1
|
Dasgupta MG, Parveen AM, Rajasugunasekar D, Ulaganathan K. Wood transcriptome analysis and expression variation of lignin biosynthetic pathway transcripts in Ailanthus excelsa Roxb., a multi-purpose tropical tree species. J Biosci 2021. [DOI: 10.1007/s12038-021-00218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Bailly C. Anticancer properties and mechanism of action of the quassinoid ailanthone. Phytother Res 2020; 34:2203-2213. [PMID: 32239572 DOI: 10.1002/ptr.6681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Ailanthone (AIT) is a quassinoid natural product isolated from the worldwide-distributed plant Ailanthus altissima. The drug displays multiple pharmacological properties, in particular significant antitumor effects against a variety of cancer cell lines in vitro. Potent in vivo activities have been evidenced in mice bearing hepatocellular carcinoma, nonsmall cell lung cancer and castration-resistant prostate cancer. This review focusses on the mechanism of action of AIT, notably to highlight the capacity of the drug to activate DNA damage responses, to inhibit the Hsp90 co-chaperone p23 and to modulate the expression of several microRNA. The interconnexion between these effects is discussed. The unique capacity of AIT to downregulate oncogenic miR-21 and to upregulate the tumor suppressor miRNAs miR-126, miR-148a, miR-195, and miR-449a is presented. AIT exploits several microRNAs to exert its anticancer effects in distinct tumor types. AIT is one of the rare antitumor natural products that binds to and strongly inhibits cochaperone p23, opening interesting perspectives to treat cancers. However, the toxicity profile of the molecule may limit its development as an anticancer drug, unless it can be properly formulated to prevent AIT-induced gastro-intestinal damages in particular. The antitumor properties of AIT and analogs are underlined, with the aim to encourage further pharmacological studies with this underexplored natural product and related quassinoids. HIGHLIGHTS: Ailanthone (AIT) is an anticancer quassinoid isolated from Ailanthus altissima It inhibits proliferation and induces cell death of many cancer cell types The drug activates DNA damage response and targets p23 cochaperone Up or downregulation of several microRNA by AIT contributes to the anticancer activity Analogs or specific formulations must be developed to prevent the toxicity of AIT.
Collapse
|
3
|
Retraction: A Novel Triterpenoid Isolated from the Root Bark of Ailanthus excelsa Roxb (Tree of Heaven), AECHL-1 as a Potential Anti-Cancer Agent. PLoS One 2020; 15:e0231249. [PMID: 32218592 PMCID: PMC7100933 DOI: 10.1371/journal.pone.0231249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
4
|
González-Ruiz L, González-Moles MÁ, González-Ruiz I, Ruiz-Ávila I, Ayén Á, Ramos-García P. An update on the implications of cyclin D1 in melanomas. Pigment Cell Melanoma Res 2020; 33:788-805. [PMID: 32147907 DOI: 10.1111/pcmr.12874] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Cyclin D1 is a protein encoded by the CCND1 gene, located on 11q13 chromosome, which is a key component of the physiological regulation of the cell cycle. CCND1/cyclin D1 is upregulated in several types of human tumors including melanoma and is currently classified as an oncogene that promotes uncontrolled cell proliferation. Despite the demonstrated importance of CCND1/cyclin D1 as a central oncogene in several types of human tumors, its knowledge in melanoma is still limited. This review examines data published on upregulation of the CCND1 gene and cyclin D1 protein in the melanoma setting, focusing on the pathways and molecular mechanisms involved in the activation of the gene and on the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Lucia González-Ruiz
- Dermatology Service, Ciudad Real General University Hospital, Ciudad Real, Spain
| | | | | | - Isabel Ruiz-Ávila
- Biohealth Research Institute, Granada, Spain.,Pathology Service, San Cecilio Hospital Complex, Granada, Spain
| | - Ángela Ayén
- Dermatology Service, San Cecilio Hospital Complex, Granada, Spain
| | | |
Collapse
|
5
|
Adithan A, John Peter JS, Mohammad AH, Kim B, Kang CW, Kim NS, Hwang KC, Kim JH. A gastric cancer cell derived extracellular compounds suppresses CD161 +CD3 - lymphocytes and aggravates tumor formation in a syngeneic mouse model. Mol Immunol 2020; 120:136-145. [PMID: 32120181 DOI: 10.1016/j.molimm.2020.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 01/16/2023]
Abstract
Evasion of the immune system is often associated with malignant tumors. The cancer cell microenvironment plays an important role in tumor progression, but its mechanism is largely unknown. Here we show that an extracellular compound derived from gastric cancer (GC-EC) selectively suppresses CD161+CD3- natural killer (NK) cells. Splenocytes treated with GC-EC showed considerable proliferation and the CD161+CD3- NK cell population was time-dependently suppressed. Intracellular staining of IFN-γ was shown to be down-regulated in concert with granzyme B and perforin. A cytotoxicity assay of splenocytes treated with GC-EC against K-562 cells showed a significant reduction in cytolytic activity. Further, the immune-suppressive effect of GC-EC was more evident in a syngeneic tumor model in C57BL/6 mice. Animals treated with B16 F10 and GC-EC exhibited more aggravated tumor formation than animals treated with B16 F10 only. We demonstrated that inhibition of apoptosis while increasing PI3 K/AKT levels may provoke tumor formation by GC-EC. A cytokine array revealed the presence of several cytokines in GC-EC that negatively regulate immune cytolytic activity and could be potential candidates for immune-suppressive effects.
