1
|
Kelly C, Sartor RB, Rawls JF. Early subclinical stages of the inflammatory bowel diseases: insights from human and animal studies. Am J Physiol Gastrointest Liver Physiol 2025; 328:G17-G31. [PMID: 39499254 PMCID: PMC11901386 DOI: 10.1152/ajpgi.00252.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/07/2024]
Abstract
The inflammatory bowel diseases (IBD) occur in genetically susceptible individuals that mount inappropriate immune responses to their microbiota leading to chronic intestinal inflammation. The natural history of IBD progression begins with early subclinical stages of disease that occur before clinical diagnosis. Improved understanding of those early subclinical stages could lead to new or improved strategies for IBD diagnosis, prognostication, or prevention. Here, we review our current understanding of the early subclinical stages of IBD in humans including studies from first-degree relatives of patients with IBD and members of the general population who go on to develop IBD. We also discuss representative mouse models of IBD that can be used to investigate disease dynamics and host-microbiota relationships during these early stages. In particular, we underscore how mouse models of IBD that develop disease later in life with variable penetrance may present valuable opportunities to discern early subclinical mechanisms of disease before histological inflammation and other severe symptoms become apparent.
Collapse
Affiliation(s)
- Cecelia Kelly
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, United States
| | - R Balfour Sartor
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
2
|
Sharma S, Rehan A, Dutta A. A data mining approach to identify key radioresponsive genes in mouse model of radiation-induced intestinal injury. Biomarkers 2024; 29:505-517. [PMID: 39431989 DOI: 10.1080/1354750x.2024.2420196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Radiation-mediated GI injury (RIGI) is observed in humans either due to accidental or intentional exposures. This can only be managed with supporting care and no approved countermeasures are available till now. Early detection and monitoring of RIGI is important for effective medical management and improve survival chances of exposed individuals. OBJECTIVE The present study aims to identify new signatures of RIGI using data mining approach followed by validation of selected hub genes in mice. METHODS Data mining study was performed using microarray datasets from Gene Expression Omnibus database. The differentially expressed genes were identified and further validated in total-body irradiated mice. RESULTS Based on KEGG pathway analysis, lipid metabolism was found as one of the predominant pathways altered in irradiated intestine. Extensive alteration in lipid profile and lipid modification was observed in this tissue. A protein-protein interaction network revealed top 08 hub genes related to lipid metabolism, namely Fabp1, Fabp2, Fabp6, Npc1l1, Ppar-α, Abcg8, Hnf-4α, and Insig1. qRT-PCR analysis revealed significant up-regulation of Fabp6 and Hnf-4α and down-regulation of Fabp1, Fabp2 and Insig1 transcripts in irradiated intestine. Radiation dose and time kinetics study revealed that the selected 05 genes were altered differentially in response to radiation in intestine. CONCLUSION Finding suggests that lipid metabolism is one of the key targets of radiation and its mediators may act as biomarkers in detection and progression of RIGI.
Collapse
Affiliation(s)
- Suchitra Sharma
- GI Radiobiology Research Laboratory, Radiomitigation Research Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K Mazumdar Marg, Delhi, India
| | - Aliza Rehan
- GI Radiobiology Research Laboratory, Radiomitigation Research Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K Mazumdar Marg, Delhi, India
| | - Ajaswrata Dutta
- GI Radiobiology Research Laboratory, Radiomitigation Research Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K Mazumdar Marg, Delhi, India
| |
Collapse
|
3
|
Vonolfen MC, Meyer Zu Altenschildesche FL, Nam HJ, Brodesser S, Gyenis A, Buellesbach J, Lam G, Thummel CS, Storelli G. Drosophila HNF4 acts in distinct tissues to direct a switch between lipid storage and export in the gut. Cell Rep 2024; 43:114693. [PMID: 39235946 DOI: 10.1016/j.celrep.2024.114693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Nutrient digestion, absorption, and export must be coordinated in the gut to meet the nutritional needs of the organism. We used the Drosophila intestine to characterize the mechanisms that coordinate the fate of dietary lipids. We identified enterocytes specialized in absorbing and exporting lipids to peripheral organs. Distinct hepatocyte-like cells, called oenocytes, communicate with these enterocytes to adjust intestinal lipid storage and export. A single transcription factor, Drosophila hepatocyte nuclear factor 4 (dHNF4), supports this gut-liver axis. In enterocytes, dHNF4 maximizes dietary lipid export by preventing their sequestration in cytoplasmic lipid droplets. In oenocytes, dHNF4 promotes the expression of the insulin antagonist ImpL2 to activate Foxo and suppress lipid retention in enterocytes. Disruption of this switch between lipid storage and export is associated with intestinal inflammation, suggesting a lipidic origin for inflammatory bowel diseases. These studies establish dHNF4 as a central regulator of intestinal metabolism and inter-organ lipid trafficking.
Collapse
Affiliation(s)
- Maximilian C Vonolfen
- University of Cologne, Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Fenja L Meyer Zu Altenschildesche
- University of Cologne, Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Hyuck-Jin Nam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Akos Gyenis
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Jan Buellesbach
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Geanette Lam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Gilles Storelli
- University of Cologne, Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Yang X, He Z, Dong Q, Nai S, Duan X, Yu J, Zhao N, Du X, Chen L. Btbd8 deficiency reduces susceptibility to colitis by enhancing intestinal barrier function and suppressing inflammation. Front Immunol 2024; 15:1382661. [PMID: 38558797 PMCID: PMC10978791 DOI: 10.3389/fimmu.2024.1382661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction BTBD8 has been identified as a susceptible gene for inflammatory bowel diseases (IBD). However, the function of BTBD8 in normal development and IBD pathogenesis remains unknown. Methods We administered drinking water with 3% dextran sodium sulfate (DSS) to wild-type (WT) and Btbd8 knockout (KO) mice for seven consecutive days to induce IBD. Subsequently, we further examined whether Btbd8 KO affects intestinal barrier and inflammation. Results We demonstrated that Btbd8 deficiency partially protects mice from DSS-induced IBD, even though no obvious phenotypes were observed in Btbd8 KO mice. Btbd8 deletion leads to strengthened tight junctions between intestinal epithelial cells, elevated intestinal stem cell activity, and enhanced mucus layer. All these three mechanisms work together to improve the intestinal barrier integrity in Btbd8 KO mice. In addition, Btbd8 deficiency mitigates inflammation by reducing the expression of IL-1β and IL-6 by macrophages. Discussion Our studies validate the crucial role of Btbd8 in IBD pathogenesis, and reveal that Btbd8 deficiency may ameliorate DSS-induced IBD through improving the intestinal barrier integrity, as well as suppressing inflammatory response mediated by macrophages. These findings suggest that Btbd8 could be a promising therapeutic target for the treatment of IBD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lingyi Chen
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Ferreira B, Barros AS, Leite-Pereira C, Viegas J, das Neves J, Nunes R, Sarmento B. Trends in 3D models of inflammatory bowel disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167042. [PMID: 38296115 DOI: 10.1016/j.bbadis.2024.167042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses a set of chronic inflammatory conditions, namely Crohn's disease and ulcerative colitis. Despite all advances in the management of IBD, a definitive cure is not available, largely due to a lack of a holistic understanding of its etiology and pathophysiology. Several in vitro, in vivo, and ex vivo models have been developed over the past few decades in order to abbreviate remaining gaps. The establishment of reliable and predictable in vitro intestinal inflammation models may indeed provide valuable tools to expedite and validate the development of therapies for IBD. Three-dimensional (3D) models provide a more accurate representation of the different layers of the intestine, contributing to a stronger impact on drug screening and research on intestinal inflammation, and bridging the gap between in vitro and in vivo research. This work provides a critical overview on the state-of-the-art on existing 3D models of intestinal inflammation and discusses the remaining challenges, providing insights on possible pathways towards achieving IBD mimetic models. We also address some of the main challenges faced by implementing cell culture models in IBD research while bearing in mind clinical translational aspects.
Collapse
Affiliation(s)
- Bárbara Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Andreia S Barros
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Catarina Leite-Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Juliana Viegas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Rute Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
6
|
Manickasamy MK, Jayaprakash S, Girisa S, Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, Kumar AP, Kunnumakkara AB. Delineating the role of nuclear receptors in colorectal cancer, a focused review. Discov Oncol 2024; 15:41. [PMID: 38372868 PMCID: PMC10876515 DOI: 10.1007/s12672-023-00808-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Colorectal cancer (CRC) stands as one of the most prevalent form of cancer globally, causing a significant number of deaths, surpassing 0.9 million in the year 2020. According to GLOBOCAN 2020, CRC ranks third in incidence and second in mortality in both males and females. Despite extensive studies over the years, there is still a need to establish novel therapeutic targets to enhance the patients' survival rate in CRC. Nuclear receptors (NRs) are ligand-activated transcription factors (TFs) that regulate numerous essential biological processes such as differentiation, development, physiology, reproduction, and cellular metabolism. Dysregulation and anomalous expression of different NRs has led to multiple alterations, such as impaired signaling cascades, mutations, and epigenetic changes, leading to various diseases, including cancer. It has been observed that differential expression of various NRs might lead to the initiation and progression of CRC, and are correlated with poor survival outcomes in CRC patients. Despite numerous studies on the mechanism and role of NRs in this cancer, it remains of significant scientific interest primarily due to the diverse functions that various NRs exhibit in regulating key hallmarks of this cancer. Thus, modulating the expression of NRs with their agonists and antagonists, based on their expression levels, holds an immense prospect in the diagnosis, prognosis, and therapeutical modalities of CRC. In this review, we primarily focus on the role and mechanism of NRs in the pathogenesis of CRC and emphasized the significance of targeting these NRs using a variety of agents, which may represent a novel and effective strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Huiyan Eng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
7
|
Kelly C, Jawahar J, Davey L, Everitt JI, Galanko JA, Anderson C, Avendano JE, McCann JR, Sartor RB, Valdivia RH, Rawls JF. Spontaneous episodic inflammation in the intestines of mice lacking HNF4A is driven by microbiota and associated with early life microbiota alterations. mBio 2023; 14:e0150423. [PMID: 37526424 PMCID: PMC10470520 DOI: 10.1128/mbio.01504-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 08/02/2023] Open
Abstract
The inflammatory bowel diseases (IBD) occur in genetically susceptible individuals who mount inappropriate immune responses to their microbiota leading to chronic intestinal inflammation. Whereas IBD clinical presentation is well described, how interactions between microbiota and host genotype impact early subclinical stages of the disease remains unclear. The transcription factor hepatocyte nuclear factor 4 alpha (HNF4A) has been associated with human IBD, and deletion of Hnf4a in intestinal epithelial cells (IECs) in mice (Hnf4aΔIEC) leads to spontaneous colonic inflammation by 6-12 mo of age. Here, we tested if pathology in Hnf4aΔIEC mice begins earlier in life and if microbiota contribute to that process. Longitudinal analysis revealed that Hnf4aΔIEC mice reared in specific pathogen-free (SPF) conditions develop episodic elevated fecal lipocalin 2 (Lcn2) and loose stools beginning by 4-5 wk of age. Lifetime cumulative Lcn2 levels correlated with histopathological features of colitis at 12 mo. Antibiotic and gnotobiotic tests showed that these phenotypes in Hnf4aΔIEC mice were dependent on microbiota. Fecal 16S rRNA gene sequencing in SPF Hnf4aΔIEC and control mice disclosed that genotype significantly contributed to differences in microbiota composition by 12 mo, and longitudinal analysis of the Hnf4aΔIEC mice with the highest lifetime cumulative Lcn2 revealed that microbial community differences emerged early in life when elevated fecal Lcn2 was first detected. These microbiota differences included enrichment of a novel phylogroup of Akkermansia muciniphila in Hnf4aΔIEC mice. We conclude that HNF4A functions in IEC to shape composition of the gut microbiota and protect against episodic inflammation induced by microbiota throughout the lifespan. IMPORTANCE The inflammatory bowel diseases (IBD), characterized by chronic inflammation of the intestine, affect millions of people around the world. Although significant advances have been made in the clinical management of IBD, the early subclinical stages of IBD are not well defined and are difficult to study in humans. This work explores the subclinical stages of disease in mice lacking the IBD-associated transcription factor HNF4A in the intestinal epithelium. Whereas these mice do not develop overt disease until late in adulthood, we find that they display episodic intestinal inflammation, loose stools, and microbiota changes beginning in very early life stages. Using germ-free and antibiotic-treatment experiments, we reveal that intestinal inflammation in these mice was dependent on the presence of microbiota. These results suggest that interactions between host genotype and microbiota can drive early subclinical pathologies that precede the overt onset of IBD and describe a mouse model to explore those important processes.
