1
|
Monsinjon T, Knigge T. Endocrine disrupters affect the immune system of fish: The example of the European seabass. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110303. [PMID: 40180203 DOI: 10.1016/j.fsi.2025.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
An organism's fitness critically relies on its immune system to provide protection against parasites and pathogens. The immune system has reached its highest complexity in vertebrates, combining the highly specific adaptive with the non-specific innate immunity. In vertebrates, a complex system of steroid hormones regulates major physiological functions comprising energy metabolism, growth, reproduction and immune system performance. This allows the organism to allocate available energy according to life-history traits and environmental conditions, thus maintaining homeostasis and survival of the individual and of the population. Immune system activation must take into account the developmental stage and the nutritional state of the organism. It should respond adequately to different pathogens, but should not overperform or consume all resources for other physiological functions. This important trade-off between immunity and reproduction is balanced by oestrogen. Many of the thousands of chemicals released by humans into the environment, so-called xenobiotics, have the ability to disrupt normal endocrine function. Such endocrine-disrupting chemicals have been demonstrated to impair reproductive functions and to be responsible for numerous diseases in humans and wild life. Given that oestrogens are established modulators of immune cell populations, exogenous oestrogens and oestrogen mimics can modulate immune functions in aquatic animals, such as fish, potentially affecting wildlife and aquaculture. This review highlights the interaction of xenoestrogens with fish immunity. It particularly focusses on the thymus, a major primary immune organ, in the European seabass, Dicentrarchus labrax an important species, both for fisheries and aquaculture.
Collapse
Affiliation(s)
- Tiphaine Monsinjon
- University of Le Havre Normandy, University of Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600, Le Havre, France.
| | - Thomas Knigge
- University of Le Havre Normandy, University of Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600, Le Havre, France
| |
Collapse
|
2
|
Saputra F, Hu SY, Kishida M. Exposure to nitrate and nitrite disrupts cardiovascular development through estrogen receptor in zebrafish embryos and larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2165-2178. [PMID: 39026114 DOI: 10.1007/s10695-024-01381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Increasing nitrate concentration on surface and groundwater due to anthropogenic activities is an environmental concern. In this study, Tg(fli1: EGFP) zebrafish embryos were exposed to nitrate (NO3-) and nitrite (NO2-), and their cardiovascular development were investigated. Exposure to 10 mg/L NO3-N and 1 and 10 mg/L NO2-N decreased heart rate at 48-96-h post-fertilization (hpf), ventricular volume, and red blood cell flow rate at 96 hpf. Similar concentrations increased the number of embryos and larvae with pericardial edema and missing intersegmental and parachordal vessels in the caudal region at 48-96 hpf. Addition of ICI 182,720 (ICI) reversed the effects of nitrate and nitrite, suggesting estrogen receptors (ER) are involved. 10 mg/L NO3-N and 1 mg/L NO2-N decreased cardiovascular-related genes, gata4,5,6, hand2, nkx2.5, nkx2.7, tbx2a, tbx2b, and fgf1a. Gene expressions of ovarian aromatase and brain aromatase (cyp19a1a and cyp19a1b, respectively) decreased in the exposed groups, whereas ERs (esr1, esr2a, and esr2b) and nitric oxide synthase 2a (nos2a) increased. The effects on gene expression were also reversed by addition of ICI. Taken together, nitrate and nitrite disrupt cardiovascular system through ER in developing zebrafish, implying that environmental nitrate and nitrite contamination may be harmful to aquatic organisms.
Collapse
Affiliation(s)
- Febriyansyah Saputra
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Mitsuyo Kishida
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
3
|
Hala D. The use of in silico extreme pathway (ExPa) analysis to identify conserved reproductive transcriptional-regulatory networks in humans, mice, and zebrafish. Syst Biol Reprod Med 2023; 69:271-287. [PMID: 37023256 PMCID: PMC10461611 DOI: 10.1080/19396368.2023.2188996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023]
Abstract
Vertebrate sex determination and differentiation are coordinated by the activations and maintenance of reproductive transcriptional-regulatory networks (TRNs). There is considerable interest in studying the conserved design principles and functions of reproductive TRNs given that their intricate regulation is susceptible to disruption by gene mutations or exposures to exogenous endocrine disrupting chemicals (or EDCs). In this manuscript, the Boolean rules describing reproductive TRNs in humans, mice, and zebrafish, were represented as a pseudo-stoichiometric matrix model. This model mathematically described the interactions of 35 transcription factors with 21 sex determination and differentiation genes across the three species. The in silico approach of Extreme Pathway (ExPa) analysis was used to predict the extent of TRN gene activations subject to the species-specific transcriptomics data, from across various developmental life-stages. A goal of this work was to identify conserved and functional reproductive TRNs across the three species. ExPa analyses predicted the sex differentiation genes, DHH, DMRT1, and AR, to be highly active in male humans, mice, and zebrafish. Whereas FOXL2 was the most active gene in female humans and mice; and CYP19A1A in female zebrafish. These results agree with the expectation that regardless of a lack of sex determination genes in zebrafish, the TRNs responsible for canalizing male vs. female sexual differentiation are conserved with mammalian taxa. ExPa analysis therefore provides a framework with which to study the TRNs that influence the development of sexual phenotypes. And the in silico predicted conservation of sex differentiation TRNs between mammals and zebrafish identifies the piscine species as an effective in vivo model to study mammalian reproductive systems under normal or perturbed pathologies.
Collapse
Affiliation(s)
- David Hala
- Department of Marine Biology, Texas A&M University at Galveston, TX, USA
| |
Collapse
|
4
|
Lin L, Huang Y, Wang P, Chen CC, Qian W, Zhu X, Xu X. Environmental occurrence and ecotoxicity of aquaculture-derived plastic leachates. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132015. [PMID: 37437480 DOI: 10.1016/j.jhazmat.2023.132015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Plastic products such as fishing nets and foam buoys have been widely used in aquaculture. To enhance the desirable characteristics of the final equipment, plastic gear for aquaculture is mixed with a wide range of additives. Recent studies have shown that additives could be leached out to the environment with a long-term use of aquaculture plastics, forming aquaculture-derived plastic leachates. It should be emphasized that some leachates such as phthalic acid esters (PAEs) and organophosphate esters (OPEs) are endocrine disruptors, which could increase the exposure risk of aquatic products and subsequently display potential threats to human health via food chain. However, systematic studies on the release, occurrence, bioaccumulation, and toxic effects of aquaculture-derived plastic leachates are missing, overlooking their potential sources and ecotoxicological risks in aquatic environments. We have reviewed and compared the concentrations of major plastic leachates in the water environment and organisms of global aquaculture and non-farmed areas, confirming that aquaculture leachate is an important source of contaminants in the environment. Moreover, the toxic effects of aquaculture-derived plastic additives and the related mechanisms are summarized with fish as a representative, revealing their potential health risk. In addition, we proposed current challenges and future research needs, which provides scientific guidance for the use and management of plastic products in aquaculture industries.
Collapse
Affiliation(s)
- Lin Lin
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuxiong Huang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Pu Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ciara Chun Chen
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China
| | - Wei Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Guangdong Laboratory of Southern Ocean Science and Engineering (Zhuhai), Zhuhai 519000, China; College of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
5
|
Cao M, Wei J, Pan Y, Wang L, Li Z, Hu Y, Liang Y, Cao H. Antagonistic mechanisms of bisphenol analogues on the estrogen receptor α in zebrafish embryos: Experimental and computational studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159259. [PMID: 36220475 DOI: 10.1016/j.scitotenv.2022.159259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) can disturb the estrogen receptor α (ERα)-mediated signaling pathway, which results in endocrine-disrupting effects and reproductive toxicity. Most BPA analogues as alternatives were evidenced to generate estrogenic activity as agonists or partial agonists of ERα. Recent studies indicated that certain BPA analogues, such as bisphenol M (BPM), bisphenol P (BPP), and bisphenol FL (BPFL), exhibited strong anti-estrogenic effects comparable with the typical antagonist 4-hydroxytamoxifen. However, conflicting findings were also observed for the compounds in different in vitro assays, and whether these BPA analogues can elicit an in vivo effect on ERα at environmentally relevant concentrations remains unknown. The underlying structural basis of estrogenic/anti-estrogenic activity should be further elucidated at the atomic level. To address these issues, we combined zebrafish-based in vivo and in silico methods to assess the effects of the compounds on ERα. The results show that the expressions of ERα-mediated downstream related genes in zebrafish embryos decreased after exposed to the compounds. Further molecular dynamics simulations were used to probe the antagonistic mechanisms of the compounds on ERα. The key H-bonding interactions were identified as important ligand recognition by ERα in the analysis of binding modes and binding free energy calculations. In summary, the current study provides preliminary in vivo evidence of fish species for the anti-estrogenic activity of certain BPA analogues.
Collapse
Affiliation(s)
- Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jinbo Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yu Pan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhunjie Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yeli Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
6
|
Androgen receptor α peak expression in retina rather than gonad of Hainan medaka, Oryzias curvinotus. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Park CG, Ryu CS, Sung B, Manz A, Kong H, Kim YJ. Transcriptomic and physiological analysis of endocrine disrupting chemicals Impacts on 3D Zebrafish liver cell culture system. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106105. [PMID: 35151072 DOI: 10.1016/j.aquatox.2022.106105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, extensive efforts have focused on developing in vitro platforms mimicking fish livers to better understand the acute or chronic effects of toxicants on lower aquatic vertebrates. Fish liver cell lines have emerged as a promising culture system for these in vitro platforms because they complement the currently limited in vitro tools that mostly consist of mammalian cell lines and adhere to the 3Rs: replacement, reduction, and refinement of living animal tests. However, monolayer cell lines have lower transcriptional and physiological responses upon exposure to toxic chemicals than freshly isolated primary cells. To overcome this challenge, we utilized a three-dimensional (3D) spheroid-based in vitro platform, in which hepatocyte cells had self-organized into spheroid forms via E-cadherin bonds. This platform exhibited augmented transcriptomic and phenotypic regulation of liver cells in comparison to monolayer cells. We examined the organoid platform using the zebrafish liver (ZFL) cell line as a model system. ZFL cells spontaneously clustered into 3D spheroids with long-term viability by optimizing cell seeding density on a non-adherent substrate. Interestingly, 3D ZFL spheroids treated with estrogenic chemicals were activated to synthesize a higher level of vitellogenin (Vtg) than monolayer cells. Whole-transcriptome sequencing analysis confirmed that 3D ZFL spheroids had greater transcriptional regulation of genes related to reproductive toxicological response and liver functions, such as the urea cycle, estrogen receptors, and vitellogenin, compared to monolayer cells. These results may contribute to the engineering of novel 3D in vitro platforms for screening harmful chemicals and improving understanding of the underlying liver toxicity mechanisms at the molecular and cellular levels.
