1
|
Narongkiatikhun P, Choi YJ, Hampson H, Gotzamanis J, Zhang G, van Raalte DH, de Boer IH, Nelson RG, Tommerdahl KL, McCown PJ, Kanter J, Sharma K, Bjornstad P, Saulnier PJ. Unraveling Diabetic Kidney Disease: The Roles of Mitochondrial Dysfunction and Immunometabolism. Kidney Int Rep 2024; 9:3386-3402. [PMID: 39698345 PMCID: PMC11652104 DOI: 10.1016/j.ekir.2024.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 12/20/2024] Open
Abstract
Mitochondria are essential for cellular energy production and are implicated in numerous diseases, including diabetic kidney disease (DKD). Current evidence indicates that mitochondrial dysfunction results in alterations in several metabolic pathways within kidney cells, thereby contributing to the progression of DKD. Furthermore, mitochondrial dysfunction can engender an inflammatory milieu, leading to the activation and recruitment of immune cells to the kidney tissue, potentially perturbing intrarenal metabolism. In addition, this inflammatory microenvironment has the potential to modify immune cell metabolism, which may further accentuate the immune-mediated kidney injury. This understanding has led to the emerging field of immunometabolism, which views DKD as not just a metabolic disorder caused by hyperglycemia but also one with significant immune contributions. Targeting mitochondrial function and immunometabolism may offer protective effects for the kidneys, complementing current therapies and potentially mitigating the risk of DKD progression. This comprehensive review examines the impact of mitochondrial dysfunction and the potential role of immunometabolism in DKD. We also discuss tools for investigating these mechanisms and propose avenues for integrating this research with existing therapies. These insights underscore the modulation of mitochondrial function and immunometabolism as a critical strategy for decelerating DKD progression.
Collapse
Affiliation(s)
- Phoom Narongkiatikhun
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ye Ji Choi
- Department of Pediatrics, Section of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hailey Hampson
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jimmy Gotzamanis
- INSERM Centre d’Investigation Clinique 1402, CHU Poitiers, University of Poitiers, Poitiers, France
| | - Guanshi Zhang
- Department of Medicine, Section of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Daniel H. van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Ian H. de Boer
- Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Kalie L. Tommerdahl
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Phillip J. McCown
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jenny Kanter
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kumar Sharma
- Department of Medicine, Section of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Petter Bjornstad
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Pierre Jean Saulnier
- INSERM Centre d’Investigation Clinique 1402, CHU Poitiers, University of Poitiers, Poitiers, France
| |
Collapse
|
2
|
Cai B, Ma M, Zhang J, Kong S, Zhou Z, Li Z, Abdalla BA, Xu H, Zhang X, Lawal RA, Nie Q. Long noncoding RNA ZFP36L2-AS functions as a metabolic modulator to regulate muscle development. Cell Death Dis 2022; 13:389. [PMID: 35449125 PMCID: PMC9023450 DOI: 10.1038/s41419-022-04772-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 01/17/2023]
Abstract
Skeletal muscle is the largest metabolic organ in the body, and its metabolic flexibility is essential for maintaining systemic energy homeostasis. Metabolic inflexibility in muscles is a dominant cause of various metabolic disorders, impeding muscle development. In our previous study, we found lncRNA ZFP36L2-AS (for “ZFP36L2-antisense transcript”) is specifically enriched in skeletal muscle. Here, we report that ZFP36L2-AS is upregulated during myogenic differentiation, and highly expressed in breast and leg muscle. In vitro, ZFP36L2-AS inhibits myoblast proliferation but promotes myoblast differentiation. In vivo, ZFP36L2-AS facilitates intramuscular fat deposition, as well as activates fast-twitch muscle phenotype and induces muscle atrophy. Mechanistically, ZFP36L2-AS interacts with acetyl-CoA carboxylase alpha (ACACA) and pyruvate carboxylase (PC) to induce ACACA dephosphorylation and damaged PC protein stability, thus modulating muscle metabolism. Meanwhile, ZFP36L2-AS can activate ACACA to reduce acetyl-CoA content, which enhances the inhibition of PC activity. Our findings present a novel model about the regulation of lncRNA on muscle metabolism.
Collapse
Affiliation(s)
- Bolin Cai
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Manting Ma
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Jing Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Shaofen Kong
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Zhen Zhou
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Zhenhui Li
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Bahareldin Ali Abdalla
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Haiping Xu
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | | | - Qinghua Nie
- Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. .,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
3
|
Natesan V, Kim SJ. Lipid Metabolism, Disorders and Therapeutic Drugs - Review. Biomol Ther (Seoul) 2021; 29:596-604. [PMID: 34697272 PMCID: PMC8551734 DOI: 10.4062/biomolther.2021.122] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 11/05/2022] Open
Abstract
Different lifestyles have an impact on useful metabolic functions, causing disorders. Different lipids are involved in the metabolic functions that play various vital roles in the body, such as structural components, storage of energy, in signaling, as biomarkers, in energy metabolism, and as hormones. Inter-related disorders are caused when these functions are affected, like diabetes, cancer, infections, and inflammatory and neurodegenerative conditions in humans. During the Covid-19 period, there has been a lot of focus on the effects of metabolic disorders all over the world. Hence, this review collectively reports on research concerning metabolic disorders, mainly cardiovascular and diabetes mellitus. In addition, drug research in lipid metabolism disorders have also been considered. This review explores lipids, metabolism, lipid metabolism disorders, and drugs used for these disorders.