Collapse
Affiliation(s)
- Cecelia Kelly
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jayanth Jawahar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lauren Davey
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jeffrey I. Everitt
- Department of Pathology, Research Animal Pathology Core, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joseph A. Galanko
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Chelsea Anderson
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan E. Avendano
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jessica R. McCann
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - R. Balfour Sartor
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raphael H. Valdivia
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
8
|
Alfonso Perez G, Castillo R. Gene Identification in Inflammatory Bowel Disease via a Machine Learning Approach. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1218. [PMID: 37512030 PMCID: PMC10383667 DOI: 10.3390/medicina59071218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Inflammatory bowel disease (IBD) is an illness with increasing prevalence, particularly in emerging countries, which can have a substantial impact on the quality of life of the patient. The illness is rather heterogeneous with different evolution among patients. A machine learning approach is followed in this paper to identify potential genes that are related to IBD. This is done by following a Monte Carlo simulation approach. In total, 23 different machine learning techniques were tested (in addition to a base level obtained using artificial neural networks). The best model identified 74 genes selected by the algorithm as being potentially involved in IBD. IBD seems to be a polygenic illness, in which environmental factors might play an important role. Following a machine learning approach, it was possible to obtain a classification accuracy of 84.2% differentiating between patients with IBD and control cases in a large cohort of 2490 total cases. The sensitivity and specificity of the model were 82.6% and 84.4%, respectively. It was also possible to distinguish between the two main types of IBD: (1) Crohn's disease and (2) ulcerative colitis.
Collapse
Affiliation(s)
- Gerardo Alfonso Perez
- Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castello, Spain
| | - Raquel Castillo
- Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castello, Spain
| |
Collapse
|
9
|
Martinez-Calle M, Courbon G, Hunt-Tobey B, Francis C, Spindler J, Wang X, dos Reis LM, Martins CS, Salusky IB, Malluche H, Nickolas TL, Moyses RM, Martin A, David V. Transcription factor HNF4α2 promotes osteogenesis and prevents bone abnormalities in mice with renal osteodystrophy. J Clin Invest 2023; 133:e159928. [PMID: 37079387 PMCID: PMC10231994 DOI: 10.1172/jci159928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/17/2023] [Indexed: 04/21/2023] Open
Abstract
Renal osteodystrophy (ROD) is a disorder of bone metabolism that affects virtually all patients with chronic kidney disease (CKD) and is associated with adverse clinical outcomes including fractures, cardiovascular events, and death. In this study, we showed that hepatocyte nuclear factor 4α (HNF4α), a transcription factor mostly expressed in the liver, is also expressed in bone, and that osseous HNF4α expression was dramatically reduced in patients and mice with ROD. Osteoblast-specific deletion of Hnf4α resulted in impaired osteogenesis in cells and mice. Using multi-omics analyses of bones and cells lacking or overexpressing Hnf4α1 and Hnf4α2, we showed that HNF4α2 is the main osseous Hnf4α isoform that regulates osteogenesis, cell metabolism, and cell death. As a result, osteoblast-specific overexpression of Hnf4α2 prevented bone loss in mice with CKD. Our results showed that HNF4α2 is a transcriptional regulator of osteogenesis, implicated in the development of ROD.
Collapse
Affiliation(s)
- Marta Martinez-Calle
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guillaume Courbon
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bridget Hunt-Tobey
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Connor Francis
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jadeah Spindler
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xueyan Wang
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luciene M. dos Reis
- LIM 16, Nephrology Department, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Carolina S.W. Martins
- LIM 16, Nephrology Department, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Isidro B. Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hartmut Malluche
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Thomas L. Nickolas
- Department of Medicine, Columbia Irving University Medical Center, New York, New York, USA
| | - Rosa M.A. Moyses
- LIM 16, Nephrology Department, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Aline Martin
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Valentin David
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
10
|
Huang L, Liu B, Yu XW, Pan GQ, Xu JY, Yan D, Wang YL, Guo QN. Rat tight junction proteins are disrupted after subchronic exposure to okadaic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62201-62212. [PMID: 36940028 DOI: 10.1007/s11356-023-26471-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Okadaic acid (OA), a lipophilic phycotoxin distributed worldwide, causes diarrheic shellfish poisoning and even leads to tumor formation. Currently, the consumption of contaminated seafood is the most likely cause of chronic OA exposure, but there is a serious lack of relevant data. Here, the Sprague-Dawley rats were exposure to OA by oral administration at 100 µg/kg body weight, and the tissues were collected and analyzed to assess the effect of subchronic OA exposure. The results showed that subchronic OA administration disturbed colonic mucosal integrity and induced colitis. The colonic tight junction proteins were disrupted and the cell cycle of colonic epithelial cells was accelerated. It is inferred that disruption of the colonic tight junction proteins might be related to the development of chronic diarrhea by affecting water and ion transport. Moreover, the accelerated proliferation of colonic epithelial cells indicated that subchronic OA exposure might promote the restitution process of gut barrier or induce tumor promoter activity in rat colon.
Collapse
Affiliation(s)
- Lu Huang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Bo Liu
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Xiao-Wen Yu
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, 400021, People's Republic of China
| | - Guang-Qiang Pan
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Jia-Yi Xu
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Dong Yan
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Ya-Li Wang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
11
|
Jones C, Avino M, Giroux V, Boudreau F. HNF4α Acts as Upstream Functional Regulator of Intestinal Wnt3 and Paneth Cell Fate. Cell Mol Gastroenterol Hepatol 2023; 15:593-612. [PMID: 36464209 PMCID: PMC9871320 DOI: 10.1016/j.jcmgh.2022.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND & AIMS The intestinal epithelium intrinsically renews itself ex vivo via the proliferation of Lgr5+ intestinal stem cells, which is sustained by the establishment of an epithelial stem cell niche. Differentiated Paneth cells are the main source of epithelial-derived niche factor supplies and produce Wnt3 as an essential factor in supporting Lgr5+ stem cell activity in the absence of redundant mesenchymal Wnts. Maturation of Paneth cells depends on canonical Wnt signaling, but few transcriptional regulators have been identified to this end. The role of HNF4α in intestinal epithelial cell differentiation is considered redundant with its paralog HNF4γ. However, it is unclear whether HNF4α alone controls intrinsic intestinal epithelial cell growth and fate in the absence of a mesenchymal niche. METHODS We used transcriptomic analyses to dissect the role of HNF4α in the maintenance of jejunal epithelial culture when cultured ex vivo as enteroids in the presence or absence of compensatory mesenchymal cells. RESULTS HNF4α plays a crucial role in supporting the growth and survival of jejunal enteroids. Transcriptomic analyses revealed an autonomous function of HNF4α in Wnt3 transcriptional regulation and Paneth cell differentiation. We showed that Wnt3a supplementation or co-culture with intestinal subepithelial mesenchymal cells reversed cell death and transcriptional changes caused by the deletion of Hnf4a in jejunal enteroids. CONCLUSIONS Our results support the intrinsic epithelial role of HNF4α in regulating Paneth cell homeostasis and intestinal epithelium renewal in the absence of compensatory Wnt signaling.
Collapse
Affiliation(s)
- Christine Jones
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mariano Avino
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Véronique Giroux
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Francois Boudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
12
|
Heppert JK, Lickwar CR, Tillman MC, Davis BR, Davison JM, Lu HY, Chen W, Busch-Nentwich EM, Corcoran DL, Rawls JF. Conserved roles for Hnf4 family transcription factors in zebrafish development and intestinal function. Genetics 2022; 222:iyac133. [PMID: 36218393 PMCID: PMC9713462 DOI: 10.1093/genetics/iyac133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
Transcription factors play important roles in the development of the intestinal epithelium and its ability to respond to endocrine, nutritional, and microbial signals. Hepatocyte nuclear factor 4 family nuclear receptors are liganded transcription factors that are critical for the development and function of multiple digestive organs in vertebrates, including the intestinal epithelium. Zebrafish have 3 hepatocyte nuclear factor 4 homologs, of which, hnf4a was previously shown to mediate intestinal responses to microbiota in zebrafish larvae. To discern the functions of other hepatocyte nuclear factor 4 family members in zebrafish development and intestinal function, we created and characterized mutations in hnf4g and hnf4b. We addressed the possibility of genetic redundancy amongst these factors by creating double and triple mutants which showed different rates of survival, including apparent early lethality in hnf4a; hnf4b double mutants and triple mutants. RNA sequencing performed on digestive tracts from single and double mutant larvae revealed extensive changes in intestinal gene expression in hnf4a mutants that were amplified in hnf4a; hnf4g mutants, but limited in hnf4g mutants. Changes in hnf4a and hnf4a; hnf4g mutants were reminiscent of those seen in mice including decreased expression of genes involved in intestinal function and increased expression of cell proliferation genes, and were validated using transgenic reporters and EdU labeling in the intestinal epithelium. Gnotobiotics combined with RNA sequencing also showed hnf4g has subtler roles than hnf4a in host responses to microbiota. Overall, phenotypic changes in hnf4a single mutants were strongly enhanced in hnf4a; hnf4g double mutants, suggesting a conserved partial genetic redundancy between hnf4a and hnf4g in the vertebrate intestine.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew C Tillman
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Briana R Davis
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - James M Davison
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hsiu-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wei Chen
- Center for Genomics and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - David L Corcoran
- Center for Genomics and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
13
|
Özsoy M, Stummer N, Zimmermann FA, Feichtinger RG, Sperl W, Weghuber D, Schneider AM. Role of Energy Metabolism and Mitochondrial Function in Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:1443-1450. [PMID: 35247048 DOI: 10.1093/ibd/izac024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic recurring inflammation of the intestine which can be debilitating for those with intractable disease. However, the etiopathogenesis of inflammatory bowel disorders remains to be solved. The hypothesis that mitochondrial dysfunction is a crucial factor in the disease process is being validated by an increasing number of recent studies. Thus mitochondrial alteration in conjunction with previously identified genetic predisposition, changes in the immune response, altered gut microbiota, and environmental factors (eg, diet, smoking, and lifestyle) are all posited to contribute to IBD. The implicated factors seem to affect mitochondrial function or are influenced by mitochondrial dysfunction, which explains many of the hallmarks of the disease. This review summarizes the results of studies reporting links between mitochondria and IBD that were available on PubMed through March 2021. The aim of this review is to give an overview of the current understanding of the role of mitochondria in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Mihriban Özsoy
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Nathalie Stummer
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Franz A Zimmermann
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - René G Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Anna M Schneider
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
14
|
Microbial Metabolites Orchestrate a Distinct Multi-Tiered Regulatory Network in the Intestinal Epithelium That Directs P-Glycoprotein Expression. mBio 2022; 13:e0199322. [PMID: 35968955 PMCID: PMC9426490 DOI: 10.1128/mbio.01993-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
P-glycoprotein (P-gp) is a key component of the intestinal epithelium playing a pivotal role in removal of toxins and efflux of endocannabinoids to prevent excessive inflammation and sustain homeostasis. Recent studies revealed butyrate and secondary bile acids, produced by the intestinal microbiome, potentiate the induction of functional P-gp expression. We now aim to determine the molecular mechanism by which this functional microbiome output regulates P-gp. RNA sequencing of intestinal epithelial cells responding to butyrate and secondary bile acids in combination discovered a unique transcriptional program involving multiple pathways that converge on P-gp induction. Using shRNA knockdown and CRISPR/Cas9 knockout cell lines, as well as mouse models, we confirmed the RNA sequencing findings and discovered a role for intestinal HNF4α in P-gp regulation. These findings shed light on a sophisticated signaling network directed by intestinal microbial metabolites that orchestrate P-gp expression and highlight unappreciated connections between multiple pathways linked to colonic health. IMPORTANCE Preventing aberrant inflammation is essential to maintaining homeostasis in the mammalian intestine. Although P-glycoprotein (P-gp) expression in the intestine is critical for protecting the intestinal epithelium from toxins and damage due to neutrophil infiltration, its regulation in the intestine is poorly understood. Findings presented in our current study have now uncovered a sophisticated and heretofore unappreciated intracellular signaling network or "reactome" directed by intestinal microbial metabolites that orchestrate regulation of P-gp. Not only do we confirm the role of histone deacetylases (HDAC) inhibition and nuclear receptor activation in P-gp induction by butyrate and bile acids, but we also discovered new signaling pathways and transcription factors that are uniquely activated in response to the combination of microbial metabolites. Such findings shed new light into a multi-tiered network that maintains P-gp expression in the intestine in the context of the fluctuating commensal microbiome, to sustain a homeostatic tone in the absence of infection or insult.