Collapse
Affiliation(s)
- Aravinthan Adithan
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Judith Sharmila John Peter
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Amjad Hossain Mohammad
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Chang-Won Kang
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Nam Soo Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Ki-Chul Hwang
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea.
| |
Collapse
|
6
|
Structure-Based Classification and Anti-Cancer Effects of Plant Metabolites. Int J Mol Sci 2018; 19:ijms19092651. [PMID: 30200668 PMCID: PMC6163735 DOI: 10.3390/ijms19092651] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/28/2022] Open
Abstract
A variety of malignant cancers affect the global human population. Although a wide variety of approaches to cancer treatment have been studied and used clinically (surgery, radiotherapy, chemotherapy, and immunotherapy), the toxic side effects of cancer therapies have a negative impact on patients and impede progress in conquering cancer. Plant metabolites are emerging as new leads for anti-cancer drug development. This review summarizes these plant metabolites with regard to their structures and the types of cancer against which they show activity, organized by the organ or tissues in which each cancer forms. This information will be helpful for understanding the current state of knowledge of the anti-cancer effects of various plant metabolites against major types of cancer for the further development of novel anti-cancer drugs.
Collapse
|
7
|
Wei C, Chen C, Cheng Y, Zhu L, Wang Y, Luo C, He Y, Yang Z, Ji Z. Ailanthone induces autophagic and apoptotic cell death in human promyelocytic leukemia HL-60 cells. Oncol Lett 2018; 16:3569-3576. [PMID: 30127963 PMCID: PMC6096173 DOI: 10.3892/ol.2018.9101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022] Open
Abstract
Ailanthone, which is extracted from the traditional Chinese medicinal plant Ailanthus altissima, has been thoroughly demonstrated to have anti-tumor, anti-HIV, anti-inflammatory, anti-malarial, anti-allergic and anti-microbial activities. However, the anti-proliferative effects of ailanthone on HL-60 cells and potential mechanisms underlying those effects have not been reported. In the present study, we demonstrated the potent cytotoxicity of ailanthone against HL-60 cells. Annexin V-APC/7-ADD staining assay indicated that ailanthone increased the number of apoptotic cells in a dose-dependent manner. PI staining showed that ailanthone increased the percentage of G0/G1-phase cells in a dose-dependent manner. Acridine orange staining suggested that ailanthone induced the formation of acidic vesicular organelles in HL-60 cells and pretreatment with BaF-A1 could attenuate this process. Western blotting showed that ailanthone up-regulated the protein expression levels of beclin-1 and LC3-II and down-regulated those of LC3-I and p62 in a dose-dependent manner. Use of BaF-A1 showed that the anti-proliferative effects of ailanthone on HL-60 cells may be partly attributable to the induction of autophagy-mediated apoptosis by MTT assay and annexin V-APC/7-ADD staining assay.
