1
|
Milon TI, Sarkar T, Chen Y, Grider JM, Chen F, Ji JY, Jois SD, Kousoulas KG, Raghavan V, Xu W. Development of the TSR-based computational method to investigate spike and monoclonal antibody interactions. Front Chem 2025; 13:1395374. [PMID: 40177350 PMCID: PMC11962798 DOI: 10.3389/fchem.2025.1395374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Monoclonal antibody (mAb) drug treatments have proven effective in reducing COVID-19-related hospitalizations or fatalities, particularly among high-risk patients. Numerous experimental studies have explored the structures of spike proteins and their complexes with ACE2 or mAbs. These 3D structures provide crucial insights into the interactions between spike proteins and ACE2 or mAb, forming a basis for the development of diagnostic tools and therapeutics. However, the field of computational biology has faced substantial challenges due to the lack of methods for precise protein structural comparisons and accurate prediction of molecular interactions. In our previous studies, we introduced the Triangular Spatial Relationship (TSR)-based algorithm, which represents a protein's 3D structure using a vector of integers (keys). These earlier studies, however, were limited to individual proteins. Purpose This study introduces new extensions of the TSR-based algorithm, enhancing its ability to study interactions between two molecules. We apply these extensions to gain a mechanistic understanding of spike - mAb interactions. Method We expanded the basic TSR method in three novel ways: (1) TSR keys encompassing all atoms, (2) cross keys for interactions between two molecules, and (3) intra-residual keys for amino acids. This TSR-based representation of 3D structures offers a unique advantage by simplifying the search for similar substructures within structural datasets. Results The study's key findings include: (i) The method effectively quantified and interpreted conformational changes and steric effects using the newly introduced TSR keys. (ii) Six clusters for CDRH3 and three clusters for CDRL3 were identified using all-atom keys. (iii) We constructed the TSR-STRSUM (TSR-STRucture SUbstitution Matrix), a matrix that represents pairwise similarities between amino acid structures, providing valuable applications in protein sequence and structure comparison. (iv) Intra-residual keys revealed two distinct Tyr clusters characterized by specific triangle geometries. Conclusion This study presents an advanced computational approach that not only quantifies and interprets conformational changes in protein backbones, entire structures, or individual amino acids, but also facilitates the search for substructures induced by molecular binding across protein datasets. In some instances, a direct correlation between structures and functions was successfully established.
Collapse
Affiliation(s)
- Tarikul I. Milon
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Titli Sarkar
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
- The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Yixin Chen
- Department of Computer and Information Science, The University of Mississippi, University, MS, United States
| | - Jordan M. Grider
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Feng Chen
- High Performance Computing, 329 Frey Computing Services Center, Louisiana State University, Baton Rouge, LA, United States
| | - Jun-Yuan Ji
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA, United States
| | - Seetharama D. Jois
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Vijay Raghavan
- The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
| |
Collapse
|
2
|
Ullanat V, Jing B, Sledzieski S, Berger B. Learning the language of protein-protein interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642188. [PMID: 40166198 PMCID: PMC11956943 DOI: 10.1101/2025.03.09.642188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Protein Language Models (PLMs) trained on large databases of protein sequences have proven effective in modeling protein biology across a wide range of applications. However, while PLMs excel at capturing individual protein properties, they face challenges in natively representing protein-protein interactions (PPIs), which are crucial to understanding cellular processes and disease mechanisms. Here, we introduce MINT, a PLM specifically designed to model sets of interacting proteins in a contextual and scalable manner. Using unsupervised training on a large curated PPI dataset derived from the STRING database, MINT outperforms existing PLMs in diverse tasks relating to protein-protein interactions, including binding affinity prediction and estimation of mutational effects. Beyond these core capabilities, it excels at modeling interactions in complex protein assemblies and surpasses specialized models in antibody-antigen modeling and T cell receptor-epitope binding prediction. MINT's predictions of mutational impacts on oncogenic PPIs align with experimental studies, and it provides reliable estimates for the potential for cross-neutralization of antibodies against SARS-CoV-2 variants of concern. These findings position MINT as a powerful tool for elucidating complex protein interactions, with significant implications for biomedical research and therapeutic discovery.
Collapse
Affiliation(s)
- Varun Ullanat
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA
| | - Bowen Jing
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA
| | - Samuel Sledzieski
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA
- Center for Computational Biology, Flatiron Insitute, New York, NY
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA
- Department of Mathematics, Massachusetts Institute of Technology, MA
| |
Collapse
|
3
|
Papadopoulos AM, Axenopoulos A, Iatrou A, Stamatopoulos K, Alvarez F, Daras P. ParaSurf: a surface-based deep learning approach for paratope-antigen interaction prediction. Bioinformatics 2025; 41:btaf062. [PMID: 39921885 PMCID: PMC11855283 DOI: 10.1093/bioinformatics/btaf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
MOTIVATION Identifying antibody binding sites, is crucial for developing vaccines and therapeutic antibodies, processes that are time-consuming and costly. Accurate prediction of the paratope's binding site can speed up the development by improving our understanding of antibody-antigen interactions. RESULTS We present ParaSurf, a deep learning model that significantly enhances paratope prediction by incorporating both surface geometric and non-geometric factors. Trained and tested on three prominent antibody-antigen benchmarks, ParaSurf achieves state-of-the-art results across nearly all metrics. Unlike models restricted to the variable region, ParaSurf demonstrates the ability to accurately predict binding scores across the entire Fab region of the antibody. Additionally, we conducted an extensive analysis using the largest of the three datasets employed, focusing on three key components: (i) a detailed evaluation of paratope prediction for each complementarity-determining region loop, (ii) the performance of models trained exclusively on the heavy chain, and (iii) the results of training models solely on the light chain without incorporating data from the heavy chain. AVAILABILITY AND IMPLEMENTATION Source code for ParaSurf, along with the datasets used, preprocessing pipeline, and trained model weights, are freely available at https://github.com/aggelos-michael-papadopoulos/ParaSurf.
Collapse
Affiliation(s)
- Angelos-Michael Papadopoulos
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki 57001, Greece
- Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Apostolos Axenopoulos
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki 57001, Greece
- Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Anastasia Iatrou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki 57001, Greece
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki 57001, Greece
| | | | - Petros Daras
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki 57001, Greece
| |
Collapse
|
4
|
Zhu Z, Ashrafian H, Tabrizi NM, Matas E, Girard L, Ma H, Nice EC. Antibody numbering schemes: advances, comparisons and tools for antibody engineering. Protein Eng Des Sel 2025; 38:gzaf005. [PMID: 40169149 PMCID: PMC11997657 DOI: 10.1093/protein/gzaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/10/2025] [Accepted: 03/31/2025] [Indexed: 04/03/2025] Open
Abstract
The evolution of antibody engineering has significantly enhanced the development of antibody-based therapeutics, enabling the creation of novel antibody formats tailored for specific applications. Since the introduction of the Kabat numbering scheme in 1977, various schemes have been developed and modified, forming the foundation for multiple antibody engineering projects. The tools associated with these schemes further facilitate the engineering process. However, discrepancies among current numbering schemes can lead to confusion. This study examines various numbering schemes and related tools, providing new insights into antibody variable domains. Improved understanding of antibody numbering and related tools holds significant potential for more precise and efficient antibody design, thereby advancing antibody-based therapeutics and diagnostics.
Collapse
Affiliation(s)
- Zirui Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
- Chemistry Graduate Program, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
| | - Hossein Ashrafian
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
- Chemistry Graduate Program, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
| | - Navid Mohammadian Tabrizi
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
- Chemistry Graduate Program, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
| | - Emily Matas
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
| | - Louisa Girard
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, United States of America
| | - Haowei Ma
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106, United States of America
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Zhang K, Tao Y, Wang F. AntiBinder: utilizing bidirectional attention and hybrid encoding for precise antibody-antigen interaction prediction. Brief Bioinform 2024; 26:bbaf008. [PMID: 39831890 PMCID: PMC11744619 DOI: 10.1093/bib/bbaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/07/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025] Open
Abstract
Antibodies play a key role in medical diagnostics and therapeutics. Accurately predicting antibody-antigen binding is essential for developing effective treatments. Traditional protein-protein interaction prediction methods often fall short because they do not account for the unique structural and dynamic properties of antibodies and antigens. In this study, we present AntiBinder, a novel predictive model specifically designed to address these challenges. AntiBinder integrates the unique structural and sequence characteristics of antibodies and antigens into its framework and employs a bidirectional cross-attention mechanism to automatically learn the intrinsic mechanisms of antigen-antibody binding, eliminating the need for manual feature engineering. Our comprehensive experiments, which include predicting interactions between known antigens and new antibodies, predicting the binding of previously unseen antigens, and predicting cross-species antigen-antibody interactions, demonstrate that AntiBinder outperforms existing state-of-the-art methods. Notably, AntiBinder excels in predicting interactions with unseen antigens and maintains a reasonable level of predictive capability in challenging cross-species prediction tasks. AntiBinder's ability to model complex antigen-antibody interactions highlights its potential applications in biomedical research and therapeutic development, including the design of vaccines and antibody therapies for rapidly emerging infectious diseases.