Collapse
Affiliation(s)
- Chang Gyun Park
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Department of Systems Engineering, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Baeckkyoung Sung
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, 34113 Daejeon, Republic of Korea
| | - Andreas Manz
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Department of Systems Engineering, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Young Jun Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, 34113 Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Chronic exposure to nonylphenol induces oxidative stress and liver damage in male zebrafish (Danio rerio): Mechanistic insight into cellular energy sensors, lipid accumulation and immune modulation. Chem Biol Interact 2022; 351:109762. [PMID: 34843692 DOI: 10.1016/j.cbi.2021.109762] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
Nonylphenol (NP), an environmentally persistent and toxic endocrine-disrupting chemical with estrogenic properties, has severe implications on humans and wildlife. Accumulating evidence demonstrates the toxic response of NP on the developmental process, nervous system, and reproductive parameters. Although NP exposure has been implicated in chronic liver injury, the underlying events associated with hepatic pathophysiology remain less investigated. Using male zebrafish (Danio rerio) as the model, the present study investigates the impact of environmentally relevant concentrations of NP (50 and 100 μg/L, 21 days) on hepatic redox homeostasis vis-à-vis cellular energy sensors, inflammatory response, and cell death involving a mechanistic insight into estrogen receptor (ER) modulation. Our results demonstrate that congruent with significant alteration in transcript abundance of antioxidant enzymes (SOD1, SOD2, Catalase, GPx1a, GSTα1), chronic exposure to NP promotes ROS synthesis, more specifically superoxide anions and H2O2 levels, and lipid peroxidation potentially through elevated NOX4 expression. Importantly, NP perturbation of markers associated with fatty acid biosynthesis (srebf1/fasn) and cellular energy-sensing network (sirt1/ampkα/pgc1α) indicates dysregulated energy homeostasis, metabolic disruption, and macrovesicular steatosis, albeit with differential sensitivity at the dose level tested. Besides, elevated p38-MAPK phosphorylation (activation) together with loss of ER homeostasis at both mRNA (esr1, esr2a, esr2b) and protein (ERα, ERβ) levels suggest that NP modulation of ER abundance may have a significant influence on hepatic events. Elevated expression of inflammatory markers (TLR4, p-NF-κB, TNF-α, IL-6, IL-1β, and NOS2) and pro-apoptotic and necrotic regulators, e.g., Bax, caspase- 8, -9 and cleaved PARP1 (50 kDa), indicate chronic inflammation and hepatotoxicity in NP-exposed males. Collectively, elevated oxidative stress, metabolic dysregulation and immune modulation may lead to chronic liver injury in organisms exposed to metabolic disrupting chemicals.
Collapse
|
9
|
Kernen L, Phan A, Bo J, Herzog EL, Huynh J, Segner H, Baumann L. Estrogens as immunotoxicants: 17α-ethinylestradiol exposure retards thymus development in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106025. [PMID: 34837781 DOI: 10.1016/j.aquatox.2021.106025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Estrogenic endocrine disrupting compounds (EEDCs) can cause alterations in sexual development and reproductive function of fish. Growing evidence suggests that EEDCs can also interfere with development and function of innate immunity of fish. The present study examined a potential disruptive effect of EEDCs at field-relevant concentrations on the development of adaptive immunity, more specifically the thymus. Zebrafish (Danio rerio) were exposed from fertilization until 64 days post-fertilization (dpf) to environmentally relevant (3 and 10 ng/L) concentrations of the synthetic estrogen 17α-ethinylestradiol (EE2). The exposure duration covered the period of initial thymus differentiation to maximum growth. Thymus development was assessed by histological and morphometric (thymus area) analysis, thymocyte number, and transcript levels of thymocyte marker genes. Additionally, transcript levels of the estrogen receptors (esr1 and esr2a) were determined. The EE2 exposure altered sexual development (gonad differentiation, transcript levels of hepatic vitellogenin and estrogen receptors) of zebrafish, as expected. At the same time, the EE2 treatment reduced the thymus growth (thymus area, thymocyte number) and transcript levels of thymus marker genes. The expression of the thymic estrogen receptors responded to the EE2 exposure but in a different pattern than the hepatic estrogen receptors. After the 64-day-exposure period, the juvenile fish were transferred into clean water for another 95 days to assess the reversibility of EE2-induced effects. The thymic alterations were found to be reversible in female zebrafish but persisted in males. The present study provides the first evidence that the development of the fish adaptive immune system is sensitive to EEDCs, and that this takes place at concentrations similar to those that disrupt sexual development.
Collapse
Affiliation(s)
- Larissa Kernen
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Audrey Phan
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen 361102, China
| | - Elio L Herzog
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - John Huynh
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Lisa Baumann
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland; Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Moreira C, Paiola M, Duflot A, Varó I, Sitjà-Bobadilla A, Knigge T, Pinto P, Monsinjon T. The influence of 17β-oestradiol on lymphopoiesis and immune system ontogenesis in juvenile sea bass, Dicentrarchus labrax. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:104011. [PMID: 33460678 DOI: 10.1016/j.dci.2021.104011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
The female sex steroid 17β-oestradiol (E2) is involved in the regulation of numerous physiological functions, including the immune system development and performance. The role of oestrogens during ontogenesis is, however, not well studied. In rodents and fish, thymus maturation appears to be oestrogen-dependent. Nevertheless, little is known about the function of oestrogen in immune system development. To further the understanding of the role of oestrogens in fish immune system ontogenesis, fingerlings of European sea bass (Dicentrarchus labrax) were exposed for 30 days to 20 ng E2·L-1, at two ages tightly related to thymic maturation, i.e., 60 or 90 days post hatch (dph). The expression of nuclear and membrane oestrogen receptors was measured in the thymus and spleen, and the expression of several T cell-related gene markers was studied in both immune organs, as well as in the liver. Waterborne E2-exposure at 20.2 ± 2.1 (S.E.) ng·L-1 was confirmed by radioimmunoassay, leading to significantly higher E2-contents in the liver of exposed fish. The majority of gene markers presented age-dependent dynamics in at least one of the organs, confirming thymus maturation, but also suggesting a critical ontogenetic window for the implementation of liver resident γδ and αβ T cells. The oestrogen receptors, however, remained unchanged over the age and treatment comparisons with the exception of esr2b, which was modulated by E2 in the younger cohort and increased its expression with age in the thymus of the older cohort, as did the membrane oestrogen receptor gpera. These results confirm that oestrogen-signalling is involved in thymus maturation in European sea bass, as it is in mammals. This suggests that esr2b and gpera play key roles during thymus ontogenesis, particularly during medulla maturation. In contrast, the spleen expressed low or non-detectable levels of oestrogen receptors. The E2-exposure decreased the expression of tcrγ in the liver in the cohort exposed from 93 to 122 dph, but not the expression of any other immune-related gene analysed. These results indicate that the proliferation/migration of these innate-like T cell populations is oestrogen-sensitive. In regard to the apparent prominent role of oestrogen-signalling in the late thymus maturation stage, the thymic differentiation of the corresponding subpopulations of T cells might be regulated by oestrogen. To the best of our knowledge, this is the first study investigating the dynamics of both nuclear and membrane oestrogen receptors in specific immune organs in a teleost fish at very early stages of immune system development as well as to examine thymic function in sea bass after an exposure to E2 during ontogenesis.
Collapse
Affiliation(s)
- Catarina Moreira
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600, Le Havre, France
| | - Matthieu Paiola
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600, Le Havre, France; Department of Microbiology and Immunology, University of Rochester Medical Center, 14642, Rochester, NY, United States
| | - Aurélie Duflot
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600, Le Havre, France
| | - Inma Varó
- Instituto de Acuicultura Torre de La Sal, CSIC, 12595, Ribera de Cabanes, Castellón, Spain
| | | | - Thomas Knigge
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600, Le Havre, France
| | - Patrícia Pinto
- Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, 8005-139, Faro, Portugal
| | - Tiphaine Monsinjon
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600, Le Havre, France.
| |
Collapse
|
11
|
Moraes AB, Giacomini ACVV, Genario R, Marcon L, Scolari N, Bueno BW, Demin KA, Amstislavskaya TG, Strekalova T, Soares MC, de Abreu MS, Kalueff AV. Pro-social and anxiolytic-like behavior following a single 24-h exposure to 17β-estradiol in adult male zebrafish. Neurosci Lett 2020; 747:135591. [PMID: 33359732 DOI: 10.1016/j.neulet.2020.135591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/30/2020] [Accepted: 12/18/2020] [Indexed: 01/06/2023]
Abstract
Estradiol (17β-estradiol, E2) is a crucial estrogen hormone that regulates sexual, cognitive, social and affective behaviors in various species. However, complex central nervous system (CNS) effects of E2, including its activity in males, remain poorly understood. The zebrafish (Danio rerio) is rapidly becoming a powerful novel model system in translational neuroscience research. Here, we evaluate the effects of a single 24-h exposure to 20 μg/L of E2 on behavioral and endocrine (cortisol) responses in adult male zebrafish. Overall, E2 exerted pro-social effect in the social preference test, reduced whole-body cortisol levels, elevated exploration in the novel tank test and increased the shoal size in the shoaling test, indicative of an anxiolytic-like profile of this hormone in male zebrafish. Supporting mounting human and rodent evidence on the role of E2 in behavioral regulation, the observed pro-social and anxiolytic-like effects of E2 in male zebrafish reinforce the use of this aquatic organism in studying steroid-mediated CNS mechanisms of complex affective and social behaviors.
Collapse
Affiliation(s)
- Andréia B Moraes
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Ana C V V Giacomini
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Leticia Marcon
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Naiara Scolari
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Barbara W Bueno
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medcial Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neuroscience Program, Sirius University, Sochi, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Zelman Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, Maastricht University, Netherlands; Laboratory of Psychiatric Neurobiology, Sechenov 1st Moscow State Medical University, Moscow, Russia; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Marta C Soares
- CIBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
12
|
Xu S, Zhang H, Pao PC, Lee A, Wang J, Suen Chan Y, Manno Iii FAM, Wan Chan S, Han Cheng S, Chen X. Exposure to phthalates impaired neurodevelopment through estrogenic effects and induced DNA damage in neurons. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105469. [PMID: 32179334 DOI: 10.1016/j.aquatox.2020.105469] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Phthalates are commonly used in plastic products in daily life. The endocrine-disrupting effects of phthalates have been widely reported. Accumulating evidence from human cohorts and lab animals indicate exposure to phthalates might impair neurodevelopment. However, the direct causal relationship and mechanism between phthalates with neurodevelopment and neurotoxicity have not been firmly established. We found that phthalates (i.e. DBP, DINP, BBP) disrupted the expression of estrogen receptors (esr1, esr2a, esr2b), and impaired neurogenesis in the brain of zebrafish during embryonic development. Moreover, the abnormal expression of estrogen receptors, especially esr2a, was partly rescued in zebrafish which exposed to phthalates, with the estrogen receptor antagonist tamoxifen. Hence, impaired neurogenesis of zebrafish exposed to phthalates was partly reversed by tamoxifen treatment. Moreover, our results show that induced pluripotent stem cells (iPSC)-derived human neurons exposed to phthalates triggered double-strand DNA breaks in vitro. Overall, this study demonstrates that exposure to phthalates affects neurodevelopment in zebrafish embryos and induces neurotoxicity in human neurons partly through disrupting the expression of estrogen receptors.
