New York, NY, USA. .,Service de chirurgie Gynécologique, Hôpital Foch, 92100, Suresnes, France.
| |
Collapse
|
26
|
Saunders JH, Onion D, Collier P, Dorrington MS, Argent RH, Clarke PA, Reece-Smith AM, Parsons SL, Grabowska AM. Individual patient oesophageal cancer 3D models for tailored treatment. Oncotarget 2018; 8:24224-24236. [PMID: 27736801 PMCID: PMC5421842 DOI: 10.18632/oncotarget.12500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022] Open
Abstract
Background A model to predict chemotherapy response would provide a marked clinical benefit, enabling tailored treatment of oesophageal cancer, where less than half of patients respond to the routinely administered chemotherapy. Methods Cancer cells were established from tumour biopsies taken from individual patients about to undergo neoadjuvant chemotherapy. A 3D-tumour growth assay (3D-TGA) was developed, in which cancer cells were grown with or without supporting mesenchymal cells, then subjected to chemo-sensitivity testing using the standard chemotherapy administered in clinic, and a novel emerging HDAC inhibitor, Panobinostat. RESULTS Individual patients cancer cells could be expanded and screened within a clinically applicable timescale of 3 weeks. Incorporating mesenchymal support within the 3D-TGA significantly enhanced both the growth and drug resistance profiles of the patients cancer cells. The ex vivo drug response in the presence, but not absence, of mesenchymal cells accurately reflected clinical chemo-sensitivity, as measured by tumour regression grade. Combination with Panobinostat enhanced response and proved efficacious in otherwise chemo-resistant tumours. Conclusions This novel method of establishing individual patient oesophageal cancers in the laboratory, from small endoscopic biopsies, enables clinically-relevant chemo-sensitivity testing, and reduces use of animals by providing more refined in vitro models for pre-screening of drugs. The 3D-TGA accurately predicted chemo-sensitivity in patients, and could be developed to guide tailored patient treatment. The incorporation of mesenchymal cells as the stromal cell component of the tumour micro-environment had a significant effect upon enhancing chemotherapy drug resistance in oesophageal cancer, and could prove a useful target for future drug development.
Collapse
Affiliation(s)
- John H Saunders
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Upper GI Surgery, City Hospital Campus, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - David Onion
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Pamela Collier
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Matthew S Dorrington
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Richard H Argent
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Philip A Clarke
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Alex M Reece-Smith
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Upper GI Surgery, City Hospital Campus, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Simon L Parsons
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Upper GI Surgery, City Hospital Campus, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Anna M Grabowska
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
27
|
Pasquier J, Gosset M, Geyl C, Hoarau-Véchot J, Chevrot A, Pocard M, Mirshahi M, Lis R, Rafii A, Touboul C. CCL2/CCL5 secreted by the stroma induce IL-6/PYK2 dependent chemoresistance in ovarian cancer. Mol Cancer 2018; 17:47. [PMID: 29455640 PMCID: PMC5817856 DOI: 10.1186/s12943-018-0787-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/01/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Minimal residual disease is the main issue of advanced ovarian cancer treatment. According to the literature and previous results, we hypothesized that Mesenchymal Stromal Cells (MSC) could support this minimal residual disease by protecting ovarian cancer cells (OCC) from chemotherapy. In vitro study confirmed that MSC could induce OCC chemoresistance without contact using transwell setting. Further experiments showed that this induced chemoresistance was dependent on IL-6 OCC stimulation. METHODS We combined meticulous in vitro profiling and tumor xenograft models to study the role of IL-6 in MSC/OCC intereactions. RESULTS We demonstrated that Tocilizumab® (anti-IL-6R therapy) in association with chemotherapy significantly reduced the peritoneal carcinosis index (PCI) than chemotherapy alone in mice xenografted with OCCs+MSCs. Further experiments showed that CCL2 and CCL5 are released by MSC in transwell co-culture and induce OCCs IL-6 secretion and chemoresistance. Finally, we found that IL-6 induced chemoresistance was dependent on PYK2 phosphorylation. CONCLUSIONS These findings highlight the potential key role of the stroma in protecting minimal residual disease from chemotherapy, thus favoring recurrences. Future clinical trials targeting stroma could use anti-IL-6 therapy in association with chemotherapy.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Stem cell and microenvironment laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department Genetic Medicine, Weill Cornell Medical College, New York, NY USA
- INSERM U955, Equipe 7, Créteil, France
| | - Marie Gosset
- UMR INSERM U965: Angiogenèse et Recherche translationnelle. Hôpital Lariboisière, 49 bd de la chapelle, 75010 Paris, France
| | - Caroline Geyl
- UMR INSERM U965: Angiogenèse et Recherche translationnelle. Hôpital Lariboisière, 49 bd de la chapelle, 75010 Paris, France
| | - Jessica Hoarau-Véchot
- Stem cell and microenvironment laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Audrey Chevrot
- UMR INSERM U965: Angiogenèse et Recherche translationnelle. Hôpital Lariboisière, 49 bd de la chapelle, 75010 Paris, France
| | - Marc Pocard
- UMR INSERM U965: Angiogenèse et Recherche translationnelle. Hôpital Lariboisière, 49 bd de la chapelle, 75010 Paris, France
| | - Massoud Mirshahi
- UMR INSERM U965: Angiogenèse et Recherche translationnelle. Hôpital Lariboisière, 49 bd de la chapelle, 75010 Paris, France
| | - Raphael Lis
- Department Genetic Medicine, Weill Cornell Medical College, New York, NY USA
| | - Arash Rafii
- Stem cell and microenvironment laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department Genetic Medicine, Weill Cornell Medical College, New York, NY USA
| | - Cyril Touboul
- UMR INSERM U965: Angiogenèse et Recherche translationnelle. Hôpital Lariboisière, 49 bd de la chapelle, 75010 Paris, France
- Faculté de médecine de Créteil UPEC – Paris XII. Service de Gynécologie-Obstétrique et Médecine de la Reproduction. Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000 Créteil, France
| |
Collapse
|
28
|
Inflammatory Human Umbilical Cord-Derived Mesenchymal Stem Cells Promote Stem Cell-Like Characteristics of Cancer Cells in an IL-1 β-Dependent Manner. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7096707. [PMID: 29670904 PMCID: PMC5835289 DOI: 10.1155/2018/7096707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022]
Abstract
To ensure the safety of clinical applications of MSCs, thorough understanding of their impacts on tumor initiation and progression is essential. Here, to further explore the complex dialog between MSCs and tumor cells, umbilical cord-derived mesenchymal stem cells (UC-MSCs) were employed to be cocultured with either breast or ovarian cancer cells. Though having no obvious influence on proliferation or apoptosis, UC-MSCs exerted intense stem cell-like properties promoting effects on both cancer models. Cocultured cancer cells showed enriched side population, enhanced sphere formation ability, and upregulated pluripotency-associated stem cell markers. Human cytokine array and real-time PCR revealed a panel of MSC-derived prostemness cytokines CCL2, CXCL1, IL-8, and IL-6 which were induced upon coculturing. We further revealed IL-1β, a well-characterized proinflammatory cytokine, to be the inducer of these prostemness cytokines, which was generated from inflammatory UC-MSCs in an autocrine manner. Additionally, with introduction of IL-1RA (an IL-1 receptor antagonist) into the coculturing system, the stem cell-like characteristics promoting effects of inflammatory UC-MSCs were partially blocked. Taken together, these findings suggest that transduced inflammatory MSCs work as a major source of IL-1β in tumor microenvironment and initiate the formation of prostemness niche via regulating their secretome in an IL-1β-dependent manner.