Collapse
Affiliation(s)
- Cheng Wei
- The Cancer Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Chuanrong Chen
- Department of Oncology, Wuhu No. 2 People's Hospital, Wuhu, Anhui 241001, P.R. China
| | - Yuxin Cheng
- Department of Oncology, Wannan Medical College, Wuhu, Anhui 241003, P.R. China
| | - Lin Zhu
- Department of Oncology, Wannan Medical College, Wuhu, Anhui 241003, P.R. China
| | - Yu Wang
- Department of Oncology, Wannan Medical College, Wuhu, Anhui 241003, P.R. China
| | - Can Luo
- Department of Oncology, Wannan Medical College, Wuhu, Anhui 241003, P.R. China
| | - Yang He
- The Cancer Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Zhiming Yang
- The Cancer Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Zhaoning Ji
- The Cancer Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
8
|
Deepika S, Harishkumar R, Dinesh M, Abarna R, Anbalagan M, Roopan SM, Selvaraj CI. Photocatalytic degradation of synthetic food dye, sunset yellow FCF (FD&C yellow no. 6) by Ailanthus excelsa Roxb. possessing antioxidant and cytotoxic activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 177:44-55. [PMID: 29049940 DOI: 10.1016/j.jphotobiol.2017.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022]
Abstract
The purpose of our work is to identify the bioactive compounds of bark and leaves extract from Ailanthus excelsa Roxb. and to explore its effectiveness against synthetic food dye. The presence of primary and secondary metabolites was confirmed by carrying out phytochemicals analysis. With the prior knowledge accessible on the indispensable secondary metabolites holding antioxidant and cytotoxicity activity, the quantitative screening of total phenolic and flavonoid content in methanolic and aqueous extract of bark and leaves from Ailanthus excelsa were done. Comparatively, a higher value of flavonoid (161±0.3μg/mg) and phenolic acid content (152.4±0.14μg/mg) was found in bark extract. By FTIR analysis, the characteristic peak was obtained at 1581.63 and 1598.99cm-1 confirmed the presence of functional groups associated to flavonoids and other phenolic groups respectively. In bark extract, 81% of DPPH inhibition was observed when compared to ascorbic acid (standard) 92% of free radical scavenging activity. Bark extract from Ailanthus excelsa exhibited 71% cytotoxicity against HeLa cell line (cervical cancer). In examining the toxicity level of crude extracts with red blood cells (RBC), the bark extract was showed a very less (2.8%) haemolytic activity. They also showed maximum zone of inhibition in antibacterial activity i.e. 13±0.5mm against Escherichia coli culture. At a concentration of 10mg/mL of crude extract from A. excelsa, 55% degradation of sunset yellow dye was observed. It concludes that, the compounds present in the A. excelsa, especially the bark extract showed better photocatalytic, haemolytic, antioxidant, cytotoxicity and antibacterial activity when compared to leaves extract.
Collapse
Affiliation(s)
- Subramanyam Deepika
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Rajendran Harishkumar
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Murugesan Dinesh
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Rajadurai Abarna
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Moorthy Anbalagan
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Selvaraj Mohana Roopan
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India.
| | - Chinnadurai Immanuel Selvaraj
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Dasgupta A, Sawant MA, Kavishwar G, Lavhale M, Sitasawad S. AECHL-1 targets breast cancer progression via inhibition of metastasis, prevention of EMT and suppression of Cancer Stem Cell characteristics. Sci Rep 2016; 6:38045. [PMID: 27974826 PMCID: PMC5156909 DOI: 10.1038/srep38045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/02/2016] [Indexed: 12/30/2022] Open
Abstract
Triple negative breast cancer (TNBC) features among the most aggressive manifestations of cancer due to its enhanced metastatic potential and immunity to therapeutics which target hormone receptors. Under such scenarios, anti-cancer compounds with an ability to influence multiple targets, or an entire process, will have an advantage over specific signal transduction inhibitors. To counter the metastatic threat it is essential to target cellular components central to the processes of cancer cell migration and adaptation. Our previous work on a novel triterpenoid, AECHL-1, explored its anti-cancer potential, and linked it to elevated ER stress in cancer cells, while its anti-angiogenic potential was credited for its ability to manipulate the cytoskeleton. Here, we broaden its range of action by showing that it curbs the metastatic ability of TNBC cells, both in vitro in MDA-MB-231 cell line and in vivo, in mouse models of metastasis. AECHL-1 does so by disrupting the cytoskeletal network, and also suppressing NF-κB and β-Catenin mediated key molecular pathways. These activities also contributed to AECHL-1 mediated suppression of TGF-β/TNF-α induced Epithelial to Mesenchymal Transition (EMT) and cancer stem cell characteristic. Thus, we present AECHL-1 as a promising therapeutic inhibitor of metastatic disease.
