1
|
Hoff SE, Di Silvio D, Ziolo RF, Moya SE, Heinz H. Patterning of Self-Assembled Monolayers of Amphiphilic Multisegment Ligands on Nanoparticles and Design Parameters for Protein Interactions. ACS NANO 2022; 16:8766-8783. [PMID: 35603431 DOI: 10.1021/acsnano.1c08695] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functionalization of nanoparticles with specific ligands is helpful to control specific diagnostic and therapeutic responses such as protein adsorption, cell targeting, and circulation. Precision delivery critically depends on a fundamental understanding of the interplay between surface chemistry, ligand dynamics, and interaction with the biochemical environment. Due to limited atomic-scale insights into the structure and dynamics of nanoparticle-bound ligands from experiments, relationships of grafting density and ligand chemistry to observable properties such as hydrophilicity and protein interactions remain largely unknown. In this work, we uncover how self-assembled monolayers (SAMs) composed of multisegment ligands such as thioalkyl-PEG-(N-alkyl)amides on gold nanoparticles can mimic mixed hydrophobic and hydrophilic ligand coatings, including control of patterns, hydrophilicity, and specific recognition properties. Our results are derived from molecular dynamics simulations with the INTERFACE-CHARMM36 force field at picometer resolution and comparisons to experiments. Small changes in ligand hydrophobicity, via adjusting the length of the N-terminal alkyl groups, tune water penetration by multiples and control superficial ordering of alkyl chains from 0 to 70% regularity. Further parameters include the grafting density of the ligands, curvature of the nanoparticle surfaces, type of solvent, and overall ligand length, which were examined in detail. We explain the thermodynamic origin of the formation of heterogeneous patterns of multisegment ligand SAMs and illustrate how different degrees of ligand order on the nanoparticle surface affect interactions with bovine serum albumin. The resulting design principles can be applied to a variety of ligand chemistries to customize the behavior of functionalized nanoparticles in biological media and enhance therapeutic efficiency.
Collapse
Affiliation(s)
- Samuel E Hoff
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303-0596, United States
| | - Desiré Di Silvio
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramon, 182, 20009 San Sebastian, Spain
| | - Ronald F Ziolo
- Centro de Investigación en Química Aplicada, Boulevard Enrique Reyna 140, 25294 Saltillo, Coahuila, México
| | - Sergio E Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramon, 182, 20009 San Sebastian, Spain
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303-0596, United States
| |
Collapse
|
2
|
Sunnam LBK, Kondapi AK. Topoisomerase II β Gene Specific siRNA Delivery by Nanoparticles Prepared with c-ter Apotransferrin and its Effect on HIV-1 Replication. Mol Biotechnol 2021; 63:732-745. [PMID: 33993458 DOI: 10.1007/s12033-021-00334-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023]
Abstract
Topoisomerase II beta (Topo IIβ) is one of the two isoforms of type II topoisomerases present in higher eukaryotes. This 180 kDa nuclear protein involves in different cellular processes like transcription, recombination, etc., apart from its normal topological functions. Previously, we have reported the association of this isoform along with the other isoform topoisomerase II alpha (Topo IIα) with HIV-1 reverse transcription complex and the downregulation of Topo IIβ expression resulted in incomplete reverse transcription. In this study, we have tested the Topo IIβ specific siRNA delivery using protein nanoparticles prepared with c-terminal domine of transferrin (c-ter) for the first time. Results show that, c-ter nanoparticles resemble apotransferrin nanoparticles in drug holding capability and drug delivery but with small in size. Topo IIβ specific siRNA delivered in the form of c-ter nanoformulation resulted in knockdown of Topo IIβ expression for the prolonged periods and which intern resulted in decreased viral replication of HIV-1.
Collapse
Affiliation(s)
- Lokeswara Bala Krishna Sunnam
- Laboratory of Molecular Therapeutics, Department of Biotechnology and Bioinformatics, School of Life Sciences, South Campus, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500049, Telangana, India.
| | - Anand K Kondapi
- Laboratory of Molecular Therapeutics, Department of Biotechnology and Bioinformatics, School of Life Sciences, South Campus, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500049, Telangana, India
| |
Collapse
|
3
|
Yeruva SL, Kumar P, Deepa S, Kondapi AK. Lactoferrin nanoparticles coencapsulated with curcumin and tenofovir improve vaginal defense against HIV-1 infection. Nanomedicine (Lond) 2021; 16:569-586. [PMID: 33660529 DOI: 10.2217/nnm-2020-0347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: We report here the development of tenofovir- and curcumin-loaded lactoferrin nanoparticles (TCNPs) as an HIV-microbicide. Materials & methods: TCNPs were subjected to various physicochemical characterization experiments, followed by in vitro and in vivo experiments to assess their efficacy. Results: TCNPs had a diameter of 74.31 ± 2.56 nm with a gross encapsulation of more than 61% for each drug. Nanoparticles were effective against HIV-1 replication, with an IC50 of 1.75 μM for curcumin and 2.8 μM for tenofovir. TCNPs provided drug release at the application site for up to 8-12 h, with minimal leakage into the systemic circulation. TCNPs showed spermicidal activity at ≥200 μM and induced minimal cytotoxicity and inflammation in the vaginal epithelium as revealed by histopathological and ELISA studies. Conclusion: We demonstrated that TCNPs could serve as a novel anti-HIV microbicidal agent in rats. [Formula: see text].
Collapse
Affiliation(s)
- Samrajya Lakshmi Yeruva
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Prashant Kumar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.,Department of Pediatrics, The University of Tennessee Health Science Center & Le Bonheur Children's Hospital, Memphis, TN 38103, USA
| | - Seetharam Deepa
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.,Department of Urology, University of Miami, Florida, FL 33136, USA
| | - Anand K Kondapi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
4
|
Kondapi AK. Targeting cancer with lactoferrin nanoparticles: recent advances. Nanomedicine (Lond) 2020; 15:2071-2083. [PMID: 32779524 DOI: 10.2217/nnm-2020-0090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lactoferrin, an iron storage protein, is known for its microbicidal activity and its ability to modulate the immune system, mediated through specific interactions with receptors on cell surfaces for internalization. These activities confer a significant versatility to lactoferrin, presenting it as a targeting ligand to disease-bearing cells. Early efforts in developing targeted delivery systems have focused on nano- and microcomposites comprised of metal and polymeric materials. These can be targeted through conjugation or adsorption of lactoferrin to achieve recognition to receptor-expressing cells. More recently, efforts are underway to utilize lactoferrin itself as a medium in loading the therapeutic agent. The functional efficiency of drug-loaded lactoferrin nanoparticles has been evaluated in different disease conditions such as cancer, HIV, Parkinson's disease, etc. This review will present the details of composition and performance of various delivery systems designed and developed using lactoferrin as targeting agent for the treatment of cancer.
Collapse
Affiliation(s)
- Anand K Kondapi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.,Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Senapathi J, Bommakanti A, Mallepalli S, Mukhopadhyay S, Kondapi AK. Sulfonate modified Lactoferrin nanoparticles as drug carriers with dual activity against HIV-1. Colloids Surf B Biointerfaces 2020; 191:110979. [PMID: 32276212 DOI: 10.1016/j.colsurfb.2020.110979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/03/2020] [Accepted: 03/14/2020] [Indexed: 01/19/2023]
Abstract
Intriguing properties and structural dynamics of Lactoferrin have been exploited in numerous applications, including its use as self-assembling, pH sensitive nanoparticles to deliver intended cargo at the disease site. In this study, we explore the possibility of surface modification of Lactoferrin nanoparticles to hone its specificity to target HIV-1 infected cells. Existence of free cysteine groups on Lactoferrin nanoparticles available for reaction with external molecules facilitates conjugation on the surface with Sodium 2-mercaptoethanesulfonate (MES). Conjugation with MES is used to edge a negative charge that can mimic CCR5 and Heparan sulfate (initial point of contact of HIV-1 env to host cell surface) electrostatic charge (Sulfate group). A simple sono-chemical irradiation method was employed for self-assembly of Nanoparticles and for surface modification. The nanoparticles serve dual purpose to abrogate extracellular entry and to target viral enzymes, when loaded with ART drugs. The morphology and size distribution of the formed particles were explored using Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM) and Dynamic Light Scattering. Raman SERS was employed to understand the difference in the protein upon surface modification. The anti-HIV property of the particles was confirmed in-vitro. The modified device demonstrated acceptable nanoparticle properties with controlled release and higher effective concentration in the area of infection.
Collapse
Affiliation(s)
- Jagadeesh Senapathi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Akhila Bommakanti
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Suresh Mallepalli
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Satyajit Mukhopadhyay
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Anand K Kondapi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Sheykhzadeh S, Luo M, Peng B, White J, Abdalla Y, Tang T, Mäkilä E, Voelcker NH, Tong WY. Transferrin-targeted porous silicon nanoparticles reduce glioblastoma cell migration across tight extracellular space. Sci Rep 2020; 10:2320. [PMID: 32047170 PMCID: PMC7012928 DOI: 10.1038/s41598-020-59146-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mortality of glioblastoma multiforme (GBM) has not improved over the last two decades despite medical breakthroughs in the treatment of other types of cancers. Nanoparticles hold tremendous promise to overcome the pharmacokinetic challenges and off-target adverse effects. However, an inhibitory effect of nanoparticles by themselves on metastasis has not been explored. In this study, we developed transferrin-conjugated porous silicon nanoparticles (Tf@pSiNP) and studied their effect on inhibiting GBM migration by means of a microfluidic-based migration chip. This platform, designed to mimic the tight extracellular migration tracts in brain parenchyma, allowed high-content time-resolved imaging of cell migration. Tf@pSiNP were colloidally stable, biocompatible, and their uptake into GBM cells was enhanced by receptor-mediated internalisation. The migration of Tf@pSiNP-exposed cells across the confined microchannels was suppressed, but unconfined migration was unaffected. The pSiNP-induced destabilisation of focal adhesions at the leading front may partially explain the migration inhibition. More corroborating evidence suggests that pSiNP uptake reduced the plasticity of GBM cells in reducing cell volume, an effect that proved crucial in facilitating migration across the tight confined tracts. We believe that the inhibitory effect of Tf@pSiNP on cell migration, together with the drug-delivery capability of pSiNP, could potentially offer a disruptive strategy to treat GBM.