Collapse
|
29
|
Mikuła-Pietrasik J, Uruski P, Tykarski A, Książek K. The peritoneal "soil" for a cancerous "seed": a comprehensive review of the pathogenesis of intraperitoneal cancer metastases. Cell Mol Life Sci 2018; 75:509-525. [PMID: 28956065 PMCID: PMC5765197 DOI: 10.1007/s00018-017-2663-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/29/2017] [Accepted: 09/20/2017] [Indexed: 01/02/2023]
Abstract
Various types of tumors, particularly those originating from the ovary and gastrointestinal tract, display a strong predilection for the peritoneal cavity as the site of metastasis. The intraperitoneal spread of a malignancy is orchestrated by a reciprocal interplay between invading cancer cells and resident normal peritoneal cells. In this review, we address the current state-of-art regarding colonization of the peritoneal cavity by ovarian, colorectal, pancreatic, and gastric tumors. Particular attention is paid to the pro-tumoral role of various kinds of peritoneal cells, including mesothelial cells, fibroblasts, adipocytes, macrophages, the vascular endothelium, and hospicells. Anatomo-histological considerations on the pro-metastatic environment of the peritoneal cavity are presented in the broader context of organ-specific development of distal metastases in accordance with Paget's "seed and soil" theory of tumorigenesis. The activity of normal peritoneal cells during pivotal elements of cancer progression, i.e., adhesion, migration, invasion, proliferation, EMT, and angiogenesis, is discussed from the perspective of well-defined general knowledge on a hospitable tumor microenvironment created by the cellular elements of reactive stroma, such as cancer-associated fibroblasts and macrophages. Finally, the paper addresses the unique features of the peritoneal cavity that predispose this body compartment to be a niche for cancer metastases, presents issues that are topics of an ongoing debate, and points to areas that still require further in-depth investigations.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland.
| |
Collapse
|
30
|
Prieto-Vila M, Takahashi RU, Usuba W, Kohama I, Ochiya T. Drug Resistance Driven by Cancer Stem Cells and Their Niche. Int J Mol Sci 2017; 18:ijms18122574. [PMID: 29194401 PMCID: PMC5751177 DOI: 10.3390/ijms18122574] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022] Open
Abstract
Drug resistance represents one of the greatest challenges in cancer treatment. Cancer stem cells (CSCs), a subset of cells within the tumor with the potential for self-renewal, differentiation and tumorigenicity, are thought to be the major cause of cancer therapy failure due to their considerable chemo- and radioresistance, resulting in tumor recurrence and eventually metastasis. CSCs are situated in a specialized microenvironment termed the niche, mainly composed of fibroblasts and endothelial, mesenchymal and immune cells, which also play pivotal roles in drug resistance. These neighboring cells promote the molecular signaling pathways required for CSC maintenance and survival and also trigger endogenous drug resistance in CSCs. In addition, tumor niche components such as the extracellular matrix also physically shelter CSCs from therapeutic agents. Interestingly, CSCs contribute directly to the niche in a bilateral feedback loop manner. Here, we review the recent advances in the study of CSCs, the niche and especially their collective contribution to resistance, since increasingly studies suggest that this interaction should be considered as a target for therapeutic strategies.
Collapse
Affiliation(s)
- Marta Prieto-Vila
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Ryou-U Takahashi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Wataru Usuba
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Isaku Kohama
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| |
Collapse
|
31
|
The Crosstalk between Ovarian Cancer Stem Cell Niche and the Tumor Microenvironment. Stem Cells Int 2017; 2017:5263974. [PMID: 28819364 PMCID: PMC5551518 DOI: 10.1155/2017/5263974] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is one of the most important causes of cancer-related death among women in the world. Despite advances in ovarian cancer treatment, 70–80% of women who initially respond to therapy eventually relapse and die. There is evidence that a small population of cells within the tumors called cancer stem cells (CSCs) could be responsible for treatment failure due to their enhanced chemoresistance and tumorigenicity. These cells reside in a niche that maintains the principal properties of CSCs. These properties are associated with the capacity of CSCs to interact with different cells of the tumor microenvironment including mesenchymal stem cells, endothelial cells, immune cells, and fibroblasts, promoting cancer progression. This interaction can be mediated by cytokines, growth factors, lipids, and/or extracellular vesicles released in the CSC niche. In this review, we will discuss how the interaction between ovarian CSCs and the tumor microenvironment can contribute to the maintenance of the CSC niche and consequently to tumor progression in ovarian cancer.