Collapse
|
15
|
Lei X, Ketelut-Carneiro N, Shmuel-Galia L, Xu W, Wilson R, Vierbuchen T, Chen Y, Reboldi A, Kang J, Edelblum KL, Ward D, Fitzgerald KA. Epithelial HNF4A shapes the intraepithelial lymphocyte compartment via direct regulation of immune signaling molecules. J Exp Med 2022; 219:e20212563. [PMID: 35792863 PMCID: PMC9263552 DOI: 10.1084/jem.20212563] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 08/29/2023] Open
Abstract
Hepatocyte nuclear factor 4 α (HNF4A) is a highly conserved nuclear receptor that has been associated with ulcerative colitis. In mice, HNF4A is indispensable for the maintenance of intestinal homeostasis, yet the underlying mechanisms are poorly characterized. Here, we demonstrate that the expression of HNF4A in intestinal epithelial cells (IECs) is required for the proper development and composition of the intraepithelial lymphocyte (IEL) compartment. HNF4A directly regulates expression of immune signaling molecules including butyrophilin-like (Btnl) 1, Btnl6, H2-T3, and Clec2e that control IEC-IEL crosstalk. HNF4A selectively enhances the expansion of natural IELs that are TCRγδ+ or TCRαβ+CD8αα+ to shape the composition of IEL compartment. In the small intestine, HNF4A cooperates with its paralog HNF4G, to drive expression of immune signaling molecules. Moreover, the HNF4A-BTNL regulatory axis is conserved in human IECs. Collectively, these findings underscore the importance of HNF4A as a conserved transcription factor controlling IEC-IEL crosstalk and suggest that HNF4A maintains intestinal homeostasis through regulation of the IEL compartment.
Collapse
Affiliation(s)
- Xuqiu Lei
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Natalia Ketelut-Carneiro
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Liraz Shmuel-Galia
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Weili Xu
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ
| | - Ruth Wilson
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Tim Vierbuchen
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Yongzhi Chen
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Joonsoo Kang
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Karen L. Edelblum
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ
| | - Doyle Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, MA
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
16
|
Nikolovska K, Seidler UE, Stock C. The Role of Plasma Membrane Sodium/Hydrogen Exchangers in Gastrointestinal Functions: Proliferation and Differentiation, Fluid/Electrolyte Transport and Barrier Integrity. Front Physiol 2022; 13:899286. [PMID: 35665228 PMCID: PMC9159811 DOI: 10.3389/fphys.2022.899286] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The five plasma membrane Na+/H+ exchanger (NHE) isoforms in the gastrointestinal tract are characterized by distinct cellular localization, tissue distribution, inhibitor sensitivities, and physiological regulation. NHE1 (Slc9a1) is ubiquitously expressed along the gastrointestinal tract in the basolateral membrane of enterocytes, but so far, an exclusive role for NHE1 in enterocyte physiology has remained elusive. NHE2 (Slc9a2) and NHE8 (Slc9a8) are apically expressed isoforms with ubiquitous distribution along the colonic crypt axis. They are involved in pHi regulation of intestinal epithelial cells. Combined use of a knockout mouse model, intestinal organoid technology, and specific inhibitors revealed previously unrecognized actions of NHE2 and NHE8 in enterocyte proliferation and differentiation. NHE3 (Slc9a3), expressed in the apical membrane of differentiated intestinal epithelial cells, functions as the predominant nutrient-independent Na+ absorptive mechanism in the gut. The new selective NHE3 inhibitor (Tenapanor) allowed discovery of novel pathophysiological and drug-targetable NHE3 functions in cystic-fibrosis associated intestinal obstructions. NHE4, expressed in the basolateral membrane of parietal cells, is essential for parietal cell integrity and acid secretory function, through its role in cell volume regulation. This review focuses on the expression, regulation and activity of the five plasma membrane Na+/H+ exchangers in the gastrointestinal tract, emphasizing their role in maintaining intestinal homeostasis, or their impact on disease pathogenesis. We point to major open questions in identifying NHE interacting partners in central cellular pathways and processes and the necessity of determining their physiological role in a system where their endogenous expression/activity is maintained, such as organoids derived from different parts of the gastrointestinal tract.
Collapse
|
17
|
Kang Y, Park H, Choe BH, Kang B. The Role and Function of Mucins and Its Relationship to Inflammatory Bowel Disease. Front Med (Lausanne) 2022; 9:848344. [PMID: 35602503 PMCID: PMC9120656 DOI: 10.3389/fmed.2022.848344] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Mucus is present throughout the gastrointestinal tract and is essential for regulating gut microbiota homeostasis and preventing disease by protecting the gastrointestinal barrier from microorganisms, pathogens and toxins or other irritants. Mucin (MUC)-2 is a secreted protein produced by epithelial goblet cells as the main component of mucus. Defects in the gastrointestinal tract, such as inflammation and ulcers, cause damage to the mucus barrier, which can worsen mucus quality and reduce mucus production. Therefore, we would like to review the characteristics of MUC2 and its role in intestinal disorders and highlight the importance of further studies. We also investigated whether the role of MUC2 differs between children and adults, ulcerative colitis (UC) and Crohn's disease (CD).
Collapse
Affiliation(s)
- Youra Kang
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyeonjeong Park
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Byung-Ho Choe
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ben Kang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
18
|
Transcriptional Integration of Distinct Microbial and Nutritional Signals by the Small Intestinal Epithelium. Cell Mol Gastroenterol Hepatol 2022; 14:465-493. [PMID: 35533983 PMCID: PMC9305020 DOI: 10.1016/j.jcmgh.2022.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The intestine constantly interprets and adapts to complex combinations of dietary and microbial stimuli. However, the transcriptional strategies by which the intestinal epithelium integrates these coincident sources of information remain unresolved. We recently found that microbiota colonization suppresses epithelial activity of hepatocyte nuclear factor 4 nuclear receptor transcription factors, but their integrative regulation was unknown. METHODS We compared adult mice reared germ-free or conventionalized with a microbiota either fed normally or after a single high-fat meal. Preparations of unsorted jejunal intestinal epithelial cells were queried using lipidomics and genome-wide assays for RNA sequencing and ChIP sequencing for the activating histone mark H3K27ac and hepatocyte nuclear factor 4 alpha. RESULTS Analysis of lipid classes, genes, and regulatory regions identified distinct nutritional and microbial responses but also simultaneous influence of both stimuli. H3K27ac sites preferentially increased by high-fat meal in the presence of microbes neighbor lipid anabolism and proliferation genes, were previously identified intestinal stem cell regulatory regions, and were not hepatocyte nuclear factor 4 alpha targets. In contrast, H3K27ac sites preferentially increased by high-fat meal in the absence of microbes neighbor targets of the energy homeostasis regulator peroxisome proliferator activated receptor alpha, neighbored fatty acid oxidation genes, were previously identified enterocyte regulatory regions, and were hepatocyte factor 4 alpha bound. CONCLUSIONS Hepatocyte factor 4 alpha supports a differentiated enterocyte and fatty acid oxidation program in germ-free mice, and that suppression of hepatocyte factor 4 alpha by the combination of microbes and high-fat meal may result in preferential activation of intestinal epithelial cell proliferation programs. This identifies potential transcriptional mechanisms for intestinal adaptation to multiple signals and how microbiota may modulate intestinal lipid absorption, epithelial cell renewal, and systemic energy balance.
Collapse
|
19
|
Vitamin D Receptor Influences Intestinal Barriers in Health and Disease. Cells 2022; 11:cells11071129. [PMID: 35406694 PMCID: PMC8997406 DOI: 10.3390/cells11071129] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D receptor (VDR) executes most of the biological functions of vitamin D. Beyond this, VDR is a transcriptional factor regulating the expression levels of many target genes, such as genes for tight junction proteins claudin-2, -5, -12, and -15. In this review, we discuss the progress of research on VDR that influences intestinal barriers in health and disease. We searched PubMed and Google Scholar using key words vitamin D, VDR, tight junctions, cancer, inflammation, and infection. We summarize the literature and progress reports on VDR regulation of tight junction distribution, cellular functions, and mechanisms (directly or indirectly). We review the impacts of VDR on barriers in various diseases, e.g., colon cancer, infection, inflammatory bowel disease, and chronic inflammatory lung diseases. We also discuss the limits of current studies and future directions. Deeper understanding of the mechanisms by which the VDR signaling regulates intestinal barrier functions allow us to develop efficient and effective therapeutic strategies based on levels of tight junction proteins and vitamin D/VDR statuses for human diseases.