Collapse
Affiliation(s)
- Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamilnadu, India
| | - Sung-Jin Kim
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Valvo V, Iesato A, Kavanagh TR, Priolo C, Zsengeller Z, Pontecorvi A, Stillman IE, Burke SD, Liu X, Nucera C. Fine-Tuning Lipid Metabolism by Targeting Mitochondria-Associated Acetyl-CoA-Carboxylase 2 in BRAFV600E Papillary Thyroid Carcinoma. Thyroid 2021; 31:1335-1358. [PMID: 33107403 PMCID: PMC8558082 DOI: 10.1089/thy.2020.0311] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: BRAFV600E acts as an ATP-dependent cytosolic kinase. BRAFV600E inhibitors are widely available, but resistance to them is widely reported in the clinic. Lipid metabolism (fatty acids) is fundamental for energy and to control cell stress. Whether and how BRAFV600E impacts lipid metabolism regulation in papillary thyroid carcinoma (PTC) is still unknown. Acetyl-CoA carboxylase (ACC) is a rate-limiting enzyme for de novo lipid synthesis and inhibition of fatty acid oxidation (FAO). ACC1 and ACC2 genes encode distinct isoforms of ACC. The aim of our study was to determine the relationship between BRAFV600E and ACC in PTC. Methods: We performed RNA-seq and DNA copy number analyses in PTC and normal thyroid (NT) in The Cancer Genome Atlas samples. Validations were performed by using assays on PTC-derived cell lines of differing BRAF status and a xenograft mouse model derived from a heterozygous BRAFWT/V600E PTC-derived cell line with knockdown (sh) of ACC1 or ACC2. Results:ACC2 mRNA expression was significantly downregulated in BRAFV600E-PTC vs. BRAFWT-PTC or NT clinical samples. ACC2 protein levels were downregulated in BRAFV600E-PTC cell lines vs. the BRAFWT/WT PTC cell line. Vemurafenib increased ACC2 (and to a lesser extent ACC1) mRNA levels in PTC-derived cell lines in a BRAFV600E allelic dose-dependent manner. BRAFV600E inhibition increased de novo lipid synthesis rates, and decreased FAO due to oxygen consumption rate (OCR), and extracellular acidification rate (ECAR), after addition of palmitate. Only shACC2 significantly increased OCR rates due to FAO, while it decreased ECAR in BRAFV600E PTC-derived cells vs. controls. BRAFV600E inhibition synergized with shACC2 to increase intracellular reactive oxygen species production, leading to increased cell proliferation and, ultimately, vemurafenib resistance. Mice implanted with a BRAFWT/V600E PTC-derived cell line with shACC2 showed significantly increased tumor growth after vemurafenib treatment, while vehicle-treated controls, or shGFP control cells treated with vemurafenib showed stable tumor growth. Conclusions: These findings suggest a potential link between BRAFV600E and lipid metabolism regulation in PTC. BRAFV600E downregulates ACC2 levels, which deregulates de novo lipid synthesis, FAO due to OCR, and ECAR rates. ShACC2 may contribute to vemurafenib resistance and increased tumor growth. ACC2 rescue may represent a novel molecular strategy for overcoming resistance to BRAFV600E inhibitors in refractory PTC.
Collapse
Affiliation(s)
- Veronica Valvo
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Asumi Iesato
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Taylor R. Kavanagh
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carmen Priolo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Alfredo Pontecorvi
- Department of Medicine, Agostino Gemelli Medical School, UCSC, Rome, Italy
| | - Isaac E. Stillman
- Department of Pathology; Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne D. Burke
- Department of Medicine; Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaowen Liu
- Department of Emergency Medicine; Harvard Medical School, Boston, Massachusetts, USA
| | - Carmelo Nucera
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Center for Vascular Biology Research (CVBR); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Address correspondence to: Carmelo Nucera, MD, PhD, Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI) Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Office: RN270K, 99 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
5
|
von Loeffelholz C, Coldewey SM, Birkenfeld AL. A Narrative Review on the Role of AMPK on De Novo Lipogenesis in Non-Alcoholic Fatty Liver Disease: Evidence from Human Studies. Cells 2021; 10:cells10071822. [PMID: 34359991 PMCID: PMC8306246 DOI: 10.3390/cells10071822] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
5′AMP-activated protein kinase (AMPK) is known as metabolic sensor in mammalian cells that becomes activated by an increasing adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio. The heterotrimeric AMPK protein comprises three subunits, each of which has multiple phosphorylation sites, playing an important role in the regulation of essential molecular pathways. By phosphorylation of downstream proteins and modulation of gene transcription AMPK functions as a master switch of energy homeostasis in tissues with high metabolic turnover, such as the liver, skeletal muscle, and adipose tissue. Regulation of AMPK under conditions of chronic caloric oversupply emerged as substantial research target to get deeper insight into the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Evidence supporting the role of AMPK in NAFLD is mainly derived from preclinical cell culture and animal studies. Dysbalanced de novo lipogenesis has been identified as one of the key processes in NAFLD pathogenesis. Thus, the scope of this review is to provide an integrative overview of evidence, in particular from clinical studies and human samples, on the role of AMPK in the regulation of primarily de novo lipogenesis in human NAFLD.
Collapse
Affiliation(s)
- Christian von Loeffelholz
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Correspondence: ; Tel.: +49-3641-9323-177; Fax: +49-3641-9323-102
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Septomics Research Center, Jena University Hospital, 07747 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Andreas L. Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074 Tübingen, Germany;
- Department of Therapy of Diabetes, Institute of Diabetes Research and Metabolic Diseases in the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- Division of Diabetes and Nutritional Sciences, Rayne Institute, King’s College London, London SE5 9RJ, UK
| |
Collapse
|
6
|
MAPK-interacting kinase 2 (MNK2) regulates adipocyte metabolism independently of its catalytic activity. Biochem J 2020; 477:2735-2754. [DOI: 10.1042/bcj20200433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022]
Abstract
The mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) are serine/threonine protein kinases that are activated by the ERK1/2 (extracellular regulated kinase) and p38α/β MAPK pathways. The MNKs have previously been implicated in metabolic disease and shown to mediate diet-induced obesity. In particular, knockout of MNK2 in mice protects from the weight gain induced by a high-fat diet. These and other data suggest that MNK2 regulates the expansion of adipose tissue (AT), a stable, long-term energy reserve that plays an important role in regulating whole-body energy homeostasis. Using the well-established mouse 3T3-L1 in vitro model of adipogenesis, the role of the MNKs in adipocyte differentiation and lipid storage was investigated. Inhibition of MNK activity using specific inhibitors failed to impair adipogenesis or lipid accumulation, suggesting that MNK activity is not required for adipocyte differentiation and does not regulate lipid storage. However, small-interfering RNA (siRNA) knock-down of MNK2 did reduce lipid accumulation and regulated the levels of two major lipogenic transcriptional regulators, ChREBP (carbohydrate response element-binding protein) and LPIN1 (Lipin-1). These factors are responsible for controlling the expression of genes for proteins involved in de novo lipogenesis and triglyceride synthesis. The knock-down of MNK2 also increased the expression of hormone-sensitive lipase which catalyses the breakdown of triglyceride. These findings identify MNK2 as a regulator of adipocyte metabolism, independently of its catalytic activity, and reveal some of the mechanisms by which MNK2 drives AT expansion. The development of an MNK2-targeted therapy may, therefore, be a useful intervention for reducing weight caused by excessive nutrient intake.
Collapse
|
7
|
León-Del-Río A. Biotin in metabolism, gene expression, and human disease. J Inherit Metab Dis 2019; 42:647-654. [PMID: 30746739 DOI: 10.1002/jimd.12073] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/05/2019] [Indexed: 12/16/2022]
Abstract
Biotin is a water-soluble vitamin that belongs to the vitamin B complex and which is an essential nutrient of all living organisms from bacteria to man. In eukaryotic cells biotin functions as a prosthetic group of enzymes, collectively known as biotin-dependent carboxylases that catalyze key reactions in gluconeogenesis, fatty acid synthesis, and amino acid catabolism. Enzyme-bound biotin acts as a vector to transfer a carboxyl group between donor and acceptor molecules during carboxylation reactions. In recent years, evidence has mounted that biotin also regulates gene expression through a mechanism beyond its role as a prosthetic group of carboxylases. These activities may offer a mechanistic background to a developing literature on the action of biotin in neurological disorders. This review summarizes the role of biotin in activating carboxylases and proposed mechanisms associated with a role in gene expression and in ameliorating neurological disease.
