1
|
Ozberk V, Zaman M, Lepletier A, Eskandari S, Kaden J, Mills JL, Calcutt A, Dooley J, Huo Y, Langshaw EL, Ulett GC, Batzloff MR, Good MF, Pandey M. A Glycolipidated-liposomal peptide vaccine confers long-term mucosal protection against Streptococcus pyogenes via IL-17, macrophages and neutrophils. Nat Commun 2023; 14:5963. [PMID: 37749129 PMCID: PMC10520070 DOI: 10.1038/s41467-023-41410-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
Mucosally active subunit vaccines are an unmet clinical need due to lack of licensed immunostimulants suitable for vaccine antigens. Here, we show that intranasal administration of liposomes incorporating: the Streptococcus pyogenes peptide antigen, J8; diphtheria toxoid as a source of T cell help; and the immunostimulatory glycolipid, 3D(6-acyl) PHAD (PHAD), is able to induce long-lived humoral and cellular immunity. Mice genetically deficient in either mucosal antibodies or total antibodies are protected against S. pyogenes respiratory tract infection. Utilizing IL-17-deficient mice or depleting cellular subsets using antibodies, shows that the cellular responses encompassing, CD4+ T cells, IL-17, macrophages and neutrophils have important functions in vaccine-mediated mucosal immunity. Overall, these data demonstrate the utility of a mucosal vaccine platform to deliver multi-pronged protective responses against a highly virulent pathogen.
Collapse
Affiliation(s)
- Victoria Ozberk
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Mehfuz Zaman
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ailin Lepletier
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Sharareh Eskandari
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jacqualine Kaden
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jamie-Lee Mills
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ainslie Calcutt
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jessica Dooley
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Yongbao Huo
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Emma L Langshaw
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Glen C Ulett
- School of Pharmacy and Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Michael R Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| | - Manisha Pandey
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
2
|
Langshaw EL, Reynolds S, Ozberk V, Dooley J, Calcutt A, Zaman M, Walker MJ, Batzloff MR, Davies MR, Good MF, Pandey M. Streptolysin O Deficiency in Streptococcus pyogenes M1T1 covR/S Mutant Strain Attenuates Virulence in In Vitro and In Vivo Infection Models. mBio 2023; 14:e0348822. [PMID: 36744883 PMCID: PMC9972915 DOI: 10.1128/mbio.03488-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
Mutation within the Streptococcus pyogenes (Streptococcus group A; Strep A) covR/S regulatory system has been associated with a hypervirulent phenotype resulting from the upregulation of several virulence factors, including the pore-forming toxin, streptolysin O (SLO). In this study, we utilized a range of covR/S mutants, including M1T1 clonal strains (5448 and a covS mutant generated through mouse passage designated 5448AP), to investigate the contribution of SLO to the pathogenesis of covR/S mutant Strep A disease. Up-regulation of slo in 5448AP resulted in increased SLO-mediated hemolysis, decreased dendritic cell (DC) viability post coculture with Strep A, and increased production of tumor necrosis factor (TNF) and monocyte chemoattractant protein 1 (MCP-1) by DCs. Mouse passage of an isogenic 5448 slo-deletion mutant resulted in recovery of several covR/S mutants within the 5448Δslo background. Passage also introduced mutations in non-covR/S genes, but these were considered to have no impact on virulence. Although slo-deficient mutants exhibited the characteristic covR/S-controlled virulence factor upregulation, these mutants caused increased DC viability with reduced inflammatory cytokine production by infected DCs. In vivo, slo expression correlated with decreased DC numbers in infected murine skin and significant bacteremia by 3 days postinfection, with severe pathology at the infection site. Conversely, the absence of slo in the infecting strain (covR/S mutant or wild-type) resulted in detection of DCs in the skin and attenuated virulence in a murine model of pyoderma. slo-sufficient and -deficient covR/S mutants were susceptible to immune clearance mediated by a combination vaccine consisting of a conserved M protein peptide and a peptide from the CXC chemokine protease SpyCEP. IMPORTANCE Streptococcus pyogenes is responsible for significant numbers of invasive and noninvasive infections which cause significant morbidity and mortality globally. Strep A isolates with mutations in the covR/S system display greater propensity to cause severe invasive diseases, which are responsible for more than 163,000 deaths each year. This is due to the upregulation of virulence factors, including the pore-forming toxin streptolysin O. Utilizing covR/S and slo-knockout mutants, we investigated the role of SLO in virulence. We found that SLO alters interactions with host cell populations and increases Strep A viability at sterile sites of the host, such as the blood, and that its absence results in significantly less virulence. This work underscores the importance of SLO in Strep A virulence while highlighting the complex nature of Strep A pathogenesis. This improved insight into host-pathogen interactions will enable a better understanding of host immune evasion mechanisms and inform streptococcal vaccine development programs.
Collapse
Affiliation(s)
- Emma L. Langshaw
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Simone Reynolds
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Victoria Ozberk
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Jessica Dooley
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Ainslie Calcutt
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Mehfuz Zaman
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Mark J. Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Mark R. Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael F. Good
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Manisha Pandey
- Institute for Glycomics, Griffith University, Queensland, Australia
| |
Collapse
|
3
|
Ozberk V, Reynolds S, Huo Y, Calcutt A, Eskandari S, Dooley J, Mills JL, Rasmussen IS, Dietrich J, Pandey M, Good MF. Prime-Pull Immunization with a Bivalent M-Protein and Spy-CEP Peptide Vaccine Adjuvanted with CAF®01 Liposomes Induces Both Mucosal and Peripheral Protection from covR/S Mutant Streptococcus pyogenes. mBio 2021; 12:e03537-20. [PMID: 33622722 PMCID: PMC8545125 DOI: 10.1128/mbio.03537-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/15/2021] [Indexed: 11/20/2022] Open
Abstract
Infections with Streptococcus pyogenes and their sequelae are responsible for an estimated 18 million cases of serious disease with >700 million new primary cases and 500,000 deaths per year. Despite the burden of disease, there is currently no vaccine available for this organism. Here, we define a combination vaccine P*17/K4S2 comprising of 20-mer B-cell peptide epitopes, p*17 (a mutant derived from the highly conserved C3-repeat region of the M-protein), and K4S2 (derived from the streptococcal anti-neutrophil factor, Spy-CEP). The peptides are chemically conjugated to either diphtheria toxoid (DT) or a nontoxic mutant form of diphtheria toxin, CRM197. We demonstrate that a prime-pull immunization regimen involving two intramuscular inoculations with P*17/K4S2 adjuvanted with a two-component liposomal adjuvant system (CAF01; developed by Statens Serum Institut [SSI], Denmark), followed by an intranasal inoculation of unadjuvanted vaccine (in Tris) induces peptide- and S. pyogenes-binding antibodies and protects from mucosal and skin infection with hypervirulent covR/S mutant organisms. Prior vaccination with DT does not diminish the response to the conjugate peptide vaccines. Detailed Good Laboratory Practice (GLP) toxicological evaluation in male and female rats did not reveal any gross or histopathological adverse effects.IMPORTANCE A vaccine to control S. pyogenes infection is desperately warranted. S. pyogenes colonizes the upper respiratory tract (URT) and skin, from where it can progress to invasive and immune-mediated diseases. Global mortality estimates for S. pyogenes-associated diseases exceeds 500,000 deaths per year. S. pyogenes utilizes antigenic variation as a defense mechanism to circumvent host immune responses and thus a successful vaccine needs to provide strain-transcending and multicompartment (mucosal and skin) immunity. By defining highly conserved and protective epitopes from two critical virulence factors (M-protein and Spy-CEP) and combining them with a potent immunostimulant, CAF®01, we are addressing an unmet clinical need for a mucosally and skin-active subunit vaccine. We demonstrate that prime-pull immunization (2× intramuscular injections followed by intranasal immunization) promotes high sustained antibody levels in the airway mucosa and serum and protects against URT and invasive disease.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Outer Membrane Proteins/administration & dosage