Collapse
|
20
|
Thymiakou E, Xenikaki E, Kardassis D. Intestine-specific ablation of the Hepatocyte Nuclear Factor 4a (Hnf4a) gene in mice has minimal impact on serum lipids and ileum gene expression profile due to upregulation of its paralog Hnf4g. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159108. [PMID: 34973414 DOI: 10.1016/j.bbalip.2021.159108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/21/2023]
Abstract
Ablation of the gene encoding the nuclear receptor Hepatocyte Nuclear Factor 4a (Hnf4a) in the liver strongly affects HDL concentration, structure and functionality but the role of this receptor in the intestine, the second organ contributing to serum HDL levels, has been overlooked. In the present study we show that mice with intestine-specific ablation of Hnf4a (H4IntKO) had undetectable levels of ΗΝF4A in ileum, proximal and distal colon but normal expression in liver. H4IntKO mice presented normal serum lipid levels, HDL-C and particle size (α1-α3). The expression of the major HDL biogenesis genes Apoa1, Abca1, Lcat was not affected but there was significant increase in Apoc3 as well as in Hnf4g, a paralog of Hnf4a. RNA-sequencing identified metabolic pathways significantly affected by Hnf4a ablation such as type II diabetes, glycolysis, gluconeogenesis and p53 signaling. Chromatin immunoprecipitation assays showed that HNF4G bound to various apolipoprotein gene promoters in control mice but its binding affinity was reduced in the ileum of H4IntKO mice suggesting a redundancy but also a cooperation between the two factors. In the distal colon of H4IntKO mice, where both HNF4A and HNF4G are absent and in a mouse model of DSS-induced colitis presenting decreased levels of HNF4A, most lipoprotein genes were strongly downregulated. In conclusion, Hnf4a ablation in mice does not significantly affect serum lipid levels or lipoprotein gene expression in ileum possibly due to compensatory effects by its paralog Hnf4g in this tissue.
Collapse
Affiliation(s)
- Efstathia Thymiakou
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion 71003, Greece; Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 70013, Greece
| | - Efsevia Xenikaki
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion 71003, Greece
| | - Dimitris Kardassis
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion 71003, Greece; Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 70013, Greece.
| |
Collapse
|
21
|
Chatterjee I, Zhang Y, Zhang J, Lu R, Xia Y, Sun J. Overexpression of Vitamin D Receptor in Intestinal Epithelia Protects Against Colitis via Upregulating Tight Junction Protein Claudin 15. J Crohns Colitis 2021; 15:1720-1736. [PMID: 33690841 PMCID: PMC8495491 DOI: 10.1093/ecco-jcc/jjab044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Dysfunction of the vitamin D receptor [VDR] contributes to the aetiology of IBD by regulating autophagy, immune response, and mucosal permeability. VDR directly controls the paracellular tight junction protein Claudin-2. Claudin-2 and Claudin-15 are unique in maintaining paracellular permeability. Interestingly, claudin-15 mRNA was downregulated in patients with ulcerative colitis. However, the exact mechanism of Claudin-15 regulation in colitis is still unknown. Here, we investigated the protective role of VDR against intestinal inflammation via upregulating Claudin-15. METHODS We analysed the correlation of Claudin-15 with the reduction of VDR in human colitis. We generated intestinal epithelial overexpression of VDR [O-VDR] mice to study the gain of function of VDR in colitis. Intestinal epithelial VDR knockout [VDR∆IEC] mice were used for the loss of function study. Colonoids and SKCO15 cells were used as in vitro models. RESULTS Reduced Claudin-15 was significantly correlated with decreased VDR along the colonic epithelium of human IBD. O-VDR mice showed decreased susceptibility to chemically and bacterially induced colitis and marked increased Claudin-15 expression [both mRNA and protein] in the colon. Correspondingly, colonic Claudin-15 was reduced in VDR∆IEC mice, which were susceptible to colitis. Overexpression of intestinal epithelial VDR and vitamin D treatment resulted in a significantly increased Claudin-15. ChIP assays identified the direct binding of VDR to the claudin-15 promoter, suggesting that claudin-15 is a target gene of VDR. CONCLUSION We demonstrated the mechanism of VDR upregulation of Claudin-15 to protect against colitis. This might enlighten the mechanism of barrier dysfunction in IBD and potential therapeutic strategies to inhibit inflammation.
Collapse
Affiliation(s)
- Ishita Chatterjee
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rong Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
22
|
Marincola Smith P, Choksi YA, Markham NO, Hanna DN, Zi J, Weaver CJ, Hamaamen JA, Lewis KB, Yang J, Liu Q, Kaji I, Means AL, Beauchamp RD. Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice. Am J Physiol Gastrointest Liver Physiol 2021; 320:G936-G957. [PMID: 33759564 PMCID: PMC8285585 DOI: 10.1152/ajpgi.00053.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 01/31/2023]
Abstract
Defective barrier function is a predisposing factor in inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Although TGFβ signaling defects have been associated with IBD and CAC, few studies have examined the relationship between TGFβ and intestinal barrier function. Here, we examine the role of TGFβ signaling via SMAD4 in modulation of colon barrier function. The Smad4 gene was conditionally deleted in the intestines of adult mice and intestinal permeability assessed using an in vivo 4 kDa FITC-Dextran (FD4) permeability assay. Mouse colon was isolated for gene expression (RNA-sequencing), Western blot, and immunofluorescence analysis. In vitro colon organoid culture was utilized to assess junction-related gene expression by qPCR and transepithelial resistance (TER). In silico analyses of human IBD and colon cancer databases were performed. Mice lacking intestinal expression of Smad4 demonstrate increased colonic permeability to FD4 without gross mucosal damage. mRNA/protein expression analyses demonstrate significant increases in Cldn2/Claudin 2 and Cldn8/Claudin 8, and decreases in Cldn3, Cldn4, and Cldn7/Claudin 7 with intestinal SMAD4 loss in vivo without changes in Claudin protein localization. TGFβ1/BMP2 treatment of polarized SMAD4+ colonoids increases TER. Cldn2, Cldn4, Cldn7, and Cldn8 are regulated by canonical TGFβ signaling, and TGFβ-dependent regulation of these genes is dependent on nascent RNA transcription (Cldn2, Cldn4, Cldn8) but not nascent protein translation (Cldn4, Cldn8). Human IBD/colon cancer specimens demonstrate decreased SMAD4, CLDN4, CLDN7, and CLDN8 and increased CLDN2 compared with healthy controls. Canonical TGFβ signaling modulates the expression of tight junction proteins and barrier function in mouse colon.NEW & NOTEWORTHY We demonstrate that canonical TGFβ family signaling modulates the expression of critical tight junction proteins in colon epithelial cells, and that expression of these tight junction proteins is associated with maintenance of colon epithelial barrier function in mice.
Collapse
Affiliation(s)
- Paula Marincola Smith
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Graduate Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yash A Choksi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Nicholas O Markham
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David N Hanna
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jinghuan Zi
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Connie J Weaver
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jalal A Hamaamen
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keeli B Lewis
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jing Yang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Izumi Kaji
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna L Means
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Graduate Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - R Daniel Beauchamp
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Graduate Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
23
|
Targeting Mitochondrial Damage as a Therapeutic for Ileal Crohn's Disease. Cells 2021; 10:cells10061349. [PMID: 34072441 PMCID: PMC8226558 DOI: 10.3390/cells10061349] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Paneth cell defects in Crohn's disease (CD) patients (called the Type I phenotype) are associated with worse clinical outcomes. Recent studies have implicated mitochondrial dysfunction in Paneth cells as a mediator of ileitis in mice. We hypothesized that CD Paneth cells exhibit impaired mitochondrial health and that mitochondrial-targeted therapeutics may provide a novel strategy for ileal CD. Terminal ileal mucosal biopsies from adult CD and non-IBD patients were characterized for Paneth cell phenotyping and mitochondrial damage. To demonstrate the response of mitochondrial-targeted therapeutics in CD, biopsies were treated with vehicle or Mito-Tempo, a mitochondrial-targeted antioxidant, and RNA transcriptome was analyzed. During active CD inflammation, the epithelium exhibited mitochondrial damage evident in Paneth cells, goblet cells, and enterocytes. Independent of inflammation, Paneth cells in Type I CD patients exhibited mitochondrial damage. Mito-Tempo normalized the expression of interleukin (IL)-17/IL-23, lipid metabolism, and apoptotic gene signatures in CD patients to non-IBD levels. When stratified by Paneth cell phenotype, the global tissue response to Mito-Tempo in Type I patients was associated with innate immune, lipid metabolism, and G protein-coupled receptor (GPCR) gene signatures. Targeting impaired mitochondria as an underlying contributor to inflammation provides a novel treatment approach for CD.
Collapse
|
24
|
Wang Z, Zhang Y, Zhang J, Deng Q, Liang H. Controversial roles of hepatocyte nuclear receptor 4 α on tumorigenesis. Oncol Lett 2021; 21:356. [PMID: 33747213 PMCID: PMC7968000 DOI: 10.3892/ol.2021.12617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte nuclear receptor 4 α (HNF4α) is known to be a master transcription regulator of gene expression in multiple biological processes, particularly in liver development and liver function. To date, the function of HNF4α in human cancers has been widely investigated; however, the critical roles of HNF4α in tumorigenesis remain unclear. Numerous controversies exist, even in studies from different research groups but on the same type of cancer. In the present review, the critical roles of HNF4α in tumorigenesis will be summarized and discussed. Furthermore, HNF4α expression profile and alterations will be examined by pan-cancer analysis through bioinformatics, in order to provide a better understanding of the functional roles of this gene in human cancers.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Ying Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Jianwen Zhang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Qiong Deng
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
| |
Collapse
|
25
|
Transcriptional programmes underlying cellular identity and microbial responsiveness in the intestinal epithelium. Nat Rev Gastroenterol Hepatol 2021; 18:7-23. [PMID: 33024279 PMCID: PMC7997278 DOI: 10.1038/s41575-020-00357-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
Abstract
The intestinal epithelium serves the unique and critical function of harvesting dietary nutrients, while simultaneously acting as a cellular barrier separating tissues from the luminal environment and gut microbial ecosystem. Two salient features of the intestinal epithelium enable it to perform these complex functions. First, cells within the intestinal epithelium achieve a wide range of specialized identities, including different cell types and distinct anterior-posterior patterning along the intestine. Second, intestinal epithelial cells are sensitive and responsive to the dynamic milieu of dietary nutrients, xenobiotics and microorganisms encountered in the intestinal luminal environment. These diverse identities and responsiveness of intestinal epithelial cells are achieved in part through the differential transcription of genes encoded in their shared genome. Here, we review insights from mice and other vertebrate models into the transcriptional regulatory mechanisms underlying intestinal epithelial identity and microbial responsiveness, including DNA methylation, chromatin accessibility, histone modifications and transcription factors. These studies are revealing that most transcription factors involved in intestinal epithelial identity also respond to changes in the microbiota, raising both opportunities and challenges to discern the underlying integrative transcriptional regulatory networks.