Collapse
|
32
|
Jouvin I, Najah H, Pimpie C, Canet Jourdan C, Kaci R, Mirshahi M, Eveno C, Pocard M. Reduction of carcinomatosis risk using icodextrin as a carrier solution of intraperitoneal oxaliplatin chemotherapy. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2017; 43:1088-1094. [PMID: 28089175 DOI: 10.1016/j.ejso.2016.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/29/2016] [Accepted: 12/08/2016] [Indexed: 01/14/2023]
Abstract
There is no standard treatment in patients with high risk metachronous peritoneal carcinomatosis (PC) in colonic cancer, as perforated tumour or synchronous ovarian metastasis. Icodextrin 4% (ICDX), presently used to prevent postoperative abdominal adhesions, could inhibit the coactivation of the tumour cells and the microenvironment cells, associated with the development of PC. The aim of this study was to inhibit the formation of the PC in a murine model mimicking surgical situation using ICDX and intraperitoneal (IP) prophylactic chemotherapy. We created a model of growing PC in mice using cells of murine colonic cancer CT26. Cells and treatments were injected simultaneously. Five groups were created: CT26 (control group), CT26 + ICDX (ICDX group), CT26 + chemotherapy (oxaliplatin and 5FU) (chemo group), CT26 + chemotherapy + ICDX (ICDX chemo group), ICDX (toxicity group). At day 15, PC was evaluated with rodents PCI. In the chemo group, PCI was significantly lower than in the control group (3.2 versus 8.4, p = 0.02). ICDX had a synergetic effect on PC with chemotherapy; indeed PCI in ICDX chemo group was lower than in chemo group (1.4 versus 3.2, p = 0.04). There was no morbidity linked to ICDX in toxicity group. Safety of ICDX needs to be verified, particularly on colonic anastomosis before ICDX associated to IP chemotherapy could be used as a preventive treatment of PC in high risk patients. This prophylactic treatment is easy to use and would be administrated at the end of a curative surgery for a colonic cancer.
Collapse
Affiliation(s)
- I Jouvin
- Department of Oncologic & Digestive Surgery, Hospital Lariboisière - AP-HP, 2 rue Ambroise Paré, 75475 Paris Cedex 10, France; Université Paris Diderot, Sorbonne Paris Cité, CART, Carcinomatosis Angiogenesis Translational Research, INSERM U965, F-74575 Paris, France
| | - H Najah
- Department of Oncologic & Digestive Surgery, Hospital Lariboisière - AP-HP, 2 rue Ambroise Paré, 75475 Paris Cedex 10, France; Université Paris Diderot, Sorbonne Paris Cité, CART, Carcinomatosis Angiogenesis Translational Research, INSERM U965, F-74575 Paris, France
| | - C Pimpie
- Université Paris Diderot, Sorbonne Paris Cité, CART, Carcinomatosis Angiogenesis Translational Research, INSERM U965, F-74575 Paris, France
| | - C Canet Jourdan
- Université Paris Diderot, Sorbonne Paris Cité, CART, Carcinomatosis Angiogenesis Translational Research, INSERM U965, F-74575 Paris, France
| | - R Kaci
- Department of Anatomopathology, Hôpital Lariboisière - AP-HP, 2 rue Ambroise Paré, 75475 Paris Cedex 10, France
| | - M Mirshahi
- Université Paris Diderot, Sorbonne Paris Cité, CART, Carcinomatosis Angiogenesis Translational Research, INSERM U965, F-74575 Paris, France
| | - C Eveno
- Department of Oncologic & Digestive Surgery, Hospital Lariboisière - AP-HP, 2 rue Ambroise Paré, 75475 Paris Cedex 10, France; Université Paris Diderot, Sorbonne Paris Cité, CART, Carcinomatosis Angiogenesis Translational Research, INSERM U965, F-74575 Paris, France
| | - M Pocard
- Department of Oncologic & Digestive Surgery, Hospital Lariboisière - AP-HP, 2 rue Ambroise Paré, 75475 Paris Cedex 10, France; Université Paris Diderot, Sorbonne Paris Cité, CART, Carcinomatosis Angiogenesis Translational Research, INSERM U965, F-74575 Paris, France.
| |
Collapse
|
33
|
Melzer C, von der Ohe J, Lehnert H, Ungefroren H, Hass R. Cancer stem cell niche models and contribution by mesenchymal stroma/stem cells. Mol Cancer 2017; 16:28. [PMID: 28148265 PMCID: PMC5286787 DOI: 10.1186/s12943-017-0595-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/18/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The initiation and progression of malignant tumors is driven by distinct subsets of tumor-initiating or cancer stem-like cells (CSCs) which develop therapy/apoptosis resistance and self-renewal capacity. In order to be able to eradicate these CSCs with novel classes of anti-cancer therapeutics, a better understanding of their biology and clinically-relevant traits is mandatory. MAIN BODY Several requirements and functions of a CSC niche physiology are combined with current concepts for CSC generation such as development in a hierarchical tumor model, by stochastic processes, or via a retrodifferentiation program. Moreover, progressive adaptation of endothelial cells and recruited immune and stromal cells to the tumor site substantially contribute to generate a tumor growth-permissive environment resembling a CSC niche. Particular emphasis is put on the pivotal role of multipotent mesenchymal stroma/stem cells (MSCs) in supporting CSC development by various kinds of interaction and cell fusion to form hybrid tumor cells. CONCLUSION A better knowledge of CSC niche physiology may increase the chances that cancer stemness-depleting interventions ultimately result in arrest of tumor growth and metastasis.