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Female
- Immunity, Mucosal
- Immunization/methods
- Liposomes/administration & dosage
- Liposomes/chemistry
- Male
- Mice, Inbred BALB C
- Rats
- Rats, Sprague-Dawley
- Streptococcal Infections/prevention & control
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/immunology
- Streptococcus pyogenes/genetics
- Streptococcus pyogenes/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Mice
Collapse
Affiliation(s)
- Victoria Ozberk
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Simone Reynolds
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Yongbao Huo
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Ainslie Calcutt
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | | | - Jessica Dooley
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Jamie-Lee Mills
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Ida S Rasmussen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jes Dietrich
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Manisha Pandey
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| |
Collapse
|
4
|
M-protein based vaccine induces immunogenicity and protection from Streptococcus pyogenes when delivered on a high-density microarray patch (HD-MAP). NPJ Vaccines 2020; 5:74. [PMID: 32802413 PMCID: PMC7414110 DOI: 10.1038/s41541-020-00222-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
We evaluated vaccination against Streptococcus pyogenes with the candidate vaccine, J8-DT, delivered by a high-density microarray patch (HD-MAP). We showed that vaccination with J8-DT eluted from a coated HD-MAP (J8-DT/HD-MAP), induced similar total IgG responses to that generated by vaccination with J8-DT adjuvanted with Alum (J8-DT/Alum). We evaluated the effect of dose reduction and the number of vaccinations on the antibody response profile of vaccinated mice. A reduction in the number of vaccinations (from three to two) with J8-DT/HD-MAP induced comparable antibody responses to three vaccinations with intramuscular J8-DT/Alum. Vaccine-induced protection against an S. pyogenes skin challenge was assessed. J8-DT/HD-MAP vaccination led to a significant reduction in the number of S. pyogenes colony forming units in skin (92.9%) and blood (100%) compared to intramuscular vaccination with unadjuvanted J8-DT. The protection profile was comparable to that of intramuscular J8-DT/Alum. J8-DT/HD-MAP induced a shift in the antibody isotype profile, with a bias towards Th1-related isotypes, compared to J8-DT/Alum (Th2 bias). Based on the results of this study, the use of J8-DT/HD-MAP should be considered in future clinical development and control programs against S. pyogenes. Furthermore, the innate characteristics of the technology, such as vaccine stability and increased coverage, ease of use, reduction of sharp waste and the potential reduction of dose may be advantageous compared to current vaccination methods.
Collapse
|
5
|
Herrera AL, Van Hove C, Hanson M, Dale JB, Tweten RK, Huber VC, Diel D, Chaussee MS. Immunotherapy targeting the Streptococcus pyogenes M protein or streptolysin O to treat or prevent influenza A superinfection. PLoS One 2020; 15:e0235139. [PMID: 32574205 PMCID: PMC7310742 DOI: 10.1371/journal.pone.0235139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Viral infections complicated by a bacterial infection are typically referred to as coinfections or superinfections. Streptococcus pyogenes, the group A streptococcus (GAS), is not the most common bacteria associated with influenza A virus (IAV) superinfections but did cause significant mortality during the 2009 influenza pandemic even though all isolates are susceptible to penicillin. One approach to improve the outcome of these infections is to use passive immunization targeting GAS. To test this idea, we assessed the efficacy of passive immunotherapy using antisera against either the streptococcal M protein or streptolysin O (SLO) in a murine model of IAV-GAS superinfection. Prophylactic treatment of mice with antiserum to either SLO or the M protein decreased morbidity compared to mice treated with non-immune sera; however, neither significantly decreased mortality. Therapeutic use of antisera to SLO decreased morbidity compared to mice treated with non-immune sera but neither antisera significantly reduced mortality. Overall, the results suggest that further development of antibodies targeting the M protein or SLO may be a useful adjunct in the treatment of invasive GAS diseases, including IAV-GAS superinfections, which may be particularly important during influenza pandemics.
Collapse
Affiliation(s)
- Andrea L. Herrera
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - Christopher Van Hove
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - Mary Hanson
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - James B. Dale
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Rodney K. Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Victor C. Huber
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - Diego Diel
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States of America
| | - Michael S. Chaussee
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| |
Collapse
|
6
|
Semisynthetic, self-adjuvanting vaccine development: Efficient, site-specific sortase A-mediated conjugation of Toll-like receptor 2 ligand FSL-1 to recombinant protein antigens under native conditions and application to a model group A streptococcal vaccine. J Control Release 2019; 317:96-108. [PMID: 31758971 DOI: 10.1016/j.jconrel.2019.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/10/2023]
Abstract
Protein antigens are, in general, weakly immunogenic, and therefore require co-delivery with adjuvants to stimulate potent immune responses. The fusion of (poly)peptide antigens to immunostimulatory adjuvants (e.g. Toll-like receptor (TLR) agonists) has been demonstrated to greatly improve vaccine potency compared to mixtures of antigen and adjuvant. Chemical approaches, to enable the rapid, site-specific and high-yielding linkage of TLR2 ligands to recombinant protein antigens, have been previously optimized. These approaches require the use of denaturing conditions to ensure high reaction yields, which limits their application, as maintenance of native protein folding is necessary to elicit antibodies against conformational epitopes. Here, this work aimed to optimize an alternative method, to ensure the efficient bioconjugation of TLR2 ligands onto folded protein antigens. An enzyme-mediated approach, using Staphylococcus aureus sortase A (or a penta mutant with enhanced efficiency), was optimized for reaction yield and time, as well as enzyme type and amount. This approach enabled the site-specific conjugation of the TLR2-agonist fibroblast-stimulating lipopeptide-1 (FSL-1) onto a model group A Streptococcus (GAS) recombinant polytope antigen under conditions that maintain protein folding, yielding a homogeneous, molecularly-defined product, with ligation yields as high as 90%. Following intramuscular (IM) administration of the ligation product to humanized plasminogen AlbPLG1 mice, high-titer, antigen-specific IgG antibodies were observed, which conferred protection against subcutaneous challenge with GAS strain 5448. In comparison, mixtures of the GAS antigen with aluminum hydroxide or FSL-1 failed to provide protection, with the FSL-1 mixture yielding ~1000-fold lower antigen-specific IgG antibody titers, and the mixture with alum yielding a Th2-biased response compared to the more balanced Th1/Th2 responses observed with the FSL-1 conjugate. Overall, a FSL-1 bioconjugation method for the efficient production of antigen-TLR2 agonist conjugates, which maintain protein folding, was produced, with broad utility for the development of self-adjuvanting vaccines against subunit protein antigens.