Collapse
Affiliation(s)
- Shisan Xu
- Vitargent (International) Biotechnology Limited, Unit 516, 5/F. Biotech Centre 2, No. 11 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong SAR, People's Republic of China; Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Huan Zhang
- Vitargent (International) Biotechnology Limited, Unit 516, 5/F. Biotech Centre 2, No. 11 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong SAR, People's Republic of China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Ping-Chieh Pao
- Picower Institute for Learning and Memory Massachusetts Institute of Technology, Building 46 Room 4223 43, Vassar Street Cambridge, MA 02139, USA
| | - Audrey Lee
- Picower Institute for Learning and Memory Massachusetts Institute of Technology, Building 46 Room 4223 43, Vassar Street Cambridge, MA 02139, USA
| | - Jun Wang
- Picower Institute for Learning and Memory Massachusetts Institute of Technology, Building 46 Room 4223 43, Vassar Street Cambridge, MA 02139, USA
| | - Yu Suen Chan
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Francis A M Manno Iii
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Shun Wan Chan
- Department of Food and Health Sciences, Technological and Higher Education Institute of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Shuk Han Cheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, People's Republic of China.
| | - Xueping Chen
- Vitargent (International) Biotechnology Limited, Unit 516, 5/F. Biotech Centre 2, No. 11 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
13
|
Schmid S, Willi RA, Salgueiro-González N, Fent K. Effects of new generation progestins, including as mixtures and in combination with other classes of steroid hormones, on zebrafish early life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136262. [PMID: 31905574 DOI: 10.1016/j.scitotenv.2019.136262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 05/12/2023]
Abstract
Fish are exposed to progestins and steroid mixtures in contaminated waters but the ecotoxicological implications are not sufficiently known. Here we analyze effects of the new generation progestin dienogest (DNG) followed by investigating effects of mixtures of new generation progestins containing DNG, cyproterone acetate and drospirenone and the hormone progesterone. Furthermore, effects of this mixture were studied after adding 17β-estradiol (E2) and clobetasol propionate (CLO) in zebrafish embryos and larvae at concentrations between 0.01 and 10 μg/L. DNG showed only very minor transcriptional alterations among the 24 assessed genes with downregulation of the fshb transcript only. The progestin mixture caused weak induction of the lhb, cyp2k22 and sult2st3 transcripts. Addition of E2 to the mixture caused strong induction vtg1, cyp19b, esr1 and lhb, as well as downregulation of fshb from 0.01 μg/L onwards. Besides altering the same transcripts, addition of CLO altered glucocorticoid regulated genes mmp-9, mmp-13, g6pca, fkbp5 and irg1l. While each steroid class exhibited its specific activity independently in the mixture, sult2st3 and cyp2k22 were regulated by both E2 and CLO. Furthermore, CLO alone and in mixtures decreased spontaneous muscle contractions, increased heartrate and induced edema. Our study highlights the prominent effects of E2 and CLO in environmental steroid mixtures, while new generation progestins show relatively low activity.
Collapse
Affiliation(s)
- Simon Schmid
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
| | - Raffael Alois Willi
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
| | - Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156 Milan, Italy
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland.
| |
Collapse
|
14
|
Song W, Lu H, Wu K, Zhang Z, Shuk-Wa Lau E, Ge W. Genetic evidence for estrogenicity of bisphenol A in zebrafish gonadal differentiation and its signalling mechanism. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121886. [PMID: 31887561 DOI: 10.1016/j.jhazmat.2019.121886] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) can induce endocrine disorders in humans and animals. In this study, we used several zebrafish mutants deficient in estrogen production and signalling, which could be valuable for evaluating estrogenic activities and mechanisms of EDCs. With low endogenous estrogens, the all-male aromatase mutant (cyp19a1a-/-) is expected to be more responsive to estrogenic exposure, and mutants of nuclear estrogen receptors (nERs; esr1-/-, esr2a-/- and esr2b-/-) alone or in combination would allow us to evaluate the action mechanisms of estrogenic EDCs. Exposure to BPA could rescue the all-male phenotype of the cyp19a1a-/- mutant, delayed gonadal development in both sexes, resulting in infertility or subfertility, and caused follicle atresia in females and impairment of spermatogenesis in males. To understand the mechanisms of these effects, we tested BPA in cyp19a1a and nER mutants of different combinations. The feminizing effect of BPA on sexual differentiation was dependent on nERs, in particular esr2a. As for males, nERs were also involved in BPA-induced impairment of spermatogenesis. Taken together, with genome editing technology our study provides the most comprehensive genetic evidence for estrogenic activities of BPA in zebrafish and its action mechanisms. This study also establishes a powerful platform for studying other EDCs with estrogenic activity.
Collapse
Affiliation(s)
- Weiyi Song
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Huijie Lu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Kun Wu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Zhiwei Zhang
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Esther Shuk-Wa Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China.
| |
Collapse
|
15
|
Hein S, Hassel D, Kararigas G. The Zebrafish ( Danio rerio) Is a Relevant Model for Studying Sex-Specific Effects of 17β-Estradiol in the Adult Heart. Int J Mol Sci 2019; 20:ijms20246287. [PMID: 31847081 PMCID: PMC6940842 DOI: 10.3390/ijms20246287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases are a major cause of morbidity and mortality, and there are significant sex differences therein. However, the underlying mechanisms are poorly understood. The steroid hormone 17β-estradiol (E2) is thought to play a major role in cardiovascular sex differences and to be protective, but this may not hold true for males. We aimed at assessing whether the zebrafish is an appropriate model for the study of E2 effects in the heart. We hypothesized that E2 regulates the cardiac contractility of adult zebrafish in a sex-specific manner. Male and female zebrafish were treated with vehicle (control) or E2 and the cardiac contractility was measured 0, 4, 7 and 14 days after treatment initiation using echocardiography. There was no significant effect on the heart rate by E2. Notably, there was a significant decrease in the ejection fraction of male zebrafish treated with E2 compared with controls. By contrast, there was no major difference in the ejection fraction between the two female groups. The dramatic effect in male zebrafish occurred as early as 4 days post treatment initiation. Although there was no significant difference in stroke volume and cardiac output between the two male groups, these were significantly higher in female zebrafish treated with E2 compared with controls. Gene expression analysis revealed that the levels of estrogen receptors were comparable among all groups. In conclusion, our data demonstrate that the adult zebrafish heart robustly responds to E2 and this occurs in a sex-specific manner. Given the benefits of using zebrafish as a model, new targets may be identified for the development of novel cardiovascular therapies for male and female patients. This would contribute towards the realization of personalized medicine.
Collapse
Affiliation(s)
- Selina Hein
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - David Hassel
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Georgios Kararigas
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-525355
| |
Collapse
|
16
|
Asnake S, Modig C, Olsson PE. Species differences in ligand interaction and activation of estrogen receptors in fish and human. J Steroid Biochem Mol Biol 2019; 195:105450. [PMID: 31437548 DOI: 10.1016/j.jsbmb.2019.105450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/22/2022]
Abstract
Estrogen receptor (ER) sequences vary between species and this suggests that there are differences in the ligand-specificity, leading to species-specific effects. This would indicate that it is not possible to generalize effects across species. In this study, we investigated the differences in activation potencies and binding affinities of ER´s alpha (α) and beta (β) in human, zebrafish and sea bream to elucidate species differences in response to estradiol, estrone, estriol and methyltestosterone. In vitro analysis showed that estradiol had the highest activity for all the ER´s except for human ERβ and seabream ERβ2. Alignment of the ligand binding domain and ligand binding pocket (LBP) residues of the three species showed that different residues were involved in the LBPs which led to differences in pocket volume, affected binding affinity and orientation of the ligands. By combining in silico and in vitro results, it was possible to identify the ligand specificities of ER´s. The results demonstrated that the human ER´s show lower resolution in ligand-dependent activation, suggesting higher promiscuity, than the zebrafish and seabream ER´s. These results show species-specificity of ER´s and suggest that species-specific differences must be taken into consideration when studying different exposure scenarios.
Collapse
Affiliation(s)
- Solomon Asnake
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden.
| | - Carina Modig
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
17
|
Ulhaq ZS. Brain aromatase modulates cardiac functions in embryonic zebrafish. Int J Vet Sci Med 2019; 7:31-34. [PMID: 31692872 PMCID: PMC6818122 DOI: 10.1080/23144599.2019.1675287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/20/2019] [Accepted: 09/29/2019] [Indexed: 01/20/2023] Open
Abstract
Oestradiol (E2) is known as a female reproductive hormone with pleiotropic effects on the cardiovascular system. Local E2 biosynthesis such as in the brain and myocardial cells have important physiological and pathophysiological roles. E2 production is catalysed by aromatase (Aro) enzyme. In teleost, two Aro isoforms are distinctly expressed in the ovary and brain. In this study, the role of brain Aro (AroB) in modulating cardiovascular system is investigated. AroB MO-mediated knockdown decreased ventricular functions. Moreover, embryos injected with AroB MO displays a sign in developing heart failure. All the effects caused by AroB MO were partially reversed by exposure to E2. Taken together, this study demonstrates the role of AroB in modulating normal cardiovascular function in zebrafish embryos.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Islamic State University of Malang, Batu, Indonesia
| |
Collapse
|
18
|
Martínez R, Herrero-Nogareda L, Van Antro M, Campos MP, Casado M, Barata C, Piña B, Navarro-Martín L. Morphometric signatures of exposure to endocrine disrupting chemicals in zebrafish eleutheroembryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105232. [PMID: 31271907 DOI: 10.1016/j.aquatox.2019.105232] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Understanding the mode of action of the different pollutants in human and wildlife health is a key step in environmental risk assessment. The aim of this study was to determine signatures that could link morphological phenotypes to the toxicity mechanisms of four Endocrine Disrupting Chemicals (EDCs): bisphenol A (BPA), perfluorooctanesulfonate potassium salt (PFOS), tributyltin chloride (TBT), and 17-ß-estradiol (E2). Zebrafish (Danio rerio) eleutheroembryos were exposed from 2 to 5 dpf to a wide range of BPA, PFOS, TBT and E2 concentrations. At the end of the exposures several morphometric features were assessed. Common and non-specific effects on larvae pigmentation or swim bladder area were observed after exposures to all compounds. BPA specifically induced yolk sac malabsorption syndrome and altered craniofacial parameters, whereas PFOS had specific effects on the notochord formation presenting higher rates of scoliosis and kyphosis. The main effect of E2 was an increase in the body length of the exposed eleutheroembryos. In the case of TBT, main alterations on the morphological traits were related to developmental delays. When integrating all morphometrical parameters, BPA showed the highest rates of malformations in terms of equilethality, followed by PFOS and, distantly, by TBT and E2. In the case of BPA and PFOS, we were able to relate our results with effects on the transcriptome and metabolome, previously reported. We propose that methodized morphometric analyses in zebrafish embryo model can be used as an inexpensive and easy screening tool to predict modes of action of a wide-range number of contaminants.