Collapse
Affiliation(s)
- Sana Sheykhzadeh
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, Brunswick Square, London, United Kingdom
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria, Australia
| | - Meihua Luo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria, Australia
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Bo Peng
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
| | - Jacinta White
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
| | - Youssef Abdalla
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, Brunswick Square, London, United Kingdom
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria, Australia
| | - Tweety Tang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria, Australia
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Ermei Mäkilä
- Industrial Physics Laboratory, Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria, Australia.
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| | - Wing Yin Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville, Victoria, Australia.
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
| |
Collapse
|
7
|
Chi X, Liu K, Luo X, Yin Z, Lin H, Gao J. Recent advances of nanomedicines for liver cancer therapy. J Mater Chem B 2020; 8:3747-3771. [DOI: 10.1039/c9tb02871d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review highlights recent advancements in nanomedicines for liver cancer therapy.
Collapse
Affiliation(s)
- Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma
- Zhongshan Hospital
- Xiamen University
- Xiamen 361004
- China
| | - Kun Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma
- Zhongshan Hospital
- Xiamen University
- Xiamen 361004
- China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
8
|
Hanna DH, Saad GR. Nanocurcumin: preparation, characterization and cytotoxic effects towards human laryngeal cancer cells. RSC Adv 2020; 10:20724-20737. [PMID: 35517737 PMCID: PMC9054308 DOI: 10.1039/d0ra03719b] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to prepare curcumin nanoparticles (nanocurcumin) by a sol-oil method to improve curcumin absorption and bioavailability, and to investigate the therapeutic effects of the prepared nanoparticles on the inhibition mechanisms towards human Hep-2 cancer cells. The nanoparticles were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, and zeta potential analysis. The prepared curcumin nanoparticles possessed a narrow particle size distribution with an average diameter of 28 nm. The inhibition effects on the growth of human Hep-2 cells were investigated using neutral red uptake and lactate dehydrogenase assays. The results indicated that the nanocurcumin has a selective effect in inhibiting Hep-2 cell growth in a dose- and time-dependent mode with the most effective IC50 value (17 ± 0.31 μg ml−1) obtained after 48 h of incubation without any cytotoxic effects on normal cells. This IC50 value of nanocurcumin revealed a significant increase of early and late apoptotic cells with an intense comet nucleus of Hep-2 cells as a marker of DNA damage. Flow cytometry analysis of the progression of apoptosis in nanocurcumin Hep-2 treated cells showed that arresting in the cell cycle in the G2/M phase with increasing apoptotic cells in the sub-G1 phase. At the same time, real-time PCR analysis indicated that the treatment of Hep-2 cells with nanocurcumin resulted in upregulation of P53, Bax, and Caspase-3, whereas there was downregulation of Bcl-XL. These findings gave insights into understanding that the inhibition mechanisms of nanocurcumin on the proliferation of Hep-2 cancer cells was through the G2/M cell cycle arrest and the induction of apoptosis was dependent on Caspase-3 and p53 activation. However, in vivo studies with an animal model are essential to validate these results. The aim of this study was to prepare curcumin nanoparticles using a sol–oil method to improve curcumin absorption and bioavailability, and to investigate the therapeutic effect of the prepared nanoparticles on the inhibition mechanisms toward human Hep-2 cancer cells.![]()
Collapse
Affiliation(s)
- Demiana H. Hanna
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza 12613
- Egypt
| | - Gamal R. Saad
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza 12613
- Egypt
| |
Collapse
|
9
|
Folate–Gold–Bilirubin Nanoconjugate Induces Apoptotic Death in Multidrug-Resistant Oral Carcinoma Cells. Eur J Drug Metab Pharmacokinet 2019; 45:285-296. [DOI: 10.1007/s13318-019-00600-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Luo M, Lewik G, Ratcliffe JC, Choi CHJ, Mäkilä E, Tong WY, Voelcker NH. Systematic Evaluation of Transferrin-Modified Porous Silicon Nanoparticles for Targeted Delivery of Doxorubicin to Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33637-33649. [PMID: 31433156 DOI: 10.1021/acsami.9b10787] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is a dire need to develop more effective therapeutics to combat brain cancer such as glioblastoma multiforme (GBM). An ideal treatment is expected to target deliver chemotherapeutics to glioma cells across the blood-brain barrier (BBB). The overexpression of transferrin (Tf) receptor (TfR) on the BBB and the GBM cell surfaces but not on the surrounding cells renders TfR a promising target. While porous silicon nanoparticles (pSiNPs) have been intensely studied as a delivery vehicle due to their high biocompatibility, degradability, and drug-loading capacity, the potential to target deliver drugs with transferrin (Tf)-functionalized pSiNPs remains unaddressed. Here, we developed and systematically evaluated Tf-functionalized pSiNPs (Tf@pSiNPs) as a glioma-targeted drug delivery system. These nanoparticles showed excellent colloidal stability and had a low toxicity profile. As compared with nontargeted pSiNPs, Tf@pSiNPs were selective to BBB-forming cells and GBM cells and were efficiently internalized through clathrin receptor-mediated endocytosis. The anticancer drug doxorubicin (Dox) was effectively loaded (8.8 wt %) and released from Tf@pSiNPs in a pH-responsive manner over 24 h. Furthermore, the results demonstrate that Dox delivered by Tf@pSiNPs induced significantly enhanced cytotoxicity to GBM cells across an in vitro BBB monolayer compared with free Dox. Overall, Tf@pSiNPs offer a potential toolbox for enabling targeted therapy to treat GBM.
Collapse
Affiliation(s)
- Meihua Luo
- Monash Institute of Pharmaceutics Science, Monash University , Parkville Campus , 381 Royal Parade , Parkville , VIC 3052 , Australia
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
| | - Guido Lewik
- Monash Institute of Pharmaceutics Science, Monash University , Parkville Campus , 381 Royal Parade , Parkville , VIC 3052 , Australia
- Faculty of Medicine , Ruhr-University Bochum , Bochum 44801 , Germany
| | - Julian Charles Ratcliffe
- Commonwealth Scientific and Industrial Research Organization (CSIRO) , Clayton , VIC 3168 , Australia
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
| | - Ermei Mäkilä
- Industrial Physics Laboratory, Department of Physics and Astronomy , University of Turku , Turku 20014 , Finland
| | - Wing Yin Tong
- Monash Institute of Pharmaceutics Science, Monash University , Parkville Campus , 381 Royal Parade , Parkville , VIC 3052 , Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) , Clayton , VIC 3168 , Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutics Science, Monash University , Parkville Campus , 381 Royal Parade , Parkville , VIC 3052 , Australia
- Department of Biomedical Engineering , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
- Commonwealth Scientific and Industrial Research Organization (CSIRO) , Clayton , VIC 3168 , Australia
- Melbourne Centre for Nanofabrication , Victorian Node of the Australian National Fabrication Facility , 151 Wellington Road , Clayton , VIC 3168 , Australia
- Materials Science and Engineering , Monash University , 14 Alliance Lane , Clayton , VIC 3800 , Australia
| |
Collapse
|
11
|
Belkahla H, Mazarío E, Sangnier AP, Lomas JS, Gharbi T, Ammar S, Micheau O, Wilhelm C, Hémadi M. TRAIL acts synergistically with iron oxide nanocluster-mediated magneto- and photothermia. Theranostics 2019; 9:5924-5936. [PMID: 31534529 PMCID: PMC6735372 DOI: 10.7150/thno.36320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/09/2019] [Indexed: 02/06/2023] Open
Abstract
Targeting TRAIL (Tumor necrosis factor (TNF)-Related Apoptosis-Inducing Ligand) receptors for cancer therapy remains challenging due to tumor cell resistance and poor preparations of TRAIL or its derivatives. Herein, to optimize its therapeutic use, TRAIL was grafted onto iron oxide nanoclusters (NCs) with the aim of increasing its pro-apoptotic potential through nanoparticle-mediated magnetic hyperthermia (MHT) or photothermia (PT). Methods: The nanovector, NC@TRAIL, was characterized in terms of size, grafting efficiency, and potential for MHT and PT. The therapeutic function was assessed on a TRAIL-resistant breast cancer cell line, MDA-MB-231, wild type (WT) or TRAIL-receptor-deficient (DKO), by combining complementary methylene blue assay and flow cytometry detection of apoptosis and necrosis. Results: Combined with MHT or PT under conditions of "moderate hyperthermia" at low concentrations, NC@TRAIL acts synergistically with the TRAIL receptor to increase the cell death rate beyond what can be explained by the mere global elevation of temperature. In contrast, all results are consistent with the idea that there are hotspots, close to the nanovector and, therefore, to the membrane receptor, which cause disruption of the cell membrane. Furthermore, nanovectors targeting other membrane receptors, unrelated to the TNF superfamily, were also found to cause tumor cell damage upon PT. Indeed, functionalization of NCs by transferrin (NC@Tf) or human serum albumin (NC@HSA) induces tumor cell killing when combined with PT, albeit less efficiently than NC@TRAIL. Conclusions: Given that magnetic nanoparticles can easily be functionalized with molecules or proteins recognizing membrane receptors, these results should pave the way to original remote-controlled antitumoral targeted thermal therapies.
