1
|
Nazari AR, Gresseau L, Habelrih T, Zia A, Lahaie I, Er-Reguyeg Y, Coté F, Annabi B, Rivard A, Chemtob S, Desjarlais M. Age-Related Choroidal Involution Is Associated with the Senescence of Endothelial Progenitor Cells in the Choroid. Biomedicines 2024; 12:2669. [PMID: 39767576 PMCID: PMC11726740 DOI: 10.3390/biomedicines12122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Choroidal involution is a common feature of age-related ischemic retinopathies such as age-related macular degeneration (AMD). It is now well recognized that endothelial progenitor cells (EPCs) are essential to endothelial repair processes and in maintaining vascular integrity. However, the contribution of EPCs and the role of senescence in age-related choroidal vascular degeneration remain to be investigated. In this study, we compared the senescent phenotype of EPCs in the choroid and performed whole-genome profiling of EPCs derived from young versus old rats. Methods and Results: We isolated and compared the retinas of young (6-weeks-old) and old (16-18-month-old) rats. The thickness of the choroid and outer nuclear layer (ONL), along with local quantification of CD34+ EPCs, was performed. Compared to young rats, older rats displayed a significant reduction in choroidal and ONL thickness associated with markedly fewer choroid-localized EPCs; this was attested by lower expression of several EPC markers (CXCR4, CD34, CD117, CD133, and KLF-2). Choroid and choroid-localized EPCs displayed abundant senescence as revealed by increased β-gal and P53 expression and decreased Lamin-B1 (immunostaining and RT-qPCR). Concordantly, choroidal cells and EPCs isolated from older rats were unable to form vascular networks ex vivo. To better understand the potential mechanisms associated with the dysfunctional EPCs linked to age-related choroidal involution, we performed whole-genome profiling (mRNA and miRNA) of EPCs derived from old and young rats using next-generation sequencing (NGS); 802 genes were significantly modulated in old vs. young EPCs, corresponding to ~2% of total genes expressed. Using a bioinformatic algorithm, the KEGG pathways suggested that these genes participate in the modulation of several key signaling processes including inflammation, G protein-coupled receptors, and hematopoietic cell lineages. Moreover, we identified 13 miRNAs involved in the regulation of immune system processes, cell cycle arrest and senescence, which are significantly modulated in EPCs from old rats compared to young ones. Conclusions: Our results suggest that age-related choroidal involution is associated with fewer EPCs, albeit displaying a senescence-like phenotype. One would be tempted to propose that biological modification of native EPCs (such as with senolytic agents) could potentially provide a new strategy to preserve the vascular integrity of the aged choroid, and evade progression to degenerative maculopathies.
Collapse
Affiliation(s)
- Ali Riza Nazari
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2M4, Canada
| | - Loraine Gresseau
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2M4, Canada
| | - Tiffany Habelrih
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H2X 0A9, Canada
| | - Aliabbas Zia
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H2X 0A9, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2M4, Canada
| | - Yosra Er-Reguyeg
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2M4, Canada
| | - France Coté
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H2X 0A9, Canada
| | - Borhane Annabi
- Département de Chimie, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Alain Rivard
- Department of Medicine, Centre Hospitalier de l’Université de Montréal (CHUM) Research Center, Montréal, QC H2X 0A9, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2M4, Canada
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H2X 0A9, Canada
| | - Michel Desjarlais
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2M4, Canada
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H2X 0A9, Canada
| |
Collapse
|
2
|
Saha D, Animireddy S, Bartholomew B. The SWI/SNF ATP-dependent chromatin remodeling complex in cell lineage priming and early development. Biochem Soc Trans 2024; 52:603-616. [PMID: 38572912 PMCID: PMC11088921 DOI: 10.1042/bst20230416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
ATP dependent chromatin remodelers have pivotal roles in transcription, DNA replication and repair, and maintaining genome integrity. SWI/SNF remodelers were first discovered in yeast genetic screens for factors involved in mating type switching or for using alternative energy sources therefore termed SWI/SNF complex (short for SWItch/Sucrose NonFermentable). The SWI/SNF complexes utilize energy from ATP hydrolysis to disrupt histone-DNA interactions and shift, eject, or reposition nucleosomes making the underlying DNA more accessible to specific transcription factors and other regulatory proteins. In development, SWI/SNF orchestrates the precise activation and repression of genes at different stages, safe guards the formation of specific cell lineages and tissues. Dysregulation of SWI/SNF have been implicated in diseases such as cancer, where they can drive uncontrolled cell proliferation and tumor metastasis. Additionally, SWI/SNF defects are associated with neurodevelopmental disorders, leading to disruption of neural development and function. This review offers insights into recent developments regarding the roles of the SWI/SNF complex in pluripotency and cell lineage primining and the approaches that have helped delineate its importance. Understanding these molecular mechanisms is crucial for unraveling the intricate processes governing embryonic stem cell biology and developmental transitions and may potentially apply to human diseases linked to mutations in the SWI/SNF complex.
Collapse
Affiliation(s)
- Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| | - Srinivas Animireddy
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| |
Collapse
|
3
|
Swaidan NT, Soliman NH, Aboughalia AT, Darwish T, Almeshal RO, Al-Khulaifi AA, Taha RZ, Alanany R, Hussein AY, Salloum-Asfar S, Abdulla SA, Abdallah AM, Emara MM. CCN3, POSTN, and PTHLH as potential key regulators of genomic integrity and cellular survival in iPSCs. Front Mol Biosci 2024; 11:1342011. [PMID: 38375508 PMCID: PMC10875024 DOI: 10.3389/fmolb.2024.1342011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Reprogramming human somatic cells into a pluripotent state, achieved through the activation of well-defined transcriptional factors known as OSKM factors, offers significant potential for regenerative medicine. While OSKM factors are a robust reprogramming method, efficiency remains a challenge, with only a fraction of cells undergoing successful reprogramming. To address this, we explored genes related to genomic integrity and cellular survival, focusing on iPSCs (A53T-PD1) that displayed enhanced colony stability. Our investigation had revealed three candidate genes CCN3, POSTN, and PTHLH that exhibited differential expression levels and potential roles in iPSC stability. Subsequent analyses identified various protein interactions for these candidate genes. POSTN, significantly upregulated in A53T-PD1 iPSC line, showed interactions with extracellular matrix components and potential involvement in Wnt signaling. CCN3, also highly upregulated, demonstrated interactions with TP53, CDKN1A, and factors related to apoptosis and proliferation. PTHLH, while upregulated, exhibited interactions with CDK2 and genes involved in cell cycle regulation. RT-qPCR validation confirmed elevated CCN3 and PTHLH expression in A53T-PD1 iPSCs, aligning with RNA-seq findings. These genes' roles in preserving pluripotency and cellular stability require further exploration. In conclusion, we identified CCN3, POSTN, and PTHLH as potential contributors to genomic integrity and pluripotency maintenance in iPSCs. Their roles in DNA repair, apoptosis evasion, and signaling pathways could offer valuable insights for enhancing reprogramming efficiency and sustaining pluripotency. Further investigations are essential to unravel the mechanisms underlying their actions.