Collapse
|
26
|
Holton NW, Singhal M, Kumar A, Ticho AL, Manzella CR, Malhotra P, Jarava D, Saksena S, Dudeja PK, Alrefai WA, Gill RK. Hepatocyte nuclear factor-4α regulates expression of the serotonin transporter in intestinal epithelial cells. Am J Physiol Cell Physiol 2020; 318:C1294-C1304. [PMID: 32348179 PMCID: PMC7311735 DOI: 10.1152/ajpcell.00477.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
Abstract
The serotonin transporter (SERT) functions to regulate the availability of serotonin (5-HT) in the brain and intestine. An intestine-specific mRNA variant arising from a unique transcription start site and alternative promoter in the SERT gene has been identified (iSERT; spanning exon 1C). A decrease in SERT is implicated in several gut disorders, including inflammatory bowel diseases (IBD). However, little is known about mechanisms regulating the iSERT variant, and a clearer understanding is warranted for targeting SERT for the treatment of gut disorders. The current studies examined the expression of iSERT across different human intestinal regions and investigated its regulation by HNF4α (hepatic nuclear factor-4α), a transcription factor important for diverse cellular functions. iSERT mRNA abundance was highest in the human ileum and Caco-2 cell line. iSERT mRNA expression was downregulated by loss of HNF4α (but not HNF1α, HNF1β, or FOXA1) in Caco-2 cells. Overexpression of HNF4α increased iSERT mRNA concomitant with an increase in SERT protein. Progressive promoter deletion and site-directed mutagenesis revealed that the HNF4α response element spans nucleotides -1,163 to -1150 relative to the translation start site. SERT mRNA levels in the intestine were drastically reduced in the intestine-specific HNF4α-knockout mice relative to HNF4αFL/FL mice. Both HNF4α and SERT mRNA levels were also downregulated in mouse model of ileitis (SAMP) compared with AKR control mice. These results establish the transcriptional regulation of iSERT at the gut-specific internal promoter (hSERTp2) and have identified HNF4α as a critical modulator of basal SERT expression in the intestine.
Collapse
Affiliation(s)
- Nathaniel W Holton
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
| | - Megha Singhal
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
| | - Alexander L Ticho
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Christopher R Manzella
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Pooja Malhotra
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
| | - David Jarava
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Waddah A Alrefai
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
27
|
Meoli L, Günzel D. Channel functions of claudins in the organization of biological systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183344. [PMID: 32442419 DOI: 10.1016/j.bbamem.2020.183344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Claudins are tight junction proteins mostly appreciated in their function of paracellular barrier-formation. Compared to a virtual absence of any tight junctions, their paracellular sealing role certainly stands out. Yet, it was recognized immediately after the discovery of the first claudins, that some members of the claudin protein family were able to convey size and charge selectivity to the paracellular pathway. Thus, paracellular permeability can be fine-tuned according to the physiological needs of a tissue by inserting these channel-forming claudins into tight junction strands. Precise permeability adjustment is further suggested by the presence of numerous isoforms of channel-forming claudins (claudin-10b-, -15-, -16-like isoforms) in various vertebrate taxa. Moreover, their expression and localization are controlled by multiple transcriptional and posttranslational mechanisms. Consequently, mutation or dysregulation of channel-forming claudins can cause severe diseases. The present review therefore aims at providing an up-to-date report of the current research on these aspects of channel-forming claudins and their possible implications on future developments.
Collapse
Affiliation(s)
- Luca Meoli
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany.
| |
Collapse
|
28
|
Yin S, Ray G, Kerschner JL, Hao S, Perez A, Drumm ML, Browne JA, Leir SH, Longworth M, Harris A. Functional genomics analysis of human colon organoids identifies key transcription factors. Physiol Genomics 2020; 52:234-244. [PMID: 32390556 DOI: 10.1152/physiolgenomics.00113.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Organoids are a valuable three-dimensional (3D) model to study the differentiated functions of the human intestinal epithelium. They are a particularly powerful tool to measure epithelial transport processes in health and disease. Though biological assays such as organoid swelling and intraluminal pH measurements are well established, their underlying functional genomics are not well characterized. Here we combine genome-wide analysis of open chromatin by ATAC-Seq with transcriptome mapping by RNA-Seq to define the genomic signature of human intestinal organoids (HIOs). These data provide an important tool for investigating key physiological and biochemical processes in the intestinal epithelium. We next compared the transcriptome and open chromatin profiles of HIOs with equivalent data sets from the Caco2 colorectal carcinoma line, which is an important two-dimensional (2D) model of the intestinal epithelium. Our results define common features of the intestinal epithelium in HIO and Caco2 and further illustrate the cancer-associated program of the cell line. Generation of Caco2 cysts enabled interrogation of the molecular divergence of the 2D and 3D cultures. Overrepresented motif analysis of open chromatin peaks identified caudal type homeobox 2 (CDX2) as a key activating transcription factor in HIO, but not in monolayer cultures of Caco2. However, the CDX2 motif becomes overrepresented in open chromatin from Caco2 cysts, reinforcing the importance of this factor in intestinal epithelial differentiation and function. Intersection of the HIO and Caco2 transcriptomes further showed functional overlap in pathways of ion transport and tight junction integrity, among others. These data contribute to understanding human intestinal organoid biology.
Collapse
Affiliation(s)
- Shiyi Yin
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland Ohio
| | - Greeshma Ray
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland Ohio
| | - Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland Ohio
| | - Shuyu Hao
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland Ohio
| | - Aura Perez
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland Ohio
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland Ohio
| | - James A Browne
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland Ohio
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland Ohio
| | - Michelle Longworth
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland Ohio
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland Ohio
| |
Collapse
|
29
|
Montenegro-Miranda PS, van der Meer JH, Jones C, Meisner S, Vermeulen JL, Koster J, Wildenberg ME, Heijmans J, Boudreau F, Ribeiro A, van den Brink GR, Muncan V. A Novel Organoid Model of Damage and Repair Identifies HNF4α as a Critical Regulator of Intestinal Epithelial Regeneration. Cell Mol Gastroenterol Hepatol 2020; 10:209-223. [PMID: 32145468 PMCID: PMC7301200 DOI: 10.1016/j.jcmgh.2020.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Recent evidence has suggested that the intact intestinal epithelial barrier protects our body from a range of immune-mediated diseases. The epithelial layer has an impressive ability to reconstitute and repair upon damage and this process of repair increasingly is seen as a therapeutic target. In vitro models to study this process in primary intestinal cells are lacking. METHODS We established and characterized an in vitro model of intestinal damage and repair by applying γ-radiation on small-intestinal organoids. We then used this model to identify novel regulators of intestinal regeneration. RESULTS We identified hepatocyte nuclear factor 4α (HNF4α) as a pivotal upstream regulator of the intestinal regenerative response. Organoids lacking Hnf4a were not able to propagate in vitro. Importantly, intestinal Hnf4a knock-out mice showed impaired regeneration after whole-body irradiation, confirming intestinal organoids as a valuable alternative to in vivo studies. CONCLUSIONS In conclusion, we established and validated an in vitro damage-repair model and identified HNF4α as a crucial regulator of intestinal regeneration. Transcript profiling: GSE141515 and GSE141518.
Collapse
Affiliation(s)
- Paula S. Montenegro-Miranda
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands
| | - Jonathan H.M. van der Meer
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands
| | - Christine Jones
- Département d'Anatomie et de Biologie Cellulaire/Faculté de médecine et des sciences de la santé, Pavillon de Recherche Appliquée sur le Cancer, Sherbrooke, Canada
| | - Sander Meisner
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands
| | - Jacqueline L.M. Vermeulen
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands
| | - Jan Koster
- Department of Oncogenomics, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E. Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands
| | - Jarom Heijmans
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands
| | - Francois Boudreau
- Département d'Anatomie et de Biologie Cellulaire/Faculté de médecine et des sciences de la santé, Pavillon de Recherche Appliquée sur le Cancer, Sherbrooke, Canada
| | - Agnes Ribeiro
- Cordeliers Research Center, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Gijs R. van den Brink
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands,Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Vanesa Muncan
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands,Correspondence Address correspondence to: Vanesa Muncan, PhD, Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, Amsterdam, The Netherlands. fax: (31) 20-566-9190.
| |
Collapse
|
30
|
Rosenthal R, Günzel D, Piontek J, Krug SM, Ayala‐Torres C, Hempel C, Theune D, Fromm M. Claudin-15 forms a water channel through the tight junction with distinct function compared to claudin-2. Acta Physiol (Oxf) 2020; 228:e13334. [PMID: 31188544 DOI: 10.1111/apha.13334] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022]
Abstract
AIM Claudin-15 is mainly expressed in the small intestine and indirectly involved in glucose absorption. Similar to claudin-2 and -10b, claudin-15 is known to form a paracellular channel for small cations. Claudin-2, but not claudin-10b, also forms water channels. Here we experimentally tested whether claudin-15 also mediates water transport and if yes, whether water transport is Na+ -coupled, as seen for claudin-2. METHODS MDCK C7 cells were stably transfected with claudin-15. Ion and water permeability were investigated in confluent monolayers of control and claudin-15-expressing cells. Water flux was induced by an osmotic or ionic gradient. RESULTS Expression of claudin-15 in MDCK cells strongly increased cation permeability. The permeability ratios for monovalent cations indicated a passage of partially hydrated ions through the claudin-15 pore. Accordingly, its pore diameter was determined to be larger than that of claudin-2 and claudin-10b. Mannitol-induced water flux was elevated in claudin-15-expressing cells compared to control cells. In contrast to the Na+ -coupled water flux of claudin-2 channels, claudin-15-mediated water flux was inhibited by Na+ flux. Consequently, water flux was increased in Na+ -free solution. Likewise, Na+ flux was decreased after induction of water flux through claudin-15. CONCLUSION Claudin-15, similar to claudin-2, forms a paracellular cation and water channel. In functional contrast to claudin-2, water and Na+ fluxes through claudin-15 inhibit each other. Claudin-15 allows Na+ to retain part of its hydration shell within the pore. This then reduces the simultaneous passage of additional water through the pore.
Collapse
Affiliation(s)
- Rita Rosenthal
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Institute of Clinical Physiology/Nutritional Medicine Charité – Universitätsmedizin Berlin Berlin Germany
| | - Dorothee Günzel
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Institute of Clinical Physiology/Nutritional Medicine Charité – Universitätsmedizin Berlin Berlin Germany
| | - Jörg Piontek
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Institute of Clinical Physiology/Nutritional Medicine Charité – Universitätsmedizin Berlin Berlin Germany
| | - Susanne M. Krug
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Institute of Clinical Physiology/Nutritional Medicine Charité – Universitätsmedizin Berlin Berlin Germany
| | - Carlos Ayala‐Torres
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Institute of Clinical Physiology/Nutritional Medicine Charité – Universitätsmedizin Berlin Berlin Germany
| | - Caroline Hempel
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Institute of Clinical Physiology/Nutritional Medicine Charité – Universitätsmedizin Berlin Berlin Germany
| | - Dian Theune
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Institute of Clinical Physiology/Nutritional Medicine Charité – Universitätsmedizin Berlin Berlin Germany
| | - Michael Fromm
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Institute of Clinical Physiology/Nutritional Medicine Charité – Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
31
|
Tunçer S, Sade-Memişoğlu A, Keşküş AG, Sheraj I, Güner G, Akyol A, Banerjee S. Enhanced expression of HNF4α during intestinal epithelial differentiation is involved in the activation of ER stress. FEBS J 2019; 287:2504-2523. [PMID: 31762160 DOI: 10.1111/febs.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/17/2019] [Accepted: 11/21/2019] [Indexed: 01/19/2023]
Abstract
Intestinal epithelial cells are derived from stem cells at the crypts that undergo differentiation into transit-amplifying cells, which in turn form terminally differentiated enterocytes as these cells reach the villus. Extensive alterations in both transcriptional and translational programs occur during differentiation, which can induce the activation of cellular stress responses such as ER stress-related unfolded protein response (UPR) and autophagy, particularly in the cells that are already committed to becoming absorptive cells. Using an epithelial cell model of enterocyte differentiation, we report a mechanistic study connecting enterocyte differentiation to UPR and autophagy. We report that differentiated colon epithelial cells showed increased cytosolic Ca2+ levels and activation of all three pathways of UPR: inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like ER kinase, and activating transcription factor 6 (ATF6) compared to the undifferentiated cells. Enhanced UPR in the differentiated cells was accompanied by the induction of autophagy as evidenced by increased ratio of light chain 3 II/I, upregulation of Beclin-1, and downregulation of p62. We show for the first time that mechanistically, the upregulation of hepatocyte nuclear factor 4α (HNF4α) during differentiation led to increased promoter binding and transcriptional upregulation of two major proteins of UPR: X-box binding protein-1 and ATF6, implicating HNF4α as a key regulator of UPR response during differentiation. Integrating wet-lab with in silico analyses, the present study links differentiation to cellular stress responses, and highlights the importance of transcription factor signaling and cross-talk between the cellular events in the regulation of intestinal cell differentiation.