Collapse
|
7
|
Oliver J, Wilmot M, Strachan J, St George S, Lane CR, Ballard SA, Sait M, Gibney K, Howden BP, Williamson DA. Recent trends in invasive group A Streptococcus disease in Victoria. Commun Dis Intell (2018) 2019. [DOI: 10.33321/cdi.2019.43.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Invasive Group A Streptococcus (iGAS) disease can cause permanent disability and death. The incidence of iGAS has increased in many developed countries since the 1980s. iGAS disease is not nationally notifiable in Australia or at the state level in Victoria. The Victorian Hospital Pathogen Surveillance Scheme (VHPSS) is a voluntary laboratory-based surveillance system established in 1988. We assessed the trends and molecular epidemiology of iGAS disease in Victoria from 2007-2017. Methods A case of iGAS was defined as an individual for whom Group A Streptococcus (GAS) was isolated from a normally sterile body site. Data on all iGAS cases, as reported to the VHPSS, between 1 January 2007 and 31 December 2017 were examined. Results A total of 1,311 iGAS cases had associated isolates, and M Protein Gene (emm) typing was performed for 91.6%. The mean annual incidence was 2.1 (95% CI: 1.8-2.5) per 100,000 population per year, increasing 2.7-fold over the study period. In total, 140 different iGAS emm-types were observed, with the ten most prevalent types comprising 63.1% of the sample. Conclusions Despite limitations in this surveillance data, we observed increasing rates of iGAS disease in Victoria. iGAS incidence exceeded the mean annual incidence for invasive meningococcal disease, calculated using Victorian data from the National Notifiable Diseases Surveillance System (2.1 vs. 0.6 cases per 100,000 population per year, respectively). Mandatory case notification could enhance disease control and prevention. Further, the diversity in emm-types emphasises the importance of effective secondary chemoprophylaxis in prevention, alongside GAS vaccine development.
Collapse
Affiliation(s)
- Jane Oliver
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, Australia, 3000 - Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, Victoria, Australia, 3052
| | - Mathilda Wilmot
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, Australia, 3000
| | - Janet Strachan
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, Australia, 3000
| | - Siobhan St George
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, Australia, 3000
| | - Courtney R Lane
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, Australia, 3000
| | - Susan A Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, Australia, 3000
| | - Michelle Sait
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, Australia, 3000
| | - Katherine Gibney
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, Australia, 3000 - The Royal Melbourne Hospital and The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, Australia, 3000
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, Australia, 3000
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, Australia, 3000
| |
Collapse
|
8
|
|
9
|
Physicochemical characterisation, immunogenicity and protective efficacy of a lead streptococcal vaccine: progress towards Phase I trial. Sci Rep 2017; 7:13786. [PMID: 29062085 PMCID: PMC5653875 DOI: 10.1038/s41598-017-14157-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
Globally, group A streptococcal infections are responsible for over 500,000 deaths per year. A safe vaccine that does not induce autoimmune pathology and that affords coverage for most GAS serotypes is highly desired. We have previously demonstrated that a vaccine based on the conserved M-protein epitope, J8 was safe and immunogenic in a pilot Phase I study. We subsequently improved vaccine efficacy by incorporation of a B-cell epitope from the IL-8 protease, SpyCEP, which protected IL-8 and enhanced neutrophil ingress to the site of infection. We have now substituted the carrier protein, diphtheria toxoid with its superior analogue, CRM197 which provides better immunogenicity and is widely used in licenced human vaccines. The new vaccine was compared with the DT conjugate vaccine to confirm that these modifications have not altered the physicochemical properties of the vaccine. This vaccine, when tested in an animal model of GAS infection, demonstrated significant reduction in systemic and local GAS burden, with comparable efficacy to the DT conjugate vaccine. The vaccine was shown to be equally effective in the presence of human plasma and in the presence of pre-existing DT-specific antibodies, thus minimising concerns regarding its potential efficacy in humans.
Collapse
|
10
|
Mortensen R, Christensen D, Hansen LB, Christensen JP, Andersen P, Dietrich J. Local Th17/IgA immunity correlate with protection against intranasal infection with Streptococcus pyogenes. PLoS One 2017; 12:e0175707. [PMID: 28414746 PMCID: PMC5393599 DOI: 10.1371/journal.pone.0175707] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/30/2017] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pyogenes (group A streptococcus, GAS) is responsible for a wide array of infections. Respiratory transmission via droplets is the most common mode of transmission but it may also infect the host via other routes such as lesions in the skin. To advance the development of a future vaccine against GAS, it is therefore important to investigate how protective immunity is related to the route of vaccine administration. To explore this, we examined whether a parenterally administered anti-GAS vaccine could protect against an intranasal GAS infection or if this would require locally primed immunity. We foundd that a parenteral CAF01 adjuvanted GAS vaccine offered no protection against intranasal infection despite inducing strong systemic Th1/Th17/IgG immunity that efficiently protected against an intraperitoneal GAS infection. However, the same vaccine administered via the intranasal route was able to induce protection against repeated intranasal GAS infections in a murine challenge model. The lack of intranasal protection induced by the parenteral vaccine correlated with a reduced mucosal recall response at the site of infection. Taken together, our results demonstrate that locally primed immunity is important for the defense against intranasal infection with Streptococcus pyogenes.
Collapse
Affiliation(s)
- Rasmus Mortensen
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark
- University of Copenhagen, Department of Immunology and Microbiology, Copenhagen, Denmark
| | - Dennis Christensen
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark
| | - Lasse Bøllehuus Hansen
- Rigshospitalet, Department of Growth and Reproduction, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter Andersen
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark
| | - Jes Dietrich
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
11
|
Pandey M, Ozberk V, Calcutt A, Langshaw E, Powell J, Rivera-Hernandez T, Ho MF, Philips Z, Batzloff MR, Good MF. Streptococcal Immunity Is Constrained by Lack of Immunological Memory following a Single Episode of Pyoderma. PLoS Pathog 2016; 12:e1006122. [PMID: 28027314 PMCID: PMC5222516 DOI: 10.1371/journal.ppat.1006122] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 01/09/2017] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
The immunobiology underlying the slow acquisition of skin immunity to group A streptococci (GAS), is not understood, but attributed to specific virulence factors impeding innate immunity and significant antigenic diversity of the type-specific M-protein, hindering acquired immunity. We used a number of epidemiologically distinct GAS strains to model the development of acquired immunity. We show that infection leads to antibody responses to the serotype-specific determinants on the M-protein and profound protective immunity; however, memory B cells do not develop and immunity is rapidly lost. Furthermore, antibodies do not develop to a conserved M-protein epitope that is able to induce immunity following vaccination. However, if re-infected with the same strain within three weeks, enduring immunity and memory B-cells (MBCs) to type-specific epitopes do develop. Such MBCs can adoptively transfer protection to naïve recipients. Thus, highly protective M-protein-specific MBCs may never develop following a single episode of pyoderma, contributing to the slow acquisition of immunity and to streptococcal endemicity in at-risk populations. GAS skin infections pose a significant health problem in the tropics. They are highly prevalent in developing countries as well as amongst the Indigenous populations of developed countries. In at-risk impoverished communities the epidemiology of GAS infections is very dynamic, leading to very high rates of streptococcal-associated serious pathology including rheumatic heart disease, glomerulonephritis and invasive GAS disease. Immunity to GAS takes over 20 years to develop and this has been attributed to sequence diversity of the type-specific surface M-protein. There are more than 250 different strains of GAS and it known that antibodies to the amino-terminal segment of the M-protein can kill organisms in a strain-specific manner in vitro. In the present study, using four different strains of GAS isolated from the skin lesions of Aboriginal patients in the Northern Territory of Australia, we make the discovery that skin infection does not induce long-lived type-specific immunity. However, following reinfection with the same strain memory B cells are generated and long-term strain-protective immunity then develops. The dependence on reinfection for the development of strain-specific immunity compounds with antigenic diversity of the M-protein and provides a rational explanation for the very slow acquisition of streptococcal immunity.