Collapse
Affiliation(s)
- Catharina Melzer
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Medical University Hannover, Carl-Neuberg-Str. 1, D – 30625 Hannover, Germany
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Medical University Hannover, Carl-Neuberg-Str. 1, D – 30625 Hannover, Germany
| | - Hendrik Lehnert
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Lübeck, Germany
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Lübeck, Germany
- Department of General, Visceral-, Thoracic-Transplantation- and Pediatric Surgery, UKSH, Campus Kiel, Kiel, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Medical University Hannover, Carl-Neuberg-Str. 1, D – 30625 Hannover, Germany
| |
Collapse
|
34
|
Velaei K, Samadi N, Barazvan B, Soleimani Rad J. Tumor microenvironment-mediated chemoresistance in breast cancer. Breast 2016; 30:92-100. [PMID: 27668856 DOI: 10.1016/j.breast.2016.09.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022] Open
Abstract
Therapy resistance or tumor relapse in cancer is common. Tumors develop resistance to chemotherapeutic through a variety of mechanisms, with tumor microenvironment (TM) serving pivotal roles. Using breast cancer as a paradigm, we propose that responses of cancer cells to drugs are not exclusively determined by their intrinsic characteristics but are also controlled by deriving signals from TM. Affected microenvironment by chemotherapy is an avenue to promote phenotype which tends to resist on to be ruined. Therefore, exclusively targeting cancer cells does not demolish tumor recurrence after chemotherapy. Regardless of tumor-microenvironment pathways and their profound influence on the responsiveness of treatment, diversity of molecular properties of breast cancer also behave differently in terms of response to chemotherapy. And also it is assumed that there is cross-talk between phenotypic diversity and TM. Collectively, raising complex signal from TM in chemotherapy condition often encourages cancer cells are not killed but strengthen. Here, we summarized how TM modifies responses to chemotherapy in breast cancer. We also discussed successful treatment strategies have been considered TM in breast cancer treatment.
Collapse
Affiliation(s)
- Kobra Velaei
- Department of Anatomical Science, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Barazvan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Department of Anatomical Science, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Abstract
Tumor development and tumor progression is not only determined by the corresponding tumor cells but also by the tumor microenvironment. This includes an orchestrated network of interacting cell types (e.g. immune cells, endothelial cells, fibroblasts, and mesenchymal stroma/stem cells (MSC)) via the extracellular matrix and soluble factors such as cytokines, chemokines, growth factors and various metabolites. Cell populations of the tumor microenvironment can interact directly and indirectly with cancer cells by mutually altering properties and functions of the involved partners. Particularly, mesenchymal stroma/stem cells (MSC) play an important role during carcinogenesis exhibiting different types of intercellular communication. Accordingly, this work focusses on diverse mechanisms of interaction between MSC and cancer cells. Moreover, some functional changes and consequences for both cell types are summarized which can eventually result in the establishment of a carcinoma stem cell niche (CSCN) or the generation of new tumor cell populations by MSC-tumor cell fusion.
Collapse
Affiliation(s)
- Catharina Melzer
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Str. 1, D, 30625 Hannover, Germany
| | - Yuanyuan Yang
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Str. 1, D, 30625 Hannover, Germany
- Tongji Hospital Affiliated Tongji University, Shanghai, China
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Str. 1, D, 30625 Hannover, Germany
| |
Collapse
|
36
|
Levi M, Brunetti B, Sarli G, Benazzi C. Immunohistochemical Expression of P-glycoprotein and Breast Cancer Resistance Protein in Canine Mammary Hyperplasia, Neoplasia and Supporting Stroma. J Comp Pathol 2016; 155:277-285. [PMID: 27528038 DOI: 10.1016/j.jcpa.2016.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/01/2016] [Accepted: 07/13/2016] [Indexed: 12/25/2022]
Abstract
The ability of a tumour to become simultaneously resistant to different drugs is known as multidrug resistance and is often due to the expression of ATP-dependent binding cassette transporters (ABC-transporters) such as P-glycoprotein (PGP) and breast cancer resistance protein (BCRP). In this study, the expression of PGP and BCRP was determined in the components of hyperplastic and neoplastic canine mammary glands, including the supporting stroma. The variation of expression of these molecules in carcinomas was evaluated between lesions of different histological stage and grade of malignancy. Samples included 47 hyperplastic tissues and 10 benign and 46 malignant neoplasms. Tumours were classified into histological subtype, histological stage and grade. Immunohistochemical evaluation of PGP and BCRP expression showed that both markers are potentially expressed by epithelial cells, myoepithelial cells in complex tumours and mesenchymal cells in mixed tumours, but expression of both proteins was significantly higher in malignant epithelial cells versus hyperplastic epithelium or the epithelium of benign tumours. BCRP showed significantly higher expression in epithelial cells of simple carcinomas versus those of complex and mixed carcinomas. Grade II and III carcinomas had higher epithelial PGP expression than grade I tumours. The positivity of stromal fibroblasts was higher in histological stage II versus I carcinomas, and in histological grade II versus I carcinomas. Malignant and invasive tumours were more likely to express PGP and/or BCRP in luminal and stromal components and evaluation of these markers could provide valuable information for the identification of tumours characterized by an aggressive and chemoresistant phenotype.
Collapse
Affiliation(s)
- M Levi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - B Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.
| | - G Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - C Benazzi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Intercellular Transfer of Cancer Drug Resistance Traits by Extracellular Vesicles. Trends Mol Med 2016; 21:595-608. [PMID: 26432017 DOI: 10.1016/j.molmed.2015.08.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are nanosized particles (100-1000 nm) enclosed by a phospholipid bilayer that have been described as important mediators of intercellular communication. The role of EVs in oncobiology has been extensively studied, including their contribution to the horizontal transfer of drug resistance from drug-resistant to drug-sensitive cancer cells. This review focuses on the EVs cargo responsible for this intercellular transfer of drug resistance; namely, drug-efflux pumps, miRNAs, long noncoding RNAs (lncRNAs), and other mediators. Additionally, the known molecular mechanisms and features of this transfer are discussed. This is an emerging area of research and we highlight topics that need to be further studied to fully understand and counteract the intercellular transfer of drug resistance mediated by EVs.