Collapse
Affiliation(s)
- Nuha T. Swaidan
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Nada H. Soliman
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ahmed T. Aboughalia
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Toqa Darwish
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ruba O. Almeshal
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Azhar A. Al-Khulaifi
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Rowaida Z. Taha
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Rania Alanany
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Abdallah M. Abdallah
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mohamed M. Emara
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Krasnova OA, Kulakova KA, Sopova JV, Smirnov EY, Silonov SA, Lomert EV, Bystrova OA, Martynova MG, Neganova IE. Essential Role of Adhesion GPCR, GPR123, for Human Pluripotent Stem Cells and Reprogramming towards Pluripotency. Cells 2023; 12:cells12020304. [PMID: 36672239 PMCID: PMC9856511 DOI: 10.3390/cells12020304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. They modulate key physiological functions and are required in diverse developmental processes including embryogenesis, but their role in pluripotency maintenance and acquisition during the reprogramming towards hiPSCs draws little attention. Meanwhile, it is known that more than 106 GPCRs are overexpressed in human pluripotent stem cells (hPSCs). Previously, to identify novel effectors of reprogramming, we performed a high-throughput RNA interference (RNAi) screening assay and identified adhesion GPCR, GPR123, as a potential reprogramming effector. Its role has not been explored before. Herein, by employing GPR123 RNAi we addressed the role of GPR123 for hPSCs. The suppression of GPR123 in hPSCs leads to the loss of pluripotency and differentiation, impacted colony morphology, accumulation of cells at the G2 phase of the cell cycle, and absence of the scratch closure. Application of the GPR123 RNAi at the initiation stage of reprogramming leads to a decrease in the percentage of the "true" hiPSC colonies, a drop in E-cadherin expression, a decrease in the percentage of NANOG+ nuclei, and the absence of actin cytoskeleton remodeling. Together this leads to the absence of the alkaline-phosphatase-positive hiPSCs colonies on the 18th day of the reprogramming process. Overall, these data indicate for the first time the essential role of GPR123 in the maintenance and acquisition of pluripotency.
Collapse
Affiliation(s)
- Olga A. Krasnova
- Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Karina A. Kulakova
- Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Julia V. Sopova
- Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
- Center of Transgenesis and Genome Editing, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St-Petersburg, Russia
| | - Evgenyi Y. Smirnov
- Laboratory of Regulation of Genes Function, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Ekaterina V. Lomert
- Laboratory of Molecular Genetics of Tumor Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Olga A. Bystrova
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Marina G. Martynova
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Irina E. Neganova
- Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
- Correspondence:
| |
Collapse
|
5
|
Investigation of Sperm and Seminal Plasma Candidate MicroRNAs of Bulls with Differing Fertility and In Silico Prediction of miRNA-mRNA Interaction Network of Reproductive Function. Animals (Basel) 2022; 12:ani12182360. [PMID: 36139221 PMCID: PMC9495167 DOI: 10.3390/ani12182360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The objective of this study was to identify differentially expressed (DE) sperm and seminal plasma microRNAs (miRNAs) in high- and low-fertile Holstein bulls (four bulls per group), integrate miRNAs to their target genes, and categorize target genes based on predicted biological processes. Out of 84 bovine-specific, prioritized miRNAs analyzed by RT-PCR, 30 were differentially expressed in high-fertile sperm and seminal plasma compared to low-fertile sperm and seminal plasma, respectively (p ≤ 0.05, fold regulation ≥5 magnitudes). Interestingly, expression levels of DE-miRNAs in sperm and seminal plasma followed a similar pattern. Highly scored integrated genes of DE-miRNAs predicted various biological and molecular functions, cellular process, and pathways. Further in silico analysis revealed categorized genes may have a plausible association with pathways regulating sperm structure and function, fertilization, and embryo and placental development. In conclusion, highly DE-miRNAs in bovine sperm and seminal plasma could be used as a tool for predicting reproductive functions. Since the identified miRNA-mRNA interactions were mostly based on predictions from public databases, the causal regulations of miRNA-mRNA and the underlying mechanisms require further functional characterization in future studies. Abstract Recent advances in high-throughput in silico techniques portray experimental data as exemplified biological networks and help us understand the role of individual proteins, interactions, and their biological functions. The objective of this study was to identify differentially expressed (DE) sperm and seminal plasma microRNAs (miRNAs) in high- and low-fertile Holstein bulls (four bulls per group), integrate miRNAs to their target genes, and categorize the target genes based on biological process predictions. Out of 84 bovine-specific, prioritized miRNAs analyzed by RT-PCR, 30 were differentially expressed in high-fertile sperm and seminal plasma compared to low-fertile sperm and seminal plasma, respectively (p ≤ 0.05, fold regulation ≥ 5 magnitudes). The expression levels of DE-miRNAs in sperm and seminal plasma followed a similar pattern. Highly scored integrated genes of DE-miRNAs predicted various biological and molecular functions, cellular process, and pathways. Further, analysis of the categorized genes showed association with pathways regulating sperm structure and function, fertilization, and embryo and placental development. In conclusion, highly DE-miRNAs in bovine sperm and seminal plasma could be used as a tool for predicting reproductive functions. Since the identified miRNA-mRNA interactions were mostly based on predictions from public databases, the causal regulations of miRNA-mRNA and the underlying mechanisms require further functional characterization in future studies.