Collapse
Affiliation(s)
- Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain; Universitat de Barcelona (UB), Barcelona, Catalunya, 08007, Spain.
| | - Laia Herrero-Nogareda
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Morgane Van Antro
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 61 Rue de Bruxelles, B5000, Namur, Belgium.
| | - Maria Pilar Campos
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Marta Casado
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| |
Collapse
|
19
|
Lu L, Chang J, Chang Y, Ma J. Fluorinated diiodine alkanes exert developmental toxicity on embryo-larval stages of zebrafish strain AB via regulating the expression of the specific endocrine-related genes. J Appl Toxicol 2019; 39:1691-1700. [PMID: 31423618 DOI: 10.1002/jat.3893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/06/2022]
Abstract
Fluorinated diiodine alkanes (FDIAs) are environmental pollutants, including octafluoro-1,4-diiodobutane (PFBDI), hexadecafluoro-1,8-diiodooctane (PFODI) and dodecafluoro-1,6-diiodohexane (PFHxDI). They showed an estrogenic effect in in vitro studies. However, little information is currently available regarding the toxicity of FDIAs in in vivo studies. Zebrafish (Danio rerio) is a vertebrate animal model that is increasingly used for toxicity and efficacy screening as well as for assessing the toxicity and safety of novel compounds, pollutants and pharmaceuticals. In the present study, we investigated the developmental toxicity of FDIAs (PFBDI, PFHxDI and PFODI) and the specific endocrine-related gene expression in zebrafish embryos. The results revealed that all three FDIAs showed developmental toxicity on zebrafish embryos. The half-maximal effective concentration values for PFBDI, PFHxDI and PFODI were 0.89 ± 0.07, 0.53 ± 0.04 and 0.04 ± 0.007 mm, respectively. PFHxDI exhibited the highest developmental toxicity compared with the other FDIAs. In addition, all three FDIAs significantly upregulated the expression of estrogen receptor (esr)1 and cytochrome P450 (CYP) 19b (CYP19b), but did not significantly affect the expression of esr2b, CYP17 and CYP19a in zebrafish. The upregulation effect of PFHxDI was greater than the effect of PFBDI and PFODI. This study furthers our knowledge on the effects of FDIAs on the developmental toxicity and the specific endocrine-related gene expression in the embryo-larval stages of zebrafish. Our results provided a preliminary insight into the toxicity of FDIAs in zebrafish, which will be of great relevance regarding future studies on FDIAs in the environment.
Collapse
Affiliation(s)
- Liang Lu
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Jia Chang
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yan Chang
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Jing Ma
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Pinto C, Hao R, Grimaldi M, Thrikawala S, Boulahtouf A, Aït-Aïssa S, Brion F, Gustafsson JÅ, Balaguer P, Bondesson M. Differential activity of BPA, BPAF and BPC on zebrafish estrogen receptors in vitro and in vivo. Toxicol Appl Pharmacol 2019; 380:114709. [PMID: 31415773 DOI: 10.1016/j.taap.2019.114709] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/25/2019] [Accepted: 08/10/2019] [Indexed: 11/29/2022]
Abstract
The high volume production compound bisphenol A (BPA) is of environmental concern largely because of its estrogenic activity. Consequently, BPA analogues have been synthesized to be considered as replacement molecules for BPA. These analogues need to be thoroughly evaluated for their estrogenic activity. Here, we combined mechanism zebrafish-based assays to examine estrogenic and anti-estrogenic activities of BPA and two of its analogues, bisphenol AF (BPAF) and bisphenol C (BPC) in vitro and in vivo. In vitro reporter cell lines were used to investigate agonistic and antagonistic effects of the three bisphenols on the three zebrafish estrogen receptors. The transgenic Tg(5 × ERE:GFP) and Cyp19a1b-GFP zebrafish lines were then used to analyze estrogenic and anti-estrogenic responses of the three bisphenols in vivo. BPA, BPAF and BPC were agonists with different potencies for the three zebrafish estrogen receptors in vitro. The potent zfERα-mediated activity of BPA and BPAF in vitro resulted in vivo by activation of GFP expression in zebrafish larvae in the heart (zfERα-dependent) at lower concentrations, and in the liver (zfERβ-dependent) at higher concentrations. BPC induced zfERβ-mediated luciferase expression in vitro, and the zfERβ agonism led to activation of GFP expression in the liver and the brain in vivo. In addition, BPC acted as a full antagonist on zfERα, and completely inhibited estrogen-induced GFP expression in the heart of the zebrafish larvae. To summarize, applying a combination of zebrafish-based in vitro and in vivo methods to evaluate bisphenol analogues for estrogenic activity will facilitate the prioritization of these chemicals for further analysis in higher vertebrates as well as the risk assessment in humans.
Collapse
Affiliation(s)
- Caroline Pinto
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Ruixin Hao
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Institut régional du Cancer de Montpellier, Université de Montpellier, 34298 Montpellier, Cedex 5, France
| | - Savini Thrikawala
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Institut régional du Cancer de Montpellier, Université de Montpellier, 34298 Montpellier, Cedex 5, France
| | - Selim Aït-Aïssa
- Institut National de l'Environnement Industriel et des risques (INERIS), Unité Ecotoxicologie in vitro et in vivo, UMR-I 02 SEBIO, 60550 Verneuil-en-Halatte, France
| | - François Brion
- Institut National de l'Environnement Industriel et des risques (INERIS), Unité Ecotoxicologie in vitro et in vivo, UMR-I 02 SEBIO, 60550 Verneuil-en-Halatte, France
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Institut régional du Cancer de Montpellier, Université de Montpellier, 34298 Montpellier, Cedex 5, France.
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA
| |
Collapse
|
21
|
González-Rojo S, Lombó M, Fernández-Díez C, Herráez MP. Male exposure to bisphenol a impairs spermatogenesis and triggers histone hyperacetylation in zebrafish testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:368-379. [PMID: 30818116 DOI: 10.1016/j.envpol.2019.01.127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 05/18/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor whose ubiquitous presence in the environment has been related with impairment of male reproduction. BPA can cause both transcriptomic and epigenetic changes during spermatogenesis. To evaluate the potential effects of male exposure to BPA, adult zebrafish males were exposed during spermatogenesis to doses of 100 and 2000 μg/L, which were reported in contaminated water bodies and higher than those allowed for human consumption. Fertilization capacity and survival at hatching were analysed after mating with untreated females. Spermatogenic progress was analysed through a morphometrical study of testes and apoptosis was evaluated by TUNEL assay. Testicular gene expression was evaluated by RT-qPCR and epigenetics by using ELISA and immunocytochemistry. In vitro studies were performed to investigate the role of Gper. Chromatin fragmentation and the presence of transcripts were also evaluated in ejaculated sperm. Results on testes from males treated with the highest dose showed a significant decrease in spermatocytes, an increase in apoptosis, a downregulation of ccnb1 and sycp3, all of which point to an alteration of spermatogenesis and to meiotic arrest and an upregulation of gper1 and esrrga receptors. Additionally, BPA at 2000 μg/L caused missregulation of epigenetic remodelling enzymes transcripts in testes and promoted DNA hypermethylation and H3K27me3 demethylation. BPA also triggered an increase in histone acetyltransferase activity, which led to hyperacetylation of histones (H3K9ac, H3K14ac, H4K12ac). In vitro reversion of histone acetylation changes using a specific GPER antagonist, G-36, suggested this receptor as mediator of histone hyperacetylation. Males treated with the lower dose only showed an increase in some histone acetylation marks (H3K14ac, H4K12ac) but their progeny displayed very limited survival at hatching, revealing the deleterious effects of unbalanced paternal epigenetic information. Furthermore, the highest dose of BPA led to chromatin fragmentation, promoting direct reproductive effects, which are incompatible with embryo development.
Collapse
Affiliation(s)
- S González-Rojo
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain
| | - M Lombó
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain
| | - C Fernández-Díez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain
| | - M P Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain.
| |
Collapse
|
22
|
Hyeon JY, Hur SP, Kim BH, Byun JH, Kim ES, Lim BS, Lee BI, Kim SK, Takemura A, Kim SJ. Involvement of Estrogen and Its Receptors in Morphological Changes in the Eyes of the Japanese Eel, Anguilla japonica, in the Process of Artificially-Induced Maturation. Cells 2019; 8:cells8040310. [PMID: 30987251 PMCID: PMC6526474 DOI: 10.3390/cells8040310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/21/2019] [Accepted: 03/30/2019] [Indexed: 01/14/2023] Open
Abstract
During the long migration from river habitats to the spawning ground, the Japanese eel undergoes sexual maturation. This spawning migration occurs concurrently with morphological changes, such as increases in eye size; however, the mechanisms by which sex steroids and their receptors influence these changes in peripheral tissues remain unclear. The aim of this study was to investigate changes in the eyes of female Japanese eels during sexual maturation, and our research focused on estrogen receptor (ER)α and ERβ transcripts. During ovarian development, the gonadosomatic index increased and yolk-laden oocytes developed rapidly. These changes occurred in conjunction with a steady increase in plasma levels of estradiol-17β (E2). Concomitant increases in transcript levels of ERα and ERβ in eye, brain, pituitary, and ovary were also observed. Fluorescence in-situ hybridization analyses revealed that ERα and ERβ transcripts were present in the choriocapillary layer and photoreceptor layer of the eyes, and the analysis also revealed that their signals in these layers became stronger in mature females compared to those observed in immature females, suggesting that under the influence of gonadotropins, morphological changes in the eyes are regulated by E2 through the activation of its receptors. In conclusion, E2 plays a crucial role in physiological adaptations that occur in peripheral tissues during the spawning migration.
Collapse
Affiliation(s)
- Ji-Yeon Hyeon
- Jeju International Marine Science Research & Logistics Center, Korea Institute of Ocean Science & Technology, 2670 Iljudong-ro, Gujwa, Jeju 63349, Korea.
- Department of Biology, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea.
| | - Sung-Pyo Hur
- Jeju International Marine Science Research & Logistics Center, Korea Institute of Ocean Science & Technology, 2670 Iljudong-ro, Gujwa, Jeju 63349, Korea.
| | - Byeong-Hoon Kim
- Marine Science Institute, Jeju National University, 19-5 Hamdeok 5-gil, Jocheon, Jeju 63333, Korea.
| | - Jun-Hwan Byun
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Eun-Su Kim
- Solforto Co. Ltd., 19 Yeondong 8-gil, Jeju 63133, Korea.
| | - Bong-Soo Lim
- Solforto Co. Ltd., 19 Yeondong 8-gil, Jeju 63133, Korea.
| | - Bae-Ik Lee
- Aquaculture Research Division, National Institute of Fisheries Science, 216 Gijanghaean-ro, Gijang, Busan 46083, Korea.
| | - Shin-Kwon Kim
- Aquaculture Research Division, National Institute of Fisheries Science, 216 Gijanghaean-ro, Gijang, Busan 46083, Korea.