Collapse
Affiliation(s)
- Alfonso León-Del-Río
- Programa de Investigación en Cáncer de Mama and Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
8
|
Nguyen TH, Waldrop GL, Gilman SD. Capillary electrophoretic assay of human acetyl-coenzyme A carboxylase 2. Electrophoresis 2019; 40:1558-1564. [PMID: 30828828 DOI: 10.1002/elps.201800514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/09/2022]
Abstract
Human acetyl-coenzyme A carboxylase 2 catalyzes the carboxylation of acetyl coenzyme A to form malonyl coenzyme A, along with the conversion of magnesium-adenosine triphosphate complex to magnesium-adenosine diphosphate complex. A simple off-column capillary electrophoresis assay for human acetyl-coenzyme A carboxylase 2 was developed based on the separation of magnesium-adenosine triphosphate complex, magnesium-adenosine diphosphate complex, acetyl coenzyme A and malonyl coenzyme A with detection by ultraviolet absorption at 256 nm. When Mg2+ was absent from the separation buffer, the zones due to magnesium-adenosine triphosphate complex and magnesium-adenosine diphosphate complex both split and migrated as two separate peaks. With Mg2+ added to the separation buffer, magnesium-adenosine triphosphate complex and magnesium-adenosine diphosphate complex produced single peaks, and the reproducibility of peak shape and area improved for human acetyl-coenzyme A carboxylase 2 assay components. The final separation buffer used was 30.0 mM HEPES, 3.0 mM MgCl2 , 2.5 mM KHCO3 , and 2.5 mM potassium citrate at pH 7.50. The same buffer was used for the enzyme-catalyzed reaction (off-column). Inhibition of human acetyl-coenzyme A carboxylase 2 by CP-640186, a known inhibitor, was detected using the capillary electrophoresis assay.
Collapse
Affiliation(s)
- Thu H Nguyen
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Grover L Waldrop
- Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA, USA
| | - S Douglass Gilman
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
9
|
Chronic Hypoxia Enhances β-Oxidation-Dependent Electron Transport via Electron Transferring Flavoproteins. Cells 2019; 8:cells8020172. [PMID: 30781698 PMCID: PMC6406996 DOI: 10.3390/cells8020172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/22/2023] Open
Abstract
Hypoxia poses a stress to cells and decreases mitochondrial respiration, in part by electron transport chain (ETC) complex reorganization. While metabolism under acute hypoxia is well characterized, alterations under chronic hypoxia largely remain unexplored. We followed oxygen consumption rates in THP-1 monocytes during acute (16 h) and chronic (72 h) hypoxia, compared to normoxia, to analyze the electron flows associated with glycolysis, glutamine, and fatty acid oxidation. Oxygen consumption under acute hypoxia predominantly demanded pyruvate, while under chronic hypoxia, fatty acid- and glutamine-oxidation dominated. Chronic hypoxia also elevated electron-transferring flavoproteins (ETF), and the knockdown of ETF–ubiquinone oxidoreductase lowered mitochondrial respiration under chronic hypoxia. Metabolomics revealed an increase in citrate under chronic hypoxia, which implied glutamine processing to α-ketoglutarate and citrate. Expression regulation of enzymes involved in this metabolic shunting corroborated this assumption. Moreover, the expression of acetyl-CoA carboxylase 1 increased, thus pointing to fatty acid synthesis under chronic hypoxia. Cells lacking complex I, which experienced a markedly impaired respiration under normoxia, also shifted their metabolism to fatty acid-dependent synthesis and usage. Taken together, we provide evidence that chronic hypoxia fuels the ETC via ETFs, increasing fatty acid production and consumption via the glutamine-citrate-fatty acid axis.
Collapse
|
10
|
Steinbrenner H, Micoogullari M, Hoang NA, Bergheim I, Klotz LO, Sies H. Selenium-binding protein 1 (SELENBP1) is a marker of mature adipocytes. Redox Biol 2018; 20:489-495. [PMID: 30469030 PMCID: PMC6249406 DOI: 10.1016/j.redox.2018.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Selenium-binding protein 1 (SELENBP1) has recently been reported to catalyse the oxidation of methanethiol, an organosulfur compound produced by gut microbiota. Two of the reaction products of methanethiol oxidation, hydrogen peroxide and hydrogen sulphide, serve as signalling molecules for cell differentiation. Indeed, colonocyte differentiation has been found to be associated with SELENBP1 induction. Here, we show that SELENBP1 is induced when 3T3-L1 preadipocytes undergo terminal differentiation and maturation to adipocytes. SELENBP1 induction succeeded the up-regulation of known marker proteins of white adipocytes and the intracellular accumulation of lipids. Immunofluorescence microscopy revealed predominant cytoplasmic localisation of SELENBP1 in 3T3-L1 adipocytes, as demonstrated by co-staining with the key lipogenic enzyme, acetyl-CoA-carboxylase (ACC), located in cytosol. In differentiating 3T3-L1 cells, the mTOR inhibitor rapamycin and the pro-inflammatory cytokine tumour necrosis factor alpha (TNF-α) likewise suppressed SELENBP1 induction, adipocyte differentiation and lipid accumulation. However, lipid accumulation per se is not linked to SELENBP1 induction, as hepatic SELENBP1 was down-regulated in high fructose-fed mice despite increased lipogenesis in the liver and development of non-alcoholic fatty liver disease (NAFLD). In conclusion, SELENBP1 is a marker of cell differentiation/maturation rather than being linked to lipogenesis/lipid accumulation.
Collapse
Affiliation(s)
- Holger Steinbrenner
- Institute of Nutritional Sciences, Nutrigenomics, Friedrich Schiller University Jena, Jena, Germany.
| | - Mustafa Micoogullari
- Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ngoc Anh Hoang
- Institute of Nutritional Sciences, Nutrigenomics, Friedrich Schiller University Jena, Jena, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University Vienna, Vienna, Austria
| | - Lars-Oliver Klotz
- Institute of Nutritional Sciences, Nutrigenomics, Friedrich Schiller University Jena, Jena, Germany
| | - Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
11
|
Tracey TJ, Steyn FJ, Wolvetang EJ, Ngo ST. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease. Front Mol Neurosci 2018; 11:10. [PMID: 29410613 PMCID: PMC5787076 DOI: 10.3389/fnmol.2018.00010] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Lipids are a fundamental class of organic molecules implicated in a wide range of biological processes related to their structural diversity, and based on this can be broadly classified into five categories; fatty acids, triacylglycerols (TAGs), phospholipids, sterol lipids and sphingolipids. Different lipid classes play major roles in neuronal cell populations; they can be used as energy substrates, act as building blocks for cellular structural machinery, serve as bioactive molecules, or a combination of each. In amyotrophic lateral sclerosis (ALS), dysfunctions in lipid metabolism and function have been identified as potential drivers of pathogenesis. In particular, aberrant lipid metabolism is proposed to underlie denervation of neuromuscular junctions, mitochondrial dysfunction, excitotoxicity, impaired neuronal transport, cytoskeletal defects, inflammation and reduced neurotransmitter release. Here we review current knowledge of the roles of lipid metabolism and function in the CNS and discuss how modulating these pathways may offer novel therapeutic options for treating ALS.