Collapse
|
6
|
An S, Yao D, Zhang W, Sun H, Yu T, Jia R, Yang Y. WDR36 Safeguards Self-Renewal and Pluripotency of Human Extended Pluripotent Stem Cells. Front Genet 2022; 13:905395. [PMID: 35937980 PMCID: PMC9353684 DOI: 10.3389/fgene.2022.905395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Extended pluripotent stem cells (EPS cells) have unlimited self-renewal ability and the potential to differentiate into mesodermal, ectodermal, and endodermal cells. Notably, in addition to developing the embryonic (Em) lineages, it can also make an effective contribution to extraembryonic (ExEm) lineages both in vitro and in vivo. However, multiple mysteries still remain about the underlying molecular mechanism of EPS cells’ maintenance and developmental potential. WDR36 (WD Repeat Domain 36), a protein of 105 kDa with 14 WD40 repeats, which may fold into two β-propellers, participates in 18sRNA synthesis and P53 stress response. Though WDR36 safeguards mouse early embryonic development, that is, homozygous knockout of WDR36 can result in embryonic lethality, what role does WDR36 plays in self-renewal and differentiation developmental potential of human EPS cells is still a subject of concern. Here, our findings suggested that the expression of WDR36 was downregulated during human hEPS cells lost self-renewal. Through constructing inducible knockdown or overexpressing WDR36-human EPS cell lines, we found that WDR36 knockdown disrupted self-renewal but promoted the mesodermal differentiation of human EPS cells; however, overexpressing of WDR36 had little effect. Additionally, P53 inhibition could reverse the effects of WDR36 knockdown, on both self-renewal maintenance and differentiation potential of human EPS cells. These data implied that WDR36 safeguards self-renewal and pluripotency of human EPS cells, which would extend our understanding of the molecular mechanisms of human EPS cells’ self-renewal and differentiation.
Collapse
Affiliation(s)
- Shiyu An
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Dan Yao
- Department of Obstetrics, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Institute, Nanjing, China
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, China
| | - Wenyi Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Tianyi Yu
- Department of Gynecology and Obstetrics, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Ruizhe Jia
- Department of Obstetrics, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Institute, Nanjing, China
- *Correspondence: Yang Yang, ; Ruizhe Jia,
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Yang Yang, ; Ruizhe Jia,
| |
Collapse
|
7
|
Cokić M, Bruegmann T, Sasse P, Malan D. Optogenetic Stimulation of G i Signaling Enables Instantaneous Modulation of Cardiomyocyte Pacemaking. Front Physiol 2022; 12:768495. [PMID: 34987414 PMCID: PMC8721037 DOI: 10.3389/fphys.2021.768495] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 01/01/2023] Open
Abstract
G-protein signaling pathways are central in the regulation of cardiac function in physiological and pathophysiological conditions. Their functional analysis through optogenetic techniques with selective expression of opsin proteins and activation by specific wavelengths allows high spatial and temporal precision. Here, we present the application of long wavelength-sensitive cone opsin (LWO) in cardiomyocytes for activation of the Gi signaling pathway by red light. Murine embryonic stem (ES) cells expressing LWO were generated and differentiated into beating cardiomyocytes in embryoid bodies (EBs). Illumination with red light (625 nm) led to an instantaneous decrease up to complete inhibition (84–99% effectivity) of spontaneous beating, but had no effect on control EBs. By using increasing light intensities with 10 s pulses, we determined a half maximal effective light intensity of 2.4 μW/mm2 and a maximum effect at 100 μW/mm2. Pre-incubation of LWO EBs with pertussis toxin completely inhibited the light effect proving the specificity for Gi signaling. Frequency reduction was mainly due to the activation of GIRK channels because the specific channel blocker tertiapin reduced the light effect by ~80%. Compared with pharmacological stimulation of M2 receptors with carbachol with slow kinetics (>30 s), illumination of LWO had an identical efficacy, but much faster kinetics (<1 s) in the activation and deactivation demonstrating the temporal advantage of optogenetic stimulation. Thus, LWO is an effective optogenetic tool for selective stimulation of the Gi signaling cascade in cardiomyocytes with red light, providing high temporal precision.
Collapse
Affiliation(s)
- Milan Cokić
- Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Tobias Bruegmann
- Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany.,Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Philipp Sasse
- Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Daniela Malan
- Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Corral-Vazquez C, Blanco J, Aiese Cigliano R, Sarrate Z, Rivera-Egea R, Vidal F, Garrido N, Daub C, Anton E. The RNA content of human sperm reflects prior events in spermatogenesis and potential post-fertilization effects. Mol Hum Reprod 2021; 27:6265603. [PMID: 33950245 DOI: 10.1093/molehr/gaab035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/09/2021] [Indexed: 01/18/2023] Open
Abstract
Transcriptome analyses using high-throughput methodologies allow a deeper understanding of biological functions in different cell types/tissues. The present study provides an RNA-seq profiling of human sperm mRNAs and lncRNAs (messenger and long non-coding RNAs) in a well-characterized population of fertile individuals. Sperm RNA was extracted from twelve ejaculate samples under strict quality controls. Poly(A)-transcripts were sequenced and aligned to the human genome. mRNAs and lncRNAs were classified according to their mean expression values (FPKM: Fragments Per Kilobase of transcript per Million mapped reads) and integrity. Gene Ontology analysis of the Expressed and Highly Expressed mRNAs showed an involvement in diverse reproduction processes, while the Ubiquitously Expressed and Highly Stable mRNAs were mainly involved in spermatogenesis. Transcription factor enrichment analyses revealed that the Highly Expressed and Ubiquitously Expressed sperm mRNAs were primarily regulated by zinc-fingers and spermatogenesis-related proteins. Regarding the Expressed lncRNAs, only one-third of their potential targets corresponded to Expressed mRNAs and were enriched in cell-cycle regulation processes. The remaining two-thirds were absent in sperm and were enriched in embryogenesis-related processes. A significant amount of post-testicular sperm mRNAs and lncRNAs was also detected. Even though our study is solely directed to the poly-A fraction of sperm transcripts, results indicate that both sperm mRNAs and lncRNAs constitute a footprint of previous spermatogenesis events and are configured to affect the first stages of embryo development.