Collapse
Affiliation(s)
- Aparajita Dasgupta
- National Centre for Cell Science, NCCS Complex, S.P. Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Mithila A. Sawant
- National Centre for Cell Science, NCCS Complex, S.P. Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Gayatri Kavishwar
- National Centre for Cell Science, NCCS Complex, S.P. Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Manish Lavhale
- Pharmazz India Private Limited, H-6, Site-C, Surajpur Industrial area, Greater Noida, UP- 201307, India
| | - Sandhya Sitasawad
- National Centre for Cell Science, NCCS Complex, S.P. Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| |
Collapse
|
10
|
Pawlik A, Szczepanski MA, Klimaszewska-Wisniewska A, Gackowska L, Zuryn A, Grzanka A. Cytoskeletal reorganization and cell death in mitoxantrone-treated lung cancer cells. Acta Histochem 2016; 118:784-796. [PMID: 27817864 DOI: 10.1016/j.acthis.2016.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
The aim of this study was to investigate the cytotoxic effect of mitoxantrone on two human non-small cell lung cancer cell lines, A549 (p53+) and H1299 (p53-). To our knowledge, this is the first study to evaluate the impact of MXT on the organization of cytoskeletal proteins. Analyses were performed using fluorescence and transmission electron microscopy, spectrophotometric techniques, flow cytometry and Western blotting. It was shown that H1299 cells are significantly more sensitive to mitoxantrone than the A549 cell line, and that the growth-inhibitory effect of the drug is dose-dependent only after longer incubation. The observed presence of ring-like microtubule structures and mitochondria surrounding the nuclei of H1299 cells could be a manifestation of increased tubulin polymerization requiring large amounts of energy, whereas the loss of actin stress fibers was presumably not the cause but rather the consequence of cell death induction. Treatment with mitoxantrone also led to the appearance of structures resembling agresomes in H1299 cells and to nucleolar segregation in both cell lines. It was demonstrated that cells arrested in the S phase were most susceptible to cell death induction, and that triggered intracellular changes led mainly to apoptosis. High concentrations induced necrosis and some H1299 cells exhibited morphological features of mitotic catastrophe.
Collapse
|
11
|
Yung MMH, Ross FA, Hardie DG, Leung THY, Zhan J, Ngan HYS, Chan DW. Bitter Melon (Momordica charantia) Extract Inhibits Tumorigenicity and Overcomes Cisplatin-Resistance in Ovarian Cancer Cells Through Targeting AMPK Signaling Cascade. Integr Cancer Ther 2016; 15:376-89. [PMID: 26487740 PMCID: PMC5689379 DOI: 10.1177/1534735415611747] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Objective Acquired chemoresistance is a major obstacle in the clinical management of ovarian cancer. Therefore, searching for alternative therapeutic modalities is urgently needed. Bitter melon (Momordica charantia) is a traditional dietary fruit, but its extract also shows potential medicinal values in human diabetes and cancers. Here, we sought to investigate the extract of bitter melon (BME) in antitumorigenic and cisplatin-induced cytotoxicity in ovarian cancer cells. METHODS Three varieties of bitter melon were used to prepare the BME. Ovarian cancer cell lines, human immortalized epithelial ovarian cells (HOSEs), and nude mice were used to evaluate the cell cytotoxicity, cisplatin resistance, and tumor inhibitory effect of BME. The molecular mechanism of BME was examined by Western blotting. RESULTS Cotreatment with BME and cisplatin markedly attenuated tumor growth in vitro and in vivo in a mouse xenograft model, whereas there was no observable toxicity in HOSEs or in nude mice in vivo Interestingly, the antitumorigenic effects of BME varied with different varieties of bitter melon, suggesting that the amount of antitumorigenic substances may vary. Studies of the molecular mechanism demonstrated that BME activates AMP-activated protein kinase (AMPK) in an AMP-independent but CaMKK (Ca(2+)/calmodulin-dependent protein kinase)-dependent manner, exerting anticancer effects through activation of AMPK and suppression of the mTOR/p70S6K and/or the AKT/ERK/FOXM1 (Forkhead Box M1) signaling cascade. CONCLUSION BME functions as a natural AMPK activator in the inhibition of ovarian cancer cell growth and might be useful as a supplement to improve the efficacy of cisplatin-based chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David W Chan
- The University of Hong Kong, Hong Kong SAR, P R China
| |
Collapse
|
12
|
Novel triterpenoid AECHL-1 induces apoptosis in breast cancer cells by perturbing the mitochondria–endoplasmic reticulum interactions and targeting diverse apoptotic pathways. Biochim Biophys Acta Gen Subj 2016; 1860:1056-70. [DOI: 10.1016/j.bbagen.2016.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 12/18/2022]
|
13
|
Yung MMH, Ngan HYS, Chan DW. Targeting AMPK signaling in combating ovarian cancers: opportunities and challenges. Acta Biochim Biophys Sin (Shanghai) 2016; 48:301-17. [PMID: 26764240 PMCID: PMC4886241 DOI: 10.1093/abbs/gmv128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/29/2015] [Indexed: 12/25/2022] Open
Abstract
The development and strategic application of effective anticancer therapies have turned out to be one of the most critical approaches of managing human cancers. Nevertheless, drug resistance is the major obstacle for clinical management of these diseases especially ovarian cancer. In the past years, substantial studies have been carried out with the aim of exploring alternative therapeutic approaches to enhance efficacy of current chemotherapeutic regimes and reduce the side effects caused in order to produce significant advantages in overall survival and to improve patients' quality of life. Targeting cancer cell metabolism by the application of AMP-activated protein kinase (AMPK)-activating agents is believed to be one of the most plausible attempts. AMPK activators such as 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside, A23187, metformin, and bitter melon extract not only prevent cancer progression and metastasis but can also be applied as a supplement to enhance the efficacy of cisplatin-based chemotherapy in human cancers such as ovarian cancer. However, because of the undesirable outcomes along with the frequent toxic side effects of most pharmaceutical AMPK activators that have been utilized in clinical trials, attentions of current studies have been aimed at the identification of replaceable reagents from nutraceuticals or traditional medicines. However, the underlying molecular mechanisms of many nutraceuticals in anticancer still remain obscure. Therefore, better understanding of the functional characterization and regulatory mechanism of natural AMPK activators would help pharmaceutical development in opening an area to intervene ovarian cancer and other human cancers.