Collapse
Affiliation(s)
- Timothy J Tracey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Supriya R, Tam BT, Pei XM, Lai CW, Chan LW, Yung BY, Siu PM. Doxorubicin Induces Inflammatory Modulation and Metabolic Dysregulation in Diabetic Skeletal Muscle. Front Physiol 2016; 7:323. [PMID: 27512375 PMCID: PMC4961708 DOI: 10.3389/fphys.2016.00323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/14/2016] [Indexed: 11/13/2022] Open
Abstract
Anti-cancer agent doxorubicin (DOX) has been demonstrated to worsen insulin signaling, engender muscle atrophy, trigger pro-inflammation, and induce a shift to anaerobic glycolytic metabolism in skeletal muscle. The myotoxicity of DOX in diabetic skeletal muscle remains largely unclear. This study examined the effects of DOX on insulin signaling, muscle atrophy, pro-/anti-inflammatory microenvironment, and glycolysis metabolic regulation in skeletal muscle of db/db diabetic and db/+ non-diabetic mice. Non-diabetic db/+ mice and diabetic db/db mice were randomly assigned to the following groups: db/+CON, db/+DOX, db/dbCON, and db/dbDOX. Mice in db/+DOX and db/dbDOX groups were intraperitoneally injected with DOX at a dose of 15 mg per kg body weight whereas mice in db/+CON and db/dbCON groups were injected with the same volume of saline instead of DOX. Gastrocnemius was immediately harvested, weighed, washed with cold phosphate buffered saline, frozen in liquid nitrogen, and stored at -80°C for later analysis. The effects of DOX on diabetic muscle were neither seen in insulin signaling markers (Glut4, pIRS1Ser(636∕639), and pAktSer(473)) nor muscle atrophy markers (muscle mass, MuRF1 and MAFbx). However, DOX exposure resulted in enhancement of pro-inflammatory favoring microenvironment (as indicated by TNF-α, HIFα and pNFκBp65) accompanied by diminution of anti-inflammatory favoring microenvironment (as indicated by IL15, PGC1α and pAMPKβ1Ser108). Metabolism of diabetic muscle was shifted to anaerobic glycolysis after DOX exposure as demonstrated by our analyses of PDK4, LDH and pACCSer(79). Our results demonstrated that there might be a link between inflammatory modulation and the dysregulation of aerobic glycolytic metabolism in DOX-injured diabetic skeletal muscle. These findings help to understand the pathogenesis of DOX-induced myotoxicity in diabetic muscle.
Collapse
Affiliation(s)
- Rashmi Supriya
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University Hong Kong, China
| | - Bjorn T Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University Hong Kong, China
| | - Xiao M Pei
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University Hong Kong, China
| | - Christopher W Lai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University Hong Kong, China
| | - Lawrence W Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University Hong Kong, China
| | - Benjamin Y Yung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University Hong Kong, China
| | - Parco M Siu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University Hong Kong, China
| |
Collapse
|
13
|
Cordonier EL, Jarecke SK, Hollinger FE, Zempleni J. Inhibition of acetyl-CoA carboxylases by soraphen A prevents lipid accumulation and adipocyte differentiation in 3T3-L1 cells. Eur J Pharmacol 2016; 780:202-8. [PMID: 27041646 DOI: 10.1016/j.ejphar.2016.03.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
Abstract
Acetyl-CoA carboxylases (ACC) 1 and 2 catalyze the carboxylation of acetyl-CoA to malonyl-CoA and depend on biotin as a coenzyme. ACC1 localizes in the cytoplasm and produces malonyl-CoA for fatty acid (FA) synthesis. ACC2 localizes in the outer mitochondrial membrane and produces malonyl-CoA that inhibits FA import into mitochondria for subsequent oxidation. We hypothesized that ACCs are checkpoints in adipocyte differentiation and tested this hypothesis using the ACC1 and ACC2 inhibitor soraphen A (SA) in murine 3T3-L1 preadipocytes. When 3T3-L1 cells were treated with 100nM SA for 8 days after induction of differentiation, the expression of PPARγ mRNA and FABP4 mRNA decreased by 40% and 50%, respectively, compared with solvent controls; the decrease in gene expression was accompanied by a decrease in FABP4 protein expression and associated with a decrease in lipid droplet accumulation. The rate of FA oxidation was 300% greater in SA-treated cells compared with vehicle controls. Treatment with exogenous palmitate restored PPARγ and FABP4 mRNA expression and FABP4 protein expression in SA-treated cells. In contrast, SA did not alter lipid accumulation if treatment was initiated on day eight after induction of differentiation. We conclude that loss of ACC1-dependent FA synthesis and loss of ACC2-dependent inhibition of FA oxidation prevent lipid accumulation in adipocytes and inhibit early stages of adipocyte differentiation.
Collapse
Affiliation(s)
- Elizabeth L Cordonier
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Sarah K Jarecke
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Frances E Hollinger
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Leverton Hall, Lincoln, NE 68583-0806, USA.
| |
Collapse
|
14
|
Gan L, Yan J, Liu Z, Feng M, Sun C. Adiponectin prevents reduction of lipid-induced mitochondrial biogenesis via AMPK/ACC2 pathway in chicken adipocyte. J Cell Biochem 2016; 116:1090-100. [PMID: 25536013 DOI: 10.1002/jcb.25064] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 12/18/2014] [Indexed: 12/11/2022]
Abstract
Adiponectin (APN) stimulates mitochondrial biogenesis and reduces lipid content in human and animal adipocytes. However, the mechanism of adiponectin in regulating mitochondrial biogenesis in chicken adipocytes has never been reported. The objective of this study is to examine the mechanism that adiponectin plays in lipid-induced mitochondrial biogenesis and mitochondrial function in chicken adipocytes. We found that the overexpression of adiponectin reduced the membrane DAG content and elevated the membrane translocation of PKCθ. In contrast to control groups, the overexpression of adiponectin increased mitochondrial density and mitochondrial DNA contents and peroxisome proliferator-activated receptor αcoactivator 1α (PGC1-α) expression. Mitochondrial membrane potential and cytochrome C (Cyt C) content were detected by JC-1 fluorescent staining and immunofluorescence which indicated that overexpression of adiponectin enhanced mitochondrial ATP synthesis. Moreover, AMPK/ACC2 signaling pathway was activated along with the elevation of PGC1-α and TFAM by the overexpression of adiponectin, meanwhile the lipid transcription marker genes were down-regulated. This effect was alleviated by reducing adiponectin and a specific inhibitor of AMPK pathway. We concluded that adiponectin could prevent reduction of lipid-induced mitochondrial biogenesis via AMPK/ACC2 pathway in chicken adipocytes.