Collapse
Affiliation(s)
- Manisha Pandey
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
- * E-mail: (MFG); (MP)
| | - Victoria Ozberk
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Ainslie Calcutt
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Emma Langshaw
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Jessica Powell
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Tania Rivera-Hernandez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Mei-Fong Ho
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Zachary Philips
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Michael R. Batzloff
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Michael F. Good
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
- * E-mail: (MFG); (MP)
| |
Collapse
|
12
|
Batzloff MR, Fane A, Gorton D, Pandey M, Rivera-Hernandez T, Calcutt A, Yeung G, Hartas J, Johnson L, Rush CM, McCarthy J, Ketheesan N, Good MF. Preclinical immunogenicity and safety of a Group A streptococcal M protein-based vaccine candidate. Hum Vaccin Immunother 2016; 12:3089-3096. [PMID: 27541593 DOI: 10.1080/21645515.2016.1222999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus, GAS) causes a wide range of clinical manifestations ranging from mild self-limiting pyoderma to invasive diseases such as sepsis. Also of concern are the post-infectious immune-mediated diseases including rheumatic heart disease. The development of a vaccine against GAS would have a large health impact on populations at risk of these diseases. However, there is a lack of suitable models for the safety evaluation of vaccines with respect to post-infectious complications. We have utilized the Lewis Rat model for cardiac valvulitis to evaluate the safety of the J8-DT vaccine formulation in parallel with a rabbit toxicology study. These studies demonstrated that the vaccine did not induce abnormal pathology. We also show that in mice the vaccine is highly immunogenic but that 3 doses are required to induce protection from a GAS skin challenge even though 2 doses are sufficient to induce a high antibody titer.
Collapse
Affiliation(s)
- Michael R Batzloff
- a Institute for Glycomics, Gold Coast Campus, Griffith University , Queensland , Australia
| | - Anne Fane
- b Infectious Diseases and Immunopathogenesis Research Group , Australian Institute of Tropical Health and Medicine, James Cook University , Queensland , Australia
| | - Davina Gorton
- b Infectious Diseases and Immunopathogenesis Research Group , Australian Institute of Tropical Health and Medicine, James Cook University , Queensland , Australia
| | - Manisha Pandey
- a Institute for Glycomics, Gold Coast Campus, Griffith University , Queensland , Australia
| | - Tania Rivera-Hernandez
- a Institute for Glycomics, Gold Coast Campus, Griffith University , Queensland , Australia
| | - Ainslie Calcutt
- a Institute for Glycomics, Gold Coast Campus, Griffith University , Queensland , Australia
| | - Grace Yeung
- a Institute for Glycomics, Gold Coast Campus, Griffith University , Queensland , Australia
| | - Jon Hartas
- a Institute for Glycomics, Gold Coast Campus, Griffith University , Queensland , Australia
| | - Linda Johnson
- b Infectious Diseases and Immunopathogenesis Research Group , Australian Institute of Tropical Health and Medicine, James Cook University , Queensland , Australia
| | - Catherine M Rush
- b Infectious Diseases and Immunopathogenesis Research Group , Australian Institute of Tropical Health and Medicine, James Cook University , Queensland , Australia
| | - James McCarthy
- c QIMR Berghofer Medical Research Institute , Herston , Queensland , Australia
| | - Natkunam Ketheesan
- b Infectious Diseases and Immunopathogenesis Research Group , Australian Institute of Tropical Health and Medicine, James Cook University , Queensland , Australia
| | - Michael F Good
- a Institute for Glycomics, Gold Coast Campus, Griffith University , Queensland , Australia
| |
Collapse
|
13
|
Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models. mBio 2016; 7:mBio.00618-16. [PMID: 27302756 PMCID: PMC4916377 DOI: 10.1128/mbio.00618-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A Streptococcus (GAS) is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i) streptolysin O (SLO), interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), group A streptococcal C5a peptidase (SCPA), arginine deiminase (ADI), and trigger factor (TF); (ii) the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii) group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model. This set of experiments demonstrates the inherent variability of mouse models for the characterization of GAS vaccine candidate protective efficacy. Such variability poses an important challenge for GAS vaccine development, as advancement of candidates to human clinical trials requires strong evidence of efficacy. This study highlights the need for an open discussion within the field regarding standardization of animal models for GAS vaccine development.
Collapse
|
14
|
Identifying protective Streptococcus pyogenes vaccine antigens recognized by both B and T cells in human adults and children. Sci Rep 2016; 6:22030. [PMID: 26911649 PMCID: PMC4766568 DOI: 10.1038/srep22030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/04/2016] [Indexed: 01/01/2023] Open
Abstract
No commercial vaccine exists against Group A streptococci (GAS; Streptococcus pyogenes) and only little is known about anti-GAS protective immunity. In our effort to discover new protective vaccine candidates, we selected 21 antigens based on an in silico evaluation. These were all well-conserved among different GAS strains, upregulated in host-pathogen interaction studies, and predicted to be extracellular or associated with the surface of the bacteria. The antigens were tested for both antibody recognition and T cell responses in human adults and children. The antigenicity of a selected group of antigens was further validated using a high-density peptide array technology that also identified the linear epitopes. Based on immunological recognition, four targets were selected and tested for protective capabilities in an experimental GAS infection model in mice. Shown for the first time, three of these targets (spy0469, spy1228 and spy1801) conferred significant protection whereas one (spy1643) did not.