Collapse
Affiliation(s)
- Hanene Belkahla
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
- Nanomedicine, Imagery and Therapeutics, EA 4662, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 Route de Gray, 25030 Besançon Cedex, France
- Lipides nutrition cancer, INSERM-UMR 1231, Université de Bourgogne Franche-Comté, UFR Science de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France
| | - Eva Mazarío
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | - Anouchka Plan Sangnier
- Laboratoire Matières et Systèmes Complexes, Université de Paris, CNRS-UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - John S. Lomas
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | - Tijani Gharbi
- Nanomedicine, Imagery and Therapeutics, EA 4662, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 Route de Gray, 25030 Besançon Cedex, France
| | - Souad Ammar
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | - Olivier Micheau
- Lipides nutrition cancer, INSERM-UMR 1231, Université de Bourgogne Franche-Comté, UFR Science de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France
| | - Claire Wilhelm
- Laboratoire Matières et Systèmes Complexes, Université de Paris, CNRS-UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Miryana Hémadi
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| |
Collapse
|
12
|
Choudhury H, Pandey M, Chin PX, Phang YL, Cheah JY, Ooi SC, Mak KK, Pichika MR, Kesharwani P, Hussain Z, Gorain B. Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends. Drug Deliv Transl Res 2018; 8:1545-1563. [PMID: 29916012 DOI: 10.1007/s13346-018-0552-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Treatment of glioblastoma multiforme (GBM) is a predominant challenge in chemotherapy due to the existence of blood-brain barrier (BBB) which restricts delivery of chemotherapeutic agents to the brain together with the problem of drug penetration through hard parenchyma of the GBM. With the structural and mechanistic elucidation of the BBB under both physiological and pathological conditions, it is now viable to target central nervous system (CNS) disorders utilizing the presence of transferrin (Tf) receptors (TfRs). However, overexpression of these TfRs on the GBM cell surface can also help to avoid restrictions of GBM cells to deliver chemotherapeutic agents within the tumor. Therefore, targeting of TfR-mediated delivery could counteract drug delivery issues in GBM and create a delivery system that could cross the BBB effectively to utilize ligand-conjugated drug complexes through receptor-mediated transcytosis. Hence, approach towards successful delivery of antitumor agents to the gliomas has been making possible through targeting these overexpressed TfRs within the CNS and glioma cells. This review article presents a thorough analysis of current understanding on Tf-conjugated nanocarriers as efficient drug delivery system.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Pei Xin Chin
- School of Pharmacy, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Yee Lin Phang
- School of Pharmacy, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Jeng Yuen Cheah
- School of Pharmacy, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Shu Chien Ooi
- School of Pharmacy, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Kit-Kay Mak
- School of Postgraduate Studies and Research, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000, Kuala Lumpur, Malaysia.,Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Prashant Kesharwani
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Malaysia
| | - Bapi Gorain
- Faculty of Pharmacy, Lincoln University College, Petalling Jaya, 47301, Kuala Lumpur, Selangor, Malaysia
| |
Collapse
|
13
|
Kumari S, Bhattacharya D, Rangaraj N, Chakarvarty S, Kondapi AK, Rao NM. Aurora kinase B siRNA-loaded lactoferrin nanoparticles potentiate the efficacy of temozolomide in treating glioblastoma. Nanomedicine (Lond) 2018; 13:2579-2596. [DOI: 10.2217/nnm-2018-0110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To investigate the efficacy of lactoferrin nanoparticles (LfNPs) in delivering siRNA across the blood–brain barrier to treat glioblastoma multiforme (GBM) and with an additional objective of potentiation of conventional temozolomide (TMZ) chemotherapy. Methods: Aurora kinase B (AKB) siRNA-loaded nanoparticles (AKB–LfNPs) were prepared with milk protein, lactoferrin, by water in oil emulsion method. AKB–LfNPs were tested in cell lines and in GBM orthotopic mouse model with and without TMZ treatment. Results: AKB silencing, cytotoxicity and cell cycle arrest by these LfNPs were shown to be effective on GL261 cells. Tumor growth was significantly lower in AKB–LfNPs alone and in combination with TMZ treated mice and increased the survival by 2.5-times. Conclusion: Treatment of AKB–LfNPs to GBM mice improves life expectancy and has potential to combine with conventional chemotherapy.
Collapse
Affiliation(s)
- Sonali Kumari
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500 046, Telangana State, India
| | - Dwaipayan Bhattacharya
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Council of Scientific & Industrial Research, Uppal Road, Hyderabad 500 007, Telangana State, India
| | - Nandini Rangaraj
- Centre for Cellular & Molecular Biology (CCMB), Council of Scientific & Industrial Research (CSIR), Uppal Road, Hyderabad 500007, Telangana State, India
| | - Sumana Chakarvarty
- Centre for Cellular & Molecular Biology (CCMB), Council of Scientific & Industrial Research (CSIR), Uppal Road, Hyderabad 500007, Telangana State, India
| | - Anand K Kondapi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500 046, Telangana State, India
| | - Nalam M Rao
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Council of Scientific & Industrial Research, Uppal Road, Hyderabad 500 007, Telangana State, India
| |
Collapse
|
14
|
Madugulla L, Ravula AR, Kondapi AK, Yenugu S. Evaluation of the reproductive toxicity of antiretroviral drug loaded lactoferrin nanoparticles. Syst Biol Reprod Med 2018; 65:205-213. [PMID: 30260720 DOI: 10.1080/19396368.2018.1519047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multiple prevention therapy has gained importance for the prevention and treatment of sexually transmitted diseases, especially HIV/AIDS. Antiretroviral drugs encapsulated in nanoparticles have been developed for efficient delivery of the drugs to the vaginal surface. Lactoferrin nanoparticles (LFNPs) encapsulating anticancer or antiretroviral drugs are found to be promising agents to specifically deliver drugs at the target sites. Recent studies indicate that the bioavailability is higher for antiretroviral drugs delivered by LFNPs than when the drugs are administered alone. Although LFNP-mediated drug delivery via the oral or vaginal route for the treatment of HIV/AIDS is promising, the effect of such administrations is not well studied. Drug-loaded LFNPs when administered to rats by the vaginal route did not show any effect on the reproductive performance, fertility, and postnatal development. Oral administration of drug-loaded LFNPs caused a significant decrease in litter size, whereas the reproductive performance and postnatal development remained normal. In our model system, the results indicate that vaginal administration of drug-loaded LFNPs appears safer and can be projected for the delivery of antiretroviral agents via the vaginal route. Abbreviations: LFNPs: lactoferrin nanoparticles; STIs: sexually transmitted diseases infections; NPs: nanoparticles; LF: lactoferrin; DL-LFNPs: drug loaded lactoferrin nanoparticles; MPT: multiple prevention techniques.
Collapse
Affiliation(s)
- Lavanya Madugulla
- a Department of Animal Biology, School of Life Sciences , University of Hyderabad , Hyderabad , India
| | - Anandha Rao Ravula
- a Department of Animal Biology, School of Life Sciences , University of Hyderabad , Hyderabad , India
| | - Anand Kumar Kondapi
- b Department of Biotechnology and Bioinformatics, School of Life Sciences , University of Hyderabad , Hyderabad , India
| | - Suresh Yenugu
- a Department of Animal Biology, School of Life Sciences , University of Hyderabad , Hyderabad , India
| |
Collapse
|
15
|
Ahmed F, Kumari S, Kondapi AK. Evaluation of Antiproliferative Activity, Safety and Biodistribution of Oxaliplatin and 5-Fluorouracil Loaded Lactoferrin Nanoparticles for the Management of Colon Adenocarcinoma: an In Vitro and an In Vivo Study. Pharm Res 2018; 35:178. [DOI: 10.1007/s11095-018-2457-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
|
16
|
Kumari S, Kondapi AK. Receptor-mediated targeted delivery of DNA using Lactoferrin nanoparticles. Int J Biol Macromol 2018; 108:401-407. [DOI: 10.1016/j.ijbiomac.2017.11.160] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 11/16/2022]
|
17
|
Lu J, Wang J, Ling D. Surface Engineering of Nanoparticles for Targeted Delivery to Hepatocellular Carcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702037. [PMID: 29251419 DOI: 10.1002/smll.201702037] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/24/2017] [Indexed: 05/20/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-associated deaths worldwide. There is a lack of efficient therapy for HCC; the only available first-line systemic drug, sorafenib, can merely improve the average survival by two months. Among the efforts to develop an efficient therapy for HCC, nanomedicine has drawn the most attention, owing to its unique features such as high drug-loading capacity, intrinsic anticancer activities, integrated diagnostic and therapeutic functionalities, and easy surface engineering with targeting ligands. Despite its tremendous advantages, no nanomedicine can be effective unless it successfully targets the tumor site, which is a challenging task. In this review, the features of HCC are described, and the physiological hurdles that prevent nanoparticles from targeting HCC are discussed. Then, the surface physicochemical factors of nanoparticles that can influence targeting efficiency are discussed. Finally, a thorough description of the physiological barriers that nanomedicine must conquer before uptake by HCC cells if possible is provided, as well as the surface engineering approaches to nanomedicine to achieve targeted delivery to HCC cells. The physiological hurdles and corresponding solutions summarized in this review provide a general guide for the rational design of HCC targeting nanomedicine systems.
Collapse
Affiliation(s)
- Jingxiong Lu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, and Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Jin Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, and Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, and Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
18
|
Reddy KRS, Kumar V, Prasad MNV, Kumar NS. Moringa oleifera (drumstick tree) seed coagulant protein (MoCP) binds cadmium - preparation and characterization of nanoparticles. EUROBIOTECH JOURNAL 2017. [DOI: 10.24190/issn2564-615x/2017/04.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Moringa oleifera is grown globally. It is a multipurpose tree and the seeds are rich in phytochemicals with antimicrobial activities. The crude powder of seeds clarify the turbid and metal contaminated water. M. oleifera (drumstick tree) seed coagulant protein (MoCP) was isolated to homogeneity from the crude extracts by carboxymethyl cellulose chromatography (CMC) and gel filtration. The molecular weight of the protein on gel filtration was 13 kDa and in SDS-PAGE it migrated as a single band under reducing conditions with molecular mass of 6.5 kDa (dimeric). Immobilized MoCP selectively binds cadmium from aqueous solutions (pH 2.0-7.0) with maximum binding at pH 6.0 in 180 min when tested at 10-600 minutes. It also bound the metal in the concentration range of 30-70mgL-1. The adsorption kinetics was better described by pseudo second order and the data better explained by freundlich isotherm model than Langmuir isotherm model as in Freundlich model the correlation coefficient (R2) is high and the calculated qmax is very close to the experimental qmax rather than Langmuir isotherm model. Furthermore, the nanoparticles of MoCP were prepared and characterized using transmission electron microscopy (TEM). The authenticity of the isolated protein and the nanopraticles prepared was confirmed by specific reactivity with the MoCP antibody raised earlier in our laboratory.
Collapse
Affiliation(s)
- Konada R. S. Reddy
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad , India
| | - Vinay Kumar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad , India
| | - Majeti N. V. Prasad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad , India
| | - Nadimpalli S. Kumar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad , India
| |
Collapse
|
19
|
Wang X, Gu X, Wang H, Sun Y, Wu H, Mao S. Synthesis, characterization and liver targeting evaluation of self-assembled hyaluronic acid nanoparticles functionalized with glycyrrhetinic acid. Eur J Pharm Sci 2017; 96:255-262. [DOI: 10.1016/j.ejps.2016.09.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/08/2016] [Accepted: 09/26/2016] [Indexed: 01/16/2023]
|
20
|
Adimoolam MG, A. V, Nalam MR, Sunkara MV. Chlorin e6 loaded lactoferrin nanoparticles for enhanced photodynamic therapy. J Mater Chem B 2017; 5:9189-9196. [DOI: 10.1039/c7tb02599h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The LeN NPs of Lf and Ce6 enhanced the intracellular delivery of the PS improving photo-induced cell death compared to free PS.