Collapse
Affiliation(s)
- Lu Gan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | |
Collapse
|
15
|
Zhang NY, Qi M, Gao X, Zhao L, Liu J, Gu CQ, Song WJ, Krumm CS, Sun LH, Qi DS. Response of the hepatic transcriptome to aflatoxin B1 in ducklings. Toxicon 2016; 111:69-76. [PMID: 26763128 DOI: 10.1016/j.toxicon.2015.12.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/31/2015] [Indexed: 10/22/2022]
Abstract
This study was conducted to determine the effects of aflatoxin B1 (AFB1) on the hepatic transcriptome in ducklings through RNA-sequencing (RNA-Seq). Twenty four, 1-day-old ducklings were divided into 4 treatment groups. Each group received an oral dose of AFB1 at 0, 10, 20, 40 μg/kg BW per day for 2 weeks. Administration of 20 and 40 μg/kg BW of AFB1 significantly decreased body weight, feed intake, serum total protein and albumin, while increasing serum aspartate aminotransferase and alanine aminotransferase activities, and hepatic histopathological lesions. Furthermore, RNA was extracted from the liver of ducklings administrated 0 and 40 μg/kg BW of AFB1. Two RNA-Seq libraries were created from pooled samples and produced over 149 M reads, totaling 14.9 Gb of sequence. Approximately 96,953 predicted transcripts were assembled, 749 of which had significant differential expressions (≥ 2-fold) between the control and AFB1 treatment. GO and KEGG pathway analysis results showed that many genes involved in phase I metabolism, phase II detoxification, oxidation-reduction process, carcinogenesis, apoptosis and cell cycle, and fatty acid metabolism were affected by AFB1 exposure. Conclusion, this study determined the hepatic transcriptome responded to AFB1 exposure, and provide candidate genes can be targeted to prevent and/or reduce aflatoxicosis in ducklings.
Collapse
Affiliation(s)
- Ni-Ya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ming Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin Gao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jie Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chang-Qin Gu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wen-Jing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | - Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
16
|
Nanthirudjanar T, Furumoto H, Zheng J, Kim YI, Goto T, Takahashi N, Kawada T, Park SB, Hirata A, Kitamura N, Kishino S, Ogawa J, Hirata T, Sugawara T. Gut Microbial Fatty Acid Metabolites Reduce Triacylglycerol Levels in Hepatocytes. Lipids 2015; 50:1093-102. [PMID: 26399511 DOI: 10.1007/s11745-015-4067-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/31/2015] [Indexed: 12/27/2022]
Abstract
Hydroxy and oxo fatty acids were recently found to be produced as intermediates during gut microbial fatty acid metabolism. Lactobacillus plantarum produces these fatty acids from unsaturated fatty acids such as linoleic acid. In this study, we investigated the effects of these gut microbial fatty acid metabolites on the lipogenesis in liver cells. We screened their effect on sterol regulatory element binding protein-1c (SREBP-1c) expression in HepG2 cells treated with a synthetic liver X receptor α (LXRα) agonist (T0901317). The results showed that 10-hydroxy-12(Z)-octadecenoic acid (18:1) (HYA), 10-hydroxy-6(Z),12(Z)-octadecadienoic acid (18:2) (γHYA), 10-oxo-12(Z)-18:1 (KetoA), and 10-oxo-6(Z),12(Z)-18:2 (γKetoA) significantly decreased SREBP-1c mRNA expression induced by T0901317. These fatty acids also downregulated the mRNA expression of lipogenic genes by suppressing LXRα activity and inhibiting SREBP-1 maturation. Oral administration of KetoA, which effectively reduced triacylglycerol accumulation and acetyl-CoA carboxylase 2 (ACC2) expression in HepG2 cells, for 2 weeks significantly decreased Srebp-1c, Scd-1, and Acc2 expression in the liver of mice fed a high-sucrose diet. Our findings suggest that the hypolipidemic effect of the fatty acid metabolites produced by L. plantarum can be exploited in the treatment of cardiovascular diseases or dyslipidemia.
Collapse
Affiliation(s)
- Tharnath Nanthirudjanar
- Laboratory of Marine Bioproducts Technology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hidehiro Furumoto
- Laboratory of Marine Bioproducts Technology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Jiawen Zheng
- Laboratory of Marine Bioproducts Technology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Young-Il Kim
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Nobuyuki Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Si-Bum Park
- Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Akiko Hirata
- Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Nahoko Kitamura
- Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Shigenobu Kishino
- Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Jun Ogawa
- Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takashi Hirata
- Laboratory of Marine Bioproducts Technology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
- Shijonawate Gakuen University, Daito, 574-0011, Japan
| | - Tatsuya Sugawara
- Laboratory of Marine Bioproducts Technology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
17
|
Sedel F, Bernard D, Mock DM, Tourbah A. Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis. Neuropharmacology 2015; 110:644-653. [PMID: 26327679 DOI: 10.1016/j.neuropharm.2015.08.028] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/24/2015] [Accepted: 08/18/2015] [Indexed: 12/30/2022]
Abstract
Progressive multiple sclerosis (MS) is a severely disabling neurological condition, and an effective treatment is urgently needed. Recently, high-dose biotin has emerged as a promising therapy for affected individuals. Initial clinical data have shown that daily doses of biotin of up to 300 mg can improve objective measures of MS-related disability. In this article, we review the biology of biotin and explore the properties of this ubiquitous coenzyme that may explain the encouraging responses seen in patients with progressive MS. The gradual worsening of neurological disability in patients with progressive MS is caused by progressive axonal loss or damage. The triggers for axonal loss in MS likely include both inflammatory demyelination of the myelin sheath and primary neurodegeneration caused by a state of virtual hypoxia within the neuron. Accordingly, targeting both these pathological processes could be effective in the treatment of progressive MS. Biotin is an essential co-factor for five carboxylases involved in fatty acid synthesis and energy production. We hypothesize that high-dose biotin is exerting a therapeutic effect in patients with progressive MS through two different and complementary mechanisms: by promoting axonal remyelination by enhancing myelin production and by reducing axonal hypoxia through enhanced energy production. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Frédéric Sedel
- MedDay Pharmaceuticals, ICM-Brain and Spine Institute-IPEPs, Groupe Hospitalier Pitié Salpêtrière, 47 Boulevard de l'Hopital, 75013 Paris, France.
| | - Delphine Bernard
- MedDay Pharmaceuticals, ICM-Brain and Spine Institute-IPEPs, Groupe Hospitalier Pitié Salpêtrière, 47 Boulevard de l'Hopital, 75013 Paris, France.