Collapse
Affiliation(s)
- Mingo M H Yung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - David W Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Betulinic acid enhances TGF-β signaling by altering TGF-β receptors partitioning between lipid-raft/caveolae and non-caveolae membrane microdomains in mink lung epithelial cells. J Biomed Sci 2016; 23:30. [PMID: 26922801 PMCID: PMC4769553 DOI: 10.1186/s12929-016-0229-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/12/2016] [Indexed: 01/09/2023] Open
Abstract
Background TGF-β is a key modulator in the regulation of cell proliferation and migration, and is also involved in the process of cancer development and progression. Previous studies have indicated that TGF-β responsiveness is determined by TGF-β receptor partitioning between lipid raft/caveolae-mediated and clathrin-mediated endocytosis. Lipid raft/caveolae-mediated endocytosis facilitates TGF-β degradation and thus suppressing TGF-β responsiveness. By contrast, clathrin-mediated endocytosis results in Smad2/3-dependent endosomal signaling, thereby promoting TGF-β responsiveness. Because betulinic acid shares a similar chemical structure with cholesterol and has been reported to insert into the plasma membrane, we speculate that betulinic acid changes the fluidity of the plasma membrane and modulates the signaling pathway associated with membrane microdomains. We propose that betulinic acid modulates TGF-β responsiveness by changing the partitioning of TGF-β receptor between lipid-raft/caveolae and non-caveolae microdomain on plasma membrane. Methods We employed sucrose-density gradient ultracentrifugation and confocal microscopy to determine membrane localization of TGF-β receptors and used a luciferase assay to examine the effects of betulinic acid in TGF-β-stimulated promoter activation. In addition, we perform western blotting to test TGF-β-induced Smad2 phosphorylation and fibronectin production. Results and conclusions Betulinic acid induces translocation of TGF-β receptors from lipid raft/caveolae to non-caveolae microdomains without changing total level of TGF-β receptors. The betulinic acid-induced TGF-β receptors translocation is rapid and correlate with the TGF-β-induced PAI-1 reporter gene activation and growth inhibition in Mv1Lu cells. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0229-4) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
AECHL-1, a novel triterpenoid, targets tumor neo-vasculature and impairs the endothelial cell cytoskeleton. Angiogenesis 2015; 18:283-99. [PMID: 25952529 PMCID: PMC4472952 DOI: 10.1007/s10456-015-9466-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/29/2015] [Indexed: 11/26/2022]
Abstract
Tumor angiogenesis is characterized by abnormal vessel morphology leading to erratic and insufficient delivery of chemotherapeutics and oxygen, making the tumor core not only highly hypoxic but also unresponsive toward treatment. Such hypoxic conditions promote tumor aggressiveness, leading to the establishment of metastatic disease. Most anti-angiogenic treatments aim toward the destruction of tumor vasculature, which proves countereffective by further increasing its aggressive nature. Hence, developing drugs which target or regulate these processes might lead to a better delivery of chemotherapeutics resulting in tumor shrinkage. Plant-derived natural compounds having a bioactive ingredient, especially triterpenoids, have been known to possess anticancer properties. AECHL-1, a recently isolated novel triterpenoid with proven anticancer potential, is seemingly noncytotoxic toward HEK 293 and HUVECs. Also, cytotoxicity was absent during in vivo studies involving intraperitoneal injections with 5 µg/kg body weight AECHL-1 on SCID mice. When used at subtoxic doses, it was found to be effective in suppression of neo-vessel formation as demonstrated in the chick chorioallantoic membrane, rat aortic rings, Matrigel plugs and xenograft tumors implanted in SCID mice. Tumor vasculature from AECHL-1-treated mice showed greater mural cell coverage and relatively normalized architecture. Investigations into the molecular mechanisms responsible for these observations revealed an effect on the actin cytoskeleton of stimulated HUVECs as well as the VEGFR2-mediated MAPK pathway. AECHL-1 could effectively distinguish between stimulated and nonstimulated endothelial cells. AECHL-1 could also downregulate HIF-1α expression and VEGF secretion under hypoxic conditions, thus reducing the fears of unnecessarily aggravating tumor metastasis as a result of anti-angiogenic therapy. Results obtained from the aforementioned studies make it clear that though AECHL-1 shows promise in discouraging and pruning neo-vasculature, it may not affect existing vasculature as the doses used for the assays are significantly lower than the ones causing endothelial cell death and has potential to be considered as a candidate for therapeutic drug development.