Collapse
Affiliation(s)
- Kaiwen Zhang
- Research Center for Social Intelligence, Fudan University, Handan Street, Shanghai 200433, China
- School of Computer Science and Technology, Fudan University, Handan Street, Shanghai 200433, China
| | - Yuhao Tao
- Research Center for Social Intelligence, Fudan University, Handan Street, Shanghai 200433, China
- School of Computer Science and Technology, Fudan University, Handan Street, Shanghai 200433, China
| | - Fei Wang
- Research Center for Social Intelligence, Fudan University, Handan Street, Shanghai 200433, China
- School of Computer Science and Technology, Fudan University, Handan Street, Shanghai 200433, China
| |
Collapse
|
6
|
Oates RN, Lieu LB, Srzentić K, Damoc E, Fornelli L. Characterization of a Monoclonal Antibody by Native and Denaturing Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2197-2208. [PMID: 39105725 PMCID: PMC11774622 DOI: 10.1021/jasms.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Established in recent years as an important approach to unraveling the heterogeneity of intact monoclonal antibodies, native mass spectrometry has been rarely utilized for sequencing these complex biomolecules via tandem mass spectrometry. Typically, top-down mass spectrometry has been performed starting from highly charged precursor ions obtained via electrospray ionization under denaturing conditions (i.e., in the presence of organic solvents and acidic pH). Here we systematically benchmark four distinct ion dissociation methods─namely, higher-energy collisional dissociation, electron transfer dissociation, electron transfer dissociation/higher-energy collisional dissociation, and 213 nm ultraviolet photodissociation─in their capability to characterize a therapeutic monoclonal antibody, trastuzumab, starting from denatured and native-like precursor ions. Interestingly, native top-down mass spectrometry results in higher sequence coverage than the experiments carried out under denaturing conditions, with the exception of ultraviolet photodissociation. Globally, electron transfer dissociation followed by collision-based activation of product ions generates the largest number of backbone cleavages in disulfide protected regions, including the complementarity determining regions, regardless of electrospray ionization conditions. Overall, these findings suggest that native mass spectrometry can certainly be used for the gas-phase sequencing of whole monoclonal antibodies, although the dissociation of denatured precursor ions still returns a few backbone cleavages not identified in native experiments. Finally, a comparison of the fragmentation maps obtained under denaturing and native conditions strongly points toward disulfide bonds as the primary reason behind the largely overlapping dissociation patterns.
Collapse
Affiliation(s)
- Ryan N. Oates
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019 USA
| | - Linda B. Lieu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019 USA
| | | | - Eugen Damoc
- Thermo Fisher Scientific, Bremen, DE-HB 28199 Germany
| | - Luca Fornelli
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019 USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, 73019 USA
| |
Collapse
|
7
|
Synthetic Antimicrobial Immunomodulatory Peptides: Ongoing Studies and Clinical Trials. Antibiotics (Basel) 2022; 11:antibiotics11081062. [PMID: 36009931 PMCID: PMC9405281 DOI: 10.3390/antibiotics11081062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
The increasingly widespread antimicrobial resistance forces the search for new antimicrobial substances capable of fighting infection. Antimicrobial peptides (AMPs) and their synthetic analogs form an extensive group of compounds of great structural diversity and multifunctionality, different modes of antimicrobial action, and considerable market potential. Some AMPs, in addition to their proven antibacterial, antifungal, and antiviral activity, also demonstrate anti-inflammatory and immunomodulatory capabilities; these are called innate defense regulator (IDR) peptides. IDR peptides stimulate or inhibit the body’s immune system, e.g., by stimulating leukocyte migration to the site of infection, driving macrophage differentiation and activation, providing chemotactic action for neutrophils, degranulation and activation of mast cells, altering chemokine and cytokine production, and even induction of angiogenesis and wound healing. Such multifunctional immunomodulatory peptide molecules are currently being investigated and developed. Exploring and utilizing IDR peptides as an indirect weapon against infectious diseases could represent a completely new strategy to cope with the issue of antimicrobial resistance.
Collapse
|
8
|
Martínez-Ortega A, Herrera A, Salmerón-García A, Cabeza J, Perez-Robles R, Navas N. Degradation and in-use stability study of five marketed therapeutic monoclonal antibodies by generic weak cation exchange liquid chromatographic method ((WCX)HPLC/DAD). J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123295. [DOI: 10.1016/j.jchromb.2022.123295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
|
9
|
Co-Functionalization of Gold Nanoparticles with C7H2 and HuAL1 Peptides: Enhanced Antimicrobial and Antitumoral Activities. Pharmaceutics 2022; 14:pharmaceutics14071324. [PMID: 35890220 PMCID: PMC9317637 DOI: 10.3390/pharmaceutics14071324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
The functionalization of nanoparticles with therapeutic peptides has been pointed out as a promising strategy to improve the applications of these molecules in the field of health sciences. Peptides are highly bioactive but face several limitations such as low bioavailability due to the difficulty of overcoming the physiological barriers in the body and their degradation by enzymes. In this work, gold nanoparticles (AuNPs) were co-functionalized with two therapeutic peptides simultaneously. The peptides from the complementary determining region of monoclonal antibodies, composed of the amino acid sequences YISCYNGATSYNQKFK (C7H2) and RASQSVSSYLA (HuAL1) were chosen for having exhibited antitumor and antimicrobial activity before. The peptides-conjugated AuNPs were characterized regarding size, morphology, and metal concentration by using TEM, dynamic light scattering, and ICP-OES techniques. Then, peptides-conjugated AuNPs were evaluated regarding the antimicrobial activity against E. coli, P. aeruginosa, and C. albicans. The antitumoral activity was evaluated in vitro by cell viability assays with metastatic melanoma cell line (B16F10-Nex2) and the cytotoxicity was evaluated against human foreskin fibroblast (Hs68) cell line. Finally, in vivo assays were performed by using a syngeneic animal model of metastatic melanoma. Our findings have highlighted the potential application of the dual-peptide AuNPs in order to enhance the antitumor and antimicrobial activity of peptides.
Collapse
|
10
|
Van Holsbeeck K, Martins JC, Ballet S. Downsizing antibodies: Towards complementarity-determining region (CDR)-based peptide mimetics. Bioorg Chem 2021; 119:105563. [PMID: 34942468 DOI: 10.1016/j.bioorg.2021.105563] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/20/2021] [Accepted: 12/12/2021] [Indexed: 12/27/2022]
Abstract
Monoclonal antibodies emerged as an important therapeutic drug class with remarkable specificity and binding affinity. Nonetheless, these heterotetrameric immunoglobulin proteins come with high manufacturing and therapeutic costs which can take extraordinary proportions, besides other limitations such as their limited in cellulo access imposed by their molecular size (ca. 150 kDa). These drawbacks stimulated the development of downsized functional antibody fragments (ca. 15-50 kDa), together with smaller synthetic peptides (ca. 1-3 kDa) derived from the antibodies' crucial complementarity-determining regions (CDR). Despite the general lack of success in the literal translation of CDR loops in peptide mimetics, rational structure-based and computational approaches have shown their potential for obtaining functional CDR-based peptide mimetics. In this review, we describe the efforts made in the development of antibody and nanobody paratope-derived peptide mimetics with particular focus on the used design strategies, in addition to highlighting the challenges associated with their development.
Collapse
Affiliation(s)
- Kevin Van Holsbeeck
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; NMR and Structure Analysis Unit, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
11
|
Abokor AA, McDaniel GH, Golonka RM, Campbell C, Brahmandam S, Yeoh BS, Joe B, Vijay-Kumar M, Saha P. Immunoglobulin A, an Active Liaison for Host-Microbiota Homeostasis. Microorganisms 2021; 9:2117. [PMID: 34683438 PMCID: PMC8539215 DOI: 10.3390/microorganisms9102117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces in the gastrointestinal tract are continually exposed to native, commensal antigens and susceptible to foreign, infectious antigens. Immunoglobulin A (IgA) provides dual humoral responses that create a symbiotic environment for the resident gut microbiota and prevent the invasion of enteric pathogens. This review features recent immunological and microbial studies that elucidate the underlying IgA and microbiota-dependent mechanisms for mutualism at physiological conditions. IgA derailment and concurrent microbiota instability in pathological diseases are also discussed in detail. Highlights of this review underscore that the source of IgA and its structural form can dictate microbiota reactivity to sustain a diverse niche where both host and bacteria benefit. Other important studies emphasize IgA insufficiency can result in the bloom of opportunistic pathogens that encroach the intestinal epithelia and disseminate into circulation. The continual growth of knowledge in these subjects can lead to the development of therapeutics targeting IgA and/or the microbiota to treat life threatening diseases.