| | - Donald M Mock
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR 72205, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR 72205, USA.
| | - Ayman Tourbah
- Department of Neurology and Faculté de Médecine de Reims, CHU de Reims, URCA, 45 Rue Cognacq Jay, 51092 Reims Cedex, France.
| |
Collapse
|
18
|
Michot C, Mamoune A, Vamecq J, Viou MT, Hsieh LS, Testet E, Lainé J, Hubert L, Dessein AF, Fontaine M, Ottolenghi C, Fouillen L, Nadra K, Blanc E, Bastin J, Candon S, Pende M, Munnich A, Smahi A, Djouadi F, Carman GM, Romero N, de Keyzer Y, de Lonlay P. Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2103-14. [PMID: 23928362 DOI: 10.1016/j.bbadis.2013.07.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 11/28/2022]
Abstract
Lipin-1 deficiency is associated with massive rhabdomyolysis episodes in humans, precipitated by febrile illnesses. Despite well-known roles of lipin-1 in lipid biosynthesis and transcriptional regulation, the pathogenic mechanisms leading to rhabdomyolysis remain unknown. Here we show that primary myoblasts from lipin-1-deficient patients exhibit a dramatic decrease in LPIN1 expression and phosphatidic acid phosphatase 1 activity, and a significant accumulation of lipid droplets (LD). The expression levels of LPIN1-target genes [peroxisome proliferator-activated receptors delta and alpha (PPARδ, PPARα), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), acyl-coenzyme A dehydrogenase, very long (ACADVL), carnitine palmitoyltransferase IB and 2 (CPT1B and CPT2)] were not affected while lipin-2 protein level, a closely related member of the family, was increased. Microarray analysis of patients' myotubes identified 19 down-regulated and 51 up-regulated genes, indicating pleiotropic effects of lipin-1 deficiency. Special attention was paid to the up-regulated ACACB (acetyl-CoA carboxylase beta), a key enzyme in the fatty acid synthesis/oxidation balance. We demonstrated that overexpression of ACACB was associated with free fatty acid accumulation in patients' myoblasts whereas malonyl-carnitine (as a measure of malonyl-CoA) and CPT1 activity were in the normal range in basal conditions accordingly to the normal daily activity reported by the patients. Remarkably ACACB invalidation in patients' myoblasts decreased LD number and size while LPIN1 invalidation in controls induced LD accumulation. Further, pro-inflammatory treatments tumor necrosis factor alpha+Interleukin-1beta(TNF1α+IL-1ß) designed to mimic febrile illness, resulted in increased malonyl-carnitine levels, reduced CPT1 activity and enhanced LD accumulation, a phenomenon reversed by dexamethasone and TNFα or IL-1ß inhibitors. Our data suggest that the pathogenic mechanism of rhabdomyolysis in lipin-1-deficient patients combines the predisposing constitutive impairment of lipid metabolism and its exacerbation by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Caroline Michot
- Inserm U781, Imagine Institut des Maladies Génétiques, Université Paris Descartes et Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Necker, AP-HP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Claudel T, Trauner M. Adiponectin, bile acids, and burnt-out nonalcoholic steatohepatitis: new light on an old paradox. Hepatology 2013; 57:2106-9. [PMID: 23447428 DOI: 10.1002/hep.26340] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2013] [Indexed: 12/13/2022]
|
20
|
Honda T, Takakusa H, Murai T, Izumi T. Tissue distribution and identification of radioactivity components at elimination phase after oral administration of [¹⁴C]CS-1036, an α-amylase inhibitor, to rats. Drug Metab Dispos 2013; 41:1125-33. [PMID: 23454829 DOI: 10.1124/dmd.112.050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
(2R,3R,4R)-4-hydroxy-2-(hydroxymethyl)pyrrolidin-3-yl 4-O-(6-deoxy-β-D-glucopyranosyl)-α-D-glucopyranoside (CS-1036) is a potent inhibitor of pancreatic and salivary α-amylase. After oral administration of [¹⁴C]CS-1036 to rats, the radioactivity was still detectable up to 7-14 days after administration in various tissues, and its terminal phase in plasma could be explained neither by the exposure of CS-1036 nor its major metabolite M1. The slow elimination of radioactivity in various tissues was hypothesized to be caused by covalent binding to macromolecules or use for biogenic components. To assess the use for biogenic components, amino acid analysis of plasma proteins and lipid analysis of adipose tissue were conducted after repeated oral administration of [¹⁴C]CS-1036 by high-performance liquid chromatography and accelerated mass spectrometry and by thin layer chromatography and liquid chromatography/mass spectrometry, respectively. In amino acid analysis, glutamic acid, aspartic acid, alanine, and proline were identified as major radioactive amino acids, and radioactive nonessential amino acids occupied 76.0% of the radioactivity. In lipid analysis, a part of the radioactive lipids were identified as the fatty acids constituting the neutral lipids by lipase-hydrolysis. The radioactive fatty acids from neutral lipids were identified as palmitic acid, oleic acid, and 8,11,14-eicosatrienoic acid. Intestinal flora were involved in CS-1036 metabolism and are indicated to be involved in the production of small molecule metabolites, which are the sources for amino acids and fatty acids, from [¹⁴C]CS-1036. In conclusion, radioactivity derived from [¹⁴C]CS-1036 was incorporated as the constituents of amino acids of plasma proteins and fatty acids of neutral lipids.
Collapse
Affiliation(s)
- Tomohiro Honda
- Drug Metabolism & Pharmacokinetics Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | | | | | | |
Collapse
|
21
|
Civelek M, Hagopian R, Pan C, Che N, Yang WP, Kayne PS, Saleem NK, Cederberg H, Kuusisto J, Gargalovic PS, Kirchgessner TG, Laakso M, Lusis AJ. Genetic regulation of human adipose microRNA expression and its consequences for metabolic traits. Hum Mol Genet 2013; 22:3023-37. [PMID: 23562819 DOI: 10.1093/hmg/ddt159] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The genetics of messenger RNA (mRNA) expression has been extensively studied in humans and other organisms, but little is known about genetic factors contributing to microRNA (miRNA) expression. We examined natural variation of miRNA expression in adipose tissue in a population of 200 men who have been carefully characterized for metabolic syndrome (MetSyn) phenotypes as part of the Metabolic Syndrome in Men (METSIM) study. We genotyped the subjects using high-density single-nucleotide polymorphism microarrays and quantified the mRNA abundance using genome-wide expression arrays and miRNA abundance using next-generation sequencing. We reliably quantified 356 miRNA species that were expressed in human adipose tissue, a limited number of which made up most of the expressed miRNAs. We mapped the miRNA abundance as an expression quantitative trait and determined cis regulation of expression for nine of the miRNAs and of the processing of one miRNA (miR-28). The degree of genetic variation of miRNA expression was substantially less than that of mRNAs. For the majority of the miRNAs, genetic regulation of expression was independent of the expression of mRNA from which the miRNA is transcribed. We also showed that for 108 miRNAs, mapped reads displayed widespread variation from the canonical sequence. We found a total of 24 miRNAs to be significantly associated with MetSyn traits. We suggest a regulatory role for miR-204-5p which was predicted to inhibit acetyl coenzyme A carboxylase β, a key fatty acid oxidation enzyme that has been shown to play a role in regulating body fat and insulin resistance in adipose tissue.