Collapse
|
16
|
Dittz D, Figueiredo C, Lemos FO, Viana CTR, Andrade SP, Souza-Fagundes EM, Fujiwara RT, Salas CE, Lopes MTP. Antiangiogenesis, loss of cell adhesion and apoptosis are involved in the antitumoral activity of Proteases from V. cundinamarcensis (C. candamarcensis) in murine melanoma B16F1. Int J Mol Sci 2015; 16:7027-44. [PMID: 25826531 PMCID: PMC4425002 DOI: 10.3390/ijms16047027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 01/05/2023] Open
Abstract
The proteolytic enzymes from V. cundinamarcensis latex, (P1G10), display healing activity in animal models following various types of lesions. P1G10 or the purified isoforms act as mitogens on fibroblast and epithelial cells by stimulating angiogenesis and wound healing in gastric and cutaneous ulcers models. Based on evidence that plant proteinases act as antitumorals, we verified this effect on a murine melanoma model. The antitumoral effect analyzed mice survival and tumor development after subcutaneous administration of P1G10 into C57BL/6J mice bearing B16F1 low metastatic melanoma. Possible factors involved in the antitumoral action were assessed, i.e., cytotoxicity, cell adhesion and apoptosis in vitro, haemoglobin (Hb), vascular endothelial growth factor (VEGF), tumor growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α) content and N-acetyl-glucosaminidase (NAG) activity. We observed that P1G10 inhibited angiogenesis measured by the decline of Hb and VEGF within the tumor, and TGF-β displayed a non-significant increase and TNF-α showed a minor non-significant reduction. On the other hand, there was an increase in NAG activity. In treated B16F1 cells, apoptosis was induced along with decreased cell binding to extracellular matrix components (ECM) and anchorage, without impairing viability.
Collapse
Affiliation(s)
- Dalton Dittz
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| | - Cinthia Figueiredo
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| | - Fernanda O. Lemos
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| | - Celso T. R. Viana
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (C.T.R.V.); (S.P.A.); (E.M.S.-F.)
| | - Silvia P. Andrade
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (C.T.R.V.); (S.P.A.); (E.M.S.-F.)
| | - Elaine M. Souza-Fagundes
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (C.T.R.V.); (S.P.A.); (E.M.S.-F.)