Collapse
Affiliation(s)
- Mahesh G. Adimoolam
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
- AcSIR-Council of Scientific and Industrial Research
- India
| | | | | | | |
Collapse
|
21
|
Kumar P, Lakshmi YS, Kondapi AK. An oral formulation of efavirenz-loaded lactoferrin nanoparticles with improved biodistribution and pharmacokinetic profile. HIV Med 2016; 18:452-462. [DOI: 10.1111/hiv.12475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 01/17/2023]
Affiliation(s)
- P Kumar
- Department of Biotechnology and Bioinformatics; School of Life Sciences; University of Hyderabad; Hyderabad India
| | - YS Lakshmi
- Department of Biotechnology and Bioinformatics; School of Life Sciences; University of Hyderabad; Hyderabad India
| | - AK Kondapi
- Department of Biotechnology and Bioinformatics; School of Life Sciences; University of Hyderabad; Hyderabad India
| |
Collapse
|
22
|
Kumar P, Lakshmi YS, Kondapi AK. Triple Drug Combination of Zidovudine, Efavirenz and Lamivudine Loaded Lactoferrin Nanoparticles: an Effective Nano First-Line Regimen for HIV Therapy. Pharm Res 2016; 34:257-268. [PMID: 27928647 DOI: 10.1007/s11095-016-2048-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE To enhance efficacy, bioavailability and reduce toxicity of first-line highly active anti-retroviral regimen, zidovudine + efavirenz + lamivudine loaded lactoferrin nanoparticles were prepared (FLART-NP) and characterized for physicochemical properties, bioactivity and pharmacokinetic profile. METHODS Nanoparticles were prepared using sol-oil protocol and characterized using different sources such as FE-SEM, AFM, NanoSight, and FT-IR. In-vitro and in-vivo studies have been done to access the encapsulation-efficiency, cellular localization, release kinetics, safety analysis, biodistribution and pharmacokinetics. RESULTS FLART-NP with a mean diameter of 67 nm (FE-SEM) and an encapsulation efficiency of >58% for each drug were prepared. In-vitro studies suggest that FLART-NP deliver the maximum of its payload at pH5 with a minimum burst release throughout the study period with negligible toxicity to the erythrocytes plus improved in-vitro anti-HIV activity. FLART-NP has improved the in-vivo pharmacokinetics (PK) profiles over the free drugs; an average of >4fold increase in AUC and AUMC, 30% increase in the Cmax, >2fold in the half-life of each drug. Biodistribution data suggest that FLART-NP has improved the bioavailability of all drugs with less tissue-related inflammation as suggested with histopathological evaluation CONCLUSIONS: The triple-drug loaded nanoparticles have various advantages against soluble (free) drug combination in terms of enhanced bioavailability, improved PK profile and diminished drug-associated toxicity.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yeruva Samrajya Lakshmi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Anand K Kondapi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
23
|
Lactoferrin nanoparticle mediated targeted delivery of 5-fluorouracil for enhanced therapeutic efficacy. Int J Biol Macromol 2016; 95:232-237. [PMID: 27864056 DOI: 10.1016/j.ijbiomac.2016.10.110] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/28/2016] [Accepted: 10/29/2016] [Indexed: 01/15/2023]
Abstract
Malignant melanoma is an aggressive form of skin cancer with high mortality rates. Common treatments for malignant melanoma involve a combination of radiotherapy and chemotherapy with fluorouracil (5-FU). A major challenge with melanoma treatment is active resistance to chemotherapeutic drugs. Superior treatment outcome lies on balance involving optimum therapeutic doses and the side effects associated with dose escalation. The study aimed to efficiently entrap 5-FU in lactoferrin nanoparticles (LfNPs) in an attempt to enhance its therapeutic efficacy. 5-FU loaded lactoferrin nanoparticles (5-FU-LfNPs) were prepared by sol-oil method with a narrow size distribution of 150±20nm 5-FU-LfNPs exhibits high encapsulation efficiency (64±2.3%) and increased storage stability at 4°C. Competitive ligand binding and lysosomal colocalization studies suggested a receptor mediated uptake for LfNPs internalization in B16F10 cells. Moreover, 5-FU-LfNPs show a pH dependent drug release similar to endosomal pH (pH 5 and 6). In addition compared to free 5-FU, 5-FU- LfNPs showed a higher intracellular uptake, prolonged retention and improved cytotoxicity (2.7-fold) in melanoma cells (B16F10). To conclude, LfNPs represent a superior nano-carrier for the targeted delivery of 5-FU in melanoma cells intended for the efficient treatment of melanoma though detailed in vivo investigations are warranted.
Collapse
|
24
|
Li M, Zhang W, Wang B, Gao Y, Song Z, Zheng QC. Ligand-based targeted therapy: a novel strategy for hepatocellular carcinoma. Int J Nanomedicine 2016; 11:5645-5669. [PMID: 27920520 PMCID: PMC5127222 DOI: 10.2147/ijn.s115727] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with high morbidity and mortality worldwide. Chemotherapy is recommended to patients with intermediate or advanced stage cancer. However, the conventional chemotherapy yields low desired response rates due to multidrug resistance, fast clearance rate, nonspecific delivery, severe side effects, low drug concentration in cancer cells, and so on. Nanoparticle-mediated targeted drug delivery system can surmount the aforementioned obstacles through enhanced permeability and retention effect and active targeting as a novel approach of therapeutics for HCC in recent years. The active targeting is triggered by ligands on the delivery system, which recognize with and internalize into hepatoma cells with high specificity and efficiency. This review focuses on the latest targeted delivery systems for HCC and summarizes the ligands that can enhance the capacity of active targeting, to provide some insight into future research in nanomedicine for HCC.
Collapse
Affiliation(s)
- Min Li
- Department of Hepatobiliary Surgery, Union Hospital
| | - Weiyue Zhang
- The First Clinic Institute, Tongji Medical College, Huazhong University of Science and Technology
| | - Birong Wang
- Department of Breast and Thyroid Surgery, Puai Hospital, Wuhan, The People’s Republic of China
| | - Yang Gao
- Department of Hepatobiliary Surgery, Union Hospital
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital
| | | |
Collapse
|
25
|
Triple combination MPT vaginal microbicide using curcumin and efavirenz loaded lactoferrin nanoparticles. Sci Rep 2016; 6:25479. [PMID: 27151598 PMCID: PMC4858693 DOI: 10.1038/srep25479] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/19/2016] [Indexed: 11/09/2022] Open
Abstract
We report that a combination of anti-HIV-1 drug efavirenz (EFV), anti-microbial-spermicidal curcumin (Cur) and lactoferrin nanoparticles (ECNPs) act as MPT formulation. These nanoparticles are of well dispersed spherical shape with 40–70 nm size, with encapsulation efficiency of 63 ± 1.9% of Cur & 61.5% ± 1.6 of EFV, significantly higher than that of single drug nanoparticles (Cur, 59 ± 1.34%; EFV: 58.4 ± 1.79). ECNPs were found to be sensitive at pH 5 and 6 and have not effected viability of vaginal micro-flora, Lactobacillus. Studies in rats showed that ECNPs delivers 88–124% more drugs in vaginal lavage as compared to its soluble form, either as single or combination of EFV and Cur. The ECNPs also shows 1.39–4.73 fold lower concentration of absorption in vaginal tissue and plasma compared to soluble EFV + Cur. Furthermore, ECNPs show significant reduction in inflammatory responses by 1.6–3.0 fold in terms of IL-6 and TNF-α in vaginal tissue and plasma compared to soluble EFV + Cur. ECNPs showed improved pharmacokinetics profiles in vaginal lavage with more than 50% of enhancement in AUC, AUMC, Cmax and t1/2 suggesting longer exposure of Cur and EFV in vaginal lavage compared to soluble EFV + Cur. Histopathological analysis of vaginal tissue shows remarkably lower toxicity of ECNPs compared to soluble EFV + Cur. In conclusion, ECNPs are significantly safe and exhibit higher bioavailability thus constitute an effective MPT against HIV.
Collapse
|
26
|
Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochem Int 2016; 95:37-45. [DOI: 10.1016/j.neuint.2016.01.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/28/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022]
|
27
|
Hai J, Serradji N, Mouton L, Redeker V, Cornu D, El Hage Chahine JM, Verbeke P, Hémadi M. Targeted Delivery of Amoxicillin to C. trachomatis by the Transferrin Iron Acquisition Pathway. PLoS One 2016; 11:e0150031. [PMID: 26919720 PMCID: PMC4768884 DOI: 10.1371/journal.pone.0150031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/08/2016] [Indexed: 01/13/2023] Open
Abstract
Weak intracellular penetration of antibiotics makes some infections difficult to treat. The Trojan horse strategy for targeted drug delivery is among the interesting routes being explored to overcome this therapeutic difficulty. Chlamydia trachomatis, as an obligate intracellular human pathogen, is responsible for both trachoma and sexually transmitted diseases. Chlamydia develops in a vacuole and is therefore protected by four membranes (plasma membrane, bacterial inclusion membrane, and bacterial membranes). In this work, the iron-transport protein, human serum-transferrin, was used as a Trojan horse for antibiotic delivery into the bacterial vacuole. Amoxicillin was grafted onto transferrin. The transferrin-amoxicillin construct was characterized by mass spectrometry and absorption spectroscopy. Its affinity for transferrin receptor 1, determined by fluorescence emission titration [KaffTf-amox = (1.3 ± 1.0) x 108], is very close to that of transferrin [4.3 x 108]. Transmission electron and confocal microscopies showed a co-localization of transferrin with the bacteria in the vacuole and were also used to evaluate the antibiotic capability of the construct. It is significantly more effective than amoxicillin alone. These promising results demonstrate targeted delivery of amoxicillin to suppress Chlamydia and are of interest for Chlamydiaceae and maybe other intracellular bacteria therapies.