Collapse
Affiliation(s)
- Ahmed A. Abokor
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Grant H. McDaniel
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Connor Campbell
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Sreya Brahmandam
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Bina Joe
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| |
Collapse
|
12
|
Beutgen VM, Schmelter C, Pfeiffer N, Grus FH. Contribution of the Commensal Microflora to the Immunological Homeostasis and the Importance of Immune-Related Drug Development for Clinical Applications. Int J Mol Sci 2021; 22:8896. [PMID: 34445599 PMCID: PMC8396286 DOI: 10.3390/ijms22168896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Not long ago, self-reactive immune activity was considered as pathological trait. A paradigm shift has now led to the recognition of autoimmune processes as part of natural maintenance of molecular homeostasis. The immune system is assigned further roles beneath the defense against pathogenic organisms. Regarding the humoral immune system, the investigation of natural autoantibodies that are frequently found in healthy individuals has led to further hypotheses involving natural autoimmunity in other processes as the clearing of cellular debris or decrease in inflammatory processes. However, their role and origin have not been entirely clarified, but accumulating evidence links their formation to immune reactions against the gut microbiome. Antibodies targeting highly conserved proteins of the commensal microflora are suggested to show self-reactive properties, following the paradigm of the molecular mimicry. Here, we discuss recent findings, which demonstrate potential links of the commensal microflora to the immunological homeostasis and highlight the possible implications for various diseases. Furthermore, specific components of the immune system, especially antibodies, have become a focus of attention for the medical management of various diseases and provide attractive treatment options in the future. Nevertheless, the development and optimization of such macromolecules still represents a very time-consuming task, shifting the need to more medical agents with simple structural properties and low manufacturing costs. Synthesizing only the biologically active sites of antibodies has become of great interest for the pharmaceutical industry and offers a wide range of therapeutic application areas as it will be discussed in the present review article.
Collapse
Affiliation(s)
| | | | | | - Franz H. Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center, 55131 Mainz, Germany; (V.M.B.); (C.S.); (N.P.)
| |
Collapse
|
13
|
Ciociola T, Zanello PP, D’Adda T, Galati S, Conti S, Magliani W, Giovati L. A Peptide Found in Human Serum, Derived from the C-Terminus of Albumin, Shows Antifungal Activity In Vitro and In Vivo. Microorganisms 2020; 8:E1627. [PMID: 33096923 PMCID: PMC7588913 DOI: 10.3390/microorganisms8101627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 01/19/2023] Open
Abstract
The growing problem of antimicrobial resistance highlights the need for alternative strategies to combat infections. From this perspective, there is a considerable interest in natural molecules obtained from different sources, which are shown to be active against microorganisms, either alone or in association with conventional drugs. In this paper, peptides with the same sequence of fragments, found in human serum, derived from physiological proteins, were evaluated for their antifungal activity. A 13-residue peptide, representing the 597-609 fragment within the albumin C-terminus, was proved to exert a fungicidal activity in vitro against pathogenic yeasts and a therapeutic effect in vivo in the experimental model of candidal infection in Galleria mellonella. Studies by confocal microscopy and transmission and scanning electron microscopy demonstrated that the peptide penetrates and accumulates in Candida albicans cells, causing gross morphological alterations in cellular structure. These findings add albumin to the group of proteins, which already includes hemoglobin and antibodies, that could give rise to cryptic antimicrobial fragments, and could suggest their role in anti-infective homeostasis. The study of bioactive fragments from serum proteins could open interesting perspectives for the development of new antimicrobial molecules derived by natural sources.
Collapse
Affiliation(s)
- Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| | - Pier Paolo Zanello
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| | - Tiziana D’Adda
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| | - Serena Galati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| | - Walter Magliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| | - Laura Giovati
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (T.C.); (P.P.Z.); (T.D.); (W.M.); (L.G.)
| |
Collapse
|
14
|
Ferrari L, Martelli P, Saleri R, De Angelis E, Ferrarini G, Cavalli V, Passeri B, Bazzoli G, Ogno G, Magliani W, Borghetti P. An engineered anti-idiotypic antibody-derived killer peptide (KP) early activates swine inflammatory monocytes, CD3 +CD16 + natural killer T cells and CD4 +CD8α + double positive CD8β + cytotoxic T lymphocytes associated with TNF-α and IFN-γ secretion. Comp Immunol Microbiol Infect Dis 2020; 72:101523. [PMID: 32758800 DOI: 10.1016/j.cimid.2020.101523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/19/2022]
Abstract
This study evaluated the early modulation of the phenotype and cytokine secretion in swine immune cells treated with an engineered killer peptide (KP) based on an anti-idiotypic antibody functionally mimicking a yeast killer toxin. The influence of KP on specific immunity was investigated using porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) as ex vivo antigens. Peripheral blood mononuclear cells (PBMC) from healthy pigs were stimulated with KP and with a scramble peptide for 20 min, 1, 4 and 20 h or kept unstimulated. The cells were analyzed using flow cytometry and ELISA. The same time-periods were used for KP pre-incubation/co-incubation to determine the effect on virus-recalled interferon-gamma (IFN-γ) secreting cell (SC) frequencies and single cell IFN-γ productivity using ELISPOT. KP induced an early dose-dependent shift to pro-inflammatory CD172α+CD14+high monocytes and an increase of CD3+CD16+ natural killer (NK) T cells. KP triggered CD8α and CD8β expression on classical CD4-CD8αβ+ cytotoxic T lymphocytes (CTL) and double positive (DP) CD4+CD8α+ Th memory cells (CD4+CD8α+low CD8β+low). A fraction of DP cells also expressed high levels of CD8α. The two identified DP CD4+CD8α+high CD8β+low/+high CTL subsets were associated with tumor necrosis factor alpha (TNF-α) and IFN-γ secretion. KP markedly boosted the reactivity and cross-reactivity of PRRSV type-1- and PCV2b-specific IFN-γ SC. The results indicate the efficacy of KP in stimulating Th1-biased immunomodulation and support studies of KP as an immunomodulator or vaccine adjuvant.
Collapse
Affiliation(s)
- Luca Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Giulia Ferrarini
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Benedetta Passeri
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Gianluca Bazzoli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Giulia Ogno
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Walter Magliani
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14 - 43126, Parma, Italy.
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| |
Collapse
|
15
|
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Standard cancer therapies sometimes fail to deliver chemotherapeutic drugs to tumor cells in a safe and effective manner. Nanotechnology takes the lead in providing new therapeutic options for cancer due to major potential for selective targeting and controlled drug release. Antibodies and antibody fragments are attracting much attention as a source of targeting ligands to bind specific receptors that are overexpressed on cancer cells. Therefore, researchers are devoting time and effort to develop targeting strategies based on nanoparticles functionalized with antibodies, which hold great promise to enhance therapeutic efficacy and circumvent severe side effects. Several methods have been described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate for each application is challenging but also imperative to preserve antigen binding ability and yield stable antibody-conjugated nanoparticles. From this perspective, we aim to provide considerable knowledge on the most widely used methods of functionalization that can be helpful for decision-making and design of conjugation protocols as well. This review summarizes adsorption, covalent conjugation (carbodiimide, maleimide and "click" chemistries) and biotin-avidin interaction, while discussing the advantages, limitations and relevant therapeutic approaches currently under investigation.