Collapse
|
15
|
Good MF, Pandey M, Batzloff MR, Tyrrell GJ. Strategic development of the conserved region of the M protein and other candidates as vaccines to prevent infection with group A streptococci. Expert Rev Vaccines 2015; 14:1459-70. [DOI: 10.1586/14760584.2015.1081817] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Correlates of Protection for M Protein-Based Vaccines against Group A Streptococcus. J Immunol Res 2015; 2015:167089. [PMID: 26101780 PMCID: PMC4458553 DOI: 10.1155/2015/167089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/28/2015] [Accepted: 05/03/2015] [Indexed: 11/17/2022] Open
Abstract
Group A streptococcus (GAS) is known to cause a broad spectrum of illness, from pharyngitis and impetigo, to autoimmune sequelae such as rheumatic heart disease, and invasive diseases. It is a significant cause of infectious disease morbidity and mortality worldwide, but no efficacious vaccine is currently available. Progress in GAS vaccine development has been hindered by a number of obstacles, including a lack of standardization in immunoassays and the need to define human correlates of protection. In this review, we have examined the current immunoassays used in both GAS and other organisms, and explored the various challenges in their implementation in order to propose potential future directions to identify a correlate of protection and facilitate the development of M protein-based vaccines, which are currently the main GAS vaccine candidates.
Collapse
|
17
|
Trent A, Ulery BD, Black MJ, Barrett JC, Liang S, Kostenko Y, David NA, Tirrell MV. Peptide amphiphile micelles self-adjuvant group A streptococcal vaccination. AAPS JOURNAL 2014; 17:380-8. [PMID: 25527256 DOI: 10.1208/s12248-014-9707-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/27/2014] [Indexed: 11/30/2022]
Abstract
Delivery system design and adjuvant development are crucially important areas of research for improving vaccines. Peptide amphiphile micelles are a class of biomaterials that have the unique potential to function as both vaccine delivery vehicles and self-adjuvants. In this study, peptide amphiphiles comprised of a group A streptococcus B cell antigen (J8) and a dialkyl hydrophobic moiety (diC16) were synthesized and organized into self-assembled micelles, driven by hydrophobic interactions among the alkyl tails. J8-diC16 formed cylindrical micelles with highly α-helical peptide presented on their surfaces. Both the micelle length and secondary structure were shown to be enhanced by annealing. When injected into mice, J8-diC16 micelles induced a strong IgG1 antibody response that was comparable to soluble J8 peptide supplemented with two classical adjuvants. It was discovered that micelle adjuvanticity requires the antigen be a part of the micelle since separation of J8 and the micelle was insufficient to induce an immune response. Additionally, the diC16 tail appears to be non-immunogenic since it does not stimulate a pathogen recognition receptor whose agonist (Pam3Cys) possesses a very similar chemical structure. The research presented in this paper demonstrates the promise peptide amphiphile micelles have in improving the field of vaccine engineering.
Collapse
Affiliation(s)
- Amanda Trent
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California, 93106, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Rivera-Hernandez T, Carnathan DG, Moyle PM, Toth I, West NP, Young PR, Silvestri G, Walker MJ. The contribution of non-human primate models to the development of human vaccines. DISCOVERY MEDICINE 2014; 18:313-22. [PMID: 25549702 PMCID: PMC4465840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The non-human primates (NHPs) model in biomedical research has contributed to the study of human infectious, autoimmune, oncogenic, and neurological diseases. This review focuses on the importance of NHP models in vaccine development for tuberculosis, pertussis, Dengue, group A streptococcus (Streptococcus pyogenes) infection, HIV infection, and certain diseases in the elderly (influenza, for example). From understanding disease pathogenesis and mechanisms of protection, to assessing vaccine safety and efficacy, we discuss selected cases where the importance of the use of NHP models is highlighted.
Collapse
Affiliation(s)
- Tania Rivera-Hernandez
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Diane G Carnathan
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, and School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
19
|
Zaman M, Chandrudu S, Giddam AK, Reiman J, Skwarczynski M, McPhun V, Moyle PM, Batzloff MR, Good MF, Toth I. Group A Streptococcal vaccine candidate: contribution of epitope to size, antigen presenting cell interaction and immunogenicity. Nanomedicine (Lond) 2014; 9:2613-24. [DOI: 10.2217/nnm.14.190] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Utilize lipopeptide vaccine delivery system to develop a vaccine candidate against Group A Streptococcus. Materials & methods: Lipopeptides synthesized by solid-phase peptide synthesis-bearing carboxyl (C)-terminal and amino (N)-terminal Group A Streptococcus peptide epitopes. Nanoparticles formed were evaluated in vivo. Results: Immune responses were induced in mice without additional adjuvant. We demonstrated for the first time that incorporation of the C-terminal epitope significantly enhanced the N-terminal epitope-specific antibody response and correlated with forming smaller nanoparticles. Antigen-presenting cells had increased uptake and maturation by smaller, more immunogenic nanoparticles. Antibodies raised by vaccination recognized isolates. Conclusion: Demonstrated the lipopeptidic nanoparticles to induce an immune response which can be influenced by the combined effect of epitope choice and size.
Collapse
Affiliation(s)
- Mehfuz Zaman
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, Australia
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Saranya Chandrudu
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Ashwini K Giddam
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Jennifer Reiman
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Virginia McPhun
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Peter M Moyle
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia
| | | | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia
| |
Collapse
|
20
|
Moreland NJ, Waddington CS, Williamson DA, Sriskandan S, Smeesters PR, Proft T, Steer AC, Walker MJ, Baker EN, Baker MG, Lennon D, Dunbar R, Carapetis J, Fraser JD. Working towards a Group A Streptococcal vaccine: Report of a collaborative Trans-Tasman workshop. Vaccine 2014; 32:3713-20. [DOI: 10.1016/j.vaccine.2014.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/01/2014] [Indexed: 11/25/2022]
|
21
|
Chuan YP, Wibowo N, Connors NK, Wu Y, Hughes FK, Batzloff MR, Lua LHL, Middelberg APJ. Microbially synthesized modular virus-like particles and capsomeres displaying group A streptococcus hypervariable antigenic determinants. Biotechnol Bioeng 2014; 111:1062-70. [PMID: 24338691 DOI: 10.1002/bit.25172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/28/2013] [Accepted: 12/02/2013] [Indexed: 11/28/2024]
Abstract
Effective and low-cost vaccines are essential to control severe group A streptococcus (GAS) infections prevalent in low-income nations and the Australian aboriginal communities. Highly diverse and endemic circulating GAS strains mandate broad-coverage and customized vaccines. This study describes an approach to deliver cross-reactive antigens from endemic GAS strains using modular virus-like particle (VLP) and capsomere systems. The antigens studied were three heterologous N-terminal peptides (GAS1, GAS2, and GAS3) from the GAS surface M-protein that are specific to endemic strains in Australia Northern Territory Aboriginal communities. In vivo data presented here demonstrated salient characteristics of the modular delivery systems in the context of GAS vaccine design. First, the antigenic peptides, when delivered by unadjuvanted modular VLPs or adjuvanted capsomeres, induced high titers of peptide-specific IgG antibodies (over 1 × 10(4) ). Second, delivery by capsomere was superior to VLP for one of the peptides investigated (GAS3), demonstrating that the delivery system relative effectiveness was antigen-dependant. Third, significant cross-reactivity of GAS2-induced IgG with GAS1 was observed using either VLP or capsomere, showing the possibility of broad-coverage vaccine design using these delivery systems and cross-reactive antigens. Fourth, a formulation containing three pre-mixed modular VLPs, each at a low dose of 5 μg (corresponding to <600 ng of each GAS peptide), induced significant titers of IgGs specific to each peptide, demonstrating that a multivalent, broad-coverage VLP vaccine formulation was possible. In summary, the modular VLPs and capsomeres reported here demonstrate, with promising preliminary data, innovative ways to design GAS vaccines using VLP and capsomere delivery systems amenable to microbial synthesis, potentially adoptable by developing countries.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Cross Reactions