Collapse
Affiliation(s)
- Sinem Tunçer
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Aslı Sade-Memişoğlu
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Ayşe Gökçe Keşküş
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ilir Sheraj
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Güneş Güner
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Aytekin Akyol
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey.,Department of Biological Sciences and Cancer Systems Biology Laboratory (CanSyl), Orta Dogu Teknik Universitesi, Ankara, Turkey
| |
Collapse
|
32
|
Nuclear receptor HNF4α performs a tumor suppressor function in prostate cancer via its induction of p21-driven cellular senescence. Oncogene 2019; 39:1572-1589. [PMID: 31695151 PMCID: PMC7018660 DOI: 10.1038/s41388-019-1080-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Abstract
Hepatocyte nuclear factor 4α (HNF4α, NR2A1) is a highly conserved member of the nuclear receptor superfamily. Recent advances reveal that it is a key transcriptional regulator of genes, broadly involved in xenobiotic and drug metabolism and also cancers of gastrointestinal tract. However, the exact functional roles of HNF4α in prostate cancer progression are still not fully understood. In this study, we determined the functional significance of HNF4α in prostate cancer. Our results showed that HNF4α exhibited a reduced expression pattern in clinical prostate cancer tissues, prostate cancer cell lines and xenograft model of castration-relapse prostate cancer. Stable HNF4α knockdown not only could promote cell proliferation and suppress doxorubicin (Dox)-induced cellular senescence in prostate cancer cells, but also confer resistance to paclitaxel treatment and enhance colony formation capacity and in vivo tumorigenicity of prostate cancer cells. On the contrary, ectopic overexpression of HNF4α could significantly inhibit the cell proliferation of prostate cancer cells, induce cell-cycle arrest at G2/M phase and trigger the cellular senescence in prostate cancer cells by activation of p21 signal pathway in a p53-independent manner via its direct transactivation of CDKN1A. Together, our results show that HNF4α performs a tumor suppressor function in prostate cancer via a mechanism of p21-driven cellular senescence.
Collapse
|
33
|
Murdoch CC, Rawls JF. Commensal Microbiota Regulate Vertebrate Innate Immunity-Insights From the Zebrafish. Front Immunol 2019; 10:2100. [PMID: 31555292 PMCID: PMC6742977 DOI: 10.3389/fimmu.2019.02100] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Microbial communities populate the mucosal surfaces of all animals. Metazoans have co-evolved with these microorganisms, forming symbioses that affect the molecular and cellular underpinnings of animal physiology. These microorganisms, collectively referred to as the microbiota, are found on many distinct body sites (including the skin, nasal cavity, and urogenital tract), however the most densely colonized host tissue is the intestinal tract. Although spatially confined within the intestinal lumen, the microbiota and associated products shape the development and function of the host immune system. Studies comparing gnotobiotic animals devoid of any microbes (germ free) with counterparts colonized with selected microbial communities have demonstrated that commensal microorganisms are required for the proper development and function of the immune system at homeostasis and following infectious challenge or injury. Animal model systems have been essential for defining microbiota-dependent shifts in innate immune cell function and intestinal physiology during infection and disease. In particular, the zebrafish has emerged as a powerful vertebrate model organism with unparalleled capacity for in vivo imaging, a full complement of genetic approaches, and facile methods to experimentally manipulate microbial communities. Here we review key insights afforded by the zebrafish into the impact of microbiota on innate immunity, including evidence that the perception of and response to the microbiota is evolutionarily conserved. We also highlight opportunities to strengthen the zebrafish model system, and to gain new insights into microbiota-innate immune interactions that would be difficult to achieve in mammalian models.
Collapse
Affiliation(s)
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
34
|
Association between HNF4A mutations and bleeding complications in patients with stable international normalized ratio. Pharmacogenet Genomics 2019; 29:200-206. [PMID: 31461081 DOI: 10.1097/fpc.0000000000000384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES This study aimed to determine the association between hepatocyte nuclear factor 4 alpha (HNF4A) polymorphisms and bleeding complications in patients on warfarin with international normalized ratios between 2.0 and 3.0 after cardiac valve replacement. METHODS Nineteen single nucleotide polymorphisms of HNF4A in addition to VKORC1 rs9934438 and CYP2C9 rs1057910 were analyzed. Univariate and multivariate analyses were conducted to evaluate associations between genetic polymorphisms and bleeding risk. Attributable risk and number needed to genotype (NNG) were calculated to assess clinical value of genotyping. RESULTS Of 142 patients, 21 experienced bleeding complications. Multivariate logistic regression analysis was conducted using factors with P <0.1 in univariate analysis. Multivariate analysis showed that patients with the CC genotype of rs6130615 had an 8.4-fold increased risk of bleeding, compared with patients with the T allele. Attributable risk and NNG were 88.1% and 32.2, respectively. Patients with the TT genotype of rs3212191 had a 3.8-fold increased risk of bleeding, compared with C allele carriers, while patients with variant-type homozygotes for rs1884613 showed an 8.7-fold higher bleeding complication than C allele carriers. The attributable risk/NNG of rs3212191 and rs1884613 were 73.4%/17.6 and 88.5%/22.8, respectively. Among comorbidities, atrial fibrillation was the only significant risk factor for bleeding complications. CONCLUSION Bleeding complications during warfarin therapy in patients with mechanical heart valves were associated with HNF4A polymorphisms and atrial fibrillation.
Collapse
|
35
|
Yeh MM, Bosch DE, Daoud SS. Role of hepatocyte nuclear factor 4-alpha in gastrointestinal and liver diseases. World J Gastroenterol 2019; 25:4074-4091. [PMID: 31435165 PMCID: PMC6700705 DOI: 10.3748/wjg.v25.i30.4074] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α) is a highly conserved member of nuclear receptor superfamily of ligand-dependent transcription factors that is expressed in liver and gastrointestinal organs (pancreas, stomach, and intestine). In liver, HNF4α is best known for its role as a master regulator of liver-specific gene expression and essential for adult and fetal liver function. Dysregulation of HNF4α expression has been associated with many human diseases such as ulcerative colitis, colon cancer, maturity-onset diabetes of the young, liver cirrhosis, and hepatocellular carcinoma. However, the precise role of HNF4α in the etiology of these human pathogenesis is not well understood. Limited information is known about the role of HNF4α isoforms in liver and gastrointestinal disease progression. There is, therefore, a critical need to know how disruption of the expression of these isoforms may impact on disease progression and phenotypes. In this review, we will update our current understanding on the role of HNF4α in human liver and gastrointestinal diseases. We further provide additional information on possible use of HNF4α as a target for potential therapeutic approaches.
Collapse
Affiliation(s)
- Matthew M Yeh
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Dustin E Bosch
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Sayed S Daoud
- Department of Pharmaceutical Sciences, Washington State University Health Sciences, Spokane, WA 99210, United States
| |
Collapse
|
36
|
Rao MC. Physiology of Electrolyte Transport in the Gut: Implications for Disease. Compr Physiol 2019; 9:947-1023. [PMID: 31187895 DOI: 10.1002/cphy.c180011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We now have an increased understanding of the genetics, cell biology, and physiology of electrolyte transport processes in the mammalian intestine, due to the availability of sophisticated methodologies ranging from genome wide association studies to CRISPR-CAS technology, stem cell-derived organoids, 3D microscopy, electron cryomicroscopy, single cell RNA sequencing, transgenic methodologies, and tools to manipulate cellular processes at a molecular level. This knowledge has simultaneously underscored the complexity of biological systems and the interdependence of multiple regulatory systems. In addition to the plethora of mammalian neurohumoral factors and their cross talk, advances in pyrosequencing and metagenomic analyses have highlighted the relevance of the microbiome to intestinal regulation. This article provides an overview of our current understanding of electrolyte transport processes in the small and large intestine, their regulation in health and how dysregulation at multiple levels can result in disease. Intestinal electrolyte transport is a balance of ion secretory and ion absorptive processes, all exquisitely dependent on the basolateral Na+ /K+ ATPase; when this balance goes awry, it can result in diarrhea or in constipation. The key transporters involved in secretion are the apical membrane Cl- channels and the basolateral Na+ -K+ -2Cl- cotransporter, NKCC1 and K+ channels. Absorption chiefly involves apical membrane Na+ /H+ exchangers and Cl- /HCO3 - exchangers in the small intestine and proximal colon and Na+ channels in the distal colon. Key examples of our current understanding of infectious, inflammatory, and genetic diarrheal diseases and of constipation are provided. © 2019 American Physiological Society. Compr Physiol 9:947-1023, 2019.
Collapse
Affiliation(s)
- Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
37
|
Rodiño-Janeiro BK, Pardo-Camacho C, Santos J, Martínez C. Mucosal RNA and protein expression as the next frontier in IBS: abnormal function despite morphologically intact small intestinal mucosa. Am J Physiol Gastrointest Liver Physiol 2019; 316:G701-G719. [PMID: 30767681 DOI: 10.1152/ajpgi.00186.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the commonest gastrointestinal disorders. Although long-time considered a pure functional disorder, intense research in past years has rendered a very complex and varied array of observations indicating the presence of structural and molecular abnormalities underlying characteristic motor and sensitive changes and clinical manifestations. Analysis of gene and protein expression in the intestinal mucosa has shed light on the molecular mechanisms implicated in IBS physiopathology. This analysis uncovers constitutive and inductive genetic and epigenetic marks in the small and large intestine that highlight the role of epithelial barrier, immune activation, and mucosal processing of foods and toxins and several new molecular pathways in the origin of IBS. The incorporation of innovative high-throughput techniques into IBS research is beginning to provide new insights into highly structured and interconnected molecular mechanisms modulating gene and protein expression at tissue level. Integration and correlation of these molecular mechanisms with clinical and environmental data applying systems biology/medicine and data mining tools emerge as crucial steps that will allow us to get meaningful and more definitive comprehension of IBS-detailed development and show the real mechanisms and causality of the disease and the way to identify more specific diagnostic biomarkers and effective treatments.