Collapse
Affiliation(s)
- A C Marques
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - P J Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Velho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
16
|
Machado FC, Girola N, Maia VSC, Bergami-Santos PC, Morais AS, Azevedo RA, Figueiredo CR, Barbuto JAM, Travassos LR. Immunomodulatory Protective Effects of Rb9 Cyclic-Peptide in a Metastatic Melanoma Setting and the Involvement of Dendritic Cells. Front Immunol 2020; 10:3122. [PMID: 32010152 PMCID: PMC6974543 DOI: 10.3389/fimmu.2019.03122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/23/2019] [Indexed: 11/30/2022] Open
Abstract
The cyclic VHCDR3-derived peptide (Rb9) from RebMab200 antibody, directed to a NaPi2B phosphate-transport protein, displayed anti-metastatic melanoma activity at 50–300 μg intraperitoneally injected in syngeneic mice. Immune deficient mice failed to respond to the peptide protective effect. Rb9 induced increased CD8+ T and low Foxp3+ T cell infiltration in lung metastases and high IFN-γ and low TGF-β in lymphoid organs. The peptide co-localized with F-actin and a nuclear site in dendritic cells and specifically bound to MIF and CD74 in a dot-blot setting. Murine bone-marrow dendritic cells preincubated with Rb9 for 6 h were treated with MIF for short time periods. The modulated responses showed stimulation of CD74 and inhibition of pPI3K, pERK, and pNF-κB as compared to MIF alone. Rb9 in a melanoma-conditioned medium, stimulated the M1 type conversion in bone marrow-macrophages. Functional aspects of Rb9 in vivo were studied in therapeutic and prophylactic protocols using a melanoma metastatic model. In both protocols Rb9 exhibited a marked anti-melanoma protection. Human dendritic cells were also investigated showing increased expression of surface markers in response to Rb9 incubation. Rb9 either stimulated or slightly inhibited moDCs submitted to inhibitory (TGF-β and IL-10) or activating (LPS) conditions, respectively. Lymphocyte proliferation was obtained with moDCs stimulated by Rb9 and tumor cell lysate. In moDCs from cancer patients Rb9 exerted immunomodulatory activities depending on their functional status. The peptide may inhibit over-stimulated cells, stimulate poorly activated and suppressed cells, or cause instead, little phenotypic and functional alterations. Recently, the interaction MIF-CD74 has been associated to PD-L1 expression and IFN-γ, suggesting a target for melanoma treatment. The effects described for Rb9 and the protection against metastatic melanoma may suggest the possibility of a peptide reagent that could be relevant when associated to modern immunotherapeutic procedures.
Collapse
Affiliation(s)
- Fabrício C Machado
- Recepta Bio, São Paulo, Brazil.,Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Natália Girola
- Recepta Bio, São Paulo, Brazil.,Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Vera S C Maia
- Recepta Bio, São Paulo, Brazil.,Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Patrícia C Bergami-Santos
- Recepta Bio, São Paulo, Brazil.,Tumor Immunology Laboratory, Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo A Azevedo
- Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos R Figueiredo
- Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,MediCity, University of Turku, Turku, Finland
| | - José A M Barbuto
- Recepta Bio, São Paulo, Brazil.,Tumor Immunology Laboratory, Department of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Luiz R Travassos
- Recepta Bio, São Paulo, Brazil.,Experimental Oncology Unit, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Schmelter C, Fomo KN, Perumal N, Manicam C, Bell K, Pfeiffer N, Grus FH. Synthetic Polyclonal-Derived CDR Peptides as an Innovative Strategy in Glaucoma Therapy. J Clin Med 2019; 8:jcm8081222. [PMID: 31443184 PMCID: PMC6723090 DOI: 10.3390/jcm8081222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
The pathogenesis of glaucoma is strongly associated with the occurrence of autoimmune-mediated loss of retinal ganglion cells (RGCs) and additionally, recent evidence shows that specific antibody-derived signature peptides are significantly differentially expressed in sera of primary-open angle glaucoma patients (POAG) compared to healthy controls. Synthetically antibody-derived peptides can modulate various effector functions of the immune system and act as antimicrobial or antiviral molecules. In an ex vivo adolescent glaucoma model, this study, for the first time, demonstrates that polyclonal-derived complementarity-determining regions (CDRs) can significantly increase the survival rate of RGCs (p = 0.013). We subsequently performed affinity capture experiments that verified the mitochondrial serine protease HTRA2 (gene name: HTRA2) as a high-affinity retinal epitope target of CDR1 sequence motif ASGYTFTNYGLSWVR. Quantitative proteomic analysis of the CDR-treated retinal explants revealed increased expression of various anti-apoptotic and anti-oxidative proteins (e.g., VDAC2 and TXN) compared to untreated controls (p < 0.05) as well as decreased expression levels of cellular stress response markers (e.g., HSPE1 and HSP90AA1). Mitochondrial dysfunction, the protein ubiquitination pathway and oxidative phosphorylation were annotated as the most significantly affected signaling pathways and possibly can be traced back to the CDR-induced inhibition or modulation of the master regulator HTRA2. These findings emphasize the great potential of synthetic polyclonal-derived CDR peptides as therapeutic agents in future glaucoma therapy and provide an excellent basis for affinity-based biomarker discovery purposes.
Collapse
Affiliation(s)
- Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Kristian Nzogang Fomo
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Caroline Manicam
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Katharina Bell
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Franz H Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| |
Collapse
|
18
|
Girola N, Resende-Lara PT, Figueiredo CR, Massaoka MH, Azevedo RA, Cunha RLOR, Polonelli L, Travassos LR. Molecular, Biological and Structural Features of V L CDR-1 Rb44 Peptide, Which Targets the Microtubule Network in Melanoma Cells. Front Oncol 2019; 9:25. [PMID: 30740361 PMCID: PMC6355703 DOI: 10.3389/fonc.2019.00025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Microtubules are important drug targets in tumor cells, owing to their role in supporting and determining the cell shape, organelle movement and cell division. The complementarity-determining regions (CDRs) of immunoglobulins have been reported to be a source of anti-tumor peptide sequences, independently of the original antibody specificity for a given antigen. We found that, the anti-Lewis B mAb light-chain CDR1 synthetic peptide Rb44, interacted with microtubules and induced depolymerization, with subsequent degradation of actin filaments, leading to depolarization of mitochondrial membrane-potential, increase of ROS, cell cycle arrest at G2/M, cleavage of caspase-9, caspase-3 and PARP, upregulation of Bax and downregulation of Bcl-2, altogether resulting in intrinsic apoptosis of melanoma cells. The in vitro inhibition of angiogenesis was also an Rb44 effect. Peritumoral injection of Rb44L1 delayed growth of subcutaneously grafted melanoma cells in a syngeneic mouse model. L1-CDRs from immunoglobulins and their interactions with tubulin-dimers were explored to interpret effects on microtubule stability. The opening motion of tubulin monomers allowed for efficient L1-CDR docking, impairment of dimer formation and microtubule dissociation. We conclude that Rb44 VL-CDR1 is a novel peptide that acts on melanoma microtubule network causing cell apoptosis in vitro and melanoma growth inhibition in vivo.
Collapse
Affiliation(s)
- Natalia Girola
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit, Federal University of São Paulo, São Paulo, Brazil
| | - Pedro T Resende-Lara
- Computational Biology and Bioinformatics Laboratory, Federal University of ABC, Santo André, Brazil
| | - Carlos R Figueiredo
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit, Federal University of São Paulo, São Paulo, Brazil.,Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | - Ricardo A Azevedo
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit, Federal University of São Paulo, São Paulo, Brazil
| | - Rodrigo L O R Cunha
- Chemical Biology Laboratory, Natural and Human Sciences Center, Federal University of ABC, Santo André, Brazil
| | - Luciano Polonelli
- Unit of Biomedical, Biotechnological and Translational Sciences, Department of Medicine and Surgery, Universitá degli Studi di Parma, Parma, Italy
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit, Federal University of São Paulo, São Paulo, Brazil.,Recepta Biopharma, São Paulo, Brazil
| |
Collapse
|
19
|
Figueiredo CR, Azevedo RA, Mousdell S, Resende-Lara PT, Ireland L, Santos A, Girola N, Cunha RLOR, Schmid MC, Polonelli L, Travassos LR, Mielgo A. Blockade of MIF-CD74 Signalling on Macrophages and Dendritic Cells Restores the Antitumour Immune Response Against Metastatic Melanoma. Front Immunol 2018; 9:1132. [PMID: 29875777 PMCID: PMC5974174 DOI: 10.3389/fimmu.2018.01132] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022] Open
Abstract
Mounting an effective immune response against cancer requires the activation of innate and adaptive immune cells. Metastatic melanoma is the most aggressive form of skin cancer. While immunotherapies have shown a remarkable success in melanoma treatment, patients develop resistance by mechanisms that include the establishment of an immune suppressive tumor microenvironment. Thus, understanding how metastatic melanoma cells suppress the immune system is vital to develop effective immunotherapies against this disease. In this study, we find that macrophages (MOs) and dendritic cells (DCs) are suppressed in metastatic melanoma and that the Ig-CDR-based peptide C36L1 is able to restore MOs and DCs' antitumorigenic and immunogenic functions and to inhibit metastatic growth in lungs. Specifically, C36L1 treatment is able to repolarize M2-like immunosuppressive MOs into M1-like antitumorigenic MOs, and increase the number of immunogenic DCs, and activated cytotoxic T cells, while reducing the number of regulatory T cells and monocytic myeloid-derived suppressor cells in metastatic lungs. Mechanistically, we find that C36L1 directly binds to the MIF receptor CD74 which is expressed on MOs and DCs, disturbing CD74 structural dynamics and inhibiting MIF signaling on these cells. Interfering with MIF-CD74 signaling on MOs and DCs leads to a decrease in the expression of immunosuppressive factors from MOs and an increase in the capacity of DCs to activate cytotoxic T cells. Our findings suggest that interfering with MIF-CD74 immunosuppressive signaling in MOs and DCs, using peptide-based immunotherapy can restore the antitumor immune response in metastatic melanoma. Our study provides the rationale for further development of peptide-based therapies to restore the antitumor immune response in metastatic melanoma.