- Humans
- Immunoglobulin G/blood
- Mice
- Northern Territory/epidemiology
- Streptococcal Infections/epidemiology
- Streptococcal Infections/prevention & control
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/genetics
- Streptococcal Vaccines/immunology
- Streptococcal Vaccines/isolation & purification
- Streptococcus pyogenes/genetics
- Streptococcus pyogenes/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Subunit/isolation & purification
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
- Vaccines, Virosome/administration & dosage
- Vaccines, Virosome/genetics
- Vaccines, Virosome/immunology
- Vaccines, Virosome/isolation & purification
- Virosomes/genetics
- Virosomes/metabolism
Collapse
Affiliation(s)
- Yap P Chuan
- Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, University of Queensland, St. Lucia, QLD, 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
McMillan DJ, Drèze PA, Vu T, Bessen DE, Guglielmini J, Steer AC, Carapetis JR, Van Melderen L, Sriprakash KS, Smeesters PR. Updated model of group A Streptococcus M proteins based on a comprehensive worldwide study. Clin Microbiol Infect 2013; 19:E222-9. [PMID: 23464795 DOI: 10.1111/1469-0691.12134] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/02/2012] [Accepted: 12/14/2012] [Indexed: 12/16/2022]
Abstract
Group A Streptococcus (GAS) M protein is an important virulence factor and potential vaccine antigen, and constitutes the basis for strain typing (emm-typing). Although >200 emm-types are characterized, structural data were obtained from only a limited number of emm-types. We aim to evaluate the sequence diversity of near-full-length M proteins from worldwide sources and analyse their structure, sequence conservation and classification. GAS isolates recovered from throughout the world during the last two decades underwent emm-typing and complete emm gene sequencing. Predicted amino acid sequence analyses, secondary structure predictions and vaccine epitope mapping were performed using MUSCLE and Geneious software. A total of 1086 isolates from 31 countries were analysed, representing 175 emm-types. emm-type is predictive of the whole protein structure, independent of geographical origin or clinical association. Findings of an emm-type paired with multiple, highly divergent central regions were not observed. M protein sequence length, the presence or absence of sequence repeats and predicted secondary structure were assessed in the context of the latest vaccine developments. Based on these global data, the M6 protein model is updated to a three representative M protein (M5, M80 and M77) model, to aid in epidemiological analysis, vaccine development and M protein-related pathogenesis studies.
Collapse
Affiliation(s)
- D J McMillan
- Bacterial Pathogenesis Laboratory, Queensland Institute of Medical Research, Brisbane, Qld, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pandey M, Wykes MN, Hartas J, Good MF, Batzloff MR. Long-term antibody memory induced by synthetic peptide vaccination is protective against Streptococcus pyogenes infection and is independent of memory T cell help. THE JOURNAL OF IMMUNOLOGY 2013; 190:2692-701. [PMID: 23401589 DOI: 10.4049/jimmunol.1202333] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]) is a leading human pathogen associated with a diverse array of mucosal and systemic infections. Vaccination with J8, a conserved region synthetic peptide derived from the M-protein of GAS and containing only 12 aa from GAS, when conjugated to diphtheria toxoid, has been shown to protect mice against a lethal GAS challenge. Protection has been previously shown to be Ab-mediated. J8 does not contain a dominant GAS-specific T cell epitope. The current study examined long-term Ab memory and dissected the role of B and T cells. Our results demonstrated that vaccination generates specific memory B cells (MBC) and long-lasting Ab responses. The MBC response can be activated following boost with Ag or limiting numbers of whole bacteria. We further show that these memory responses protect against systemic infection with GAS. T cell help is required for activation of MBC but can be provided by naive T cells responding directly to GAS at the time of infection. Thus, individuals whose T cells do not recognize the short synthetic peptide in the vaccine will be able to generate a protective and rapid memory Ab response at the time of infection. These studies significantly strengthen previous findings, which showed that protection by the J8-diphtheria toxoid vaccine is Ab-mediated and suggest that in vaccine design for other organisms the source of T cell help for Ab responses need not be limited to sequences from the organism itself.
Collapse
Affiliation(s)
- Manisha Pandey
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | | | | | | | | |
Collapse
|
24
|
Guilherme L, Ferreira FM, Köhler KF, Postol E, Kalil J. A vaccine against Streptococcus pyogenes: the potential to prevent rheumatic fever and rheumatic heart disease. Am J Cardiovasc Drugs 2013; 13:1-4. [PMID: 23355360 DOI: 10.1007/s40256-013-0005-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Streptococcus pyogenes causes severe, invasive infections such as the sequelae associated with acute rheumatic fever, rheumatic heart disease, acute glomerulonephritis, uncomplicated pharyngitis, and pyoderma. Efforts to produce a vaccine against S. pyogenes began several decades ago, and different models have been proposed. We have developed a vaccine candidate peptide, StreptInCor, comprising 55 amino acid residues of the C-terminal portion of the M protein and encompassing both the T- and B-cell protective epitopes. The present article summarizes data from the previous 5 years during which we tested the immunogenicity and safety of StreptInCor in different animal models. We showed that StreptInCor overlapping peptides induced cellular and humoral immune responses of individuals bearing different HLA class II molecules. These results are consistent with peptides that have a universal vaccine epitope. The tridimensional molecular structure of StreptInCor was elucidated by nuclear magnetic resonance spectroscopy, which showed that its structure is composed of two microdomains linked by an 18-residue α-helix. Additionally, we comprehensively evaluated the structural stability of the StreptInCor peptide in different physicochemical conditions using circular dichroism. Additional experiments were performed with inbred, outbred, and HLA class II transgenic mice. Analysis of several organs of these mice showed neither deleterious nor autoimmune reactions even after a long period of vaccination, indicating that the StreptInCor candidate peptide could be considered as an immunogenic and safe vaccine.
Collapse
|
25
|
In Vivo
Efficacy of a Chimeric Peptide Derived from the Conserved Region of the M Protein against Group C and G Streptococci. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2012; 19:1984-7. [DOI: 10.1128/cvi.00140-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The J8 peptide from the conserved region of the M protein protects against group A streptococcus infections. In this study, we demonstrate that vaccination with a J8-containing formulation induces IgG that recognizes and binds group C and G streptococci. Moreover, this formulation has the potential to provide protection against infections caused by these organisms.
Collapse
|
26
|
Pandey M, Batzloff MR, Good MF. Vaccination against rheumatic heart disease: a review of current research strategies and challenges. Curr Infect Dis Rep 2012; 14:381-90. [PMID: 22729401 DOI: 10.1007/s11908-012-0263-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acute rheumatic fever (ARF) and rheumatic heart disease (RHD) are major health problems in many developing countries and Indigenous populations of developed countries. ARF and RHD are sequelae resulting from an infection of Streptococcus pyogenes. Despite advances in health care practices and technology, these diseases still pose major challenges in the communities where Streptococcus pyogenes is often endemic. Here we review and discuss the dynamic epidemiology of streptococcal infection and its associated diseases (ARF and RHD), with a focus on disease burden in temperate versus tropical regions, the tissue tropism of the organism and the efforts towards vaccine development in relation to the available animal models.