Collapse
Affiliation(s)
- Mete Civelek
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Marieke G. Schooneman
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Frédéric M. Vaz
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sander M. Houten
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatrics, Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Maarten R. Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Corresponding author: Maarten R. Soeters,
| |
Collapse
|
23
|
Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 2012; 70:863-91. [PMID: 22869039 DOI: 10.1007/s00018-012-1096-0] [Citation(s) in RCA: 284] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 12/14/2022]
Abstract
Biotin-dependent carboxylases include acetyl-CoA carboxylase (ACC), propionyl-CoA carboxylase (PCC), 3-methylcrotonyl-CoA carboxylase (MCC), geranyl-CoA carboxylase, pyruvate carboxylase (PC), and urea carboxylase (UC). They contain biotin carboxylase (BC), carboxyltransferase (CT), and biotin-carboxyl carrier protein components. These enzymes are widely distributed in nature and have important functions in fatty acid metabolism, amino acid metabolism, carbohydrate metabolism, polyketide biosynthesis, urea utilization, and other cellular processes. ACCs are also attractive targets for drug discovery against type 2 diabetes, obesity, cancer, microbial infections, and other diseases, and the plastid ACC of grasses is the target of action of three classes of commercial herbicides. Deficiencies in the activities of PCC, MCC, or PC are linked to serious diseases in humans. Our understanding of these enzymes has been greatly enhanced over the past few years by the crystal structures of the holoenzymes of PCC, MCC, PC, and UC. The structures reveal unanticipated features in the architectures of the holoenzymes, including the presence of previously unrecognized domains, and provide a molecular basis for understanding their catalytic mechanism as well as the large collection of disease-causing mutations in PCC, MCC, and PC. This review will summarize the recent advances in our knowledge on the structure and function of these important metabolic enzymes.
Collapse
|
24
|
Glund S, Schoelch C, Thomas L, Niessen HG, Stiller D, Roth GJ, Neubauer H. Inhibition of acetyl-CoA carboxylase 2 enhances skeletal muscle fatty acid oxidation and improves whole-body glucose homeostasis in db/db mice. Diabetologia 2012; 55:2044-53. [PMID: 22532389 DOI: 10.1007/s00125-012-2554-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/12/2012] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS Excessive ectopic lipid deposition contributes to impaired insulin action in peripheral tissues and is considered an important link between obesity and type 2 diabetes mellitus. Acetyl-CoA carboxylase 2 (ACC2) is a key regulatory enzyme controlling skeletal muscle mitochondrial fatty acid oxidation; inhibition of ACC2 results in enhanced oxidation of lipids. Several mouse models lacking functional ACC2 have been reported in the literature. However, the phenotypes of the different models are inconclusive with respect to glucose homeostasis and protection from diet-induced obesity. METHODS Here, we studied the effects of pharmacological inhibition of ACC2 using as a selective inhibitor the S enantiomer of compound 9c ([S]-9c). Selectivity was confirmed in biochemical assays using purified human ACC1 and ACC2. RESULTS (S)-9c significantly increased fatty acid oxidation in isolated extensor digitorum longus muscle from different mouse models (EC(50) 226 nmol/l). Accordingly, short-term treatment of mice with (S)-9c decreased malonyl-CoA levels in skeletal muscle and concomitantly reduced intramyocellular lipid levels. Treatment of db/db mice for 70 days with (S)-9c (10 and 30 mg/kg, by oral gavage) resulted in improved oral glucose tolerance (AUC -36%, p < 0.05), enhanced skeletal muscle 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) uptake, as well as lowered prandial glucose (-31%, p < 0.01) and HbA(1c) (-0.7%, p < 0.05). Body weight, liver triacylglycerol, plasma insulin and pancreatic insulin content were unaffected by the treatment. CONCLUSIONS/INTERPRETATION In conclusion, the ACC2-selective inhibitor (S)-9c revealed glucose-lowering effects in a mouse model of diabetes mellitus.
Collapse
Affiliation(s)
- S Glund
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH& Co. KG, 88397, Biberach an der Riss, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Varlamov O, White AE, Carroll JM, Bethea CL, Reddy A, Slayden O, O'Rourke RW, Roberts CT. Androgen effects on adipose tissue architecture and function in nonhuman primates. Endocrinology 2012; 153:3100-10. [PMID: 22547568 PMCID: PMC3380299 DOI: 10.1210/en.2011-2111] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The differential association of hypoandrogenism in men and hyperandrogenism in women with insulin resistance and obesity suggests that androgens may exert sex-specific effects on adipose and other tissues, although the underlying mechanisms remain poorly understood. Moreover, recent studies also suggest that rodents and humans may respond differently to androgen imbalance. To achieve better insight into clinically relevant sex-specific mechanisms of androgen action, we used nonhuman primates to investigate the direct effects of gonadectomy and hormone replacement on white adipose tissue. We also employed a novel ex vivo approach that provides a convenient framework for understanding of adipose tissue physiology under a controlled tissue culture environment. In vivo androgen deprivation of males did not result in overt obesity or insulin resistance but did induce the appearance of very small, multilocular white adipocytes. Testosterone replacement restored normal cell size and a unilocular phenotype and stimulated adipogenic gene transcription and improved insulin sensitivity of male adipose tissue. Ex vivo studies demonstrated sex-specific effects of androgens on adipocyte function. Female adipose tissue treated with androgens displayed elevated basal but reduced insulin-dependent fatty acid uptake. Androgen-stimulated basal uptake was greater in adipose tissue of ovariectomized females than in adipose tissue of intact females and ovariectomized females replaced with estrogen and progesterone in vivo. Collectively, these data demonstrate that androgens are essential for normal adipogenesis in males and can impair essential adipocyte functions in females, thus strengthening the experimental basis for sex-specific effects of androgens in adipose tissue.