Collapse
Affiliation(s)
- Bruno Kotska Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Cristina Pardo-Camacho
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Madrid , Spain
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| |
Collapse
|
38
|
Klepsch V, Moschen AR, Tilg H, Baier G, Hermann-Kleiter N. Nuclear Receptors Regulate Intestinal Inflammation in the Context of IBD. Front Immunol 2019; 10:1070. [PMID: 31139192 PMCID: PMC6527601 DOI: 10.3389/fimmu.2019.01070] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
Gastrointestinal (GI) homeostasis is strongly dependent on nuclear receptor (NR) functions. They play a variety of roles ranging from nutrient uptake, sensing of microbial metabolites, regulation of epithelial intestinal cell integrity to shaping of the intestinal immune cell repertoire. Several NRs are associated with GI pathologies; therefore, systematic analysis of NR biology, the underlying molecular mechanisms, and regulation of target genes can be expected to help greatly in uncovering the course of GI diseases. Recently, an increasing number of NRs has been validated as potential drug targets for therapeutic intervention in patients with inflammatory bowel disease (IBD). Besides the classical glucocorticoids, especially PPARγ, VDR, or PXR-selective ligands are currently being tested with promising results in clinical IBD trials. Also, several pre-clinical animal studies are being performed with NRs. This review focuses on the complex biology of NRs and their context-dependent anti- or pro-inflammatory activities in the regulation of gastrointestinal barrier with special attention to NRs already pharmacologically targeted in clinic and pre-clinical IBD treatment regimens.
Collapse
Affiliation(s)
- Victoria Klepsch
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander R. Moschen
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
39
|
HNF4α is a novel regulator of intestinal glucose-dependent insulinotropic polypeptide. Sci Rep 2019; 9:4200. [PMID: 30862908 PMCID: PMC6414548 DOI: 10.1038/s41598-019-41061-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/23/2019] [Indexed: 11/24/2022] Open
Abstract
Mutations in the HNF4A gene cause MODY1 and are associated with an increased risk of Type 2 diabetes mellitus. On the other hand, incretins are hormones that potentiate reductions in blood glucose levels. Given the established role of incretin-based therapy to treat diabetes and metabolic disorders, we investigated a possible regulatory link between intestinal epithelial HNF4α and glucose-dependent insulinotropic polypeptide (GIP), an incretin that is specifically produced by gut enteroendocrine cells. Conditional deletion of HNF4α in the whole intestinal epithelium was achieved by crossing Villin-Cre and Hnf4αloxP/loxP C57BL/6 mouse models. GIP expression was measured by qPCR, immunofluorescence and ELISA. Gene transcription was assessed by luciferase and electrophoretic mobility shift assays. Metabolic parameters were analyzed by indirect calorimetry and dual-energy X-ray absorptiometry. HNF4α specific deletion in the intestine led to a reduction in GIP. HNF4α was able to positively control Gip transcriptional activity in collaboration with GATA-4 transcription factor. Glucose homeostasis and glucose-stimulated insulin secretion remained unchanged in HNF4α deficient mice. Changes in GIP production in these mice did not impact nutrition or energy metabolism under normal physiology but led to a reduction of bone area and mineral content, a well described physiological consequence of GIP deficiency. Our findings point to a novel regulatory role between intestinal HNF4α and GIP with possible functional impact on bone density.
Collapse
|
40
|
Abstract
Inflammatory bowel diseases (IBDs), represented by Crohn disease and ulcerative colitis, are associated with major morbidity in Western countries and with increasing incidence in the developing world. Although analysis of the genome of patients with IBD, especially through genome-wide association studies, has unraveled multiple pathways involved in IBD pathogenesis, only part of IBD heritability has been explained by genetic studies. This finding has revealed that environmental factors also play a major role in promoting intestinal inflammation, mostly through their effects in the composition of the microbiome. However, in order for microbial dysbiosis to result in uncontrolled intestinal inflammation, the intestinal barrier formed by intestinal epithelial cells and the innate immune system should also be compromised. Finally, activation of the immune system depends on the working balance between effector and regulatory cells present in the intestinal mucosa, which have also been found to be dysregulated in this patient population. Therefore, IBD pathogenesis is a result of the interplay of genetic susceptibility and environmental impact on the microbiome that through a weakened intestinal barrier will lead to inappropriate intestinal immune activation. In this article, we will review the mechanisms proposed to cause IBD from the genetic, environmental, intestinal barrier, and immunologic perspectives.
Collapse
|
41
|
Qu M, Duffy T, Hirota T, Kay SA. Nuclear receptor HNF4A transrepresses CLOCK:BMAL1 and modulates tissue-specific circadian networks. Proc Natl Acad Sci U S A 2018; 115:E12305-E12312. [PMID: 30530698 PMCID: PMC6310821 DOI: 10.1073/pnas.1816411115] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Either expression level or transcriptional activity of various nuclear receptors (NRs) have been demonstrated to be under circadian control. With a few exceptions, little is known about the roles of NRs as direct regulators of the circadian circuitry. Here we show that the nuclear receptor HNF4A strongly transrepresses the transcriptional activity of the CLOCK:BMAL1 heterodimer. We define a central role for HNF4A in maintaining cell-autonomous circadian oscillations in a tissue-specific manner in liver and colon cells. Not only transcript level but also genome-wide chromosome binding of HNF4A is rhythmically regulated in the mouse liver. ChIP-seq analyses revealed cooccupancy of HNF4A and CLOCK:BMAL1 at a wide array of metabolic genes involved in lipid, glucose, and amino acid homeostasis. Taken together, we establish that HNF4A defines a feedback loop in tissue-specific mammalian oscillators and demonstrate its recruitment in the circadian regulation of metabolic pathways.
Collapse
Affiliation(s)
- Meng Qu
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089
| | - Tomas Duffy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, 464-8602 Nagoya, Japan
| | - Steve A Kay
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089;
| |
Collapse
|
42
|
Babeu JP, Jones C, Geha S, Carrier JC, Boudreau F. P1 promoter-driven HNF4α isoforms are specifically repressed by β-catenin signaling in colorectal cancer cells. J Cell Sci 2018; 131:jcs.214734. [PMID: 29898915 DOI: 10.1242/jcs.214734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/31/2018] [Indexed: 01/19/2023] Open
Abstract
HNF4α is a key nuclear receptor for regulating gene expression in the gut. Although both P1 and P2 isoform classes of HNF4α are expressed in colonic epithelium, specific inhibition of P1 isoforms is commonly found in colorectal cancer. Previous studies have suggested that P1 and P2 isoforms might regulate different cellular functions. Despite these advances, it remains unclear whether these isoform classes are functionally divergent in the context of human biology. Here, the consequences of specific inhibition of P1 or P2 isoform expression was measured in a human colorectal cancer cell transcriptome. Results indicate that P1 isoforms were specifically associated with the control of cell metabolism, whereas P2 isoforms globally supported aberrant oncogenic signalization, promoting cancer cell survival and progression. P1 promoter-driven isoform expression was found to be repressed by β-catenin, one of the earliest oncogenic pathways to be activated during colon tumorigenesis. These findings identify a novel cascade by which the expression of P1 isoforms is rapidly shut down in the early stages of colon tumorigenesis, allowing a change in HNF4α-dependent transcriptome, thereby promoting colorectal cancer progression.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jean-Philippe Babeu
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1E4K8
| | - Christine Jones
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1E4K8
| | - Sameh Geha
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1E4K8
| | - Julie C Carrier
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada, J1E4K8
| | - François Boudreau
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1E4K8.
| |
Collapse
|
43
|
Boyd M, Thodberg M, Vitezic M, Bornholdt J, Vitting-Seerup K, Chen Y, Coskun M, Li Y, Lo BZS, Klausen P, Jan Schweiger P, Pedersen AG, Rapin N, Skovgaard K, Dahlgaard K, Andersson R, Terkelsen TB, Lilje B, Troelsen JT, Petersen AM, Jensen KB, Gögenur I, Thielsen P, Seidelin JB, Nielsen OH, Bjerrum JT, Sandelin A. Characterization of the enhancer and promoter landscape of inflammatory bowel disease from human colon biopsies. Nat Commun 2018; 9:1661. [PMID: 29695774 PMCID: PMC5916929 DOI: 10.1038/s41467-018-03766-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/12/2018] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal disorder, with two main types: Crohn’s disease (CD) and ulcerative colitis (UC), whose molecular pathology is not well understood. The majority of IBD-associated SNPs are located in non-coding regions and are hard to characterize since regulatory regions in IBD are not known. Here we profile transcription start sites (TSSs) and enhancers in the descending colon of 94 IBD patients and controls. IBD-upregulated promoters and enhancers are highly enriched for IBD-associated SNPs and are bound by the same transcription factors. IBD-specific TSSs are associated to genes with roles in both inflammatory cascades and gut epithelia while TSSs distinguishing UC and CD are associated to gut epithelia functions. We find that as few as 35 TSSs can distinguish active CD, UC, and controls with 85% accuracy in an independent cohort. Our data constitute a foundation for understanding the molecular pathology, gene regulation, and genetics of IBD. Many SNPs associated with inflammatory bowel disease are located in non-coding genomic regions. Here, the authors perform CAGE-sequencing on descending colon biopsies of Crohn’s disease and ulcerative colitis patients to map transcription start sites and enhancer activity for analysis of regulatory regions.
Collapse
Affiliation(s)
- Mette Boyd
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Malte Thodberg
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Morana Vitezic
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jette Bornholdt
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Kristoffer Vitting-Seerup
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Yun Chen
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Mehmet Coskun
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Yuan Li
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730, Herlev, Denmark
| | - Bobby Zhao Sheng Lo
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark.,Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730, Herlev, Denmark
| | - Pia Klausen
- Department of Gastroenterology, Surgical Section, Herlev Hospital, 2730, Herlev, Denmark
| | - Pawel Jan Schweiger
- Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | | | - Nicolas Rapin
- Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark.,The Finsen Laboratory, Rigshospitalet, University of Copenhagen, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Katja Dahlgaard
- Department of Science and Environment (INM), Roskilde University, 4000, Roskilde, Denmark
| | - Robin Andersson
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Thilde Bagger Terkelsen
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Berit Lilje
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | | | - Andreas Munk Petersen
- Hvidovre Hospital, Gastrounit Medical Division, University of Copenhagen, 2650, Hvidovre, Denmark.,Hvidovre Hospital, Department of Clinical Microbiology, University of Copenhagen, 2650, Hvidovre, Denmark
| | - Kim Bak Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Ismail Gögenur
- Centre for Surgical Science, Department of Surgery, Zealand University Hospital, 4600, Koege, Denmark
| | - Peter Thielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730, Herlev, Denmark
| | - Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730, Herlev, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730, Herlev, Denmark
| | - Jacob Tveiten Bjerrum
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730, Herlev, Denmark.
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark. .,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
44
|
Thompson CA, DeLaForest A, Battle MA. Patterning the gastrointestinal epithelium to confer regional-specific functions. Dev Biol 2018; 435:97-108. [PMID: 29339095 PMCID: PMC6615902 DOI: 10.1016/j.ydbio.2018.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/01/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) tract, in simplest terms, can be described as an epithelial-lined muscular tube extending along the cephalocaudal axis from the oral cavity to the anus. Although the general architecture of the GI tract organs is conserved from end to end, the presence of different epithelial tissue structures and unique epithelial cell types within each organ enables each to perform the distinct digestive functions required for efficient nutrient assimilation. Spatiotemporal regulation of signaling pathways and downstream transcription factors controls GI epithelial morphogenesis during development to confer essential regional-specific epithelial structures and functions. Here, we discuss the fundamental functions of each GI tract organ and summarize the diversity of epithelial structures present along the cephalocaudal axis of the GI tract. Next, we discuss findings, primarily from genetic mouse models, that have defined the roles of key transcription factors during epithelial morphogenesis, including p63, SOX2, SOX15, GATA4, GATA6, HNF4A, and HNF4G. Additionally, we examine how the Hedgehog, WNT, and BMP signaling pathways contribute to defining unique epithelial features along the cephalocaudal axis of the GI tract. Lastly, we examine the molecular mechanisms controlling regionalized cytodifferentiation of organ-specific epithelial cell types within the GI tract, concentrating on the stomach and small intestine. The delineation of GI epithelial patterning mechanisms in mice has provided fundamental knowledge to guide the development and refinement of three-dimensional GI organotypic culture models such as those derived from directed differentiation of human pluripotent stem cells and those derived directly from human tissue samples. Continued examination of these pathways will undoubtedly provide vital insights into the mechanisms of GI development and disease and may afford new avenues for innovative tissue engineering and personalized medicine approaches to treating GI diseases.