Collapse
Affiliation(s)
- Carlos R. Figueiredo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Ricardo A. Azevedo
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Sasha Mousdell
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Pedro T. Resende-Lara
- Laboratory of Computational Biology and Bioinformatics, Federal University of ABC, Santo André, Brazil
- Laboratoire de Biologie et Pharmacologie Appliquées (LBPA), UMR 8113, Ecole Normale Supérieure, Cachan, France
| | - Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Almudena Santos
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Natalia Girola
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo L. O. R. Cunha
- Chemical Biology Laboratory, Natural and Human Sciences Center, Federal University of ABC, Santo André, Brazil
| | - Michael C. Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Luciano Polonelli
- Unit of Biomedical, Biotechnological and Translational Sciences, Department of Medicine and Surgery, Universitá degli Studi di Parma, Parma, Italy
| | - Luiz R. Travassos
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
20
|
Polonelli L, Ciociola T, Sperindè M, Giovati L, D'Adda T, Galati S, Travassos LR, Magliani W, Conti S. Fungicidal activity of peptides encoded by immunoglobulin genes. Sci Rep 2017; 7:10896. [PMID: 28883642 PMCID: PMC5589769 DOI: 10.1038/s41598-017-11396-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022] Open
Abstract
Evidence from previous works disclosed the antimicrobial, antiviral, anti-tumour and/or immunomodulatory activity exerted, through different mechanisms of action, by peptides expressed in the complementarity-determining regions or even in the constant region of antibodies, independently from their specificity and isotype. Presently, we report the selection, from available databases, of peptide sequences encoded by immunoglobulin genes for the evaluation of their potential biological activities. Synthetic peptides representing the translated products of J lambda and J heavy genes proved to act in vitro against pathogenic fungi, entering yeast cells and causing their death, and exerted a therapeutic effect in a Galleria mellonella model of infection by Candida albicans. No haemolytic, cytotoxic and genotoxic effects were observed on mammalian cells. These findings raise the hypothesis that antibodies could be the evolutionary result of the adaptive combination of gene products ancestrally devoted to innate antimicrobial immunity.
Collapse
Affiliation(s)
- Luciano Polonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Martina Sperindè
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Giovati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Tiziana D'Adda
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Serena Galati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Luiz R Travassos
- Experimental Oncology Unit, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Walter Magliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
21
|
Girola N, Matsuo AL, Figueiredo CR, Massaoka MH, Farias CF, Arruda DC, Azevedo RA, Monteiro HP, Resende-Lara PT, Cunha RLOR, Polonelli L, Travassos LR. The Ig V H complementarity-determining region 3-containing Rb9 peptide, inhibits melanoma cells migration and invasion by interactions with Hsp90 and an adhesion G-protein coupled receptor. Peptides 2016; 85:1-15. [PMID: 27575453 DOI: 10.1016/j.peptides.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 12/30/2022]
Abstract
The present work aims at investigating the mechanism of action of the Rb9 peptide, which contains the VHCDR 3 sequence of anti-sodium-dependent phosphate transport protein 2B (NaPi2B) monoclonal antibody RebMab200 and displayed antitumor properties. Short peptides corresponding to the hypervariable complementarity-determining regions (CDRs) of immunoglobulins have been associated with antimicrobial, antiviral, immunomodulatory and antitumor activities regardless of the specificity of the antibody. We have shown that the CDR derived peptide Rb9 induced substrate hyperadherence, inhibition of cell migration and matrix invasion in melanoma and other tumor cell lines. Rb9 also inhibited metastasis of murine melanoma in a syngeneic mouse model. We found that Rb9 binds to and interferes with Hsp90 chaperone activity causing attenuation of FAK-Src signaling and downregulation of active Rac1 in B16F10-Nex2 melanoma cells. The peptide also bound to an adhesion G-protein coupled receptor, triggering a concentration-dependent synthesis of cAMP and activation of PKA and VASP signaling as well as IP-3 dependent Ca2+ release. Hsp90 is highly expressed on the cell surface of melanoma cells, and synthetic agents that target Hsp90 are promising cancer therapeutic drugs. Based on their remarkable antitumor effects, the CDR-H3-derived peptides from RebMab200, and particularly the highly soluble and stable Rb9, are novel candidates to be further studied as potential antitumor drugs, selectively acting on cancer cell motility and invasion.
Collapse
Affiliation(s)
- Natalia Girola
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alisson L Matsuo
- Interdepartmental Group of Health Economics (Grides), Federal University of São Paulo, SP, Brazil
| | - Carlos R Figueiredo
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Mariana H Massaoka
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Camyla F Farias
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Denise C Arruda
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes, São Paulo, SP, Brazil
| | - Ricardo A Azevedo
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, SP, Brazil
| | - Hugo P Monteiro
- Center for Cellular and Molecular Therapy (CTCMol) and Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Pedro T Resende-Lara
- Computation and Bioinformatic Biology laboratory, Federal University of ABC, Santo André, São Paulo, SP, Brazil
| | - Rodrigo L O R Cunha
- Chemical Biology Laboratory, Natural and Human Sciences Center, Federal University of ABC, Santo André, São Paulo, SP, Brazil
| | - Luciano Polonelli
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences, Universitá degli Studi di Parma, Parma, Italy
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Recepta Biopharma, São Paulo, SP, Brazil.
| |
Collapse
|
22
|
A Naturally Occurring Antibody Fragment Neutralizes Infectivity of Diverse Infectious Agents. Sci Rep 2016; 6:35018. [PMID: 27725769 PMCID: PMC5057116 DOI: 10.1038/srep35018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022] Open
Abstract
A phosphorylated peptide, named K40H, derived from the constant region of IgMs was detected in human serum by liquid chromatography coupled to high-resolution mass spectrometry. Synthetic K40H proved to exert a potent in vitro activity against fungal pathogens, and to inhibit HIV-1 replication in vitro and ex vivo. It also showed a therapeutic effect against an experimental infection by Candida albicans in the invertebrate model Galleria mellonella. K40H represents the proof of concept of the innate role that naturally occurring antibody fragments may exert against infectious agents, shedding a new light upon the posthumous role of antibodies and opening a new scenario on the multifaceted functionality of humoral immunity.
Collapse
|
23
|
Rabaça AN, Arruda DC, Figueiredo CR, Massaoka MH, Farias CF, Tada DB, Maia VC, Silva Junior PI, Girola N, Real F, Mortara RA, Polonelli L, Travassos LR. AC-1001 H3 CDR peptide induces apoptosis and signs of autophagy in vitro and exhibits antimetastatic activity in a syngeneic melanoma model. FEBS Open Bio 2016; 6:885-901. [PMID: 27642552 PMCID: PMC5011487 DOI: 10.1002/2211-5463.12080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022] Open
Abstract
Antibody‐derived peptides modulate functions of the immune system and are a source of anti‐infective and antitumor substances. Recent studies have shown that they comprise amino acid sequences of immunoglobulin complementarity‐determining regions, but also fragments of constant regions. VH CDR3 of murine mAb AC‐1001 displays antimetastatic activities using B16F10‐Nex2 murine melanoma cells in a syngeneic model. The peptide was cytotoxic in vitro in murine and human melanoma cells inducing reactive oxygen species (ROS) and apoptosis by the intrinsic pathway. Signs of autophagy were also suggested by the increased expression of LC3/LC3II and Beclin 1 and by ultrastructural evidence. AC‐1001 H3 bound to both G‐ and F‐actin and inhibited tumor cell migration. These results are important evidence of the antitumor activity of Ig CDR‐derived peptides.