Collapse
Affiliation(s)
- C Corral-Vazquez
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - J Blanco
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Z Sarrate
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - R Rivera-Egea
- IVIRMA Valencia, IVI Foundation, Laboratorio de Andrología, Valencia, Spain
| | - F Vidal
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - N Garrido
- IVI Foundation, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - C Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - E Anton
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
9
|
Markers of Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Wasserman AH, Venkatesan M, Aguirre A. Bioactive Lipid Signaling in Cardiovascular Disease, Development, and Regeneration. Cells 2020; 9:E1391. [PMID: 32503253 PMCID: PMC7349721 DOI: 10.3390/cells9061391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of death globally. Understanding and characterizing the biochemical context of the cardiovascular system in health and disease is a necessary preliminary step for developing novel therapeutic strategies aimed at restoring cardiovascular function. Bioactive lipids are a class of dietary-dependent, chemically heterogeneous lipids with potent biological signaling functions. They have been intensively studied for their roles in immunity, inflammation, and reproduction, among others. Recent advances in liquid chromatography-mass spectrometry techniques have revealed a staggering number of novel bioactive lipids, most of them unknown or very poorly characterized in a biological context. Some of these new bioactive lipids play important roles in cardiovascular biology, including development, inflammation, regeneration, stem cell differentiation, and regulation of cell proliferation. Identifying the lipid signaling pathways underlying these effects and uncovering their novel biological functions could pave the way for new therapeutic strategies aimed at CVD and cardiovascular regeneration.
Collapse
Affiliation(s)
- Aaron H. Wasserman
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Manigandan Venkatesan
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aitor Aguirre
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Neganova I, Cotts L, Banks P, Gassner K, Shukurov A, Armstrong L, Ladds G, Lako M. Endothelial Differentiation G Protein-Coupled Receptor 5 Plays an Important Role in Induction and Maintenance of Pluripotency. Stem Cells 2019; 37:318-331. [PMID: 30512203 PMCID: PMC6446721 DOI: 10.1002/stem.2954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/08/2018] [Accepted: 10/25/2018] [Indexed: 02/03/2023]
Abstract
Direct reprogramming of human somatic cells toward induced pluripotent stem cells holds great promise for regenerative medicine and basic biology. We used a high-throughput small interfering RNA screening assay in the initiation phase of reprogramming for 784 genes belonging to kinase and phosphatase families and identified 68 repressors and 22 effectors. Six new candidates belonging to the family of the G protein-coupled receptors (GPCRs) were identified, suggesting an important role for this key signaling pathway during somatic cell-induced reprogramming. Downregulation of one of the key GPCR effectors, endothelial differentiation GPCR5 (EDG5), impacted the maintenance of pluripotency, actin cytoskeleton organization, colony integrity, and focal adhesions in human embryonic stem cells, which were associated with the alteration in the RhoA-ROCK-Cofilin-PAXILLIN-actin signaling pathway. Similarly, downregulation of EDG5 during the initiation stage of somatic cell-induced reprogramming resulted in alteration of cytoskeleton, loss of human-induced pluripotent stem cell colony integrity, and a significant reduction in partially and fully reprogrammed cells as well as the number of alkaline phosphatase positive colonies at the end of the reprogramming process. Together, these data point to an important role of EDG5 in the maintenance and acquisition of pluripotency. Stem Cells 2019;37:318-331.
Collapse
Affiliation(s)
- Irina Neganova
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Lewis Cotts
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Peter Banks
- High Throughput Screening Facility, Medical School, Newcastle, United Kingdom
| | - Katja Gassner
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Anvar Shukurov
- School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lyle Armstrong
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Majlinda Lako
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
12
|
Choi C, Thi Thao Tran N, Van Ngu T, Park SW, Song MS, Kim SH, Bae YU, Ayudthaya PDN, Munir J, Kim E, Baek MJ, Song S, Ryu S, Nam KH. Promotion of tumor progression and cancer stemness by MUC15 in thyroid cancer via the GPCR/ERK and integrin-FAK signaling pathways. Oncogenesis 2018; 7:85. [PMID: 30420637 PMCID: PMC6232104 DOI: 10.1038/s41389-018-0094-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022] Open
Abstract
Thyroid cancer is the fifth most common cancer diagnosed in women worldwide. Notwithstanding advancements in the prognosis and treatment of thyroid cancer, 10–20% of thyroid cancer patients develops chemotherapeutic resistance and experience relapse. According to previous reports and TCGA database, MUC15 (MUCIN 15) upregulation is highly correlated with thyroid cancer progression. However, the role of MUC15 in tumor progression and metastasis is unclear. This study aimed to investigate factors mediating cancer stemness in thyroid cancer. MUC15 plays an important role in sphere formation, as an evident from the expression of stemness markers including SOX2, KLF4, ALDH1A3, and IL6. Furthermore, ectopic expression of MUC15 activated extracellular signal-regulated kinase (ERK) signaling via G-protein–coupled receptor (GPCR)/cyclic AMP (cAMP) and integrin/focal adhesion kinase pathways. Interestingly, ectopic expression of MUC15 did not affect RAF/mitogen-activated protein kinase kinase (MEK)-mediated ERK activation. The present findings may provide novel insights into the development of diagnostic, prognostic, and therapeutic applications of MUC15 in thyroid cancer.
Collapse
Affiliation(s)
- Cheolwon Choi
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Nguyen Thi Thao Tran
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Trinh Van Ngu
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Sae Woong Park
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, USA
| | - Min Suk Song
- Department of Life Sciences, Yeungnam University, Gyeongsan, Korea
| | - Sung Hyun Kim
- Department of Physiology, Kyung Hee University, School of Medicine, Seoul, Korea
| | - Yun-Ui Bae
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | | | - Javaria Munir
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Eunbit Kim
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Moo-Jun Baek
- Department of Surgery, College of Medicine, Soonchunhyang University, Chonan, Korea
| | - Sujung Song
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Med-bioscience (SIMS), Soonchunhyang University, Cheonan, Korea.
| | - Kee-Hyun Nam
- Department of Surgery, College of Medicine, Yonsei University, Seoul, Korea.
| |
Collapse
|
13
|
Milligan G, Inoue A. Genome Editing Provides New Insights into Receptor-Controlled Signalling Pathways. Trends Pharmacol Sci 2018; 39:481-493. [PMID: 29548548 DOI: 10.1016/j.tips.2018.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 01/10/2023]
Abstract
Rapid developments in genome editing, based largely on CRISPR/Cas9 technologies, are offering unprecedented opportunities to eliminate the expression of single or multiple gene products in intact organisms and in model cell systems. Elimination of individual G protein-coupled receptors (GPCRs), both single and multiple G protein subunits, and arrestin adaptor proteins is providing new and sometimes unanticipated insights into molecular details of the regulation of cell signalling pathways and the behaviour of receptor ligands. Genome editing is certain to become a central component of therapeutic target validation, and will provide pharmacologists with new understanding of the complexities of action of novel and previously studied ligands, as well as of the transmission of signals from individual cell-surface receptors to intracellular signalling cascades.