Collapse
Affiliation(s)
- Jun Hai
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Nawal Serradji
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Ludovic Mouton
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Virginie Redeker
- Paris-Saclay Institute of Neuroscience, CNRS-UMR 9197, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - David Cornu
- Service d’Identification et de Caractérisation des Protéines, CNRS-UMR 9198, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Jean-Michel El Hage Chahine
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
- * E-mail: (MH); (JEHC); (PV)
| | - Philippe Verbeke
- UMR 1149 Inserm, Université Paris Diderot, Sorbonne Paris Cité, ERL-CNRS 8252, Faculté de Médecine, site Bichat, 16 rue Henri Huchard, 75018 Paris, France
- * E-mail: (MH); (JEHC); (PV)
| | - Miryana Hémadi
- ITODYS, Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
- * E-mail: (MH); (JEHC); (PV)
| |
Collapse
|
28
|
Varshosaz J, Farzan M. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma. World J Gastroenterol 2015; 21:12022-12041. [PMID: 26576089 PMCID: PMC4641122 DOI: 10.3748/wjg.v21.i42.12022] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/31/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein, ganglioside GM1 cell surface ligand, epidermal growth factor receptor receptors, monoclonal antibodies, retinoic acid receptors, integrin receptors targeted by Arg-Gly-Asp peptide, folate, and transferrin receptors are the most widely studied cell surface receptors which are used for the site specific delivery of drugs and siRNA-based therapeutics in HCC and discussed in detail in this article.
Collapse
|
29
|
Kumar P, Lakshmi YS, C. B, Golla K, Kondapi AK. Improved Safety, Bioavailability and Pharmacokinetics of Zidovudine through Lactoferrin Nanoparticles during Oral Administration in Rats. PLoS One 2015; 10:e0140399. [PMID: 26461917 PMCID: PMC4604150 DOI: 10.1371/journal.pone.0140399] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/24/2015] [Indexed: 11/19/2022] Open
Abstract
Zidovudine (AZT) is one of the most referred antiretroviral drug. In spite of its higher bioavailability (50–75%) the most important reason of its cessation are bone marrow suppression, anemia, neutropenia and various organs related toxicities. This study aims at the improvement of oral delivery of AZT through its encapsulation in lactoferrin nanoparticles (AZT-lactonano). The nanoparticles (NPs) are of 50–60 nm in size and exhibit 67% encapsulation of the AZT. They are stable in simulated gastric and intestinal fluids. Anti-HIV-1 activity of AZT remains unaltered in nanoformulation in acute infection. The bioavailability and tissue distribution of AZT is higher in blood followed by liver and kidney. AZT-lactonano causes the improvement of pharmacokinetic profile as compared to soluble AZT; a more than 4 fold increase in AUC and AUMC in male and female rats. The serum Cmax for AZT-lactonano was increased by 30%. Similarly there was nearly 2-fold increase in Tmax and t1/2. Our in vitro study confirms that, the endosomal pH is ideal for drug release from NPs and shows constant release from up to 96h. Bone marrow micronucleus assay show that nanoformulation exhibits approximately 2fold lower toxicity than soluble form. Histopathological and biochemical analysis further confirms that less or no significant organ toxicities when nanoparticles were used. AZT-lactonano has shown its higher efficacy, low organs related toxicities, improved pharmacokinetics parameter while keeping the antiviral activity intact. Thus, the nanoformulation are safe for the target specific drug delivery.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yeruva Samrajya Lakshmi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Bhaskar C.
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kishore Golla
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Anand K. Kondapi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
- * E-mail:
| |
Collapse
|
30
|
Costa Lima SA, Reis S. Temperature-responsive polymeric nanospheres containing methotrexate and gold nanoparticles: A multi-drug system for theranostic in rheumatoid arthritis. Colloids Surf B Biointerfaces 2015; 133:378-87. [DOI: 10.1016/j.colsurfb.2015.04.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/20/2015] [Accepted: 04/22/2015] [Indexed: 12/23/2022]
|
31
|
Badrealam KF, Owais M. Nano-Sized Drug Delivery Systems: Development and Implication in Treatment of Hepatocellular Carcinoma. Dig Dis 2015; 33:675-82. [PMID: 26398762 DOI: 10.1159/000438497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Liver cancer results in enormous human toll worldwide. Over the years, various chemotherapeutic entities have been employed for treatment of advanced HCC; however, as of yet none embody attributes to improve overall survival. Following rapid advancement in nanotechnology, it is envisage that nanoscale systems may emerge as intriguing platforms to improve chemotherapeutic strategies against various cancers including liver cancer; with better insight in the understanding of pathophysiology of liver cancer and material science, the field of nanotechnology may bring newer hope to liver cancer treatment. Reckoning with these, we detailed the arsenal of nanoformulations that are in various stages of clinical development/ preclinical settings for the treatment of liver cancer together with providing a glimpse of the attributes of nanotechnology in revolutionizing the status of chemotherapeutic modalities.
Collapse
|
32
|
Maleklou N, Allameh A, Kazemi B. Preparation, characterization and in vitro-targeted delivery of novel Apolipoprotein E-based nanoparticles to C6 glioma with controlled size and loading efficiency. J Drug Target 2015; 24:348-58. [PMID: 26302967 DOI: 10.3109/1061186x.2015.1077849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Apolipoprotein E (APOE) with its extraordinary features is readily assembled with hydrophobic compounds via its compact hydrophobic units (CHUs). These assemblies can then be converted to stable particles by protein-protein interactions via coiled coil regions (CCRs) which exist in APOE structure. Applying these features of APOE, we prepared novel nanoparticles called NAPOE, using no cross-linker. Vitamin D3 - a hydrophobic antitumor model - was loaded within the nanoparticles (NPs). The NPs were mostly spherical with the mean diameter and zeta potential of 94.39 ± 5.71 nm and -20 ± 0.3 mV, respectively. The molar ratio of VD3/APOE in NPs was 37.2 ± 0.61. The NPs targeted C6 glioma cells in vitro via over-expressed LDLRs. The efficiency of the NPs uptake to malignant C6 glioma cells was remarkable compared to non-tumor glial cells (p < 0.05). The releasing rate of hydrophobic cargo from the particles was high (p < 0.05) and reached to maximum, 12 h after targeting C6 cells. The size and drug loading of NPs were found to be controlled by the definite numbers of CCRs and CHUs in APOE. In conclusion, it is suggested that NAPOE NPs can facilitate the controlled delivery of hydrophobic drugs to the malignant C6 glioma cells according to the degree of invasiveness.
Collapse
Affiliation(s)
- Nargess Maleklou
- a Medical Physics and Biomedical Engineering Department, Shaheed Beheshti Medical University , Tehran , Iran
| | - Abdolamir Allameh
- b Department of Biochemistry, Medical Faculty , Tarbiat Modares University , Tehran , Iran
| | - Bahram Kazemi
- c Cellular and Molecular Biology Research Center, Shaheed Beheshti , Tehran , Iran , and.,d Department of Biotechnology , School of Advanced Technologies in Medicine, Shaheed Beheshti Medical University , Tehran , Iran
| |
Collapse
|
33
|
Ahmed F, Ali MJ, Kondapi AK. Carboplatin loaded protein nanoparticles exhibit improve anti-proliferative activity in retinoblastoma cells. Int J Biol Macromol 2014; 70:572-82. [PMID: 25088498 DOI: 10.1016/j.ijbiomac.2014.07.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 12/22/2022]
Abstract
Retinoblastoma, a common neoplasm of eye in children accounts about 9-10% of all paediatric cancer. Carboplatin (carbo) is preferred chemotherapeutic regimen. In this study the prospective of carboplatin loaded apotranferrin (Apo-nano-carbo) and lactoferrin (Lacto-nano-carbo) nanoparticles have been demonstrated for the treatment of retinoblastoma. Apo-nano-carbo and Lacto-nano-carbo were prepared by sol-oil method (as a patented formula) with size of 82-92 nm and 68-81 nm, hydrodynamic size were 142±15 nm and 263±20 nm, encapsulation efficiency were 50%±2.3 and 52%±3.9 respectively. Results of pH dependent-drug release and receptor-blocking assay showed that nanoparticles may deliver drug through receptor mediated endocytosis. The carboplatin loaded nanoparticles shows greater intracellular uptake, sustained retention and thus, high anti-proliferative activity (Apo-nano-carbo IC50=4.31 μg ml(-1), Lacto-nano-carbo IC50=4.16 μg ml(-1), Sol-carbo IC50=13.498 μg ml(-1)) into the retinoblastoma cells compared to their soluble counterpart.
Collapse
Affiliation(s)
- Farhan Ahmed
- Department Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, India
| | | | - Anand K Kondapi
- Department Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, India.
| |
Collapse
|
34
|
Narayanan S, Pavithran M, Viswanath A, Narayanan D, Mohan CC, Manzoor K, Menon D. Sequentially releasing dual-drug-loaded PLGA-casein core/shell nanomedicine: design, synthesis, biocompatibility and pharmacokinetics. Acta Biomater 2014; 10:2112-24. [PMID: 24389318 DOI: 10.1016/j.actbio.2013.12.041] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 12/02/2013] [Accepted: 12/17/2013] [Indexed: 12/17/2022]
Abstract
The present study reports an engineered poly-l-lactide-co-glycolic acid (PLGA)-casein polymer-protein hybrid nanocarrier 190±12nm in size entrapping a combination of chemically distinct (hydrophobic/hydrophilic) model drugs. A simple emulsion-precipitation route was adopted to prepare nearly monodispersed nanoparticles with distinct core/shell morphology entrapping paclitaxel (Ptx) in the core and epigallocatechin gallate (EGCG) in the shell, with the intention of providing a sequential and sustained release of these drugs. The idea was that an early release of EGCG would substantially increase the sensitivity of Ptx to cancer, thereby providing improved therapeutics at lower concentrations, with less toxicity. The hemo- and immunocompatibility of the core/shell nanomedicine was established in this study. The core/shell nanoparticles injected via the tail vein in Sprague-Dawley rats did not reveal any organ toxicity as was evident from histopathological evaluations of the major organs. In vivo pharmacokinetic studies in rats by high-performance liquid chromatography confirmed a sustained and sequential release of both the drugs in plasma, indicating prolonged circulation of the nanomedicine and enhanced availability of the drugs when compared to the bare drugs. Overall, the polymer-protein multilayered nanoparticles proved to be a promising platform for nanopolypharmaceutics.