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | - Se-Jae Kim
- Department of Biology, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea.
| |
Collapse
|
23
|
Lu L, Chang J, Qiu Y, Chang Y, Ma J. Estrogenic effects of fluorinated diiodine alkanes in MCF-7 cells, H295R cells and zebrafish embryo assays. J Appl Toxicol 2019; 39:945-954. [PMID: 30834569 DOI: 10.1002/jat.3783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/12/2019] [Accepted: 01/12/2019] [Indexed: 11/09/2022]
Abstract
Fluorinated diiodine alkanes (FDIAs), important industrial intermediates in the synthesis of various perfluorinated compounds, which are distributed widely in wildlife and humans. Recent studies showed that FDIAs had in vitro estrogenic effects. However, to date, little information is available regarding the in vivo estrogenic effects of FDIAs and the mechanisms are unclear. In this study, a combination of in vitro and in vivo assays was used to investigate the estrogenic effects of FDIAs. We tested the in vitro estrogenic effects and estrogen receptor-related gene expression via MCF-7 cell assay. The hormone level of estradiol and the expression of estrogenic synthesis genes were measured in the H295R cell assay. Finally, the in vivo effects of FDIAs on development and estrogen-related gene expression were assessed in the zebrafish embryos assay. The results demonstrated that FDIAs could exhibit estrogenic activity through inducing cell proliferation (1.6-6.7-fold of the control) and estrogen receptor alpha gene expression (1.07-1.39-fold of the control), altering estradiol production (1.14-1.22-fold of the control) and the major estrogenic synthesis gene expression of CYP19 (1.22-1.31-fold of the control), disrupting the estrogen-related genes (esr1 and cyp19b) levels in zebrafish (1.52-2.99-fold and 2.95-5.00-fold of the control for esr1 and cyp19b, respectively). The current findings indicated the potential estrogenic effects of FDIAs and provided novel information for human risk assessment.
Collapse
Affiliation(s)
- Liang Lu
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jia Chang
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Yunliang Qiu
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Yan Chang
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jing Ma
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| |
Collapse
|
24
|
Bertotto LB, Dasgupta S, Vliet S, Dudley S, Gan J, Volz DC, Schlenk D. Evaluation of the estrogen receptor alpha as a possible target of bifenthrin effects in the estrogenic and dopaminergic signaling pathways in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2424-2431. [PMID: 30336432 PMCID: PMC6283662 DOI: 10.1016/j.scitotenv.2018.10.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 05/14/2023]
Abstract
Bifenthrin (BF) is a pyrethroid insecticide widely used in urban and agricultural applications. Previous studies in embryos of zebrafish have shown that BF can affect estradiol biosynthesis and the dopaminergic system. To examine the role of the estrogen receptor (ER) in the endocrine effects of BF, embryos were exposed for 96 h to a mixture of 0.15 and 1.5 μg/L BF and an ER agonist (17α-ethynylestradiol - EE2) at 0.09 μg/L. Transcripts related to estrogenic (vitellogenin VTG) and dopaminergic (tyrosine hydroxylase (TH), dopamine receptor 1 (DR1), monoamine oxidase (MAO), and catechol-O-methyltransferase b (COMTb)) signaling pathways were investigated by qRT-PCR. Dopamine (DA) and its metabolites (homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC)) were also measured. There was a significant increase in VTG, DR1, MAO and COMTb mRNA levels and HVA-DA ratios within all zebrafish embryos exposed to EE2, including EE2 alone, 0.15 μg/L BF + EE2 and 1.5 μg/L BF + EE2. A significant decrease in homogenate concentrations of DA was observed within all zebrafish embryos exposed to EE2, which included EE2 alone, 0.15 μg/L BF + EE2 and 1.5 μg/L BF + EE2. Co-exposure of BF with EE2 failed to diminish estrogenic or dopaminergic signaling in embryos. Additionally, embryos with diminished ERα expression by morpholino injection were exposed to 0.15 μg/L BF, 1.5 μg/L BF and 0.09 μg/L EE2, with subsequent gene expression measurements. ERα knockdown did not prevent the effects of BF, indicating ERα may have a limited role in the estrogenic and dopaminergic effects caused by BF in zebrafish embryos.
Collapse
Affiliation(s)
- Luísa Becker Bertotto
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Sara Vliet
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Stacia Dudley
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
25
|
Wu SM, Su CK, Shu LH. Effects of calcium and estrogen on the development of the ceratohyal cartilage in zebrafish (Danio rerio) larvae upon embryo and maternal cadmium exposure. Comp Biochem Physiol C Toxicol Pharmacol 2018; 213:47-54. [PMID: 30059766 DOI: 10.1016/j.cbpc.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/12/2018] [Accepted: 07/26/2018] [Indexed: 11/16/2022]
Abstract
The present study is to investigate the reason why the ceratohyal cartilage (CH) angle of zebrafish larvae were larger compared to the control group after their female parents were treated with cadmium (F-Cd). However, the CH angle was smaller compared to the control group when embryos were directly exposed to Cd2+ for 72 h (D-Cd). Results showed that calcium contents of larvae were lower than the control, but the transporter isoforms trpv4 and trpv6 mRNA expressions were significantly increased upon D-Cd treatment. Furthermore, external Ca2+ added during D-Cd treatment reveals that the CH angles of larvae did not appear significantly different compared to the control. On the other hand, E2 (17β-estradiol) contents were higher around 1.9 folds in the ovaries of females; CH angle were over 25°, and Cd2+ contents were higher around 6 folds than the control group on larvae treated through F-Cd treatment; CH angles and E2 levels on larvae were higher than the control after the larvae were treated with 1.84 μM E2 (D-E2); Estradiol receptor (ER) isoforms ERβ1 and ERα mRNA expressions significantly increased when 0 hpf embryos were either treated with D-E2 or D-Cd. According to the results, we suggested that the CH angle of larvae become larger upon F-Cd treatment due to maternal Cd2+ inducing E2 levels. However, the CH angle of larvae appeared to be smaller compared to the control upon D-Cd treatment. We suggested that the CH angle decreased due to the decrease of Ca2+ contents upon Cd2+ exposure.
Collapse
Affiliation(s)
- Su-Mei Wu
- Department of Aquatic Biosciences, National Chiayi University, Chiayi 600, Taiwan.
| | - Chong-Kai Su
- Department of Aquatic Biosciences, National Chiayi University, Chiayi 600, Taiwan
| | - Li-Hsin Shu
- Department of Aquatic Biosciences, National Chiayi University, Chiayi 600, Taiwan
| |
Collapse
|
26
|
Ashton SE, Vernasco BJ, Moore IT, Parker MR. Sex and seasonal differences in mRNA expression of estrogen receptor α (ESR1) in red-sided garter snakes (Thamnophis sirtalis parietalis). Gen Comp Endocrinol 2018; 267:59-65. [PMID: 29807033 DOI: 10.1016/j.ygcen.2018.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/30/2018] [Accepted: 05/24/2018] [Indexed: 11/30/2022]
Abstract
Estrogens are important regulators of reproductive physiology including sexual signal expression and vitellogenesis. For the regulation to occur, the hormone must bind and activate receptors in target tissues, and expression of the receptors can vary by sex and/or season. By simultaneously comparing circulating hormone levels with receptor expression, a more complete understanding of hormone action can be gained. Our study species, the red-sided garter snake (Thamnophis sirtalis parietalis), provides an excellent opportunity to study the interaction between sex steroid hormones and receptor expression in addition to sexual dimorphism and seasonality. During the spring mating season, male garter snakes rely exclusively on the female's skin-based, estrogen-dependent sex pheromone to direct courtship. Males can be stimulated to produce this sexual attractiveness pheromone by treatment with estradiol (E2), which also induces male vitellogenesis. Estrogen receptors (ESRs) are required to transduce the effects of estrogens, thus we used quantitative RT-PCR to analyze expression of ESR alpha (ERα; gene ESR1) mRNA in the skin and liver of wild caught male and female garter snakes across simulated spring and fall conditions in the laboratory. While ESR1 was present in the skin of both sexes, there were no sex or seasonal differences in expression levels. Liver expression of ESR1, however, was sexually dimorphic, with females showing greatest expression in fall when circulating E2 concentrations were lowest. There were no statistically significant correlations between E2 and ESR1 expression. Our data suggest that the skin of both sexes is sensitive to estrogen signaling and thus the production of sex pheromone is dependent on bioavailable levels of E2. Female expression of ESR1 in the liver may increase in the fall to prime energy storage mechanisms required for vitellogenesis the following year.
Collapse
Affiliation(s)
- Sydney E Ashton
- Department of Biology, James Madison University, Harrisonburg, VA 22807, United States; Graduate Program in Neuroscience, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Ben J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - M Rockwell Parker
- Department of Biology, James Madison University, Harrisonburg, VA 22807, United States.
| |
Collapse
|
27
|
Hinfray N, Sohm F, Caulier M, Chadili E, Piccini B, Torchy C, Porcher JM, Guiguen Y, Brion F. Dynamic and differential expression of the gonadal aromatase during the process of sexual differentiation in a novel transgenic cyp19a1a-eGFP zebrafish line. Gen Comp Endocrinol 2018. [PMID: 28648994 DOI: 10.1016/j.ygcen.2017.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In zebrafish, there exists a clear need for new tools to study sex differentiation dynamic and its perturbation by endocrine disrupting chemicals. In this context, we developed and characterized a novel transgenic zebrafish line expressing green fluorescent protein (GFP) under the control of the zebrafish cyp19a1a (gonadal aromatase) promoter. In most gonochoristic fish species including zebrafish, cyp19a1a, the enzyme responsible for the synthesis of estrogens, has been shown to play a critical role in the processes of reproduction and sexual differentiation. This novel cyp19a1a-eGFP transgenic line allowed a deeper characterization of expression and localization of cyp19a1a gene in zebrafish gonads both at the adult stage and during development. At the adult stage, GFP expression was higher in ovaries than in testis. We showed a perfect co-expression of GFP and endogenous Cyp19a1a protein in gonads that was mainly localized in the cytoplasm of peri-follicular cells in the ovary and of Leydig and germ cells in the testis. During development, GFP was expressed in all immature gonads of 20 dpf-old zebrafish. Then, GFP expression increased in early differentiated female at 30 and 35dpf to reach a high GFP intensity in well-differentiated ovaries at 40dpf. On the contrary, males consistently displayed low GFP expression as compared to female whatever their stage of development, resulting in a clear dimorphic expression between both sexes. Interestingly, fish that undergoes ovary-to-testis transition (35 and 40dpf) presented GFP levels similar to males or intermediate between females and males. In this transgenic line our results confirm that cyp19a1a is expressed early during development, before the histological differentiation of the gonads, and that the down-regulation of cyp19a1a expression is likely responsible for the testicular differentiation. Moreover, we show that although cyp19a1a expression exhibits a clear dimorphic expression pattern in gonads during sexual differentiation, its expression persists whatever the sex suggesting that estradiol synthesis is important for gonadal development of both sexes. Monitoring the expression of GFP in control and exposed-fish will help determine the sensitivity of this transgenic line to EDCs and to refine mechanistic based-assays for the study of EDCs. In fine, this transgenic zebrafish line will be a useful tool to study physiological processes such as reproduction and sexual differentiation, and their perturbations by EDCs.