Collapse
Affiliation(s)
- Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 Japan.
| |
Collapse
|
14
|
Pomeroy JE, Nguyen HX, Hoffman BD, Bursac N. Genetically Encoded Photoactuators and Photosensors for Characterization and Manipulation of Pluripotent Stem Cells. Theranostics 2017; 7:3539-3558. [PMID: 28912894 PMCID: PMC5596442 DOI: 10.7150/thno.20593] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/14/2017] [Indexed: 12/28/2022] Open
Abstract
Our knowledge of pluripotent stem cell biology has advanced considerably in the past four decades, but it has yet to deliver on the great promise of regenerative medicine. The slow progress can be mainly attributed to our incomplete understanding of the complex biologic processes regulating the dynamic developmental pathways from pluripotency to fully-differentiated states of functional somatic cells. Much of the difficulty arises from our lack of specific tools to query, or manipulate, the molecular scale circuitry on both single-cell and organismal levels. Fortunately, the last two decades of progress in the field of optogenetics have produced a variety of genetically encoded, light-mediated tools that enable visualization and control of the spatiotemporal regulation of cellular function. The merging of optogenetics and pluripotent stem cell biology could thus be an important step toward realization of the clinical potential of pluripotent stem cells. In this review, we have surveyed available genetically encoded photoactuators and photosensors, a rapidly expanding toolbox, with particular attention to those with utility for studying pluripotent stem cells.
Collapse
Affiliation(s)
- Jordan E. Pomeroy
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
- Division of Cardiology, Department of Medicine, Duke University Health System, Durham, North Carolina, USA
| | - Hung X. Nguyen
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Room 1427, Fitzpatrick CIEMAS, Durham, North Carolina 27708, USA
| |
Collapse
|
15
|
Lynch JR, Wang JY. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer. Int J Mol Sci 2016; 17:ijms17050707. [PMID: 27187360 PMCID: PMC4881529 DOI: 10.3390/ijms17050707] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/28/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.
Collapse
Affiliation(s)
- Jennifer R Lynch
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jenny Yingzi Wang
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
- Centre for Childhood Cancer Research, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
16
|
Čikoš Š, Fabian D, Burkuš J, Janštová Ž, Koppel J. Expression of dopamine and adrenergic receptors in mouse embryonic stem cells and preimplantation embryos. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Dolatshad NF, Hellen N, Jabbour RJ, Harding SE, Földes G. G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells: Implications for Disease Modeling. Front Cell Dev Biol 2015; 3:76. [PMID: 26697426 PMCID: PMC4673467 DOI: 10.3389/fcell.2015.00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling. In this review, we will therefore describe the state of knowledge concerning the regulatory role of GPCRs in both the generation and function of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth muscle cells. We will consider how far the in vitro disease models recapitulate authentic GPCR signaling and provide a useful basis for discovery of disease mechanisms or design of therapeutic strategies.
Collapse
Affiliation(s)
- Nazanin F Dolatshad
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Nicola Hellen
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Richard J Jabbour
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Sian E Harding
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| | - Gabor Földes
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK ; The Heart and Vascular Center of Semmelweis University, Semmelweis University Budapest, Hungary
| |
Collapse
|
18
|
Choi HY, Saha SK, Kim K, Kim S, Yang GM, Kim B, Kim JH, Cho SG. G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells. BMB Rep 2015; 48:68-80. [PMID: 25413305 PMCID: PMC4352616 DOI: 10.5483/bmbrep.2015.48.2.250] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large class of transmembrane receptors categorized into five distinct families: rhodopsin, secretin, adhesion, glutamate, and frizzled. They bind and regulate 80% of all hormones and account for 20-50% of the pharmaceuticals currently on the market. Hundreds of GPCRs integrate and coordinate the functions of individual cells, mediating signaling between various organs. GPCRs are crucial players in tumor progression, adipogenesis, and inflammation. Several studies have also confirmed their central roles in embryonic development and stem cell maintenance. Recently, GPCRs have emerged as key players in the regulation of cell survival, proliferation, migration, and self-renewal in pluripotent (PSCs) and cancer stem cells (CSCs). Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation. These GPCRs may have crucial roles in the regulation of selfrenewal and other biological properties of iPSCs and CSCs. This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs.
Collapse
Affiliation(s)
- Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Subbroto Kumar Saha
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Kyeongseok Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Sangsu Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Gwang-Mo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - BongWoo Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Jin-hoi Kim
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
19
|
Insel PA, Wilderman A, Zambon AC, Snead AN, Murray F, Aroonsakool N, McDonald DS, Zhou S, McCann T, Zhang L, Sriram K, Chinn AM, Michkov AV, Lynch RM, Overland AC, Corriden R. G Protein-Coupled Receptor (GPCR) Expression in Native Cells: "Novel" endoGPCRs as Physiologic Regulators and Therapeutic Targets. Mol Pharmacol 2015; 88:181-7. [PMID: 25737495 PMCID: PMC4468643 DOI: 10.1124/mol.115.098129] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/02/2015] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of signaling receptors in the human genome, are also the largest class of targets of approved drugs. Are the optimal GPCRs (in terms of efficacy and safety) currently targeted therapeutically? Especially given the large number (∼ 120) of orphan GPCRs (which lack known physiologic agonists), it is likely that previously unrecognized GPCRs, especially orphan receptors, regulate cell function and can be therapeutic targets. Knowledge is limited regarding the diversity and identity of GPCRs that are activated by endogenous ligands and that native cells express. Here, we review approaches to define GPCR expression in tissues and cells and results from studies using these approaches. We identify problems with the available data and suggest future ways to identify and validate the physiologic and therapeutic roles of previously unrecognized GPCRs. We propose that a particularly useful approach to identify functionally important GPCRs with therapeutic potential will be to focus on receptors that show selective increases in expression in diseased cells from patients and experimental animals.