Collapse
Affiliation(s)
- Oleg Varlamov
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ma L, Mondal AK, Murea M, Sharma NK, Tönjes A, Langberg KA, Das SK, Franks PW, Kovacs P, Antinozzi PA, Stumvoll M, Parks JS, Elbein SC, Freedman BI. The effect of ACACB cis-variants on gene expression and metabolic traits. PLoS One 2011; 6:e23860. [PMID: 21887335 PMCID: PMC3162605 DOI: 10.1371/journal.pone.0023860] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 07/26/2011] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Acetyl Coenzyme A carboxylase β (ACACB) is the rate-limiting enzyme in fatty acid oxidation, and continuous fatty acid oxidation in Acacb knock-out mice increases insulin sensitivity. Systematic human studies have not been performed to evaluate whether ACACB variants regulate gene expression and insulin sensitivity in skeletal muscle and adipose tissues. We sought to determine whether ACACB transcribed variants were associated with ACACB gene expression and insulin sensitivity in non-diabetic African American (AA) and European American (EA) adults. METHODS ACACB transcribed single nucleotide polymorphisms (SNPs) were genotyped in 105 EAs and 46 AAs whose body mass index (BMI), lipid profiles and ACACB gene expression in subcutaneous adipose and skeletal muscle had been measured. Allelic expression imbalance (AEI) was assessed in lymphoblast cell lines from heterozygous subjects in an additional EA sample (n = 95). Selected SNPs were further examined for association with insulin sensitivity in a cohort of 417 EAs and 153 AAs. RESULTS ACACB transcribed SNP rs2075260 (A/G) was associated with adipose ACACB messenger RNA expression in EAs and AAs (p = 3.8×10(-5), dominant model in meta-analysis, Stouffer method), with the (A) allele representing lower gene expression in adipose and higher insulin sensitivity in EAs (p = 0.04). In EAs, adipose ACACB expression was negatively associated with age and sex-adjusted BMI (r = -0.35, p = 0.0002). CONCLUSIONS Common variants within the ACACB locus appear to regulate adipose gene expression in humans. Body fat (represented by BMI) may further regulate adipose ACACB gene expression in the EA population.
Collapse
Affiliation(s)
- Lijun Ma
- Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Closer association of mitochondria with lipid droplets in hepatocytes and activation of Kupffer cells in resveratrol-treated senescence-accelerated mice. Histochem Cell Biol 2011; 136:475-89. [PMID: 21818579 DOI: 10.1007/s00418-011-0847-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2011] [Indexed: 12/13/2022]
Abstract
Resveratrol has been extensively investigated because of its beneficial effects in delaying age-related diseases, thus extending the lifespan, possibly by mimicking calorie restriction. For this study, cell biological techniques were used to examine how resveratrol influenced hepatocytes in a senescence-accelerated mouse P10 (SAMP10), treated from 35 to 55 weeks of age, with special emphasis on the relationship between mitochondria and lipid droplets. Survival ratio, body weight and food intake of SAMP10 did not differ significantly between the control and resveratrol-treated groups. Compared with the control, the treated livers were altered significantly, as follows. Lipid droplets were reduced and mitochondria were increased in number in hepatocytes. Phosphorylation of acetyl-CoA carboxylase and the expression of both the mitochondrial ATP synthase β subunit and Mn superoxide dismutase (SOD2) were increased. Mitochondria, expressing more SOD2, were more tightly associated with lipid droplets, suggesting the enhancement of lipolysis through the activation of mitochondrial functions. Cathepsin D expression was less in hepatocytes but enhanced in Kupffer cells, which were increased in number and size with more numerous lysosome-related profiles. Together, resveratrol may activate mitochondria resulting in consuming lipids, and may also activate Kupffer cells by which a beneficial milieu for hepatocytes may be created. Both might be related to improvement in the functioning of the liver, which is the organ that is central to metabolic regulation.
Collapse
|
28
|
Tuzmen C, Erman B. Identification of ligand binding sites of proteins using the Gaussian Network Model. PLoS One 2011; 6:e16474. [PMID: 21283550 PMCID: PMC3026835 DOI: 10.1371/journal.pone.0016474] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/31/2010] [Indexed: 12/03/2022] Open
Abstract
The nonlocal nature of the protein-ligand binding problem is investigated via the Gaussian Network Model with which the residues lying along interaction pathways in a protein and the residues at the binding site are predicted. The predictions of the binding site residues are verified by using several benchmark systems where the topology of the unbound protein and the bound protein-ligand complex are known. Predictions are made on the unbound protein. Agreement of results with the bound complexes indicates that the information for binding resides in the unbound protein. Cliques that consist of three or more residues that are far apart along the primary structure but are in contact in the folded structure are shown to be important determinants of the binding problem. Comparison with known structures shows that the predictive capability of the method is significant.
Collapse
Affiliation(s)
- Ceren Tuzmen
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul Turkey
| | | |
Collapse
|
29
|
Phillips CM, Goumidi L, Bertrais S, Field MR, Cupples LA, Ordovas JM, McMonagle J, Defoort C, Lovegrove JA, Drevon CA, Blaak EE, Kiec-Wilk B, Riserus U, Lopez-Miranda J, McManus R, Hercberg S, Lairon D, Planells R, Roche HM. ACC2 gene polymorphisms, metabolic syndrome, and gene-nutrient interactions with dietary fat. J Lipid Res 2010; 51:3500-7. [PMID: 20855566 DOI: 10.1194/jlr.m008474] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acetyl-CoA carboxylase β (ACC2) plays a key role in fatty acid synthesis and oxidation pathways. Disturbance of these pathways is associated with impaired insulin responsiveness and metabolic syndrome (MetS). Gene-nutrient interactions may affect MetS risk. This study determined the relationship between ACC2 polymorphisms (rs2075263, rs2268387, rs2284685, rs2284689, rs2300453, rs3742023, rs3742026, rs4766587, and rs6606697) and MetS risk, and whether dietary fatty acids modulate this in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). Minor A allele carriers of rs4766587 had increased MetS risk (OR 1.29 [CI 1.08, 1.58], P = 0.0064) compared with the GG homozygotes, which may in part be explained by their increased body mass index (BMI), abdominal obesity, and impaired insulin sensitivity (P < 0.05). MetS risk was modulated by dietary fat intake (P = 0.04 for gene-nutrient interaction), where risk conferred by the A allele was exacerbated among individuals with a high-fat intake (>35% energy) (OR 1.62 [CI 1.05, 2.50], P = 0.027), particularly a high intake (>5.5% energy) of n-6 polyunsaturated fat (PUFA) (OR 1.82 [CI 1.14, 2.94], P = 0.01; P = 0.05 for gene-nutrient interaction). Saturated and monounsaturated fat intake did not modulate MetS risk. Importantly, we replicated some of these findings in an independent cohort. In conclusion, the ACC2 rs4766587 polymorphism influences MetS risk, which was modulated by dietary fat, suggesting novel gene-nutrient interactions.
Collapse
Affiliation(s)
- Catherine M Phillips
- Nutrigenomics Research Group, UCD School of Public Health and Population Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hiltunen JK, Chen Z, Haapalainen AM, Wierenga RK, Kastaniotis AJ. Mitochondrial fatty acid synthesis – An adopted set of enzymes making a pathway of major importance for the cellular metabolism. Prog Lipid Res 2010; 49:27-45. [DOI: 10.1016/j.plipres.2009.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|