Collapse
Affiliation(s)
- Nathalie Hinfray
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France.
| | - Frédéric Sohm
- UMS AMAGEN, CNRS, INRA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Morgane Caulier
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Edith Chadili
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Benjamin Piccini
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Camille Torchy
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Yann Guiguen
- INRA, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), IFR140, Ouest-Genopole, F-35000 Rennes, France
| | - François Brion
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
28
|
Chen LL, Xie J, Cao DD, Jia N, Li YJ, Sun H, Li WF, Hu B, Chen Y, Zhou CZ. The pore-forming protein Aep1 is an innate immune molecule that prevents zebrafish from bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:49-54. [PMID: 29317232 DOI: 10.1016/j.dci.2018.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/06/2018] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Following the Aeromonas hydrophila aerolysin, various aerolysin-like pore-forming proteins have been identified from bacteria to vertebrates. We have recently reported the mechanism of receptor recognition and in vitro pore-formation of a zebrafish aerolysin-like protein Dln1/Aep1. However, the physiological function of Aep1 remains unknown. Here we detected that aep1 gene is constitutively expressed in various immune-related tissues of adult zebrafish; and moreover, its expression is significantly up-regulated upon bacterial challenge, indicating its involvement in antimicrobial infection. Pre-injection of recombinant Aep1 into the infected zebrafish greatly accelerated the clearance of bacteria, resulting in significantly increased survival rate. Meanwhile, the induced expression of cytokines such as interleukin IL-1β and tumor necrosis factor TNF-α in zebrafish upon injection of recombinant Aep1 suggested that Aep1 may be a pro-inflammatory protein that triggers the antimicrobial immune responses. However, compared to the overproduction of these cytokines in the infected zebrafish, pre-injection of Aep1 could significantly reduce the expression level of these cytokines, accompanying with a reduced bacterial load. Moreover, the expression profiles through the developmental stages of zebrafish demonstrated that aep1 is activated at the very early stage prior to the maturation of adaptive immune system. Altogether, our findings proved that Aep1 is an innate immune molecule that prevents the bacterial infection.
Collapse
Affiliation(s)
- Lan-Lan Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Structural Biology, Chinese Academy of Science, Hefei, Anhui 230027, China
| | - Jin Xie
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Structural Biology, Chinese Academy of Science, Hefei, Anhui 230027, China
| | - Dong-Dong Cao
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Structural Biology, Chinese Academy of Science, Hefei, Anhui 230027, China
| | - Ning Jia
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Structural Biology, Chinese Academy of Science, Hefei, Anhui 230027, China
| | - Ya-Juan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China; Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hui Sun
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Structural Biology, Chinese Academy of Science, Hefei, Anhui 230027, China
| | - Wei-Fang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Structural Biology, Chinese Academy of Science, Hefei, Anhui 230027, China
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China; Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Structural Biology, Chinese Academy of Science, Hefei, Anhui 230027, China.
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Structural Biology, Chinese Academy of Science, Hefei, Anhui 230027, China.
| |
Collapse
|
29
|
Casanova-Nakayama A, Wernicke von Siebenthal E, Kropf C, Oldenberg E, Segner H. Immune-Specific Expression and Estrogenic Regulation of the Four Estrogen Receptor Isoforms in Female Rainbow Trout (Oncorhynchus mykiss). Int J Mol Sci 2018; 19:ijms19040932. [PMID: 29561790 PMCID: PMC5979597 DOI: 10.3390/ijms19040932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 12/31/2022] Open
Abstract
Genomic actions of estrogens in vertebrates are exerted via two intracellular estrogen receptor (ER) subtypes, ERα and ERβ, which show cell- and tissue-specific expression profiles. Mammalian immune cells express ERs and are responsive to estrogens. More recently, evidence became available that ERs are also present in the immune organs and cells of teleost fish, suggesting that the immunomodulatory function of estrogens has been conserved throughout vertebrate evolution. For a better understanding of the sensitivity and the responsiveness of the fish immune system to estrogens, more insight is needed on the abundance of ERs in the fish immune system, the cellular ratios of the ER subtypes, and their autoregulation by estrogens. Consequently, the aims of the present study were (i) to determine the absolute mRNA copy numbers of the four ER isoforms in the immune organs and cells of rainbow trout, Oncorhynchus mykiss, and to compare them to the hepatic ER numbers; (ii) to analyse the ER mRNA isoform ratios in the immune system; and, (iii) finally, to examine the alterations of immune ER mRNA expression levels in sexually immature trout exposed to 17β-estradiol (E2), as well as the alterations of immune ER mRNA expression levels in sexually mature trout during the reproductive cycle. All four ER isoforms were present in immune organs—head kidney, spleen-and immune cells from head kidney and blood of rainbow trout, but their mRNA levels were substantially lower than in the liver. The ER isoform ratios were tissue- and cell-specific, both within the immune system, but also between the immune system and the liver. Short-term administration of E2 to juvenile female trout altered the ER mRNA levels in the liver, but the ERs of the immune organs and cells were not responsive. Changes of ER gene transcript numbers in immune organs and cells occurred during the reproductive cycle of mature female trout, but the changes in the immune ER profiles differed from those in the liver and gonads. The correlation between ER gene transcript numbers and serum E2 concentrations was only moderate to low. In conclusion, the low mRNA numbers of nuclear ER in the trout immune system, together with their limited estrogen-responsiveness, suggest that the known estrogen actions on trout immunity may be not primarily mediated through genomic actions, but may involve other mechanisms, such as non-genomic pathways or indirect effects.
Collapse
Affiliation(s)
- Ayako Casanova-Nakayama
- Centre for Fish and Wildlife Health, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Elena Wernicke von Siebenthal
- Centre for Fish and Wildlife Health, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Christian Kropf
- Centre for Fish and Wildlife Health, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Elisabeth Oldenberg
- Centre for Fish and Wildlife Health, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Helmut Segner
- Centre for Fish and Wildlife Health, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| |
Collapse
|
30
|
Early life exposure to ethinylestradiol enhances subsequent responses to environmental estrogens measured in a novel transgenic zebrafish. Sci Rep 2018; 8:2699. [PMID: 29426849 PMCID: PMC5807302 DOI: 10.1038/s41598-018-20922-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/04/2018] [Indexed: 11/11/2022] Open
Abstract
Estrogen plays fundamental roles in a range of developmental processes and exposure to estrogen mimicking chemicals has been associated with various adverse health effects in both wildlife and human populations. Estrogenic chemicals are found commonly as mixtures in the environment and can have additive effects, however risk analysis is typically conducted for single-chemicals with little, or no, consideration given for an animal’s exposure history. Here we developed a transgenic zebrafish with a photoconvertable fluorophore (Kaede, green to red on UV light exposure) in a skin pigment-free mutant element (ERE)-Kaede-Casper model and applied it to quantify tissue-specific fluorescence biosensor responses for combinations of estrogen exposures during early life using fluorescence microscopy and image analysis. We identify windows of tissue-specific sensitivity to ethinylestradiol (EE2) for exposure during early-life (0–5 dpf) and illustrate that exposure to estrogen (EE2) during 0–48 hpf enhances responsiveness (sensitivity) to different environmental estrogens (EE2, genistein and bisphenol A) for subsequent exposures during development. Our findings illustrate the importance of an organism’s stage of development and estrogen exposure history for assessments on, and possible health risks associated with, estrogen exposure.
Collapse
|
31
|
Valcarce DG, Vuelta E, Robles V, Herráez MP. Paternal exposure to environmental 17-alpha-ethinylestradiol concentrations modifies testicular transcription, affecting the sperm transcript content and the offspring performance in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:18-29. [PMID: 29028550 DOI: 10.1016/j.aquatox.2017.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
The synthetic estrogen 17-α-ethinylestradiol (EE2), a major constituent in contraceptive pills, is an endocrine disrupting chemical (EDC) present in the aquatic environment at concentrations of ng/L. Developmental exposure to these low concentrations in fish can induce several disorders. Zebrafish (Danio rerio) is a perfect organism for monitoring the effects of environmental contaminants. Our hypothesis is that changes promoted by EE2 in the germ line of male adults could be transmitted to the unexposed progeny. We exposed male zebrafish to 2.5, 5 and 10ng/L of EE2 during spermatogenesis and mated them with untreated females. Detailed progeny development was studied concentrating to survival, hatching and malformations. Due to the high incidence of lymphedemas within larvae, we performed qPCR analysis of genes involved in lymphatic development (vegfc and vegfr3) and endothelial cell migration guidance (cxcr4a and cxcl12b). Estrogen receptor (ER) transcript presence was also evaluated in sperm, testis and embryos. Progenies showed a range of disorders although at a low incidence: skeletal distortions, uninflated swimbladder, lymphedema formation, cartilage deformities and otolith tethering. Swimming evaluation revealed less active locomotion. All these processes are related to pathways involving ERs (esr1, esr2a and esr2b). mRNA analysis revealed that environmental EE2 causes the up-regulation of esr1 an esr2b in testis and the increase of esr2b transcripts in sperm pointing to a link between lymphedema in embryos and ER expression impairment. We demonstrate that the effects induced by environmental toxicants can be paternally inherited and point to the changes on the sperm transcriptome as the responsible mechanism.
Collapse
Affiliation(s)
- David G Valcarce
- Department of Molecular Biology, Universidad de León, 24071, León, Spain; INDEGSAL, Universidad de León, 24071, León, Spain
| | - Elena Vuelta
- Department of Molecular Biology, Universidad de León, 24071, León, Spain; INDEGSAL, Universidad de León, 24071, León, Spain
| | - Vanesa Robles
- INDEGSAL, Universidad de León, 24071, León, Spain; IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Barrio Corbanera s/n, Monte, Santander, 39012, Spain
| | - Maria Paz Herráez
- Department of Molecular Biology, Universidad de León, 24071, León, Spain; INDEGSAL, Universidad de León, 24071, León, Spain.
| |
Collapse
|
32
|
J. M. Schaaf M. The First Fifteen Years of Steroid Receptor Research in Zebrafish; Characterization and Functional Analysis of the Receptors. NUCLEAR RECEPTOR RESEARCH 2017. [DOI: 10.11131/2017/101286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Diamante G, Menjivar-Cervantes N, Leung MS, Volz DC, Schlenk D. Contribution of G protein-coupled estrogen receptor 1 (GPER) to 17β-estradiol-induced developmental toxicity in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:180-187. [PMID: 28284154 DOI: 10.1016/j.aquatox.2017.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
Exposure to 17β-estradiol (E2) influences the regulation of multiple signaling pathways, and E2-mediated disruption of signaling events during early development can lead to malformations such as cardiac defects. In this study, we investigated the potential role of the G-protein estrogen receptor 1 (GPER) in E2-induced developmental toxicity. Zebrafish embryos were exposed to E2 from 2h post fertilization (hpf) to 76 hpf with subsequent transcriptional measurements of heart and neural crest derivatives expressed 2 (hand2), leucine rich repeat containing 10 (lrrc10), and gper at 12, 28 and 76 hpf. Alteration in the expression of lrrc10, hand2 and gper was observed at 12 hpf and 76 hpf, but not at 28 hpf. Expression of these genes was also altered after exposure to G1 (a GPER agonist) at 76 hpf. Expression of lrrc10, hand2 and gper all coincided with the formation of cardiac edema at 76 hpf as well as other developmental abnormalities. While co-exposure of G1 with G36 (a GPER antagonist) rescued G1-induced abnormalities and altered gene expression, co-exposure of E2 with G36, or ICI 182,780 (an estrogen receptor antagonist) did not rescue E2-induced cardiac deformities or gene expression. In addition, no effects on the concentrations of downstream ER and GPER signaling molecules (cAMP or calcium) were observed in embryo homogenates after E2 treatment. These data suggest that the impacts of E2 on embryonic development at this stage are complex and may involve multiple receptor and/or signaling pathways.