Collapse
Affiliation(s)
- Manisha Pandey
- Institute for Glycomics, Griffith University, G26/4.30 Gold Coast Campus, Gold Coast, QLD, 4222, Australia,
| | | | | |
Collapse
|
27
|
Ahmed KA, Wang L, Munegowda MA, Mulligan SJ, Mulligan S, Gordon JR, Griebel P, Xiang J. Direct in vivo evidence of CD4+ T cell requirement for CTL response and memory via pMHC-I targeting and CD40L signaling. J Leukoc Biol 2012; 92:289-300. [PMID: 22544940 DOI: 10.1189/jlb.1211631] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CD4(+) T cell help contributes critically to DC-induced CD8(+) CTL immunity. However, precisely how these three cell populations interact and how CD4(+) T cell signals are delivered to CD8(+) T cells in vivo have been unclear. In this study, we developed a novel, two-step approach, wherein CD4(+) T cells and antigen-presenting DCs productively engaged one another in vivo in the absence of cognate CD8(+) T cells, after which, we selectively depleted the previously engaged CD4(+) T cells or DCs before allowing interactions of either population alone with naïve CD8(+) T cells. This protocol thus allows us to clearly document the importance of CD4(+) T-licensed DCs and DC-primed CD4(+) T cells in CTL immunity. Here, we provide direct in vivo evidence that primed CD4(+) T cells or licensed DCs can stimulate CTL response and memory, independent of DC-CD4(+) T cell clusters. Our results suggest that primed CD4(+) T cells with acquired pMHC-I from DCs represent crucial "immune intermediates" for rapid induction of CTL responses and for functional memory via CD40L signaling. Importantly, intravital, two-photon microscopy elegantly provide unequivocal in vivo evidence for direct CD4-CD8(+) T cell interactions via pMHC-I engagement. This study corroborates the coexistence of direct and indirect mechanisms of T cell help for a CTL response in noninflammatory situations. These data suggest a new "dynamic model of three-cell interactions" for CTL immunity derived from stimulation by dissociated, licensed DCs, primed CD4(+) T cells, and DC-CD4(+) T cell clusters and may have significant implications for autoimmunity and vaccine design.
Collapse
Affiliation(s)
- Khawaja Ashfaque Ahmed
- Research Unit, Saskatchewan Cancer Agency, Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Although the incidence of acute rheumatic fever and rheumatic heart disease has decreased significantly in regions of the world where antibiotics are easily accessible, there remains a high incidence in developing nations as well as in certain regions where there is a high incidence of genetic susceptibility. These diseases are a function of poverty, low socioeconomic status, and barriers to healthcare access, and it is in the developing world that a comprehensive prevention program is most critically needed. Development of group A streptococcal vaccines has been under investigation since the 1960s and 50 years later, we still have no vaccine. Factors that contribute to this lack of success include a potential risk for developing vaccine-induced rheumatic heart disease, as well as difficulties in covering the many serological subtypes of M protein, a virulence factor found on the surface of the bacterium. Yet, development of a successful vaccine program for prevention of group A streptococcal infection still offers the best chance for eradication of rheumatic fever in the twenty-first century. Other useful approaches include continuation of primary and secondary prevention with antibiotics and implementation of health care policies that provide patients with easy access to antibiotics. Improved living conditions and better hygiene are also critical to the prevention of the spread of group A streptococcus, especially in impoverished regions of the world. The purpose of this article is to discuss current and recent developments in the diagnosis, pathogenesis, and management of rheumatic fever and rheumatic heart disease.
Collapse
Affiliation(s)
- Christopher Chang
- Division of Allergy, Asthma and Immunology, Thomas Jefferson University, Nemours/A.I. Dupont Children's Hospital, 1600 Rockland Road, Wilmington, DE 19803, USA.
| |
Collapse
|
29
|
Henningham A, Gillen CM, Walker MJ. Group a streptococcal vaccine candidates: potential for the development of a human vaccine. Curr Top Microbiol Immunol 2012; 368:207-42. [PMID: 23250780 DOI: 10.1007/82_2012_284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently there is no commercial Group A Streptococcus (GAS; S. pyogenes) vaccine available. The development of safe GAS vaccines is challenging, researchers are confronted with obstacles such as the occurrence of many unique serotypes (there are greater than 150 M types), antigenic variation within the same serotype, large variations in the geographical distribution of serotypes, and the production of antibodies cross-reactive with human tissue which can lead to host auto-immune disease. Cell wall anchored, cell membrane associated, secreted and anchorless proteins have all been targeted as GAS vaccine candidates. As GAS is an exclusively human pathogen, the quest for an efficacious vaccine is further complicated by the lack of an animal model which mimics human disease and can be consistently and reproducibly colonized by multiple GAS strains.
Collapse
Affiliation(s)
- Anna Henningham
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre, University of Queensland, St Lucia, QLD 4072, Australia
| | | | | |
Collapse
|
30
|
Lannergård J, Gustafsson MCU, Waldemarsson J, Norrby-Teglund A, Stålhammar-Carlemalm M, Lindahl G. The Hypervariable region of Streptococcus pyogenes M protein escapes antibody attack by antigenic variation and weak immunogenicity. Cell Host Microbe 2011; 10:147-57. [PMID: 21843871 DOI: 10.1016/j.chom.2011.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 03/24/2011] [Accepted: 06/28/2011] [Indexed: 10/17/2022]
Abstract
Sequence variation of antigenic proteins allows pathogens to evade antibody attack. The variable protein commonly includes a hypervariable region (HVR), which represents a key target for antibodies and is therefore predicted to be immunodominant. To understand the mechanism(s) of antibody evasion, we analyzed the clinically important HVR-containing M proteins of the human pathogen Streptococcus pyogenes. Antibodies elicited by M proteins were directed almost exclusively against the C-terminal part and not against the N-terminal HVR. Similar results were obtained for mice and humans with invasive S. pyogenes infection. Nevertheless, only anti-HVR antibodies protected efficiently against infection, as shown by passive immunizations. The HVR fused to an unrelated protein elicited no antibodies, implying that it is inherently weakly immunogenic. These data indicate that the M protein HVR evades antibody attack not only through antigenic variation but also by weak immunogenicity, a paradoxical observation that may apply to other HVR-containing proteins.