Collapse
Affiliation(s)
- Paul A Insel
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Andrea Wilderman
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Alexander C Zambon
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Aaron N Snead
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Fiona Murray
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Nakon Aroonsakool
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Daniel S McDonald
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Shu Zhou
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Thalia McCann
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Lingzhi Zhang
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Krishna Sriram
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Amy M Chinn
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Alexander V Michkov
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Rebecca M Lynch
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Aaron C Overland
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| | - Ross Corriden
- Departments of Pharmacology (P.A.I., A.W., A.C.Z., A.N.S., N.A., D.S.M., S.Z., T.M., L.Z., K.S., A.M.C., A.V.M., R.M.L., A.C.O., R.C.) and Medicine (P.A.I., F.M.), University of California, San Diego, La Jolla, California
| |
Collapse
|
20
|
Saggio I, Remoli C, Spica E, Cersosimo S, Sacchetti B, Robey PG, Holmbeck K, Cumano A, Boyde A, Bianco P, Riminucci M. Constitutive expression of Gsα(R201C) in mice produces a heritable, direct replica of human fibrous dysplasia bone pathology and demonstrates its natural history. J Bone Miner Res 2014; 29:2357-68. [PMID: 24764158 PMCID: PMC4205271 DOI: 10.1002/jbmr.2267] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/07/2014] [Accepted: 04/15/2014] [Indexed: 12/24/2022]
Abstract
Fibrous dysplasia of bone (FD) is a crippling skeletal disease associated with postzygotic mutations (R201C, R201H) of the gene encoding the α subunit of the stimulatory G protein, Gs. By causing a characteristic structural subversion of bone and bone marrow, the disease results in deformity, hypomineralization, and fracture of the affected bones, with severe morbidity arising in childhood or adolescence. Lack of inheritance of the disease in humans is thought to reflect embryonic lethality of germline-transmitted activating Gsα mutations, which would only survive through somatic mosaicism. We have generated multiple lines of mice that express Gsα(R201C) constitutively and develop an inherited, histopathologically exact replica of human FD. Robust transgene expression in neonatal and embryonic tissues and embryonic stem (ES) cells were associated with normal development of skeletal tissues and differentiation of skeletal cells. As in humans, FD lesions in mice developed only in the postnatal life; a defined spatial and temporal pattern characterized the onset and progression of lesions across the skeleton. In individual bones, lesions developed through a sequence of three distinct histopathological stages: a primary modeling phase defined by endosteal/medullary excess bone formation and normal resorption; a secondary phase, with excess, inappropriate remodeling; and a tertiary fibrous dysplastic phase, which reproduced a full-blown replica of the human bone pathology in mice of age ≥1 year. Gsα mutations are sufficient to cause FD, and are per se compatible with germline transmission and normal embryonic development in mice. Our novel murine lines constitute the first model of FD.
Collapse
Affiliation(s)
- Isabella Saggio
- Department of Biology and Biotechnology "C. Darwin", Sapienza University, and IBPM CNR, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Misuno K, Liu X, Feng S, Hu S. Quantitative proteomic analysis of sphere-forming stem-like oral cancer cells. Stem Cell Res Ther 2014; 4:156. [PMID: 24423398 PMCID: PMC4056689 DOI: 10.1186/scrt386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/16/2013] [Accepted: 11/28/2013] [Indexed: 12/19/2022] Open
Abstract
Introduction The purpose of this study is to identify target proteins that may play important functional roles in oral cancer stem-like cells (CSCs) using mass spectrometry-based quantitative proteomics. Methods Sphere-formation assays were performed on highly invasive UM1 and lowly invasive UM2 oral cancer cell lines, which were derived from the same tongue squamous cell carcinoma, to enrich CSCs. Quantitative proteomic analysis of CSC-like and non-CSC UM1 cells was carried out using tandem mass tagging and two-dimensional liquid chromatography with Orbitrap mass spectrometry. Results CSC-like cancer cells were found to be present in the highly invasive UM1 cell line but absent in the lowly invasive UM2 cell line. Stem cell markers SOX2, OCT4, SOX9 and CD44 were up-regulated, whereas HIF-1 alpha and PGK-1 were down-regulated in CSC-like UM1 cells versus non-CSC UM1 cells. Quantitative proteomic analysis indicated that many proteins in cell cycle, metabolism, G protein signal transduction, translational elongation, development, and RNA splicing pathways were differentially expressed between the two cell phenotypes. Both CREB-1-binding protein (CBP) and phosphorylated CREB-1 were found to be significantly over-expressed in CSC-like UM1 cells. Conclusions CSC-like cells can be enriched from the highly invasive UM1 oral cancer cell line but not from the lowly invasive UM2 oral cancer cell line. There are significant proteomic alterations between CSC-like and non-CSC UM1 cells. In particular, CBP and phosphorylated CREB-1 were significantly up-regulated in CSC-like UM1 cells versus non-CSC UM1 cells, suggesting that the CREB pathway is activated in the CSC-like cells.
Collapse
|
22
|
Xu XX, Zhang LH, Xie X. Somatostatin receptor type 2 contributes to the self-renewal of murine embryonic stem cells. Acta Pharmacol Sin 2014; 35:1023-30. [PMID: 24998255 DOI: 10.1038/aps.2014.51] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/23/2014] [Indexed: 01/21/2023]
Abstract
AIM The roles of G-protein coupled receptors (GPCRs) in stem cell biology remain unclear. In this study, we aimed to identify GPCRs that might contribute to the self-renewal of mouse embryonic stem cells (mESCs). METHODS The expression levels of pluripotent genes and GPCR gene were detected in E14 mESCs using PCR array and RT-PCR. Immunofluorescent staining was used to examine the expression of pluripotent markers and the receptor translocation. Western blot analysis was used to detect phosphorylation of signal proteins. Knock-down of receptor was conducted to confirm its role in pluripotency maintenance. RESULTS In leukemia inhibitory factor (LIF)-free medium, mESCs lost the typical morphology of pluripotency, accompanied by markedly decreases in expression of somatostatin receptor type 2 (SSTR2), as well as the pluripotency biomarkers Oct4, Sox2, Rex1 and Nanog. Addition of the SSTR2 agonist octreotide or seglitide (0.1-30 μmol/L) in LIF-free medium dose-dependently promoted the self-renewal of mESCs, whereas the SSTR2 antagonist S4 (0.03-3 μmol/L) dose-dependently blocked octreotide-induced self-renewal. Knock-down of SSTR2 significantly decreased the self-renewal of mESCs even in the presence of LIF. Addition of LIF (1000 U/mL) or octreotide (1 μmol/L) in LIF-free medium significantly increased both phosphorylation and nuclear ocalization of STAT3. CONCLUSION The activation of SSTR2 contributes to the self-renewal of mESCs via activation of the STAT3 pathway.