Collapse
|
38
|
Cross-reacting material 197, a heparin-binding EGF-like growth factor inhibitor, reverses the chemoresistance in human cisplatin-resistant ovarian cancer. Anticancer Drugs 2016; 25:1201-10. [PMID: 25115341 DOI: 10.1097/cad.0000000000000155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cross-reacting material 197 (CRM197), a specific HB-EGF inhibitor, has been proven to be a promising antitumor agent for ovarian cancer therapy. Our previous studies have shown that CRM197 has potent antitumor activity in human cisplatin-resistant ovarian cancer. However, the relationship between CRM197 and the resistance to cisplatin remains unclear. Here, we report that CRM197 significantly reverses the resistance to cisplatin in cisplatin-resistant ovarian carcinoma cell line (A2780/CDDP). We established xenograft nude mice models with A2780 and A2780/CDDP cells. Notably, we observed that CRM197 suppresses the expression of HB-EGF and epidermal growth factor receptor in A2780/CDDP cells and xenografts harboring the overexpression of HB-EGF and epidermal growth factor receptor. Experiments conducted in vitro and in vivo suggest that CRM197 markedly downregulates the expression of excision repair cross-complementing group 1 (P = 0.002) and DNA repair capacity in A2780/CDDP tumor (P < 0.001) by inactivation of extracellular signal-regulated kinase signaling, providing novel possible mechanisms for the ability of CRM197 to restore drug sensitivity. These results suggest that CRM197 as an HB-EGF inhibitor might be a cisplatin-chemosensitizing agent for the treatment of ovarian carcinoma with resistance to cisplatin.
Collapse
|
39
|
Gu Y, Lu H, Boisson-Vidal C, Li H, Bousquet G, Janin A, Di Benedetto M. [Resistance to anti-angiogenic therapy: a clinical and scientific current issue]. Med Sci (Paris) 2016; 32:370-7. [PMID: 27137694 DOI: 10.1051/medsci/20163204015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although the use of anti-angiogenic agents has been considered a promising strategy to block tumor growth and improve the bioavailability of drugs into the tumor, the use of most of them in clinical trials is limited. The development of resistance to some anti-angiogenic agents and their high toxicity are currently under investigations. However, the approach is still valid since this therapeutic tool has lengthened survival of patients with colon, breast, kidney, lungs and liver cancers. The identification of biomarkers in response to this family of drugs is an important area of investigation.
Collapse
Affiliation(s)
- Yuchen Gu
- Inserm UMR-S1165, université Paris Diderot, Sorbonne Paris Cité, 1, avenue Claude Vellefaux, 75010 Paris, France
| | - He Lu
- Inserm UMR-S1165, université Paris Diderot, Sorbonne Paris Cité, 1, avenue Claude Vellefaux, 75010 Paris, France
| | | | - Hong Li
- Microenvironnement et renouvellement cellulaire intégré (MERCI - EA 3829), faculté de médecine et de pharmacie, université de Rouen, France
| | - Guilhem Bousquet
- Inserm UMR-S1165, université Paris Diderot, Sorbonne Paris Cité, 1, avenue Claude Vellefaux, 75010 Paris, France
| | - Anne Janin
- Inserm UMR-S1165, université Paris Diderot, Sorbonne Paris Cité, 1, avenue Claude Vellefaux, 75010 Paris, France
| | - Mélanie Di Benedetto
- Inserm UMR-S1165, université Paris Diderot, Sorbonne Paris Cité, 1, avenue Claude Vellefaux, 75010 Paris, France - Université Paris 13, avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
| |
Collapse
|
40
|
El-Sehemy A, Postovit LM, Fu Y. Nitric oxide signaling in human ovarian cancer: A potential therapeutic target. Nitric Oxide 2016; 54:30-7. [DOI: 10.1016/j.niox.2016.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 12/27/2022]
|
41
|
Kloc M, Kubiak JZ, Li XC, Ghobrial RM. Noncanonical intercellular communication in immune response. World J Immunol 2016; 6:67-74. [DOI: 10.5411/wji.v6.i1.67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/06/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023] Open
Abstract
The classical view of signaling between cells of immune system includes two major routes of intercellular communication: Through the release of extracellular molecules or a direct interaction between membrane bound receptor and its membrane bound ligand, which initiate a cascade of signaling in target cell. However, recent studies indicate that besides these canonical modes of signaling there are also noncanonical routs of intercellular communications through membrane stripping/membrane exchange/trogocytosis, extracellular traps, exosomes and ectososmes/microparticles. In this review we discuss what are the components of noncanonical pathways of signaling and what role they play in immune cells interactions.
Collapse
|
42
|
Pasquier J, Abu-Kaoud N, Abdesselem H, Madani A, Hoarau-Véchot J, Thawadi HA, Vidal F, Couderc B, Favre G, Rafii A. SDF-1alpha concentration dependent modulation of RhoA and Rac1 modifies breast cancer and stromal cells interaction. BMC Cancer 2015; 15:569. [PMID: 26231656 PMCID: PMC4522077 DOI: 10.1186/s12885-015-1556-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/14/2015] [Indexed: 11/16/2022] Open
Abstract
Background The interaction of SDF-1alpha with its receptor CXCR4 plays a role in the occurrence of distant metastasis in many solid tumors. This interaction increases migration from primary sites as well as homing at distant sites. Methods Here we investigated how SDF-1α could modulate both migration and adhesion of cancer cells through the modulation of RhoGTPases. Results We show that different concentrations of SDF-1α modulate the balance of adhesion and migration in cancer cells. Increased migration was obtained at 50 and 100 ng/ml of SDF-1α; however migration was reduced at 200 ng/ml. The adhesion between breast cancer cells and BMHC was significantly increased by SDF-1α treatment at 200 ng/ml and reduced using a blocking monoclonal antibody against CXCR4. We showed that at low SDF-1α concentration, RhoA was activated and overexpressed, while at high concentration Rac1 was promoting SDF-1α mediating-cell adhesion. Conclusion We conclude that SDF-1α concentration modulates migration and adhesion of breast cancer cells, by controlling expression and activation of RhoGTPases. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1556-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Nadine Abu-Kaoud
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar.