Collapse
Affiliation(s)
- Aline N Rabaça
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Denise C Arruda
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil; Núcleo Integrado de Biotecnologia Universidade de Mogi das Cruzes Brazil
| | - Carlos R Figueiredo
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Mariana H Massaoka
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Camyla F Farias
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Dayane B Tada
- Departamento de Ciência e Tecnologia Universidade Federal de São Paulo (UNIFESP) São José dos Campos Brazil
| | | | - Pedro I Silva Junior
- Laboratório Especial de Toxinologia Aplicada Instituto Butantan São Paulo Brazil
| | - Natalia Girola
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Fernando Real
- Departamento de Parasitologia Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Renato A Mortara
- Departamento de Parasitologia Universidade Federal de São Paulo (UNIFESP) Brazil
| | - Luciano Polonelli
- Microbiology and Virology Unit Department of Biomedical Biotechnological and Translational Sciences Universitá degli Studi di Parma Italy
| | - Luiz R Travassos
- Unidade de Oncologia Experimental (UNONEX) Universidade Federal de São Paulo (UNIFESP) Brazil
| |
Collapse
|
24
|
Dissecting the Structure-Function Relationship of a Fungicidal Peptide Derived from the Constant Region of Human Immunoglobulins. Antimicrob Agents Chemother 2016; 60:2435-42. [PMID: 26856836 DOI: 10.1128/aac.01753-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/03/2016] [Indexed: 02/04/2023] Open
Abstract
Synthetic peptides encompassing sequences related to the complementarity-determining regions of antibodies or derived from their constant region (Fc peptides) were proven to exert differential antimicrobial, antiviral, antitumor, and/or immunomodulatory activitiesin vitroand/orin vivo, regardless of the specificity and isotype of the parental antibody. Alanine substitution derivatives of these peptides exhibited unaltered, increased, or decreased candidacidal activitiesin vitro The bioactive IgG-derived Fc N10K peptide (NQVSLTCLVK) spontaneously self-assembles, a feature previously recognized as relevant for the therapeutic activity of another antibody-derived peptide. We evaluated the contribution of each residue to the peptide self-assembling capability by circular-dichroism spectroscopy. The interaction of the N10K peptide and its derivatives withCandida albicanscells was studied by confocal, transmission, and scanning electron microscopy. The apoptosis and autophagy induction profiles in yeast cells treated with the peptides were evaluated by flow cytometry, and the therapeutic efficacy against candidal infection was studied in aGalleria mellonellamodel. Overall, the results indicate a critical role for some residues in the self-assembly process and a correlation of that capability with the candidacidal activities of the peptidesin vitroand their therapeutic effectsin vivo.
Collapse
|
25
|
Cotham VC, Brodbelt JS. Characterization of Therapeutic Monoclonal Antibodies at the Subunit-Level using Middle-Down 193 nm Ultraviolet Photodissociation. Anal Chem 2016; 88:4004-13. [DOI: 10.1021/acs.analchem.6b00302] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Victoria C. Cotham
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
A novel microtubule de-stabilizing complementarity-determining region C36L1 peptide displays antitumor activity against melanoma in vitro and in vivo. Sci Rep 2015; 5:14310. [PMID: 26391685 PMCID: PMC4585759 DOI: 10.1038/srep14310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022] Open
Abstract
Short peptide sequences from complementarity-determining regions (CDRs) of different immunoglobulins may exert anti-infective, immunomodulatory and antitumor activities regardless of the specificity of the original monoclonal antibody (mAb). In this sense, they resemble early molecules of innate immunity. C36L1 was identified as a bioactive light-chain CDR1 peptide by screening 19 conserved CDR sequences targeting murine B16F10-Nex2 melanoma. The 17-amino acid peptide is readily taken up by melanoma cells and acts on microtubules causing depolymerization, stress of the endoplasmic reticulum and intrinsic apoptosis. At low concentrations, C36L1 inhibited migration, invasion and proliferation of B16F10-Nex2 cells with cell cycle arrest at G2/M phase, by regulating the PI3K/Akt signaling axis involving Rho-GTPase and PTEN mediation. Peritumor injection of the peptide delayed growth of subcutaneously grafted melanoma cells. Intraperitoneal administration of C36L1 induced a significant immune-response dependent anti-tumor protection in a syngeneic metastatic melanoma model. Dendritic cells stimulated ex-vivo by the peptide and transferred to animals challenged with tumor cells were equally effective. The C36 VL CDR1 peptide is a promising microtubule-interacting drug that induces tumor cell death by apoptosis and inhibits metastases of highly aggressive melanoma cells.
Collapse
|
27
|
Magliani W, Giovati L, Ciociola T, Sperindè M, Santinoli C, Conti G, Conti S, Polonelli L. Antibodies as a source of anti-infective peptides: an update. Future Microbiol 2015; 10:1163-75. [PMID: 26119210 DOI: 10.2217/fmb.15.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This review focuses on antibodies (Abs) and their function in immune protection, with particular emphasis on microbicidal Abs. Some aspects of Abs and Ab-drug conjugates as targeting therapeutic agents are also discussed. The main aim, however, is devoted to Ab-derived peptides modulating functions of the immune system and to the latest experimental evidence of Abs as a source of anti-infective and antitumor peptides derived from their complementarity determining regions and constant regions.
Collapse
Affiliation(s)
- Walter Magliani
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Laura Giovati
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Tecla Ciociola
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Martina Sperindè
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Claudia Santinoli
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Giorgio Conti
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Stefania Conti
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Luciano Polonelli
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| |
Collapse
|
28
|
Ciociola T, Giovati L, Sperindè M, Magliani W, Santinoli C, Conti G, Conti S, Polonelli L. Peptides from the inside of the antibodies are active against infectious agents and tumours. J Pept Sci 2015; 21:370-8. [DOI: 10.1002/psc.2748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Tecla Ciociola
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| | - Laura Giovati
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| | - Martina Sperindè
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| | - Walter Magliani
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| | - Claudia Santinoli
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| | - Giorgio Conti
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| | - Stefania Conti
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| | - Luciano Polonelli
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences; University of Parma; Parma Italy
| |
Collapse
|
29
|
Induction of caspase-11 by aspartyl proteinases of Candida albicans and implication in promoting inflammatory response. Infect Immun 2015; 83:1940-8. [PMID: 25712931 DOI: 10.1128/iai.02895-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/19/2015] [Indexed: 11/20/2022] Open
Abstract
We recently demonstrated that the secreted aspartyl proteinases (Saps), Sap2 and Sap6, of Candida albicans have the potential to induce the canonical activation of the NLRP3 inflammasome, leading to the secretion of interleukin-1β (IL-1β) and IL-18 via caspase-1 activation. We also observed that the activation of caspase-1 is partially independent from the NLRP3 activation pathway. In this study, we examined whether Sap2 and Sap6 are also able to activate the noncanonical inflammasome pathway in murine macrophages. Our data show that both Sap2 and Sap6 can activate caspase-11 through type I interferon (IFN) production. Caspase-11 cooperates to activate caspase-1, with a subsequent increase of IL-1β secretion. Endocytosis and internalization of Saps are required for the induction of type I IFN production, which is essential for induction of noncanonical inflammasome activation. Our study indicates a sophisticated interplay between caspase-1 and caspase-11 that connects the canonical and noncanonical pathways of inflammasome activation in response to C. albicans Saps.
Collapse
|
30
|
Pericolini E, Gabrielli E, Alunno A, Bartoloni Bocci E, Perito S, Chow SK, Cenci E, Casadevall A, Gerli R, Vecchiarelli A. Functional improvement of regulatory T cells from rheumatoid arthritis subjects induced by capsular polysaccharide glucuronoxylomannogalactan. PLoS One 2014; 9:e111163. [PMID: 25338013 PMCID: PMC4206502 DOI: 10.1371/journal.pone.0111163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Regulatory T cells (Treg) play a critical role in the prevention of autoimmunity, and the suppressive activity of these cells is impaired in rheumatoid arthritis (RA). The aim of the present study was to investigate function and properties of Treg of RA patients in response to purified polysaccharide glucuronoxylomannogalactan (GXMGal). METHODS Flow cytometry and western blot analysis were used to investigate the frequency, function and properties of Treg cells. RESULTS GXMGal was able to: i) induce strong increase of FOXP3 on CD4+ T cells without affecting the number of CD4+CD25+FOXP3+ Treg cells with parallel increase in the percentage of non-conventional CD4+CD25-FOXP3+ Treg cells; ii) increase intracellular levels of TGF-β1 in CD4+CD25-FOXP3+ Treg cells and of IL-10 in both CD4+CD25+FOXP3+ and CD4+CD25-FOXP3+ Treg cells; iii) enhance the suppressive activity of CD4+CD25+FOXP3+ and CD4+CD25-FOXP3+ Treg cells in terms of inhibition of effector T cell activity and increased secretion of IL-10; iv) decrease Th1 response as demonstrated by inhibition of T-bet activation and down-regulation of IFN-γ and IL-12p70 production; v) decrease Th17 differentiation by down-regulating pSTAT3 activation and IL-17A, IL-23, IL-21, IL-22 and IL-6 production. CONCLUSION These data show that GXMGal improves Treg functions and increases the number and function of CD4+CD25-FOXP3+ Treg cells of RA patients. It is suggested that GXMGal may be potentially useful for restoring impaired Treg functions in autoimmune disorders and for developing Treg cell-based strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Eva Pericolini
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Elena Gabrielli
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Alessia Alunno
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Stefano Perito
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Siu-Kei Chow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Elio Cenci
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Anna Vecchiarelli
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
- * E-mail:
| |
Collapse
|
31
|
Figueiredo CR, Matsuo AL, Massaoka MH, Polonelli L, Travassos LR. Anti-tumor activities of peptides corresponding to conserved complementary determining regions from different immunoglobulins. Peptides 2014; 59:14-9. [PMID: 24972300 DOI: 10.1016/j.peptides.2014.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 11/22/2022]
Abstract
Short synthetic peptides corresponding to sequences of complementarity-determining regions (CDRs) from different immunoglobulin families have been shown to induce antimicrobial, antiviral and antitumor activities regardless of the specificity of the original monoclonal antibody (mAb). Presently, we studied the in vitro and in vivo antitumor activity of synthetic peptides derived from conserved CDR sequences of different immunoglobulins against human tumor cell lines and murine B16F10-Nex2 melanoma aiming at the discovery of candidate molecules for cancer therapy. Four light- and heavy-chain CDR peptide sequences from different antibodies (C36-L1, HA9-H2, 1-H2 and Mg16-H2) showed cytotoxic activity against murine melanoma and a panel of human tumor cell lineages in vitro. Importantly, they also exerted anti-metastatic activity using a syngeneic melanoma model in mice. Other peptides (D07-H3, MN20v1, MS2-H3) were also protective against metastatic melanoma, without showing significant cytotoxicity against tumor cells in vitro. In this case, we suggest that these peptides may act as immune adjuvants in vivo. As observed, peptides induced nitric oxide production in bone-marrow macrophages showing that innate immune cells can also be modulated by these CDR peptides. The present screening supports the search in immunoglobulins of rather frequent CDR sequences that are endowed with specific antitumor properties and may be candidates to be developed as anti-cancer drugs.