Collapse
Affiliation(s)
- Sreeja Narayanan
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, Kerala, India
| | - Maya Pavithran
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, Kerala, India
| | - Aiswarya Viswanath
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, Kerala, India
| | - Dhanya Narayanan
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, Kerala, India
| | - Chandini C Mohan
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, Kerala, India
| | - K Manzoor
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, Kerala, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, Kerala, India.
| |
Collapse
|
35
|
Khandelia R, Jaiswal A, Ghosh SS, Chattopadhyay A. Gold nanoparticle-protein agglomerates as versatile nanocarriers for drug delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3494-3505. [PMID: 23447544 DOI: 10.1002/smll.201203095] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/28/2013] [Indexed: 06/01/2023]
Abstract
The fabrication of a versatile nanocarrier based on agglomerated structures of gold nanoparticle (Au NP)-lysozyme (Lyz) in aqueous medium is reported. The carriers exhibit efficient loading capacities for both hydrophilic (doxorubicin) and hydrophobic (pyrene) molecules. The nanocarriers are finally coated with an albumin layer to render them stable and also facilitate their uptake by cancer cells. The interaction between agglomerated structures and the payloads is non-covalent. Cell viability assay in vitro showed that the nanocarriers by themselves are non-cytotoxic, whereas the doxorubicin-loaded ones are cytotoxic, with efficiencies higher than that of the free drug. Transmission electron microscopy and fluorescence microscopy along with flow cytometry analysis confirm the uptake of the drug-loaded nanocarriers by a human cervical cancer HeLa cell line. Field-emission scanning electron microscopy reveals the formation of apoptotic bodies leading to cell death, confirming the release of the payloads from the nanocarriers into the cell. Overall, the findings suggest the fabrication of novel Au NP-protein agglomerate-based nanocarriers with efficient drug-loading and -releasing capabilities, enabling them to act as multimodal drug-delivery vehicles.
Collapse
Affiliation(s)
- Rumi Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India, Phone: +91-361-258 2304; Fax: +91-361-258-2349
| | | | | | | |
Collapse
|
36
|
Golla K, Bhaskar C, Ahmed F, Kondapi AK. A target-specific oral formulation of Doxorubicin-protein nanoparticles: efficacy and safety in hepatocellular cancer. J Cancer 2013; 4:644-52. [PMID: 24155776 PMCID: PMC3805992 DOI: 10.7150/jca.7093] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/03/2013] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND/AIMS Hepatocellular carcinoma (HCC) also known as malignant hepatoma is a most common liver cancer. Doxorubicin (Doxo) is an anti-cancer drug having activity against a wide spectrum of cancer types. Clinical Utility of doxo has been limited due to its poor bioavailability and toxicity to heart and spleen. Furthermore, cancer chemotherapeutics have limited oral absorption. Transferrin family proteins are highly abundant and plays important role in transport and storage of iron in cells and tissues. Since apotransferrin and lactoferrin receptors are highly expressed on the surface of metabolically active cancer cells, the principal objective of present study is to evaluate efficacy of doxorubicin loaded apotransferrin and lactoferrin nanoparticles (apodoxonano or lactodoxonano) in oral treatment of HCC in rats. STUDY DESIGN HCC was induced in rats by supplementing 100 mg/L of diethylnitrosamine (DENA) in drinking water for 8 weeks. A week after the last day of DENA administration, rats were divided into four groups, each group comprising of five animals. Each group was administered with one of the drug viz., saline, doxorubicin (doxo), apodoxonano and lactodoxonano (4 mg/ kg equivalent of drug). In each case, they received 8 doses of the drug orally with six day interval. One week after the last dose, anticancer activity was evaluated by counting the liver nodules, H & E analysis of tissue sections and expression levels of angiogenic and antitumor markers. RESULTS In rats treated with apodoxonano and lactodoxonano, the number of neoplastic nodules was significantly lower than that of rats administered with saline or with doxo. Apodoxonano and lactodoxonano did not exhibit decrease in mean body weight, which was markedly reduced by 22% in the case of doxo administered rats. In rats treated with nanoformulations, the number of liver nodules was found reduced by >93%. Both nanoformulations showed significantly high localization in liver compared to doxo. CONCLUSIONS Apodoxonano and lactodoxonano showed improved efficacy, bioavailability and safety compared to doxo for treatment of HCC in rats when administered orally.
Collapse
Affiliation(s)
- Kishore Golla
- 2. Department of Biochemistry, University of Hyderabad, and Hyderabad 500046 India; ; 3. Centre for Nanotechnology, University of Hyderabad, and Hyderabad 500046 India
| | | | | | | |
Collapse
|
37
|
Golla K, Reddy PS, Bhaskar C, Kondapi AK. Biocompatibility, absorption and safety of protein nanoparticle-based delivery of doxorubicin through oral administration in rats. Drug Deliv 2013; 20:156-67. [PMID: 23730724 DOI: 10.3109/10717544.2013.801051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin, a potent anticancer drug associated with cardiotoxicity and low oral bioavailability, was loaded into apotransferrin nanoparticles to improve its pharmacological performance. Here, doxorubicin (doxo)-loaded apotransferrin nanoparticles were termed as Apodoxonano, and they were prepared by sol-oil chemistry. The pH-dependent stability of nanoparticles in simulated fluids was evaluated, and the in vitro release was investigated in phosphate-buffered saline. The pharmacokinetic and toxicity studies were conducted in Wistar rats. Nanoparticles have an average size of 75 nm, with 63% entrapment efficiency, at 10 mg w/w of apotransferrin. The particles displayed good pH-dependent stability in the pH range 1.1-7.4, but sensitive at endosomal pH of 5.5, thus facilitating intracellular drug release in endosomes. Multiplex assay showed high transport ability of nano form across epithelial cells (caco-2) when compared to doxo. Moreover, during oral administration, Apodoxonano localizes significantly in esophagus, stomach and small intestine, suggesting that it was absorbed in GI tract through epithelial lining. The drug localization was shown to be significantly lower in the heart reflecting its decreased cardiotoxic nature. The Apodoxonano with a longer bioavailability and a negligible cardiotoxicity can serve as an effective and safe vehicle of drug delivery.
Collapse
Affiliation(s)
- Kishore Golla
- Department of Biochemistry, University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | | | | | | |
Collapse
|
38
|
Piraux H, Hai J, Verbeke P, Serradji N, Ammar S, Losno R, Ha-Duong NT, Hémadi M, El Hage Chahine JM. Transferrin receptor-1 iron-acquisition pathway - synthesis, kinetics, thermodynamics and rapid cellular internalization of a holotransferrin-maghemite nanoparticle construct. Biochim Biophys Acta Gen Subj 2013; 1830:4254-64. [PMID: 23648413 DOI: 10.1016/j.bbagen.2013.04.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND Targeting nanoobjects via the iron-acquisition pathway is always reported slower than the transferrin/receptor endocytosis. Is there a remedy? METHODS Maghemite superparamagnetic and theragnostic nanoparticles (diameter 8.6nm) were synthesized, coated with 3-aminopropyltriethoxysilane (NP) and coupled to four holotransferrin (TFe2) by amide bonds (TFe2-NP). The constructs were characterized by X-ray diffraction, transmission electron microscopy, FTIR, X-ray Electron Spectroscopy, Inductively Coupled Plasma with Atomic Emission Spectrometry. The in-vitro protein/protein interaction of TFe2-NP with transferrin receptor-1 (R1) and endocytosis in HeLa cells were investigated spectrophotometrically, by fast T-jump kinetics and confocal microscopy. RESULTS In-vitro, R1 interacts with TFe2-NP with an overall dissociation constant KD=11nM. This interaction occurs in two steps: in the first, the C-lobe of the TFe2-NP interacts with R1 in 50μs: second-order rate constant, k1=6×10(10)M(-1)s(-1); first-order rate constant, k-1=9×10(4)s(-1); dissociation constant, K1d=1.5μM. In the second step, the protein/protein adduct undergoes a slow (10,000s) change in conformation to reach equilibrium. This mechanism is identical to that occurring with the free TFe2. In HeLa cells, TFe2-NP is internalized in the cytosol in less than 15min. CONCLUSION This is the first time that a nanoparticle-transferrin construct is shown to interact with R1 and is internalized in time scales similar to those of the free holotransferrin. GENERAL SIGNIFICANCE TFe2-NP behaves as free TFe2 and constitutes a model for rapidly targeting theragnostic devices via the main iron-acquisition pathway.
Collapse
Affiliation(s)
- Hélène Piraux
- Université Paris Diderot Sorbonne Paris Cité - CNRS UMR, Paris Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cheng CC, Huang CF, Ho AS, Peng CL, Chang CC, Mai FD, Chen LY, Luo TY, Chang J. Novel targeted nuclear imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles. Int J Nanomedicine 2013; 8:1385-91. [PMID: 23630420 PMCID: PMC3626371 DOI: 10.2147/ijn.s42003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Increased expression of cellular membrane bound glucose-regulated protein 78 (GRP78) is considered to be one of the biomarkers for gastric cancers. Therefore, peptides or molecules with specific recognition to GRP78 can act as a guiding probe to direct conjugated imaging agents to localized cancers. Based on this rationale, GRP78-guided polymeric micelles were designed and manufactured for nuclear imaging detection of tumors. Thiolated GRP78 binding peptide (GRP78BP) was first labeled with maleimide-terminated poly(ethylene glycol)– poly(ɛ-caprolactone) and then mixed with diethylenetriaminepentaacetic acid (DTPA)-linked poly(ethylene glycol)–poly(ɛ-caprolactone) to form DTPA/GRP78BP-conjugated micelles. The coupling efficiency of micelles with radioisotope indium-111 (111In) was measured and analyzed by instant thin layer chromatography. The coupling efficiency of DTPA-conjugated micelles and DTPA/GRP78BP-conjugated micelles with 111In was 85% and 93%, respectively. For characterization and trace imaging, the radioisotope 111In-targeting tumors were detected and imaged in a xenograft murine model using nano single photon emission computed tomography/computed tomography. The results revealed that the radioactive intensity measured in the animals administered with GRP78BP-guided 111In-labeled micelles was statistically higher than that in animals administered with 111In-labeled micelles, demonstrating that GRP78BP more than doubled the accumulation of micelles to the tumor tissue (P < 0.05). The results indicate that the gastric cancer biomarker GRP78 is a probing target in the application of nuclear imaging for tumor diagnosis. This novel GRP78BP-guided micelle agent may be applied in clinical practice to complement the histological diagnosis.