| | - Houari Abdesselem
- Department of Immunology and Microbiology, Weill Cornell Medical College in Qatar, Qatar Foundation, Education city, P.O. Box: 24144, Doha, Qatar.
| | - Aisha Madani
- Department of Immunology and Microbiology, Weill Cornell Medical College in Qatar, Qatar Foundation, Education city, P.O. Box: 24144, Doha, Qatar.
| | - Jessica Hoarau-Véchot
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar.
| | - Hamda Al Thawadi
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar.
| | - Fabien Vidal
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar.
| | | | - Gilles Favre
- INSERM U1037 Cancer Research Center of Toulouse, Institut Claudius Regaud, Toulouse, France.
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA. .,Department of Advanced gynecologic Surgery, Université Montpellier 1, Montpellier, France. .,Department of Genetic Medicine and Obstetrics and Gynecology, Stem cell and microenvironment laboratory Weill Cornell Medical College in Qatar, Qatar-Foundation, PO: 24144, Doha, Qatar.
| |
Collapse
|
43
|
Ovarian cancer microenvironment: implications for cancer dissemination and chemoresistance acquisition. Cancer Metastasis Rev 2015; 33:17-39. [PMID: 24357056 DOI: 10.1007/s10555-013-9456-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ovarian adenocarcinoma is characterized by a late detection, dissemination of cancer cells into the whole peritoneum, and the frequent acquisition of chemoresistance. If these particularities can be explained in part by intrinsic properties of ovarian cancer cells, an increased number of studies show the importance of the tumor microenvironment in tumor progression. Ovarian cancer cells can regulate the composition of their stroma in promoting the formation of ascitic fluid, rich in cytokines and bioactive lipids, and in stimulating the differentiation of stromal cells into a pro-tumoral phenotype. In return, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, tumor-associated macrophages, or other peritoneal cells, such as adipocytes and mesothelial cells can regulate tumor growth, angiogenesis, dissemination, and chemoresistance. This review focuses on the current knowledge about the roles of stromal cells and the associated secreted factors on tumor progression. We also summarize the different studies showing that targeting the microenvironment represents a great potential for improving the prognosis of patients with ovarian adenocarcinoma.
Collapse
|
44
|
Matte I, Lane D, Laplante C, Garde-Granger P, Rancourt C, Piché A. Ovarian cancer ascites enhance the migration of patient-derived peritoneal mesothelial cells via cMet pathway through HGF-dependent and -independent mechanisms. Int J Cancer 2014; 137:289-98. [PMID: 25482018 DOI: 10.1002/ijc.29385] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 11/14/2014] [Accepted: 11/24/2014] [Indexed: 12/11/2022]
Abstract
Ovarian cancer ascites consist of a proinflammatory environment that is characterized by the presence of abundant human peritoneal mesothelial cells (HPMCs). Cytokines and growth factors in ascites modulate cell activities of tumor cells. The expression of proinflammatory cytokines in ascites is associated with a more aggressive tumor phenotype. The effect of ascites on HPMCs is for the most part unknown but this interplay is thought to be important for epithelial ovarian cancer (EOC) progression. Here, we examine the components of ascites, which stimulate patient-derived HPMC migration, from women with advanced EOC. We show that ovarian cancer ascites enhanced the migration of HPMCs. This effect was inhibited by heat treatment, hepatocyte growth factor (HGF) blocking antibodies and a HGF receptor (cMet) inhibitor. In ovarian cancer ascites, HGF is present at high concentration compared to benign fluids. Ascites-mediated activation of cMet was associated with Akt and EKR1/2 phosphorylation. This response was partly inhibited by heat treatment and cMet inhibitor. Ascites-induced migration and a cMet phosphorylation were strongly inhibited by epidermal growth factor receptor (EGFR) inhibitor PD153035, suggesting the transactivation of cMet by EGFR. Our study suggests that HGF and ligands of EGFR are factors that mediate ovarian cancer ascites-mediated migration of HPMCs by activating cMet and possibly downstream ERK1/2 and Akt pathways. The study provides evidence for the first time that ascites not only support tumor growth but also enhance the migratory potential of cancer-associated mesothelial cells, which in turn may support cancer progression.
Collapse
Affiliation(s)
- Isabelle Matte
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Denis Lane
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Claude Laplante
- Département de Pathologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Perrine Garde-Granger
- Département de Pathologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Claudine Rancourt
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Alain Piché
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
45
|
Suh DH, Kim HS, Kim B, Song YS. Metabolic orchestration between cancer cells and tumor microenvironment as a co-evolutionary source of chemoresistance in ovarian cancer: a therapeutic implication. Biochem Pharmacol 2014; 92:43-54. [PMID: 25168677 DOI: 10.1016/j.bcp.2014.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Our group reported a significant association between hexokinase II overexpression and chemoresistance in ovarian cancer, suggesting that aerobic glycolysis in the so-called Warburg effect might contribute to cancer progression. However, a growing body of evidence indicates contradictory findings with regard to the Warburg effect, such as high mitochondrial activity in highly invasive tumors and low ATP contribution of glycolysis in ovarian cancer. As a solution for the dilemma of the Warburg effect, the "reverse Warburg effect" was proposed in which aerobic glycolysis might occur in the stromal compartment of the tumor rather than in the cancer cells, indicating that the glycolytic tumor stroma feed the cancer cells through a type of symbiotic relationship. The reverse Warburg effect acting on the relationship between cancer cells and cancer-associated fibroblasts has evolved into dynamic interplay between cancer cells and multiple tumor stromal compartments, including cancer-associated fibroblasts, the extracellular matrix, endothelial cells, mesenchymal stem cells, adipocytes, and tumor-associated macrophages. Peritoneal cavities including ascites and the omentum also form a unique environment that is highly receptive for carcinomatosis in the advanced stages of ovarian cancer. The complicated but ingeniously orchestrated stroma-mediated cancer metabolism in ovarian cancer provides great heterogeneity in tumors with chemoresistance, which makes the disease thus far difficult to cure by single stromal-targeting agents. This review will discuss the experimental and clinical evidence of the cross-talk between cancer cells and various components of tumor stroma in terms of heterogeneous chemoresistance with focal points for therapeutic intervention in ovarian cancer.