Collapse
Affiliation(s)
- Graciel Diamante
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92507, United States.
| | - Norma Menjivar-Cervantes
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92507, United States
| | - Man Sin Leung
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92507, United States
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92507, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92507, United States.
| |
Collapse
|
34
|
Siegenthaler PF, Zhao Y, Zhang K, Fent K. Reproductive and transcriptional effects of the antiandrogenic progestin chlormadinone acetate in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:346-356. [PMID: 28118999 DOI: 10.1016/j.envpol.2017.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/06/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Chlormadinone acetate (CMA) is a frequently used progestin with antiandrogenic activity in humans. Residues may enter the aquatic environment but potential adverse effects in fish are unknown. While our previous work focused on effects of CMA in vitro and in zebrafish eleuthero-embryos, the present study reports on reproductive and transcriptional effects in adult female and male zebrafish (Danio rerio). We performed a reproductive study using breeding groups of zebrafish. After 15 days of pre-exposure, we exposed zebrafish to different measured concentrations between 6.4 and 53,745 ng/L CMA for 21 days and counted produced eggs daily to determine fecundity. Additionally, transcriptional effects of CMA in brains, livers, and gonads were analyzed. CMA induced a slight but statistically significant reduction in fecundity at 65 ng/L and 53,745 ng/L compared to pre-exposure. Furthermore, we observed differential expression for gene transcripts of steroid hormone receptors, genes related to the hypothalamic-pituitary-gonadal axis, and steroidogenesis. In particular, we found a significant decrease of transcript levels of vitellogenin (vtg1) in ovaries and liver, and of cyp2k7 in the liver of males, as well as a significant increase of transcripts of the progesterone receptor (pgr) in testes, and cyp2k1 in the liver of females. The observed effects were weaker than those of other very potent progestins, which is probably related to the lack of interaction of CMA with the zebrafish progesterone receptor.
Collapse
Affiliation(s)
- Patricia Franziska Siegenthaler
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Yanbin Zhao
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Kun Zhang
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences, CH-8092 Zürich, Switzerland.
| |
Collapse
|
35
|
Huang SSY, Benskin JP, Veldhoen N, Chandramouli B, Butler H, Helbing CC, Cosgrove JR. A multi-omic approach to elucidate low-dose effects of xenobiotics in zebrafish (Danio rerio) larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:102-112. [PMID: 27886581 DOI: 10.1016/j.aquatox.2016.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Regulatory-approved toxicity assays such as the OECD Fish Embryo Toxicity Assay (TG236) allow correlation of chemical exposure to adverse morphological phenotypes. However, these assays are ineffective in assessing sub-lethal (i.e. low-dose) effects, or differentiating between similar phenotypes induced by different chemicals. Inclusion of multi-omic analyses in studies investigating xenobiotic action provides improved characterization of biological response, thereby enhancing prediction of toxicological outcomes in whole animals in the absence of morphological effects. In the current study, we assessed perturbations in both the metabolome and transcriptome of zebrafish (Danio rerio; ZF) larvae exposed from 96 to 120h post fertilization to environmental concentrations of acetaminophen (APAP), diphenhydramine (DH), carbamazepine (CBZ), and fluoxetine (FLX); common pharmaceuticals with known mechanisms of action. Multi-omic responses were evaluated independently and integrated to identify molecular interactions and biological relevance of the responses. Results indicated chemical- and dose-specific changes suggesting differences in the time scale of transcript abundance and metabolite production. Increased impact on the metabolome relative to the transcriptome in FLX-treated animals suggests a stronger post-translational effect of the treatment. In contrast, the transcriptome showed higher sensitivity to perturbation in DH-exposed animals. Integration of 'omic' responses using multivariate approaches provided additional insights not obtained by independent 'omic' analyses and demonstrated that the most distinct overall response profiles were induced following low-dose exposure for all 4 pharmaceuticals. Importantly, changes in transcript abundance corroborated with predictions from metabolomic enrichment analyses and the identified perturbed biological pathways aligned with known xenobiotic mechanisms of action. This work demonstrates that a multi-omic toxicological approach, coupled with a sensitive animal model such as ZF larvae, can help characterize the toxicological relevance of acute low-dose chemical exposures.
Collapse
Affiliation(s)
- Susie S Y Huang
- SGS AXYS, Sidney, BC, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| | - Jonathan P Benskin
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Nik Veldhoen
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | | | | | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
36
|
Chen J, Wang X, Ge X, Wang D, Wang T, Zhang L, Tanguay RL, Simonich M, Huang C, Dong Q. Chronic perfluorooctanesulphonic acid (PFOS) exposure produces estrogenic effects in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:702-708. [PMID: 27496563 DOI: 10.1016/j.envpol.2016.07.064] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 05/20/2023]
Abstract
Perfluorooctanesulphonic acid (PFOS) is a ubiquitous contaminant in the aquatic environment and our earlier studies demonstrated that chronic PFOS exposures lead to a female-biased sex ratio and decreased sperm quality in male zebrafish. The underlying mechanism for these reproductive effects is unknown. In the present study, 8 h post-fertilization (hpf) zebrafish were exposed to PFOS at 250 μg/L for 5 months, and the levels of sex hormones, expression of sex determination related genes, and histological and ultrastructural changes of gonads were fully characterized. During the sex differentiation period, we observed elevated estradiol (E2) and decreased testosterone (T) levels in whole tissue homogenates from PFOS exposed juveniles. In fully mature adult male fish, serum E2 levels were slightly increased, however, the estrogen receptor alpha (esr1) was significantly elevated in PFOS treated male gonads. Histological and electron microscopic examinations revealed structural changes in the gonads of PFOS exposed male and female adult zebrafish. In summary, chronic PFOS exposure disrupts sex hormone level and related gene expression and impairs gonadal development, which may contribute to the previously reported PFOS reproductive toxicity.
Collapse
Affiliation(s)
- Jiangfei Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaotong Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoqing Ge
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Dingding Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Ting Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Lingnan Zhang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Robert L Tanguay
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97333, USA
| | - Michael Simonich
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97333, USA
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiaoxiang Dong
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
37
|
Burgos-Aceves MA, Cohen A, Smith Y, Faggio C. Estrogen regulation of gene expression in the teleost fish immune system. FISH & SHELLFISH IMMUNOLOGY 2016; 58:42-49. [PMID: 27633675 DOI: 10.1016/j.fsi.2016.09.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/01/2016] [Accepted: 09/10/2016] [Indexed: 05/02/2023]
Abstract
Elucidating the mechanisms of estrogens-induced immunomodulation in teleost fish is of great importance due to the observed worldwide continuing decrease in pristine environments. However, little is know about the immunotoxicological consequences of exposure to these chemicals in fish, or of the mechanisms through which these effects are mediated. In this review, we summarize the results showing estrogens (natural or synthetic) acting through estrogen receptors and regulating specific target genes, also through microRNAs (miRNAs), leading to modulation of the immune functioning. The identification and characterization of miRNAs will provide new opportunities for functional genome research on teleost immune system and can also be useful when screening for novel molecule biomarkers for environmental pollution.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta. Rita, La Paz BCS, 23090, México
| | - Amit Cohen
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Yoav Smith
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
38
|
Sharma P, Tang S, Mayer GD, Patiño R. Effects of thyroid endocrine manipulation on sex-related gene expression and population sex ratios in Zebrafish. Gen Comp Endocrinol 2016; 235:38-47. [PMID: 27255368 DOI: 10.1016/j.ygcen.2016.05.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
Abstract
Thyroid hormone reportedly induces masculinization of genetic females and goitrogen treatment delays testicular differentiation (ovary-to-testis transformation) in genetic males of Zebrafish. This study explored potential molecular mechanisms of these phenomena. Zebrafish were treated with thyroxine (T4, 2nM), goitrogen [methimazole (MZ), 0.15mM], MZ (0.15mM) and T4 (2nM) (rescue treatment), or reconstituted water (control) from 3 to 33days postfertilization (dpf) and maintained in control water until 45dpf. Whole fish were collected during early (25dpf) and late (45dpf) testicular differentiation for transcript abundance analysis of selected male (dmrt1, amh, ar) and female (cyp19a1a, esr1, esr2a, esr2b) sex-related genes by quantitative RT-PCR, and fold-changes relative to control values were determined. Additional fish were sampled at 45dpf for histological assessment of gonadal sex. The T4 and rescue treatments caused male-biased populations, and T4 alone induced precocious puberty in ∼50% of males. Male-biased sex ratios were accompanied by increased expression of amh and ar and reduced expression of cyp19a1a, esr1, esr2a, and esr2b at 25 and 45dpf and, unexpectedly, reduced expression of dmrt1 at 45dpf. Goitrogen exposure increased the proportion of individuals with ovaries (per previous studies interpreted as delay in testicular differentiation of genetic males), and at 25 and 45dpf reduced the expression of amh and ar and increased the expression of esr1 (only at 25dpf), esr2a, and esr2b. Notably, cyp19a1a transcript was reduced but via non-thyroidal pathways (not restored by rescue treatment). In conclusion, the masculinizing activity of T4 at the population level may be due to its ability to inhibit female and stimulate male sex-related genes in larvae, while the inability of MZ to induce cyp19a1a, which is necessary for ovarian differentiation, may explain why its "feminizing" activity on gonadal sex is not permanent.