Collapse
Affiliation(s)
- Chun-Chia Cheng
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cheng CC, Lu N, Peng CL, Chang CC, Mai FD, Chen LY, Liao MH, Wang WM, Chang J. Targeting to overexpressed glucose-regulated protein 78 in gastric cancer discovered by 2D DIGE improves the diagnostic and therapeutic efficacy of micelles-mediated system. Proteomics 2012; 12:2584-97. [PMID: 22778057 DOI: 10.1002/pmic.201100602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The survivals of gastric cancer (GC) patients are associated with early diagnosis and effective treatments. Therefore, it is urgent for the discovery of early GC biomarkers and tumor-targeting therapeutics. The aim of this study was to uncover putative tissue biomarkers of GC using 2D DIGE and then apply one of these specific markers in GC treatment. We found three putative biomarkers of GC with significant differences in expression level compared to adjacent normal tissue, including glucose-regulated protein 78 (GRP78) and glutathione s-transferase pi (GSTpi) with increased expression level, and alpha-1 antitrypsin (A1AT) with reduced expression level. The overexpressed GRP78 was used as a targeted protein for guiding the drugs to tumor cells, leading to more effective treatment for GC xenografts. Our results demonstrated that the designated GRP78-binding peptide based on the sequence, WIFPWIQL, was selectively prone to recognize and bind to GC MKN45 cells in vitro, and also improve the delivery efficiency of polymeric micelles-encapsulated drugs into tumor cells and displayed better therapeutic outcome in experimental animals. This strategy of GRP78-mediated drug targeting system may bring chemotherapeutic drugs with more precise targeting to tumor cells, leading to minimize side effects on patients after chemotherapy.
Collapse
Affiliation(s)
- Chun-Chia Cheng
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Golla K, Cherukuvada B, Ahmed F, Kondapi AK. Efficacy, safety and anticancer activity of protein nanoparticle-based delivery of doxorubicin through intravenous administration in rats. PLoS One 2012; 7:e51960. [PMID: 23284832 PMCID: PMC3528733 DOI: 10.1371/journal.pone.0051960] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/09/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND AIMS Doxorubicin is a potent anticancer drug and a major limiting factor that hinders therapeutic use as its high levels of systemic circulation often associated with various off-target effects, particularly cardiotoxicity. The present study focuses on evaluation of the efficacy of doxorubicin when it is loaded into the protein nanoparticles and delivered intravenously in rats bearing Hepatocellular carcinoma (HCC). The proteins selected as carrier were Apotransferrin and Lactoferrin, since the receptors for these two proteins are known to be over expressed on cancer cells due to their iron transport capacity. METHODS Doxorubicin loaded apotransferrin (Apodoxonano) and lactoferrin nanoparticles (Lactodoxonano) were prepared by sol-oil chemistry. HCC in the rats was induced by 100 mg/l of diethylnitrosamine (DENA) in drinking water for 8 weeks. Rats received 5 doses of 2 mg/kg drug equivalent nanoparticles through intravenous administration. Pharmacokinetics and toxicity of nanoformulations was evaluated in healthy rats and anticancer activity was studied in DENA treated rats. The anticancer activity was evaluated through counting of the liver nodules, H & E analysis and by estimating the expression levels of angiogenic and antitumor markers. RESULTS In rats treated with nanoformulations, the numbers of liver nodules were found to be significantly reduced. They showed highest drug accumulation in liver (22.4 and 19.5 µg/g). Both nanoformulations showed higher localization compared to doxorubicin (Doxo) when delivered in the absence of a carrier. Higher amounts of Doxo (195 µg/g) were removed through kidney, while Apodoxonano and Lactodoxonano showed only a minimal amount of removal (<40 µg/g), suggesting the extended bioavailability of Doxo when delivered through nanoformulation. Safety analysis shows minimal cardiotoxicity due to lower drug accumulation in heart in the case of nanoformulation. CONCLUSION Drug delivery through nanoformulations not only minimizes the cardiotoxicity of doxorubicin but also enhances the efficacy and bioavailability of the drug in a target-specific manner.
Collapse
Affiliation(s)
- Kishore Golla
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
- Centre for Nanotechnology, University of Hyderabad, Hyderabad, India
| | | | - Farhan Ahmed
- Department of Biotechnology, University of Hyderabad, Hyderabad, India
| | - Anand K. Kondapi
- Department of Biotechnology, University of Hyderabad, Hyderabad, India
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
- Centre for Nanotechnology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
42
|
Xu Z, Zhang YL, Song C, Wu LL, Gao HW. Interactions of hydroxyapatite with proteins and its toxicological effect to zebrafish embryos development. PLoS One 2012; 7:e32818. [PMID: 22509249 PMCID: PMC3324474 DOI: 10.1371/journal.pone.0032818] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 02/05/2012] [Indexed: 02/01/2023] Open
Abstract
The increased application of nanomaterials has raised the level of public concern regarding possible toxicities caused by exposure to nanostructures. The interactions of nanosized hydroxyapatite (HA) with cytochrome c and hemoglobin were investigated by zeta-potential, UV-vis, fluorescence and circular dichroism. The experimental results indicated that the interactions were formed via charge attraction and hydrogen bond and obeyed Langmuir adsorption isotherm. The two functional proteins bridged between HA particles to aggregate into the coralloid form, where change of the secondary structure of proteins occurred. From effects of nanosized HA, SiO(2) and TiO(2) particles on the zebrafish embryos development, they were adsorbed on the membrane surface confirmed by the electronic scanning microscopy. Nano-HA aggregated into the biggest particles around the membrane protein and then caused a little toxicity to development of zebrafish embryos. The SiO(2) particles were distributed throughout the outer surface and caused jam of membrane passage, delay of the hatching time and axial malformation. Maybe owing to the oxygen free radical activity, TiO(2) caused some serious deformity characters in the cardiovascular system.
Collapse
Affiliation(s)
- Zhen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Ya-Lei Zhang
- Key Laboratory of Yangtze River Environment of Education Ministry of China, Tongji University, Shanghai, China
- * E-mail: (YLZ); (HWG)
| | - Cao Song
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Ling-Ling Wu
- Key Laboratory of Yangtze River Environment of Education Ministry of China, Tongji University, Shanghai, China
| | - Hong-Wen Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- * E-mail: (YLZ); (HWG)
| |
Collapse
|
43
|
Lin YS, Huang KS, Yang CH, Wang CY, Yang YS, Hsu HC, Liao YJ, Tsai CW. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture. PLoS One 2012; 7:e33184. [PMID: 22470443 PMCID: PMC3314645 DOI: 10.1371/journal.pone.0033184] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 02/06/2012] [Indexed: 11/18/2022] Open
Abstract
This study demonstrated the fabrication of alginate microfibers using a modular microfluidic system for magnetic-responsive controlled drug release and cell culture. A novel two-dimensional fluid-focusing technique with multi-inlets and junctions was used to spatiotemporally control the continuous laminar flow of alginate solutions. The diameter of the manufactured microfibers, which ranged from 211 µm to 364 µm, could be well controlled by changing the flow rate of the continuous phase. While the model drug, diclofenac, was encapsulated into microfibers, the drug release profile exhibited the characteristic of a proper and steady release. Furthermore, the diclofenac release kinetics from the magnetic iron oxide-loaded microfibers could be controlled externally, allowing for a rapid drug release by applying a magnetic force. In addition, the successful culture of glioblastoma multiforme cells in the microfibers demonstrated a good structural integrity and environment to grow cells that could be applied in drug screening for targeting cancer cells. The proposed microfluidic system has the advantages of ease of fabrication, simplicity, and a fast and low-cost process that is capable of generating functional microfibers with the potential for biomedical applications, such as drug controlled release and cell culture.
Collapse
Affiliation(s)
- Yung-Sheng Lin
- Department of Applied Cosmetology and Master Program of Cosmetic Science, Hungkuang University, Taichung, Taiwan
| | - Keng-Shiang Huang
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- * E-mail: (K-SH); (C-HY)
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
- * E-mail: (K-SH); (C-HY)
| | - Chih-Yu Wang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Yuh-Shyong Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hsiang-Chen Hsu
- Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Ju Liao
- Department of Applied Cosmetology and Master Program of Cosmetic Science, Hungkuang University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Information Management, Ming Chuan University, Taipei, Taiwan
| |
Collapse
|
44
|
Abstract
BACKGROUND Ligand targeted therapy (LTT) is a powerful pharmaceutical strategy to achieve selective drug delivery to pathological cells, for both therapeutic and diagnostic purposes, with the advantage of limited side effects and toxicity. This active drug targeting approach is based on the discovery that there are receptors overexpressed on pathological cells, compared to their expression in normal tissues. PURPOSE The purpose of this article is to review recently published data on LTT with applications, both in the field of cancer therapy and other diseases. Moreover, data on LTT exploiting receptors overexpressed at cytoplasmatic level are also reviewed. METHODS Data were deduced from Medline (PubMed) and SciFinder and their selections were made with preference to papers where the most relevant receptors were involved. RESULTS Several groups have reported improved delivery of targeted nanocarriers, as compared to nontargeted ones, to pathological cells. LTT offers several advantages, but there are also limitations in the development of this strategy. Moreover, LTT have shown encouraging results in in vitro and in animal models in vivo; hence their clinical potential awaits investigation. CONCLUSION Recent studies highlight that the ligand density plays an important role in targeting efficacy. Furthermore, LTT applications in diseases different from cancer and those exploiting receptors overexpressed at cytoplasmatic level are growing.