Collapse
Affiliation(s)
- Carlos R Figueiredo
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, SP, Brazil
| | - Alisson L Matsuo
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, SP, Brazil
| | - Mariana H Massaoka
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, SP, Brazil
| | - Luciano Polonelli
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences, Universitá degli Studi di Parma, Parma 43121, Italy
| | - Luiz R Travassos
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, SP, Brazil; Recepta Biopharma, São Paulo, SP, Brazil.
| |
Collapse
|
32
|
Ciociola T, Magliani W, Giovati L, Sperindè M, Santinoli C, Conti G, Conti S, Polonelli L. Antibodies as an unlimited source of anti-infective, anti-tumour and immunomodulatory peptides. Sci Prog 2014; 97:215-33. [PMID: 25549407 PMCID: PMC10365341 DOI: 10.3184/003685014x14049273183515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibodies (Abs) are emerging as an important class of therapeutic agents for the treatment of various human diseases, often conjugated to drugs or toxic substances. In recent years, the incidence of cancer and infectious diseases has increased dramatically making it imperative to discover new effective therapeutic molecules. Among these, small peptides are arousing great interest. Synthetic peptides, representative of variable and constant region fragments of Abs, were proved to exert in vitro, ex vivo and/or in vivo anti-microbial, anti-viral, anti-tumour and/or immunomodulatory activities, mediated by different mechanisms of action and regardless of the specificity and isotype of the Ab. Some of these synthetic peptides possess the ability to spontaneously and reversibly self-assemble in an organised network of fibril-like structure. Ab fragments may represent a novel model of targeted anti-infective and anti-tumour auto-delivering drugs.
Collapse
Affiliation(s)
- Tecla Ciociola
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| | - Walter Magliani
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| | - Laura Giovati
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| | - Martina Sperindè
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| | - Claudia Santinoli
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| | - Giorgio Conti
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| | - Stefania Conti
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| | - Luciano Polonelli
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, 43125 Parma, Italy
| |
Collapse
|
33
|
Moyes DL, Shen C, Murciano C, Runglall M, Richardson JP, Arno M, Aldecoa-Otalora E, Naglik JR. Protection against epithelial damage during Candida albicans infection is mediated by PI3K/Akt and mammalian target of rapamycin signaling. J Infect Dis 2013; 209:1816-26. [PMID: 24357630 PMCID: PMC4017362 DOI: 10.1093/infdis/jit824] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background. The ability of epithelial cells (ECs) to discriminate between commensal and pathogenic microbes is essential for healthy living. Key to these interactions are mucosal epithelial responses to pathogen-induced damage. Methods. Using reconstituted oral epithelium, we assessed epithelial gene transcriptional responses to Candida albicans infection by microarray. Signal pathway activation was monitored by Western blotting and transcription factor enzyme-linked immunosorbent assay, and the role of these pathways in C. albicans–induced damage protection was determined using chemical inhibitors. Results. Transcript profiling demonstrated early upregulation of epithelial genes involved in immune responses. Many of these genes constituted components of signaling pathways, but only NF-κB, MAPK, and PI3K/Akt pathways were functionally activated. We demonstrate that PI3K/Akt signaling is independent of NF-κB and MAPK signaling and plays a key role in epithelial immune activation and damage protection via mammalian target of rapamycin (mTOR) activation. Conclusions. PI3K/Akt/mTOR signaling may play a critical role in protecting epithelial cells from damage during mucosal fungal infections independent of NF-κB or MAPK signaling.
Collapse
Affiliation(s)
- David L Moyes
- Department of Oral Immunology, King's College London Dental Institute
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Optimization and modification of anti-rhTNF-α single chain variable fragment antibody: Effective in vitro affinity maturation and functional expression of chimeric Fab. Biomed Pharmacother 2013; 67:437-44. [DOI: 10.1016/j.biopha.2013.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/04/2013] [Indexed: 11/21/2022] Open
|
35
|
Pericolini E, Alunno A, Gabrielli E, Bartoloni E, Cenci E, Chow SK, Bistoni G, Casadevall A, Gerli R, Vecchiarelli A. The microbial capsular polysaccharide galactoxylomannan inhibits IL-17A production in circulating T cells from rheumatoid arthritis patients. PLoS One 2013; 8:e53336. [PMID: 23308194 PMCID: PMC3540098 DOI: 10.1371/journal.pone.0053336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/29/2012] [Indexed: 12/18/2022] Open
Abstract
The persistence of activated T cells in rheumatoid arthritis (RA) synovium may be attributable to increased homing, increased retention or a possible imbalance between cell proliferation and programmed cell death. Induction of apoptosis may represent a potential therapeutic approach. Galactoxylomannan (GalXM) from the opportunistic fungus Cryptococcus neoformans can interact with T cells and induce T-cell apoptosis through the inhibition of CD45 phosphatase activity. The aim of this study was to determine the effect of GalXM on circulating T cells from patients with RA and the underlying mechanisms. GalXM immunomodulating effect on apoptosis and signal transduction pathway involved in IL-17A production was evaluated on T cells. RA T-cell apoptosis, higher than that of control T cells, was further increased by GalXM through induction of caspase-3 activation. Activated T cells expressing the CD45RO molecule and producing IL-17A were the main target of GalXM-induced apoptosis. GalXM induced consistent impairment of IL-17A production and inhibition of STAT3, which was hyperactivated in RA. In conclusion, GalXM triggered apoptosis of activated memory T cells and interfered with IL-17A production in RA. These data suggest therapeutic targeting of deleterious Th17 cells in RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Eva Pericolini
- Microbiology Section, Department of Experimental Medicine and Biochemical Science, University of Perugia, Perugia, Italy
| | - Alessia Alunno
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Elena Gabrielli
- Microbiology Section, Department of Experimental Medicine and Biochemical Science, University of Perugia, Perugia, Italy
| | - Elena Bartoloni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Elio Cenci
- Microbiology Section, Department of Experimental Medicine and Biochemical Science, University of Perugia, Perugia, Italy
| | - Siu-Kei Chow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Giovanni Bistoni
- Department of Plastic and Reconstructive Surgery, “La Sapienza” Medical School, University of Rome, Rome, Italy
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Roberto Gerli
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
- * E-mail:
| | - Anna Vecchiarelli
- Microbiology Section, Department of Experimental Medicine and Biochemical Science, University of Perugia, Perugia, Italy
| |
Collapse
|
36
|
Kieber-Emmons T, Monzavi-Karbassi B, Pashov A, Saha S, Murali R, Kohler H. The promise of the anti-idiotype concept. Front Oncol 2012; 2:196. [PMID: 23267437 PMCID: PMC3526099 DOI: 10.3389/fonc.2012.00196] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/01/2012] [Indexed: 11/13/2022] Open
Abstract
A basic tenet of antibody-based immunity is their specificity to antigenic determinates from foreign pathogen products to abnormal cellular components such as in cancer. However, an antibody has the potential to bind to more than one determinate, be it an antigen or another antibody. These observations led to the idiotype network theory (INT) to explain immune regulation, which has wax and waned in enthusiasm over the years. A truer measure of the impact of the INT is in terms of the ideas that now form the mainstay of immunological research and whose roots are spawned from the promise of the anti-idiotype concept. Among the applications of the INT is understanding the structural implications of the antibody-mediated network that has the potential for innovation in terms of rational design of reagents with biological, chemical, and pharmaceutical applications that underlies concepts of reverse immunology which is highlighted herein.