Collapse
|
23
|
Ishizuka T, Watanabe Y. [Involvement of cell membrane receptors on proliferation and differentiation of pluripotent stem cells]. Nihon Yakurigaku Zasshi 2014; 144:13-6. [PMID: 25007806 DOI: 10.1254/fpj.144.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Stimulation of α1-adrenoceptor or angiotensin type 1 receptor enhances DNA synthesis in human-induced pluripotent stem cells via Gq-coupled receptor-dependent signaling pathways. Eur J Pharmacol 2013; 714:202-9. [DOI: 10.1016/j.ejphar.2013.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/31/2013] [Accepted: 06/08/2013] [Indexed: 11/22/2022]
|
25
|
|
26
|
Abstract
Many tissues of the body cannot only repair themselves, but also self-renew, a property mainly due to stem cells and the various mechanisms that regulate their behavior. Stem cell biology is a relatively new field. While advances are slowly being realized, stem cells possess huge potential to ameliorate disease and counteract the aging process, causing its speculation as the next panacea. Amidst public pressure to advance rapidly to clinical trials, there is a need to understand the biology of stem cells and to support basic research programs. Without a proper comprehension of how cells and tissues are maintained during the adult life span, clinical trials are bound to fail. This review will cover the basic biology of stem cells, the various types of stem cells, their potential function, and the advantages and disadvantages to their use in medicine. We will next cover the role of G protein-coupled receptors in the regulation of stem cells and their potential in future clinical applications.
Collapse
Affiliation(s)
- VAN A. DOZE
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA (V.A.D.), and Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA (D.M.P.)
| | - DIANNE M. PEREZ
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA (V.A.D.), and Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA (D.M.P.)
| |
Collapse
|
27
|
Ermakov A, Pells S, Freile P, Ganeva VV, Wildenhain J, Bradley M, Pawson A, Millar R, De Sousa PA. A role for intracellular calcium downstream of G-protein signaling in undifferentiated human embryonic stem cell culture. Stem Cell Res 2012; 9:171-84. [DOI: 10.1016/j.scr.2012.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 06/01/2012] [Accepted: 06/26/2012] [Indexed: 12/28/2022] Open
|
28
|
Zhao W, Ji X, Zhang F, Li L, Ma L. Embryonic stem cell markers. Molecules 2012; 17:6196-236. [PMID: 22634835 PMCID: PMC6268870 DOI: 10.3390/molecules17066196] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 03/31/2012] [Accepted: 05/04/2012] [Indexed: 02/07/2023] Open
Abstract
Embryonic stem cell (ESC) markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells, especially tumor cells. Currently, the marker-based flow cytometry (FCM) technique and magnetic cell sorting (MACS) are the most effective cell isolating methods, and a detailed maker list will help to initially identify, as well as isolate ESCs using these methods. In the current review, we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules, such as lectins and peptides, which bind to ESC via affinity and specificity, are also summarized. In addition, we review several markers that overlap with tumor stem cells (TSCs), which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
| | - Xiang Ji
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Fangfang Zhang
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Liang Li
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Lan Ma
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
| |
Collapse
|
29
|
Bieberich E. It's a lipid's world: bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochem Res 2012; 37:1208-29. [PMID: 22246226 DOI: 10.1007/s11064-011-0698-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/31/2011] [Indexed: 01/20/2023]
Abstract
Lipids are often considered membrane components whose function is to embed proteins into cell membranes. In the last two decades, studies on brain lipids have unequivocally demonstrated that many lipids have critical cell signaling functions; they are called "bioactive lipids". Pioneering work in Dr. Robert Ledeen's laboratory has shown that two bioactive brain sphingolipids, sphingomyelin and the ganglioside GM1 are major signaling lipids in the nuclear envelope. In addition to derivatives of the sphingolipid ceramide, the bioactive lipids discussed here belong to the classes of terpenoids and steroids, eicosanoids, and lysophospholipids. These lipids act mainly through two mechanisms: (1) direct interaction between the bioactive lipid and a specific protein binding partner such as a lipid receptor, protein kinase or phosphatase, ion exchanger, or other cell signaling protein; and (2) formation of lipid microdomains or rafts that regulate the activity of a group of raft-associated cell signaling proteins. In recent years, a third mechanism has emerged, which invokes lipid second messengers as a regulator for the energy and redox balance of differentiating neural stem cells (NSCs). Interestingly, developmental niches such as the stem cell niche for adult NSC differentiation may also be metabolic compartments that respond to a distinct combination of bioactive lipids. The biological function of these lipids as regulators of NSC differentiation will be reviewed and their application in stem cell therapy discussed.
Collapse
Affiliation(s)
- Erhard Bieberich
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street Room CA4012, Augusta, GA 30912, USA.
| |
Collapse
|
30
|
Maurel B, Le Digarcher A, Dantec C, Journot L. Genome-wide profiling of G protein-coupled receptors in cerebellar granule neurons using high-throughput, real-time PCR. BMC Genomics 2011; 12:241. [PMID: 21575240 PMCID: PMC3111393 DOI: 10.1186/1471-2164-12-241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/16/2011] [Indexed: 11/29/2022] Open
Abstract
Background G protein-coupled receptors (GPCRs) are major players in cell communication, regulate a whole range of physiological functions during development and throughout adult life, are affected in numerous pathological situations, and constitute so far the largest class of drugable targets for human diseases. The corresponding genes are usually expressed at low levels, making accurate, genome-wide quantification of their expression levels a challenging task using microarrays. Results We first draw an inventory of all endo-GPCRs encoded in the murine genome. To profile GPCRs genome-wide accurately, sensitively, comprehensively, and cost-effectively, we designed and validated a collection of primers that we used in quantitative RT-PCR experiments. We experimentally validated a statistical approach to analyze genome-wide, real-time PCR data. To illustrate the usefulness of this approach, we determined the repertoire of GPCRs expressed in cerebellar granule neurons and neuroblasts during postnatal development. Conclusions We identified tens of GPCRs that were not detected previously in this cell type; these GPCRs represent novel candidate players in the development and survival of cerebellar granule neurons. The sequences of primers used in this study are freely available to those interested in quantifying GPCR expression comprehensively.