| | - Ricardo T. Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mail:
| | - Carlos E. Salas
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +55-31-3409-2646
| | - Miriam T. P. Lopes
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| |
Collapse
|
17
|
Alves IA, Miranda HM, Soares LA, Randau KP. Simaroubaceae family: botany, chemical composition and biological activities. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2014. [DOI: 10.1016/j.bjp.2014.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Yan XJ, Gong LH, Zheng FY, Cheng KJ, Chen ZS, Shi Z. Triterpenoids as reversal agents for anticancer drug resistance treatment. Drug Discov Today 2014; 19:482-8. [DOI: 10.1016/j.drudis.2013.07.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/18/2013] [Accepted: 07/29/2013] [Indexed: 01/11/2023]
|
19
|
Campos A, Souza CB, Lhullier C, Falkenberg M, Schenkel EP, Ribeiro-do-Valle RM, Siqueira JM. Anti-tumour effects of elatol, a marine derivative compound obtained from red algae Laurencia microcladia. ACTA ACUST UNITED AC 2012; 64:1146-54. [PMID: 22775218 DOI: 10.1111/j.2042-7158.2012.01493.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This paper aims to evaluate the anti-tumour properties of elatol, a compound (sesquiterpene) isolated from algae Laurencia microcladia. METHODS In-vitro and in-vivo anti-tumour properties of elatol were investigated using: MTT assays to assess the cytotoxic effects; flow cytometry analysis to examine the cell cycle and apoptosis; Western blot analysis for determination of the expression of cell cycle and apoptosis proteins; and study of in-vivo tumour growth in mice (C57Bl6 mice bearing B16F10 cells). KEY FINDINGS Elatol exhibited a cytotoxic effect, at least in part, by inducing cell cycle arrest in the G(1) and the sub-G(1) phases, leading cells to apoptosis. Western blot analysis demonstrated that elatol reduced the expression of cyclin-D1, cyclin-E, cyclin-dependent kinase (cdk)2 and cdk4. A decrease in bcl-xl and an increase in bak, caspase-9 and p53 expression was also observed. In the in-vivo experiment, treatment with elatol was able to reduce tumour growth in C57Bl6 mice. CONCLUSIONS Elatol promotes a delay in the cell cycle, probably in the G(1)/S transition, activating the apoptotic process and this could be responsible, at least in part, for the in-vivo effects observed. Taken together, the in-vitro and in-vivo experiments suggested that elatol has anti-tumour properties. Further studies should be conducted to clarify the mechanism of action.
Collapse
Affiliation(s)
- Andreza Campos
- Department of Pharmacology Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model. PLoS One 2012; 7:e33633. [PMID: 22448259 PMCID: PMC3308985 DOI: 10.1371/journal.pone.0033633] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 02/16/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Recent understanding on cancer therapy indicated that targeting metastatic signature or angiogenic switch could be a promising and rational approach to combat cancer. Advancement in cancer research has demonstrated the potential role of various tumor suppressor proteins in inhibition of cancer progression. Current studies have shown that axonal sprouting inhibitor, semaphorin 3A (Sema 3A) acts as a potent suppressor of tumor angiogenesis in various cancer models. However, the function of Sema 3A in regulation of melanoma progression is not well studied, and yet to be the subject of intense investigation. METHODOLOGY/PRINCIPAL FINDINGS In this study, using multiple in vitro and in vivo approaches we have demonstrated that Sema 3A acts as a potent tumor suppressor in vitro and in vivo mice (C57BL/6) models. Mouse melanoma (B16F10) cells overexpressed with Sema 3A resulted in significant inhibition of cell motility, invasiveness and proliferation as well as suppression of in vivo tumor growth, angiogenesis and metastasis in mice models. Moreover, we have observed that Sema 3A overexpressed melanoma clone showed increased sensitivity towards curcumin and Dacarbazine, anti-cancer agents. CONCLUSIONS Our results demonstrate, at least in part, the functional approach underlying Sema 3A mediated inhibition of tumorigenesis and angiogenesis and a clear understanding of such a process may facilitate the development of novel therapeutic strategy for the treatment of cancer.
Collapse
|
21
|
Kim KH, Seo HS, Choi HS, Choi I, Shin YC, Ko SG. Induction of apoptotic cell death by ursolic acid through mitochondrial death pathway and extrinsic death receptor pathway in MDA-MB-231 cells. Arch Pharm Res 2011; 34:1363-72. [PMID: 21910059 DOI: 10.1007/s12272-011-0817-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/19/2011] [Accepted: 04/28/2011] [Indexed: 12/25/2022]
Abstract
Ursolic acid (3-hydroxy-urs-12-en-28-oic acid) is a pentacyclic triterpenoid derived from leaves, berries, fruits, and flowers of medicinal plants, such as Rosemarinus officinalis. Ursolic acid has been shown to inhibit tumorigenesis, tumor promotion, and suppress angiogenesis. In our present study, we found that ursolic acid decreased cell proliferation rate and induce apoptosis in human breast cancer cell line, MDA-MB-231. When we checked the expression levels of proteins associated with apoptosis signal by using immunoblotting, we found that ursolic acid induces various apoptotic molecules related to either extrinsic or intrinsic apoptosis signal pathway in MDA-MB-231 cells. In our study, we found that ursolic acid induced the appearance of Fas receptor and cleavage of caspase-8, -3 and PARP. We also found that ursolic acid induced Bax up-regulation and Bcl-2 down-regulation and release of cytochrome C to the cytosol from mitochondria. Moreover, ursolic acid cleaved caspase-9 and decreased mitochondrial membrane potential (ΔΨm) as shown with JC-1 staining. These data indicate that ursolic acid induce apoptosis through both mitochondrial death pathway and extrinsic death receptor dependent pathway in MDA-MB-231 cells. Our data clearly indicate that ursolic acid could be used as a potential anticancer drug for breast cancer.