Collapse
Affiliation(s)
- Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
45
|
Dietary n-3 PUFA May Attenuate Experimental Colitis. Mediators Inflamm 2018; 2018:8430614. [PMID: 29670469 PMCID: PMC5833476 DOI: 10.1155/2018/8430614] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/13/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023] Open
Abstract
Background Inflammatory bowel diseases (IBD) occurred in genetically predisposed people exposed to environmental triggers. Diet has long been suspected to contribute to the development of IBD. Supplementation with n-3 polyunsaturated fatty acids (PUFA) protects against intestinal inflammation in rodent models while clinical trials showed no benefits. We hypothesized that intervention timing is crucial and dietary fatty acid pattern may influence intestinal environment to modify inflammation genesis. The aim of this study was to evaluate the dietary effect of PUFA composition on intestinal inflammation. Methods Animals received diet varying in their PUFA composition for four weeks before TNBS-induced colitis. Colon inflammatory markers and gut barrier function parameters were assessed. Inflammatory pathway PCR arrays were determined. Results n-3 diet significantly decreased colon iNOS, COX-2 expression, IL-6 production, and LTB4 production but tended to decrease colon TNFα production (P = 0.0617) compared to control diet. Tight junction protein (claudin-1, occludin) expressions and MUC2 and TFF3 mRNA levels were not different among groups. n-9 diet also decreased colon IL-6 production (P < 0.05). Conclusions Dietary n-3 PUFA influence colitis development by attenuating inflammatory markers. Further research is required to better define dietary advice with a scientific rationale.
Collapse
|
46
|
Muthusamy S, Jeong JJ, Cheng M, Bonzo JA, Kumar A, Gonzalez FJ, Borthakur A, Dudeja PK, Saksena S, Malakooti J. Hepatocyte nuclear factor 4α regulates the expression of intestinal epithelial Na +/H + exchanger isoform 3. Am J Physiol Gastrointest Liver Physiol 2018; 314:G14-G21. [PMID: 28882825 PMCID: PMC5866373 DOI: 10.1152/ajpgi.00225.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 01/31/2023]
Abstract
Na+/H+ exchanger isoform 3 (NHE3) plays a key role in coupled electroneutral NaCl absorption in the mammalian intestine. Reduced NHE3 expression or function has been implicated in the pathogenesis of diarrhea associated with inflammatory bowel disease (IBD) or enteric infections. Our previous studies revealed transcriptional regulation of NHE3 by various agents such as TNF-α, IFN-γ, and butyrate involving transcription factors Sp1 and Sp3. In silico analysis revealed that the NHE3 core promoter also contains a hepatocyte nuclear factor 4α (HNF-4α) binding site that is evolutionarily conserved in several species suggesting that HNF-4α has a role in NHE3 regulation. Nhe3 mRNA levels were reduced in intestine-specific Hnf4α-null mice. However, detailed mechanisms of NHE3 regulation by HNF-4α are not known. We investigated the regulation of NHE3 gene expression by HNF-4α in vitro in the human intestinal epithelial cell line C2BBe1 and in vivo in intestine-specific Hnf4α-null ( Hnf4αΔIEpC) and control ( Hnf4αfl/fl) mice. HNF-4α knockdown by short interfering RNA in C2BBe1 cells significantly decreased NHE3 mRNA and NHE3 protein levels. Gel mobility shift and chromatin immunoprecipitation assays revealed that HNF-4α directly interacts with the HNF-4α motif in the NHE3 core promoter. Site-specific mutagenesis on the HNF-4α motif decreased, whereas ectopic overexpression of HNF-4α increased, NHE3 promoter activity. Furthermore, loss of HNF-4α in Hnf4αΔIEpC mice decreased colonic Nhe3 mRNA and NHE3 protein levels. Our results demonstrate a novel role for HNF-4α in basal regulation of NHE3 expression. These studies represent an important and novel target for therapeutic intervention in IBD-associated diarrhea. NEW & NOTEWORTHY Our studies for the first time show that hepatocyte nuclear factor 4α directly regulates NHE3 promoter activity and its basal expression in the intestine.
Collapse
Affiliation(s)
- Saminathan Muthusamy
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Jong Jin Jeong
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Ming Cheng
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Jessica A Bonzo
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland
| | - Alip Borthakur
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - Jaleh Malakooti
- Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| |
Collapse
|
47
|
Capaldo CT, Powell DN, Kalman D. Layered defense: how mucus and tight junctions seal the intestinal barrier. J Mol Med (Berl) 2017; 95:927-934. [PMID: 28707083 PMCID: PMC5548832 DOI: 10.1007/s00109-017-1557-x] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 12/22/2022]
Abstract
The colonic mucosa provides a vital defensive barrier separating the body from the microbial populations residing in the intestinal lumen. Indeed, growing evidence shows that loss of this barrier may cause disease or exacerbate disease progression. The loss of barrier integrity increases the translocation of bacterial antigens and stimulates inflammation in the intestinal mucosa, which is the central pathological feature of inflammatory bowel diseases (IBDs). This review focuses on how intestinal mucus and intercellular tight junctions (TJs) act together to maintain the integrity of the colonic barrier and how barrier integrity is dysregulated in IBD.
Collapse
Affiliation(s)
- Christopher T Capaldo
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street. Whitehead Research Building #143, Atlanta, GA, 30322, USA.
| | - Domonica N Powell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
48
|
Khan N, Binder L, Pantakani DVK, Asif AR. MPA Modulates Tight Junctions' Permeability via Midkine/PI3K Pathway in Caco-2 Cells: A Possible Mechanism of Leak-Flux Diarrhea in Organ Transplanted Patients. Front Physiol 2017; 8:438. [PMID: 28694783 PMCID: PMC5483464 DOI: 10.3389/fphys.2017.00438] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022] Open
Abstract
Mycophenolic acid (MPA) is prescribed to prevent allograft rejection in organ transplanted patients. However, its use is sporadically linked to leak flux diarrhea and other gastrointestinal (GI) disturbances in around 75% of patients through yet unknown mechanisms. Recently, we identified Midkine as a modulator of tight junctions (TJs) permeability in MPA treated Caco-2 monolayer. In the present study, we investigated the possible involvement of Midkine dependent PI3K pathway in alteration of TJs under MPA treatment. Caco-2 cells were grown as monolayer to develop TJs and were treated for 72 h with DMSO (control) or MPA in presence and absence of Midkine inhibitor (iMDK) or PI3K inhibitors (LY/AMG). Caco-2 monolayer integrity was assessed by transepithelial electrical resistance (TEER) and FITC-dextran assays. Our functional assays showed that PI3K inhibitors (LY/AMG) can significantly inhibit the compromised TJs integrity of MPA-treated Caco-2 cells monolayer. Chromatin immunoprecipitation analyses showed a significant epigenetic activation of Midkine, PI3K, Cdx-2, and Cldn-2 genes and epigenetic repression of Cldn-1 gene after MPA treatment. The MPA-induced epigenetic alterations were further confirmed by mRNA and protein expression analysis. Collectively, our data shows that PI3K pathway as the downstream target of Midkine which in turn modulates p38MAPK and pAKT signaling to alter TJs permeability in Caco-2 cell monolayers treated with MPA. These results highlight the possible use of either Midkine or PI3K inhibitors as therapeutic agents to prevent MPA induced GI disturbances.
Collapse
Affiliation(s)
- Niamat Khan
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,Department of Biotechnology and Genetic Engineering, Kohat University of Science and TechnologyKohat, Pakistan
| | - Lutz Binder
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,German Center for Cardiovascular Research, Partner Site GoettingenGoettingen, Germany
| | - D V Krishna Pantakani
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,German Center for Cardiovascular Research, Partner Site GoettingenGoettingen, Germany
| | - Abdul R Asif
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,German Center for Cardiovascular Research, Partner Site GoettingenGoettingen, Germany
| |
Collapse
|
49
|
Davison JM, Lickwar CR, Song L, Breton G, Crawford GE, Rawls JF. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha. Genome Res 2017; 27:1195-1206. [PMID: 28385711 PMCID: PMC5495071 DOI: 10.1101/gr.220111.116] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
Abstract
Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota.
Collapse
Affiliation(s)
- James M Davison
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina 27710, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina 27710, USA
| | - Lingyun Song
- Department of Pediatrics, Division of Medical Genetics, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Ghislain Breton
- Department of Integrative Biology and Pharmacology, McGovern Medical School, Houston, Texas 77030, USA
| | - Gregory E Crawford
- Department of Pediatrics, Division of Medical Genetics, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
50
|
Fujimoto K, Kinoshita M, Tanaka H, Okuzaki D, Shimada Y, Kayama H, Okumura R, Furuta Y, Narazaki M, Tamura A, Hatakeyama S, Ikawa M, Tsuchiya K, Watanabe M, Kumanogoh A, Tsukita S, Takeda K. Regulation of intestinal homeostasis by the ulcerative colitis-associated gene RNF186. Mucosal Immunol 2017; 10:446-459. [PMID: 27381925 DOI: 10.1038/mi.2016.58] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/02/2016] [Indexed: 02/04/2023]
Abstract
Genome-wide association studies and subsequent deep sequencing analysis have identified susceptible loci for inflammatory bowel diseases (IBDs) including ulcerative colitis (UC). A gene encoding RING finger protein 186 (RNF186) is located within UC-susceptible loci. However, it is unclear whether RNF186 is involved in IBD pathogenesis. Here, we show that RNF186 controls protein homeostasis in colonic epithelia and regulates intestinal inflammation. RNF186, which was highly expressed in colonic epithelia, acted as an E3 ligase mediating polyubiquitination of its substrates. Permeability of small organic molecules was augmented in the intestine of Rnf186-/- mice. Increased expression of several RNF186 substrates, such as occludin, was found in Rnf186-/- colonic epithelia. The disturbed protein homeostasis in Rnf186-/- mice correlated with enhanced endoplasmic reticulum (ER) stress in colonic epithelia and increased sensitivity to intestinal inflammation after dextran sulfate sodium (DSS) treatment. Introduction of an UC-associated Rnf186 mutation led to impaired E3 ligase activity and increased sensitivity to DSS-induced intestinal inflammation in mice. Thus, RNF186 maintains gut homeostasis by controlling ER stress in colonic epithelia.
Collapse
Affiliation(s)
- Kosuke Fujimoto
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroo Tanaka
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- DNA-Chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yosuke Shimada
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yoki Furuta
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Tamura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kumanogoh
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sachiko Tsukita
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan.,Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|