Collapse
Affiliation(s)
- Benjamin Maurel
- Institut de Genomique Fonctionnelle, 141 rue de la cardonille, F-34094 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
31
|
Hsiao EC, Nguyen TD, Ng JK, Scott MJ, Chang WC, Zahed H, Conklin BR. Constitutive Gs activation using a single-construct tetracycline-inducible expression system in embryonic stem cells and mice. Stem Cell Res Ther 2011; 2:11. [PMID: 21375737 PMCID: PMC3226282 DOI: 10.1186/scrt52] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 03/04/2011] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION The controlled expression of many genes, including G-protein coupled receptors (GPCRs), is important for delineating gene functions in complex model systems. Binary systems for inducible regulation of transgene expression are widely used in mice. One system is the tTA/TRE expression system, composed of a tetracycline-dependent DNA binding factor and a separate tetracycline operon. However, the requirement for two separate transgenes (one for each tTA or TRE component) makes this system less amenable to models requiring directed cell targeting, increases the risk of multiple transgene integration sites, and requires extensive screening for appropriately-functioning clones. METHODS We developed a single, polycistronic tetracycline-inducible expression platform to control the expression of multiple cistrons in mammalian cells. This platform has three basic constructs: regulator, responder, and destination vectors. The modular platform is compatible with both the TetOff (tTA) and TetOn (rtTA) systems. The modular Gateway recombineering-compatible components facilitate rapidly generating vectors to genetically modify mammalian cells. We apply this system to use the elongation factor 1α (EF1α) promoter to drive doxycycline-regulated expression of both the fluorescent marker mCherry and an engineered Gs-coupled GPCR "Rs1" separated by a 2A ribosomal skip site. RESULTS We show that our combined expression construct drives expression of both the mCherry and Rs1 transgenes in a doxycycline-dependent manner. We successfully target the expression construct into the Rosa26 locus of mouse embryonic stem (ES) cells. Rs1 expression in mouse ES cells increases cAMP accumulation via both basal and ligand-induced Gs mechanisms and is associated with increased embryoid body size. Heterozygous mice carrying the Rs1 expression construct showed normal growth and weight, and developed small increases in bone formation that could be observed in the calvaria. CONCLUSIONS Our results demonstrate the feasibility of a single-vector strategy that combines both the tTA and TRE tetracycline-regulated components for use in cells and mouse models. Although the EF1α promoter is useful for driving expression in pluripotent cells, a single copy of the EF1α promoter did not drive high levels of mCherry and Rs1 expression in the differentiated tissues of adult mice. These findings indicate that promoter selection is an important factor when developing transgene expression models.
Collapse
Affiliation(s)
- Edward C Hsiao
- Gladstone Institute of Cardiovascular Disease, 1650 Owens St., San Francisco, CA 94158, USA
- Division of Endocrinology and Metabolism, Department of Medicine, 400 Parnassus Ave., University of California, San Francisco, CA 94143-1222, USA
| | - Trieu D Nguyen
- Gladstone Institute of Cardiovascular Disease, 1650 Owens St., San Francisco, CA 94158, USA
| | - Jennifer K Ng
- Gladstone Institute of Cardiovascular Disease, 1650 Owens St., San Francisco, CA 94158, USA
| | - Mark J Scott
- Gladstone Institute of Cardiovascular Disease, 1650 Owens St., San Francisco, CA 94158, USA
| | - Wei Chun Chang
- Department of Cellular and Molecular Pharmacology, 600 16th Street Rm. S-222, University of California, San Francisco, CA 94158-2140, USA
| | - Hengameh Zahed
- Gladstone Institute of Neurological Disease, 1650 Owens St., San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, 513 Parnassus Ave. Rm. HSE-1285, University of California, San Francisco, CA 94158-0505, USA
| | - Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, 1650 Owens St., San Francisco, CA 94158, USA
- Department of Medicine, 505 Parnassus Ave., University of California, San Francisco, CA 94143, USA
| |
Collapse
|
32
|
Kobayashi NR, Hawes SM, Crook JM, Pébay A. G-protein coupled receptors in stem cell self-renewal and differentiation. Stem Cell Rev Rep 2010; 6:351-66. [PMID: 20625855 DOI: 10.1007/s12015-010-9167-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cells have great potential for understanding early development, treating human disease, tissue trauma and early phase drug discovery. The factors that control the regulation of stem cell survival, proliferation, migration and differentiation are still emerging. Some evidence now exists demonstrating the potent effects of various G-protein coupled receptor (GPCR) ligands on the biology of stem cells. This review aims to give an overview of the current knowledge of the regulation of embryonic and somatic stem cell maintenance and differentiation by GPCR ligands.
Collapse
|
33
|
Callihan P, Mumaw J, Machacek DW, Stice SL, Hooks SB. Regulation of stem cell pluripotency and differentiation by G protein coupled receptors. Pharmacol Ther 2010; 129:290-306. [PMID: 21073897 DOI: 10.1016/j.pharmthera.2010.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 01/25/2023]
Abstract
Stem cell-based therapeutics have the potential to effectively treat many terminal and debilitating human diseases, but the mechanisms by which their growth and differentiation are regulated are incompletely defined. Recent data from multiple systems suggest major roles for G protein coupled receptor (GPCR) pathways in regulating stem cell function in vivo and in vitro. The goal of this review is to illustrate common ground between the growing field of stem cell therapeutics and the long-established field of G protein coupled receptor signaling. Herein, we briefly introduce basic stem cell biology and discuss how several conserved pathways regulate pluripotency and differentiation in mouse and human stem cells. We further discuss general mechanisms by which GPCR signaling may impact these pluripotency and differentiation pathways, and summarize specific examples of receptors from each of the major GPCR subfamilies that have been shown to regulate stem cell function. Finally, we discuss possible therapeutic implications of GPCR regulation of stem cell function.
Collapse
Affiliation(s)
- Phillip Callihan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | | | | | | | | |
Collapse
|
34
|
Buecker C, Geijsen N. Different Flavors of Pluripotency, Molecular Mechanisms, and Practical Implications. Cell Stem Cell 2010; 7:559-64. [DOI: 10.1016/j.stem.2010.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|