Collapse
Affiliation(s)
- Jonas Lannergård
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Improved immune responses in mice using the novel chitosan adjuvant ViscoGel, with a Haemophilus influenzae type b glycoconjugate vaccine. Vaccine 2011; 29:8965-73. [DOI: 10.1016/j.vaccine.2011.09.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/09/2011] [Accepted: 09/11/2011] [Indexed: 01/09/2023]
|
32
|
Huang YS, Fisher M, Nasrawi Z, Eichenbaum Z. Defense from the Group A Streptococcus by active and passive vaccination with the streptococcal hemoprotein receptor. J Infect Dis 2011; 203:1595-601. [PMID: 21592989 DOI: 10.1093/infdis/jir149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The worldwide burden of the Group A Streptococcus (GAS) primary infection and sequelae is considerable, although immunization programs with broad coverage of the hyper variable GAS are still missing. We evaluate the streptococcal hemoprotein receptor (Shr), a conserved streptococcal protein, as a vaccine candidate against GAS infection. METHODS Mice were immunized intraperitoneally with purified Shr or intranasally with Shr-expressing Lactococcus lactis. The resulting humoral response in serum and secretions was determined. We evaluated protection from GAS infection in mice after active or passive vaccination with Shr, and Shr antiserum was tested for bactericidal activity. RESULTS A robust Shr-specific immunoglobulin (Ig) G response was observed in mouse serum after intraperitoneal vaccination with Shr. Intranasal immunization elicited both a strong IgG reaction in the serum and a specific IgA reaction in secretions. Shr immunization in both models allowed enhanced protection from systemic GAS challenge. Rabbit Shr antiserum was opsonizing, and mice that were administrated with Shr antiserum prior to the infection demonstrated a significantly higher survival rate than did mice treated with normal rabbit serum. CONCLUSIONS Shr is a promising vaccine candidate that is capable of eliciting bactericidal antibody response and conferring immunity against systemic GAS infection in both passive and active vaccination models.
Collapse
Affiliation(s)
- Ya-Shu Huang
- Biology Department, Georgia State University, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|
33
|
Middelberg APJ, Rivera-Hernandez T, Wibowo N, Lua LHL, Fan Y, Magor G, Chang C, Chuan YP, Good MF, Batzloff MR. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine 2011; 29:7154-62. [PMID: 21651936 DOI: 10.1016/j.vaccine.2011.05.075] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies on a platform technology able to deliver low-cost viral capsomeres and virus-like particles are described. The technology involves expression of the VP1 structural protein from murine polyomavirus (MuPyV) in Escherichia coli, followed by purification using scaleable units and optional cell-free VLP assembly. Two insertion sites on the surface of MuPyV VP1 are exploited for the presentation of the M2e antigen from influenza and the J8 peptide from Group A Streptococcus (GAS). Results from testing on mice following subcutaneous administration demonstrate that VLPs are self adjuvating, that adding adjuvant to VLPs provides no significant benefit in terms of antibody titre, and that adjuvanted capsomeres induce an antibody titre comparable to VLPs but superior to unadjuvanted capsomere formulations. Antibodies raised against GAS J8 peptide following immunization with chimeric J8-VP1 VLPs are bactericidal against a GAS reference strain. E. coli is easily and widely cultivated, and well understood, and delivers unparalleled volumetric productivity in industrial bioreactors. Indeed, recent results demonstrate that MuPyV VP1 can be produced in bioreactors at multi-gram-per-litre levels. The platform technology described here therefore has the potential to deliver safe and efficacious vaccine, quickly and cost effectively, at distributed manufacturing sites including those in less developed countries. Additionally, the unique advantages of VLPs including their stability on freeze drying, and the potential for intradermal and intranasal administration, suggest this technology may be suited to numerous diseases where adequate response requires large-scale and low-cost vaccine manufacture, in a way that is rapidly adaptable to temporal or geographical variation in pathogen molecular composition.
Collapse
Affiliation(s)
- Anton P J Middelberg
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD 4072, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zaman M, Skwarczynski M, Malcolm JM, Urbani CN, Jia Z, Batzloff MR, Good MF, Monteiro MJ, Toth I. Self-adjuvanting polyacrylic nanoparticulate delivery system for group A streptococcus (GAS) vaccine. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:168-73. [DOI: 10.1016/j.nano.2010.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/04/2010] [Accepted: 10/09/2010] [Indexed: 11/29/2022]
|
35
|
Smeesters PR, McMillan DJ, Sriprakash KS, Georgousakis MM. Differences among group A streptococcus epidemiological landscapes: consequences for M protein-based vaccines? Expert Rev Vaccines 2010; 8:1705-20. [PMID: 19905872 DOI: 10.1586/erv.09.133] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Group A streptococcus (GAS) is a bacterial pathogen responsible for a wide array of disease pathologies in humans. GAS surface M protein plays multiple key roles in pathogenesis, and serves as a target for typing and vaccine development. In this review, we have compiled GAS epidemiological studies from several countries around the world to highlight the consequences on the theoretical efficacy of two different M protein-based vaccine strategies.
Collapse
Affiliation(s)
- Pierre R Smeesters
- Bacterial Pathogenesis Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia.
| | | | | | | |
Collapse
|
36
|
Steer AC, Batzloff MR, Mulholland K, Carapetis JR. Group A streptococcal vaccines: facts versus fantasy. Curr Opin Infect Dis 2010; 22:544-52. [PMID: 19797947 DOI: 10.1097/qco.0b013e328332bbfe] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review provides an overview of progress of the development of group A streptococcal (GAS) vaccines with a focus on recent advances. RECENT FINDINGS Historically, GAS vaccine development has focused on the N-terminus of the M protein, which ultimately led to successful phase I/II clinical trials of a 26-valent recombinant M protein vaccine in 2004-2005. More recently, interest in antigens conserved among most, if not all, group A streptococci has increased. However, no vaccines containing these antigens have reached clinical trials. Three strategies have been used to develop conserved antigen vaccine candidates: use of the conserved region of the M protein; use of well described virulence factors as antigens, including streptococcal C5a peptidase, streptococcal carbohydrate, fibronectin-binding proteins, cysteine protease and streptococcal pili; and use of reverse vaccinology to identify novel antigens. SUMMARY Several vaccine candidates against GAS infection are in varying stages of preclinical and clinical development. Although there is great hope that one of these vaccine candidates will reach licensure in the next decade, only one, the multivalent N-terminal vaccine, has entered clinical trials in the last 30 years. Although strong advocacy for GAS vaccine development is important, there remains an urgent need to institute available public health control measures against GAS diseases globally, particularly in developing countries.
Collapse
Affiliation(s)
- Andrew C Steer
- Centre for International Child Health, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
37
|
Correlation between bioluminescence and bacterial burden in passively protected mice challenged with a recombinant bioluminescent M49 group A streptococcus Strain. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 17:127-33. [PMID: 19889937 DOI: 10.1128/cvi.00256-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus pyogenes, also known as group A streptococcus (GAS), is a human pathogen which infects people of all age groups. Previous work has reported that conformationally constrained chimeric peptide J8 protects against GAS challenge. In the current study, we demonstrate the utility of bioluminescent imaging as a rapid technique for monitoring bacterial dissemination following the passive transfer of rabbit anti-J8 antibodies to naïve mice and subsequent challenge with recombinant GAS strain M49, an emm type shown to be associated with poststreptococcal glomerular nephritis.
Collapse
|
38
|
Novel strategies for controlling
Streptococcus pyogenes
infection and associated diseases: from potential peptide vaccines to antibody immunotherapy. Immunol Cell Biol 2009; 87:391-9. [DOI: 10.1038/icb.2009.29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|