Collapse
Affiliation(s)
- Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
| | - Boyun Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea.
| |
Collapse
|
46
|
Touboul C, Vidal F, Pasquier J, Lis R, Rafii A. Role of mesenchymal cells in the natural history of ovarian cancer: a review. J Transl Med 2014; 12:271. [PMID: 25303976 PMCID: PMC4197295 DOI: 10.1186/s12967-014-0271-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/19/2014] [Indexed: 12/18/2022] Open
Abstract
Background Ovarian cancer is the deadliest gynaecologic malignancy. Despite progresses in chemotherapy and ultra-radical surgeries, this locally metastatic disease presents a high rate of local recurrence advocating for the role of a peritoneal niche. For several years, it was believed that tumor initiation, progression and metastasis were merely due to the changes in the neoplastic cell population and the adjacent non-neoplastic tissues were regarded as bystanders. The importance of the tumor microenvironment and its cellular component emerged from studies on the histopathological sequence of changes at the interface between putative tumor cells and the surrounding non-neoplastic tissues during carcinogenesis. Method In this review we aimed to describe the pro-tumoral crosstalk between ovarian cancer and mesenchymal stem cells. A PubMed search was performed for articles published pertaining to mesenchymal stem cells and specific to ovarian cancer. Results Mesenchymal stem cells participate to an elaborate crosstalk through direct and paracrine interaction with ovarian cancer cells. They play a role at different stages of the disease: survival and peritoneal infiltration at early stage, proliferation in distant sites, chemoresistance and recurrence at later stage. Conclusion The dialogue between ovarian and mesenchymal stem cells induces the constitution of a pro-tumoral mesencrine niche. Understanding the dynamics of such interaction in a clinical setting might propose new therapeutic strategies.
Collapse
Affiliation(s)
- Cyril Touboul
- Department of Obstetrics and Gynecology, Hôpital Intercommunal de Créteil, Université Paris Est, UPEC-Paris XII, 12 avenue de Verdun, 94000, Créteil, France. .,UMR INSERM U965: Angiogenèse et Recherche translationnelle Hôpital Lariboisière, 49 bd de la chapelle, 75010, Paris, France.
| | - Fabien Vidal
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department Genetic Medicine, Weill Cornell Medical College, Manhattan, NY, USA. .,Department of Genetic Medicine and Obstetrics and Gynecology, Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar-Foundation PO: 24144, Doha, Qatar.
| | - Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department Genetic Medicine, Weill Cornell Medical College, Manhattan, NY, USA.
| | - Raphael Lis
- Department Genetic Medicine, Weill Cornell Medical College, Manhattan, NY, USA.
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department Genetic Medicine, Weill Cornell Medical College, Manhattan, NY, USA.
| |
Collapse
|
47
|
BENABOU NADIA, MIRSHAHI PEZHMAN, BORDU CAMILE, FAUSSAT ANNEMARIE, TANG RUOPING, THERWATH AMU, SORIA JEANETE, MARIE JEANPIERE, MIRSHAHI MASSOUD. A subset of bone marrow stromal cells regulate ATP-binding cassette gene expression via insulin-like growth factor-I in a leukemia cell line. Int J Oncol 2014; 45:1372-1380. [PMID: 25095896 PMCID: PMC4151812 DOI: 10.3892/ijo.2014.2569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/05/2014] [Indexed: 12/16/2022] Open
Abstract
The importance of the insulin-like growth factor, IGF, as a signaling axis in cancer development, progression and metastasis is highlighted by its effects on cancer cells, notably proliferation and acquired resistance. The role of the microenvironment within which cancer cells evolve and which mediates this effect is far from clear. Here, the involvement of IGF-I in inducing multidrug resistance in a myeloid leukemia cell line, grown in the presence of bone marrow-derived stromal cells called 'Hospicells' (BMH), is demonstrated. We found that i) drug sensitive as well as resistant leukemia cells express IGF-I and its receptor IGF-IR. However, the resistant cells were found to secrete high levels of IGF-I. ii) Presence of exogenous IGF-I promoted cell proliferation, which decreased when an inhibitor of IGF-IR (picropodophyllin, PPP) was added. iii) BMH and IGF-I are both involved in the regulation of genes of the ATP binding cassette (ABC) related to resistance development (MDR1, MRP1, MRP2, MRP3 and BCRP). iv) The levels of ABC gene expression by leukemia cells were found to increase in the presence of increasing numbers of BMH. However, these levels decreased when IGF-IR was inhibited by addition of PPP. v) Co-culture of the drug-sensitive leukemia cells with BMH induced protection against the action of daunorubicin. This chemoresistance was amplified by the presence of IGF-I whereas it decreased when IGF-IR was inhibited. Our results underline the role of microenvironment in concert with the IGF-1 pathway in conferring drug resistance to leukemia cells.