Collapse
Affiliation(s)
- Thomas Kieber-Emmons
- Winthrop P. Rockefeller Cancer Institute, Department of Pathology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | | | | | | | | | | |
Collapse
|
37
|
Gabrielli E, Pericolini E, Cenci E, Monari C, Magliani W, Ciociola T, Conti S, Gatti R, Bistoni F, Polonelli L, Vecchiarelli A. Antibody constant region peptides can display immunomodulatory activity through activation of the Dectin-1 signalling pathway. PLoS One 2012; 7:e43972. [PMID: 22952831 PMCID: PMC3428300 DOI: 10.1371/journal.pone.0043972] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/27/2012] [Indexed: 12/02/2022] Open
Abstract
We previously reported that a synthetic peptide with sequence identical to a CDR of a mouse monoclonal antibody specific for difucosyl human blood group A exerted an immunomodulatory activity on murine macrophages. It was therapeutic against systemic candidiasis without possessing direct candidacidal properties. Here we demonstrate that a selected peptide, N10K, putatively deriving from the enzymatic cleavage of the constant region (Fc) of human IgG1, is able to induce IL-6 secretion and pIkB-α activation. More importantly, it causes an up-regulation of Dectin-1 expression. This leads to an increased activation of β-glucan-induced pSyk, CARD9 and pIkB-α, and an increase in the production of pro-inflammatory cytokines such as IL-6, IL-12, IL-1β and TNF-α. The increased activation of this pathway coincides with an augmented phagocytosis of non opsonized Candida albicans cells by monocytes. The findings suggest that some Fc-peptides, potentially deriving from the proteolysis of immunoglobulins, may cause an unexpected immunoregulation in a way reminiscent of innate immunity molecules.
Collapse
Affiliation(s)
- Elena Gabrielli
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Eva Pericolini
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Elio Cenci
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Claudia Monari
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Walter Magliani
- Microbiology Section, Department of Pathology and Laboratory Medicine, University of Parma, Parma, Italy
| | - Tecla Ciociola
- Microbiology Section, Department of Pathology and Laboratory Medicine, University of Parma, Parma, Italy
| | - Stefania Conti
- Microbiology Section, Department of Pathology and Laboratory Medicine, University of Parma, Parma, Italy
| | - Rita Gatti
- Histology Section, Department of Experimental Medicine, University of Parma, Parma, Italy
| | - Francesco Bistoni
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Luciano Polonelli
- Microbiology Section, Department of Pathology and Laboratory Medicine, University of Parma, Parma, Italy
| | - Anna Vecchiarelli
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- * E-mail:
| |
Collapse
|
38
|
Magliani W, Conti S, Giovati L, Zanello PP, Sperindè M, Ciociola T, Polonelli L. Antibody Peptide based antifungal immunotherapy. Front Microbiol 2012; 3:190. [PMID: 22675322 PMCID: PMC3365853 DOI: 10.3389/fmicb.2012.00190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/10/2012] [Indexed: 12/13/2022] Open
Abstract
Fungal infections still represent relevant human illnesses worldwide and some are accompanied by unacceptably high mortality rates. The limited current availability of effective and safe antifungal agents makes the development of new drugs and approaches of antifungal vaccination/immunotherapy every day more needed. Among them, small antibody(Ab)-derived peptides are arousing great expectations as new potential antifungal agents. In this topic, the search path from the study of the yeast killer phenomenon to the production of Ab-derived peptides characterized by in vitro and in vivo fungicidal activity will be focused. In particular, Abs that mimic the antimicrobial activity of a killer toxin (“antibiobodies”) and antifungal peptides derived from antibiobodies (killer peptide) and other unrelated Abs [complementarity determining regions (CDR)-based and constant region (Fc)-based synthetic peptides] are described. Mycological implications in terms of reevaluation of the yeast killer phenomenon, roles of antibiobodies in antifungal immunity, of β-glucans as antifungal targets and vaccines, and of Abs as sources of an unlimited number of sequences potentially active as new immunotherapeutic tools against fungal agents and related mycoses, are discussed.
Collapse
Affiliation(s)
- Walter Magliani
- Section of Microbiology, Department of Pathology and Laboratory Medicine, University of Parma Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Polonelli L, Ciociola T, Magliani W, Zanello PP, D'Adda T, Galati S, De Bernardis F, Arancia S, Gabrielli E, Pericolini E, Vecchiarelli A, Arruda DC, Pinto MR, Travassos LR, Pertinhez TA, Spisni A, Conti S. Peptides of the constant region of antibodies display fungicidal activity. PLoS One 2012; 7:e34105. [PMID: 22470523 PMCID: PMC3312352 DOI: 10.1371/journal.pone.0034105] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 02/21/2012] [Indexed: 11/19/2022] Open
Abstract
Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents.
Collapse
Affiliation(s)
- Luciano Polonelli
- Sezione di Microbiologia, Dipartimento di Patologia e Medicina di Laboratorio, Università degli Studi di Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Arruda DC, Santos LCP, Melo FM, Pereira FV, Figueiredo CR, Matsuo AL, Mortara RA, Juliano MA, Rodrigues EG, Dobroff AS, Polonelli L, Travassos LR. β-Actin-binding complementarity-determining region 2 of variable heavy chain from monoclonal antibody C7 induces apoptosis in several human tumor cells and is protective against metastatic melanoma. J Biol Chem 2012; 287:14912-22. [PMID: 22334655 DOI: 10.1074/jbc.m111.322362] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Complementarity-determining regions (CDRs) from monoclonal antibodies tested as synthetic peptides display anti-infective and antitumor activities, independent of the specificity of the native antibody. Previously, we have shown that the synthetic peptide C7H2, based on the heavy chain CDR 2 from monoclonal antibody C7, a mAb directed to a mannoprotein of Candida albicans, significantly reduced B16F10 melanoma growth and lung colony formation by triggering tumor apoptosis. The mechanism, however, by which C7H2 induced apoptosis in tumor cells remained unknown. Here, we demonstrate that C7H2 interacts with components of the tumor cells cytoskeleton, being rapidly internalized after binding to the tumor cell surface. Mass spectrometry analysis and in vitro validation revealed that β-actin is the receptor of C7H2 in the tumor cells. C7H2 induces β-actin polymerization and F-actin stabilization, linked with abundant generation of superoxide anions and apoptosis. Major phenotypes following peptide binding were chromatin condensation, DNA fragmentation, annexin V binding, lamin disruption, caspase 8 and 3 activation, and organelle alterations. Finally, we evaluated the cytotoxic efficacy of C7H2 in a panel of human tumor cell lines. All tumor cell lines studied were equally susceptible to C7H2 in vitro. The C7H2 amide without further derivatization significantly reduced lung metastasis of mice endovenously challenged with B16F10-Nex2 melanoma cells. No significant cytotoxicity was observed toward nontumorigenic cell lines on short incubation in vitro or in naïve mice injected with a high dose of the peptide. We believe that C7H2 is a promising peptide to be developed as an anticancer drug.
Collapse
Affiliation(s)
- Denise C Arruda
- Experimental Oncology Unit (UNONEX), Universidade Federal de São Paulo (UNIFESP), São Paulo SP 04023-062, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Killer peptide: a novel paradigm of antimicrobial, antiviral and immunomodulatory auto-delivering drugs. Future Med Chem 2012; 3:1209-31. [PMID: 21806382 DOI: 10.4155/fmc.11.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The incidence of life-threatening viral and microbial infections has dramatically increased over recent decades. Despite significant developments in anti-infective chemotherapy, many issues have increasingly narrowed the therapeutic options, making it imperative to discover new effective molecules. Among them, small peptides are arousing great interest. This review will focus in particular on a killer peptide, engineered from an anti-idiotypic recombinant antibody that mimics the activity of a wide-spectrum antimicrobial yeast killer toxin targeting β-glucan cell-wall receptors. The in vitro and in vivo antimicrobial, antiviral and immunomodulatory activities of killer peptide and its ability to spontaneously and reversibly self-assemble and slowly release its active dimeric form over time will be discussed as a novel paradigm of targeted auto-delivering drugs.
Collapse
|