Collapse
|
45
|
Harel E, Rubinstein A, Nissan A, Khazanov E, Nadler Milbauer M, Barenholz Y, Tirosh B. Enhanced transferrin receptor expression by proinflammatory cytokines in enterocytes as a means for local delivery of drugs to inflamed gut mucosa. PLoS One 2011; 6:e24202. [PMID: 21915296 PMCID: PMC3167832 DOI: 10.1371/journal.pone.0024202] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 08/06/2011] [Indexed: 12/21/2022] Open
Abstract
Therapeutic intervention in inflammatory bowel diseases (IBDs) is often associated with adverse effects related to drug distribution into non-diseased tissues, a situation which attracts a rational design of a targeted treatment confined to the inflamed mucosa. Upon activation of immune cells, transferrin receptor (TfR) expression increases at their surface. Because TfR is expressed in all cell types we hypothesized that its cell surface levels are regulated also in enterocytes. We, therefore, compared TfR expression in healthy and inflamed human colonic mucosa, as well as healthy and inflamed colonic mucosa of the DNBS-induced rat model. TfR expression was elevated in the colonic mucosa of IBD patients in both the basolateral and apical membranes of the enterocytes. Increased TfR expression was also observed in colonocytes of the induced colitis rats. To explore the underlying mechanism CaCo-2 cells were treated with various proinflammatory cytokines, which increased both TfR expression and transferrin cellular uptake in a mechanism that did not involve hyper proliferation. These findings were then exploited for the design of targetable carrier towards inflamed regions of the colon. Anti-TfR antibodies were conjugated to nano-liposomes. As expected, iron-starved Caco-2 cells internalized anti-TfR immunoliposomes better than controls. Ex vivo binding studies to inflamed mucosa showed that the anti-TfR immunoliposomes accumulated significantly better in the mucosa of DNBS-induced rats than the accumulation of non-specific immunoliposomes. It is concluded that targeting mucosal inflammation can be accomplished by nano-liposomes decorated with anti-TfR due to inflammation-dependent, apical, elevated expression of the receptor.
Collapse
Affiliation(s)
- Efrat Harel
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abraham Rubinstein
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviram Nissan
- Department of Surgery, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Elena Khazanov
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Yechezkel Barenholz
- The Laboratory of Membrane and Liposome Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Boaz Tirosh
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
46
|
Gandapu U, Chaitanya RK, Kishore G, Reddy RC, Kondapi AK. Curcumin-loaded apotransferrin nanoparticles provide efficient cellular uptake and effectively inhibit HIV-1 replication in vitro. PLoS One 2011; 6:e23388. [PMID: 21887247 PMCID: PMC3161739 DOI: 10.1371/journal.pone.0023388] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/15/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Curcumin (diferuloylmethane) shows significant activity across a wide spectrum of conditions, but its usefulness is rather limited because of its low bioavailability. Use of nanoparticle formulations to enhance curcumin bioavailability is an emerging area of research. METHODOLOGY/PRINCIPAL FINDINGS In the present study, curcumin-loaded apotransferrin nanoparticles (nano-curcumin) prepared by sol-oil chemistry and were characterized by electron and atomic force microscopy. Confocal studies and fluorimetric analysis revealed that these particles enter T cells through transferrin-mediated endocytosis. Nano-curcumin releases significant quantities of drug gradually over a fairly long period, ∼50% of curcumin still remaining at 6 h of time. In contrast, intracellular soluble curcumin (sol-curcumin) reaches a maximum at 2 h followed by its complete elimination by 4 h. While sol-curcumin (GI(50) = 15.6 µM) is twice more toxic than nano-curcumin (GI(50) = 32.5 µM), nano-curcumin (IC(50)<1.75 µM) shows a higher anti-HIV activity compared to sol-curcumin (IC(50) = 5.1 µM). Studies in vitro showed that nano-curcumin prominently inhibited the HIV-1 induced expression of Topo II α, IL-1β and COX-2, an effect not seen with sol-curcumin. Nano-curcumin did not affect the expression of Topoisomerase II β and TNF α. This point out that nano-curcumin affects the HIV-1 induced inflammatory responses through pathways downstream or independent of TNF α. Furthermore, nano-curcumin completely blocks the synthesis of viral cDNA in the gag region suggesting that the nano-curcumin mediated inhibition of HIV-1 replication is targeted to viral cDNA synthesis. CONCLUSION Curcumin-loaded apotransferrin nanoparticles are highly efficacious inhibitors of HIV-1 replication in vitro and promise a high potential for clinical usefulness.
Collapse
Affiliation(s)
- Upendhar Gandapu
- Department of Biotechnology, University of Hyderabad, Hyderabad, India
| | - R. K. Chaitanya
- Department of Biotechnology, University of Hyderabad, Hyderabad, India
| | - Golla Kishore
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Centre for Nanotechnology, University of Hyderabad, Hyderabad, India
| | - Raju C. Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Anand K. Kondapi
- Department of Biotechnology, University of Hyderabad, Hyderabad, India
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Centre for Nanotechnology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
47
|
Albanese A, Chan WCW. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS NANO 2011; 5:5478-89. [PMID: 21692495 DOI: 10.1021/nn2007496] [Citation(s) in RCA: 587] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Aggregation appears to be a ubiquitous phenomenon among all nanoparticles and its influence in mediating cellular uptake and interactions remain unclear. Here we developed a simple technique to produce transferrin-coated gold nanoparticle aggregates of different sizes and characterized their uptake and toxicity in three different cell lines. While the aggregation did not elicit a unique toxic response, the uptake patterns were different between single and aggregated nanoparticles. There was a 25% decrease in uptake of aggregated nanoparticles with HeLa and A549 cells in comparison to single and monodisperse nanoparticles. However, there was a 2-fold increase in MDA-MB 435 cell uptake for the largest synthesized aggregates. These contrasting results suggest that cell type and the mechanism of interactions may play a significant role. This study highlights the need to investigate the behavior of aggregates with cells on a case-by-case basis and the importance of aggregation in mediating targeting and intracellular trafficking.
Collapse
Affiliation(s)
- Alexandre Albanese
- Institute of Biomaterials and Biomedical Engineering, Terrence Donnelly Centre for Cellular and Biomolecular Research, Materials Science and Engineering, University of Toronto, 160 College Street, Toronto, Ontario, Canada
| | | |
Collapse
|
48
|
Theiss AL, Laroui H, Obertone TS, Chowdhury I, Thompson WE, Merlin D, Sitaraman SV. Nanoparticle-based therapeutic delivery of prohibitin to the colonic epithelial cells ameliorates acute murine colitis. Inflamm Bowel Dis 2011; 17:1163-76. [PMID: 20872832 PMCID: PMC3012155 DOI: 10.1002/ibd.21469] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal epithelial expression of antioxidants and nuclear factor kappa B (NF-κB) contribute to mucosal barrier integrity and epithelial homeostasis, two key events in the pathogenesis of inflammatory bowel disease (IBD). Genetic restoration of intestinal epithelial prohibitin 1 (PHB) levels during experimental colitis reduces the severity of disease through sustained epithelial antioxidant expression and reduced NF-κB activation. To determine the therapeutic potential of restoring epithelial PHB during experimental colitis in mice, we assessed two methods of PHB colonic mucosal delivery: adenovirus-directed administration by enema and poly(lactic acid) nanoparticle (NPs) delivery by gavage. METHODS As a proof-of-principle to demonstrate the therapeutic efficacy of PHB, we utilized adenovirus-directed administration by enema. Second, we used NPs-based colonic delivery of biologically active PHB to demonstrate therapeutic use for human IBD. Colitis was induced by oral administration of dextran sodium sulfate (DSS) in water for 6-7 days. Wildtype mice receiving normal tap water served as controls. RESULTS Both methods of delivery resulted in increased levels of PHB in the surface epithelial cells of the colon and reduced severity of DSS-induced colitis in mice as measured by body weight loss, clinical score, myeloperoxidase activity, proinflammatory cytokine expression, histological score, and protein carbonyl content. CONCLUSIONS This is the first study to show oral delivery of a biologically active protein by NPs encapsulated in hydrogel to the colon. Here we show that therapeutic delivery of PHB to the colon reduces the severity of DSS-induced colitis in mice. PHB may represent a novel therapeutic target in IBD.
Collapse
Affiliation(s)
- Arianne L Theiss
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Efficient and site-specific delivery of therapeutic drugs is a critical challenge in clinical treatment of cancer. Nano-sized carriers such as liposomes, micelles, and polymeric nanoparticles have been investigated for improving bioavailability and pharmacokinetic properties of therapeutics via various mechanisms, for example, the enhanced permeability and retention (EPR) effect. Further improvement can potentially be achieved by conjugation of targeting ligands onto nanocarriers to achieve selective delivery to the tumour cell or the tumour vasculature. Indeed, receptor-targeted nanocarrier delivery has been shown to improve therapeutic responses both in vitro and in vivo. A variety of ligands have been investigated including folate, transferrin, antibodies, peptides and aptamers. Multiple functionalities can be incorporated into the design of nanoparticles, e.g., to enable imaging and triggered intracellular drug release. In this review, we mainly focus on recent advances on the development of targeted nanocarriers and will introduce novel concepts such as multi-targeting and multi-functional nanoparticles.
Collapse
Affiliation(s)
- Bo Yu
- Department of Chemical and Biomolecular Engineering, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
50
|
Tian Q, Zhang CN, Wang XH, Wang W, Huang W, Cha RT, Wang CH, Yuan Z, Liu M, Wan HY, Tang H. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials 2010; 31:4748-56. [PMID: 20303163 DOI: 10.1016/j.biomaterials.2010.02.042] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 02/14/2010] [Indexed: 10/19/2022]
Abstract
A liver-targeted drug delivery carrier, composed of chitosan/poly(ethylene glycol)-glycyrrhetinic acid (CTS/PEG-GA) nanoparticles, was prepared by an ionic gelation process, in which glycyrrhetinic acid (GA) acted as the targeting ligand. The formation and characterization of these nanoparticles were confirmed by FT-IR, dynamic light scattering (DLS) and zeta potential measurements. The biodistribution of the nanoparticles was assessed by single-photon emission computed tomography (SPECT), and the cellular uptake was evaluated using human hepatic carcinoma cells (QGY-7703 cells). The anti-neoplastic effect of the doxorubicin.HCl-loaded nanoparticles (DOX-loaded nanoparticles) was also investigated in vitro and in vivo. The results showed that the CTS/PEG-GA nanoparticles were remarkably targeted to the liver, and keep at a high level during the experiment. The accumulation in the liver was 51.3% at 3 h after injection; this was nearly 2.6 times that obtained with the CTS/PEG nanoparticles. The DOX-loaded nanoparticles were greatly cytotoxic to QGY-7703 cells, and the IC(50) (50% inhibitory concentration) for the free doxorubicin.HCl (DOX.HCl) and the DOX-loaded CTS/PEG-GA nanoparticles were 47 and 79 ng/mL, respectively. Moreover, the DOX-loaded CTS/PEG-GA nanoparticles could effectively inhibit tumor growth in H22 cell-bearing mice.
Collapse
Affiliation(s)
- Qin Tian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|