Collapse
Affiliation(s)
- Kyung Hun Kim
- Laboratory of Clinical Biology and Pharmacogenomics and Center for Clinical Research and Genomics, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
This review covers the isolation and structure determination of triterpenoids, including squalene derivatives, protostanes, lanostanes, holostanes, cycloartanes, dammaranes, euphanes, tirucallanes, tetranortriterpenoids, quassinoids, lupanes, oleananes, friedelanes, ursanes, hopanes, serratanes and saponins; 278 references are cited.
Collapse
Affiliation(s)
- Robert A Hill
- Department of Chemistry, Glasgow University, Glasgow G128QQ, UK
| | | |
Collapse
|
23
|
Bishayee A, Ahmed S, Brankov N, Perloff M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. FRONT BIOSCI-LANDMRK 2011; 16:980-96. [PMID: 21196213 PMCID: PMC3057757 DOI: 10.2741/3730] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer remains a major cause of death in the United States as well as the rest of the world. In view of the limited treatment options for patients with advanced breast cancer, preventive and novel therapeutic approaches play an important role in combating this disease. The plant-derived triterpenoids, commonly used for medicinal purposes in many Asian countries, posses various pharmacological properties. A large number of triterpenoids are known to exhibit cytotoxicity against a variety of tumor cells as well as anticancer efficacy in preclinical animal models. Numerous triterpenoids have been synthesized by structural modification of natural compounds. Some of these analogs are considered to be the most potent antiinflammatory and anticarcinogenic triterpenoids known. This review examines the potential role of natural triterpenoids and their derivatives in the chemoprevention and treatment of mammary tumors. Both in vitro and in vivo effects of these agents and related molecular mechanisms are presented. Potential challenges and future directions involved in the advancement of these promising compounds in the prevention and therapy of human breast cancer are also identified.
Collapse
Affiliation(s)
- Anupam Bishayee
- Cancer Therapeutics and Chemoprevention Group, Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, 4209 State Route 44, Rootstown, OH 44272, USA.
| | | | | | | |
Collapse
|
24
|
Pitchakarn P, Ogawa K, Suzuki S, Takahashi S, Asamoto M, Chewonarin T, Limtrakul P, Shirai T. Momordica charantia leaf extract suppresses rat prostate cancer progression in vitro and in vivo. Cancer Sci 2010; 101:2234-40. [PMID: 20731662 PMCID: PMC11158121 DOI: 10.1111/j.1349-7006.2010.01669.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer metastasis is a major cause of death in cancer patients, with invasion as a first step greatly contributing to the failure of clinical treatments. Any compounds with an inhibitory influence on this process are therefore of prime interest. Momordica charantia (bitter melon) is widely consumed as a vegetable and especially as a folk medicine in Asia. Here, we investigated the anti-invasive effects of bitter melon leaf extract (BMLE) on a rat prostate cancer cell line (PLS10) in vitro and in vivo. The results indicated that non-toxic concentrations of BMLE significantly inhibited the migration and invasion of cells in vitro. The results of zymography showed that BMLE inhibited the secretion of MMP-2, MMP-9 and urokinase plasminogen activator (uPA) from PLS10. Real-time RT-PCR revealed that BMLE not only significantly decreased gene expression of MMP-2 and MMP-9, but also markedly increased the mRNA level of TIMP-2, known to have inhibitory effects on the activity of MMP-2. An EnzChek gelatinase/collagenase assay showed that collagenase type IV activity was partially inhibited by BMLE. In the in vivo study, intravenous inoculation of PLS10 to nude mice resulted in a 100% survival rate in the mice given a BMLE-diet as compared with 80% in the controls. The incidence of lung metastasis did not show any difference, but the percentage lung area occupied by metastatic lesions was slightly decreased in the 0.1% BMLE treatment group and significantly decreased with 1% BMLE treatment as compared with the control. Thus, the results indicate for the first time an anti-metastatic effect of BMLE both in vitro and in vivo.
Collapse
Affiliation(s)
- Pornsiri Pitchakarn
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kumar D, Bhat Z, Singh P, Shah M, Bhujbal S. Ailanthus excelsa Roxb. is Really a Plant of Heaven. INT J PHARMACOL 2010. [DOI: 10.3923/ijp.2010.535.550] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Dimethylaminopyridine derivatives of lupane triterpenoids are potent disruptors of mitochondrial structure and function. Bioorg Med Chem 2010; 18:6080-8. [DOI: 10.1016/j.bmc.2010.06.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 01/11/2023]
|