Collapse
Affiliation(s)
- NADIA BENABOU
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - PEZHMAN MIRSHAHI
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - CAMILE BORDU
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | | | - RUOPING TANG
- Tumor Bank ‘Leukemia’, Saint-Antoine Hospital, Paris, France
| | - AMU THERWATH
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | - JEANETE SORIA
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| | | | - MASSOUD MIRSHAHI
- UMR, Paris Diderot, Paris 7 University, Lariboisiere Hospital, INSERM U965, Paris, France
| |
Collapse
|
48
|
Xie Y, Hicks MJ, Kaminsky SM, Moore MAS, Crystal RG, Rafii A. AAV-mediated persistent bevacizumab therapy suppresses tumor growth of ovarian cancer. Gynecol Oncol 2014; 135:325-32. [PMID: 25108232 DOI: 10.1016/j.ygyno.2014.07.105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 01/11/2023]
Abstract
RATIONALE Anti-angiogenesis therapies such as bevacizumab, the monoclonal antibody to vascular endothelial growth factor (VEGF), have been used against ovarian cancer, but transient and low peritoneal drug levels are likely a factor in treatment failure. We hypothesized that a single administration of adeno-associated virus (AAV)-mediated intraperitoneal expression of bevacizumab would direct persistent expression and suppress growth and metastasis of ovarian cancer. METHODS AAVrh.10BevMab, a rhesus serotype 10 adeno-associated viral vector coding for bevacizumab, was evaluated for the capacity of a single intraperitoneal administration to persistently suppress peritoneal tumor growth in an intraperitoneal model of ovarian carcinomatosis with human ovarian cancer cells in nude immunodeficient mice. RESULTS The data demonstrates that AAVrh10.BevMab mediates persistent and high levels of bevacizumab in the peritoneal cavity following a single intraperitoneal administration in mice. In AAVrh10.BevMab treated A2780 human ovarian cancer-bearing mice, tumor growth was significantly suppressed (p<0.05) and the area of blood vessels in the tumor was decreased (p<0.04). Survival of mice with A2780 xenografts or SK-OV3 xenografts was greatly prolonged in the presence of AAVrh10.BevMab (p<0.001). Administration of AAVrh10.BevMab 4days after A2780-luciferase cell implantation reduced tumor growth (p<0.01) and increased mouse survival (p<0.0001). Combination of AAVrh10.BevMab with cytotoxic reagents paclitaxel or topotecan proved to be more effective in increasing survival than treatment with cytotoxic reagent alone. CONCLUSION A single administration of AAVrh10.BevMab provides sustained and high local expression of bevacizumab in the peritoneal cavity, and significantly suppresses peritoneal carcinomatosis and increases survival in an ovarian cancer murine model.
Collapse
Affiliation(s)
- Yi Xie
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Martin J Hicks
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Malcolm A S Moore
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States.
| | - Arash Rafii
- Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| |
Collapse
|
49
|
Nikoo S, Ebtekar M, Jeddi-Tehrani M, Shervin A, Bozorgmehr M, Vafaei S, Kazemnejad S, Zarnani AH. Menstrual blood-derived stromal stem cells from women with and without endometriosis reveal different phenotypic and functional characteristics. Mol Hum Reprod 2014; 20:905-18. [PMID: 24939730 DOI: 10.1093/molehr/gau044] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Retrograde flow of menstrual blood cells during menstruation is considered as the dominant theory for the development of endometriosis. Moreover, current evidence suggests that endometrial-derived stem cells are key players in the pathogenesis of endometriosis. In particular, endometrial stromal stem cells have been suggested to be involved in the pathogenesis of this disease. Here, we aimed to use menstrual blood, as a novel source of endometrial stem cells, to investigate whether stromal stem cells from endometriosis (E-MenSCs) and non-endometriosis (NE-MenSCs) women differed regarding their morphology, CD marker expression pattern, proliferation, invasion and adhesion capacities and their ability to express certain immunomodulatory molecules. E-MenSCs were morphologically different from NE-MenSCs and showed higher expression of CD9, CD10 and CD29. Furthermore, E-MenSCs had higher proliferation and invasion potentials compared with NE-MenSCs. The amount of indoleamine 2,3-dioxygenase-1 (IDO1) and cyclooxygenase-2 (COX-2) in E-MenSCs co-cultured with allogenic peripheral blood mononuclear cells (PBMCs) was shown to be higher both at the gene and protein levels, and higher IDO1 activity was detected in the endometriosis group. However, NE-MenSCs revealed increased concentrations of forkhead transcription factor-3 (FOXP3) when compared with E-MenSCs. Nonetheless, interferon (IFN)-γ, Interleukin (IL)-10 and monocyte chemoattractant protein-1 (MCP-1) levels were higher in the supernatant of E-MenSCs-PBMC co-cultures. Here, we showed that there are inherent differences between E-MenSCs and NE-MenSCs. These findings propose the key role MenSCs could play in the pathogenesis of endometriosis and further support the retrograde and stem cell theories of endometriosis. Hence, considering its renewable and easily available nature, menstrual blood could be viewed as a reliable and inexpensive material for studies addressing the cellular and molecular aspects of endometriosis.
Collapse
Affiliation(s)
- Shohreh Nikoo
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, PO Box 19615-1177, Tehran, Iran
| | - Massoumeh Ebtekar
- Department of Immunology, Faculty of Medicine, Tarbiat Modares University, PO Box 14117-13116, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Adel Shervin
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, PO Box 19615-1177, Tehran, Iran
| | - Mahmood Bozorgmehr
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sedigheh Vafaei
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somayeh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, PO Box 19615-1177, Tehran, Iran Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Dittmer J, Leyh B. The impact of tumor stroma on drug response in breast cancer. Semin Cancer Biol 2014; 31:3-15. [PMID: 24912116 DOI: 10.1016/j.semcancer.2014.05.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
In the last two decades the breast cancer mortality rate has steadily declined, in part, due to the availability of better treatment options. However, drug resistance still remains a major challenge. Resistance can be an inherent feature of breast cancer cells, but can also arise from the tumor microenvironment. This review aims to focus on the modulatory effect of the tumor microenvironment on the differing response of breast cancer subtypes to targeted drugs and chemotherapy.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, University of Halle, Halle/Saale, Germany.
| | - Benjamin Leyh
- Clinic for Gynecology, University of Halle, Halle/Saale, Germany
| |
Collapse
|