Collapse
Affiliation(s)
- Prakash Sharma
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX 79409-2120, USA
| | - Song Tang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409-1163, USA
| | - Gregory D Mayer
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409-1163, USA
| | - Reynaldo Patiño
- U.S. Geological Survey, Texas Cooperative Fish and Wildlife Research Unit, and Departments of Natural Resources Management and Biological Sciences, Texas Tech University, Lubbock, TX 79409-2120, USA.
| |
Collapse
|
39
|
Sánchez Garayzar AB, Bahamonde PA, Martyniuk CJ, Betancourt M, Munkittrick KR. Hepatic gene expression profiling in zebrafish (Danio rerio) exposed to the fungicide chlorothalonil. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:102-111. [DOI: 10.1016/j.cbd.2016.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 01/29/2023]
|
40
|
Pellegrini E, Diotel N, Vaillant-Capitaine C, Pérez Maria R, Gueguen MM, Nasri A, Cano Nicolau J, Kah O. Steroid modulation of neurogenesis: Focus on radial glial cells in zebrafish. J Steroid Biochem Mol Biol 2016; 160:27-36. [PMID: 26151741 DOI: 10.1016/j.jsbmb.2015.06.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
Estrogens are known as steroid hormones affecting the brain in many different ways and a wealth of data now document effects on neurogenesis. Estrogens are provided by the periphery but can also be locally produced within the brain itself due to local aromatization of circulating androgens. Adult neurogenesis is described in all vertebrate species examined so far, but comparative investigations have brought to light differences between vertebrate groups. In teleost fishes, the neurogenic activity is spectacular and adult stem cells maintain their mitogenic activity in many proliferative areas within the brain. Fish are also quite unique because brain aromatase expression is limited to radial glia cells, the progenitor cells of adult fish brain. The zebrafish has emerged as an interesting vertebrate model to elucidate the cellular and molecular mechanisms of adult neurogenesis, and notably its modulation by steroids. The main objective of this review is to summarize data related to the functional link between estrogens production in the brain and neurogenesis in fish. First, we will demonstrate that the brain of zebrafish is an endogenous source of steroids and is directly targeted by local and/or peripheral steroids. Then, we will present data demonstrating the progenitor nature of radial glial cells in the brain of adult fish. Next, we will emphasize the role of estrogens in constitutive neurogenesis and its potential contribution to the regenerative neurogenesis. Finally, the negative impacts on neurogenesis of synthetic hormones used in contraceptive pills production and released in the aquatic environment will be discussed.
Collapse
Affiliation(s)
- Elisabeth Pellegrini
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France.
| | - Nicolas Diotel
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France; Inserm UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde F-97490, France; Université de La Réunion, UMR 1188, Sainte-Clotilde F-97490, France
| | - Colette Vaillant-Capitaine
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France
| | - Rita Pérez Maria
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France; Laboratorio de Ictiología, Instituto Nacional de Limnología (INALI. CONICET-UNL), Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Marie-Madeleine Gueguen
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France
| | - Ahmed Nasri
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France; Laboratoire de Biosurveillance de l'Environnement, Unité d'Ecologie côtière et d'Ecotoxicologie, Faculté des Sciences de Bizerte, Zarzouna 7021, Tunisia
| | - Joel Cano Nicolau
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France
| | - Olivier Kah
- Inserm U1085, Université de Rennes 1, Research Institute in Health, Environment and Occupation, 35000 Rennes, France
| |
Collapse
|
41
|
Wang J, Cao X, Sun J, Huang Y, Tang X. Disruption of endocrine function in H295R cell in vitro and in zebrafish in vivo by naphthenic acids. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:1-9. [PMID: 26073515 DOI: 10.1016/j.jhazmat.2015.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
Oil sands process-affected water (OSPW) have been reported to exhibit endocrine disrupting effects on aquatic organisms. Although the responsible compounds are unknown, naphthenic acids (NAs) have been considered to be implicated. The current study was designed to investigate the endocrine disruption of OSPW extracted NAs (OS-NAs) and commercial NAs (C-NAs) using a combination of in vitro and in vivo assays. The effects of OS-NAs and C-NAs on steroidogenesis were assessed both at hormone levels and expression levels of hormone-related genes in the H295R cells. The transcriptions of biomarker genes involved in endocrine systems in zebrafish larvae were investigated to detect the effects of OS-NAs and C-NAs on endocrine function in vivo. Exposure to OS-NAs and C-NAs significantly increased production of 17β-estradiol (E2) and progesterone (P4), and decreased production of testosterone (T). Both OS-NAs and C-NAs significantly induced the expression of several genes involved in steroidogenesis. The abundances of transcripts of biomarker gene CYP19b, ERα, and VTG were significantly up-regulated in zebrafish larvae exposed to OS-NAs and C-NAs, which indicated that NAs had negative effects on estrogen-responsive gene transcription in vivo. These results indicated that NAs should be partly responsible for the endocrine disrupting effects of OSPW.
Collapse
Affiliation(s)
- Jie Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaofeng Cao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jinhua Sun
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xiaoyan Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
42
|
López-Muñoz A, Liarte S, Gómez-González NE, Cabas I, Meseguer J, García-Ayala A, Mulero V. Estrogen receptor 2b deficiency impairs the antiviral response of zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:55-62. [PMID: 26133072 DOI: 10.1016/j.dci.2015.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/14/2015] [Accepted: 06/11/2015] [Indexed: 05/02/2023]
Abstract
Although several studies have demonstrated the ability of some endocrine disruptive chemicals (EDCs) to alter the physiology of zebrafish, the immune-reproductive interaction has received little attention in this species. In this study, we used a homozygous line carrying an insertion of 8 amino acids in the ligand-binding domain of the estrogen receptor 2b gene (esr2b) to further understand the role of estrogen signaling on innate immunity. Adult mutant fish showed distorted sexual ratios related with alterations in testicular morphology and supraphysiological testosterone and 17β-estradiol (E2) levels. Immunity-wise, although esr2b mutant fish showed unaltered antibacterial responses, they were unable to mount an effective antiviral response upon viral challenge. RT-qPCR analysis demonstrated that mutant fish were able to induce the genes encoding major antiviral molecules, including Ifnphi1, Ifnphi2, Infphi3, Mxb and Mxc, and the negative feedback regulator of cytokine signaling Socs1. Notably, although esr2b mutant larvae showed a similar resistance to SVCV infection to their wild type siblings, waterborne E2 increased their viral susceptibility. Similarly, the exposure of adult wild type zebrafish to E2 also resulted in increased susceptibility to SVCV infection. Finally, the administration of recombinant Ifnphi1 hardly reversed the higher viral susceptibility of esr2b mutant zebrafish, suggesting that elevated socs1 levels impair Ifn signaling. All together, these results uncover an important role for E2 and Esr signaling in the fine-tuning of sexual hormone balance and the antiviral response of vertebrates.
Collapse
Affiliation(s)
- Azucena López-Muñoz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Sergio Liarte
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Nuria E Gómez-González
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Isabel Cabas
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - José Meseguer
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Alfonsa García-Ayala
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
43
|
Seemann F, Knigge T, Duflot A, Marie S, Olivier S, Minier C, Monsinjon T. Sensitive periods for 17β-estradiol exposure during immune system development in sea bass head kidney. J Appl Toxicol 2015; 36:815-26. [DOI: 10.1002/jat.3215] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Frauke Seemann
- State Key Laboratory in Marine Pollution; City University Hong Kong; Kowloon Hong Kong
| | - Thomas Knigge
- UMR-I 02 INERIS-URCA-ULH, Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), SFR SCALE 4116; Université du Havre; Le Havre France
| | - Aurélie Duflot
- UMR-I 02 INERIS-URCA-ULH, Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), SFR SCALE 4116; Université du Havre; Le Havre France
| | - Sabine Marie
- UMR-I 02 INERIS-URCA-ULH, Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), SFR SCALE 4116; Université du Havre; Le Havre France
| | - Stéphanie Olivier
- UMR-I 02 INERIS-URCA-ULH, Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), SFR SCALE 4116; Université du Havre; Le Havre France
| | - Christophe Minier
- UMR-I 02 INERIS-URCA-ULH, Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), SFR SCALE 4116; Université du Havre; Le Havre France
- Office National de l'Eau et des Milieux Aquatiques (ONEMA); Grabels France
| | - Tiphaine Monsinjon
- UMR-I 02 INERIS-URCA-ULH, Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), SFR SCALE 4116; Université du Havre; Le Havre France
| |
Collapse
|
44
|
Delalande C, Goupil AS, Lareyre JJ, Le Gac F. Differential expression patterns of three aromatase genes and of four estrogen receptors genes in the testes of trout (Oncorhynchus mykiss). Mol Reprod Dev 2015; 82:694-708. [DOI: 10.1002/mrd.22509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 05/24/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Christelle Delalande
- Normandie Univ; France
- UNICAEN, EA 2608; France
- INRA USC 1377; 14032 CAEN cedex 5; France
| | - Anne-Sophie Goupil
- INRA, UR1037 Laboratoire de Physiologie et Génomique des Poissons; SFR BIOSIT; Biogenouest; 35042 Rennes France
| | - Jean-Jacques Lareyre
- INRA, UR1037 Laboratoire de Physiologie et Génomique des Poissons; SFR BIOSIT; Biogenouest; 35042 Rennes France
| | - Florence Le Gac
- INRA, UR1037 Laboratoire de Physiologie et Génomique des Poissons; SFR BIOSIT; Biogenouest; 35042 Rennes France
| |
Collapse
|
45
|
Wang J, Cao X, Huang Y, Tang X. Developmental toxicity and endocrine disruption of naphthenic acids on the early life stage of zebrafish (Danio rerio). J Appl Toxicol 2015; 35:1493-501. [PMID: 25995127 DOI: 10.1002/jat.3166] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 12/21/2022]
Abstract
Oil sands process-affected water (OSPW) has been reported to exhibit adverse effects on the environment and wildlife. Although the compounds responsible are unknown, naphthenic acids (NAs) have been considered to be implicated. The current study was designed to investigate whether NAs might cause developmental toxicity and endocrine disruption on the early life stage of zebrafish (Danio rerio). The success of embryo hatch was inhibited by 2.5 mg l(-1) oil sands NAs (OS-NAs) exposure, and both OSPW NAs and commercial NAs (C-NAs) exposure resulted in a variety of developmental lesions in the fish larvae, such as yolk sac edema, pericardial edema and spinal malformation. The transcription of genes involved cytochrome P450 aromatase (CYP19a and CYP19b), estrogen receptors (ERα, ERβ1 and ERβ2), and vitellogenin (VTG) was analyzed to evaluate the endocrine disrupting effects of NAs. Significant up-regulated gene expressions of CYP19b, ERα and VTG were observed in both OS-NAs and C-NAs groups, which indicated the deleteriously estrogenic potential of NAs. These results confirmed that NAs derived from crude petroleum could negatively impact the development and endocrine function of zebrafish, and be primarily responsible for the toxicity of OSPW.
Collapse
Affiliation(s)
- Jie Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiaofeng Cao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiaoyan Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
46
|
Transcripts involved in steroid biosynthesis and steroid receptor signaling are expressed early in development in the fathead minnow (Pimephales promelas). Comp Biochem Physiol B Biochem Mol Biol 2015; 182:64-72. [DOI: 10.1016/j.cbpb.2014.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/02/2023]
|
47
|
Genovese G, Regueira M, Da Cuña RH, Ferreira MF, Varela ML, Lo Nostro FL. Nonmonotonic response of vitellogenin and estrogen receptor α gene expression after octylphenol exposure of Cichlasoma dimerus (Perciformes, Cichlidae). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:30-40. [PMID: 25146234 DOI: 10.1016/j.aquatox.2014.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/20/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
In oviparous vertebrates, vitellogenin (VTG) is mainly produced by the liver in response to estrogen (E2) and its synthesis is traditionally coupled to estrogen receptor alpha induction. Even though VTG is a female-specific protein, chemicals that mimic natural estrogens, known as xenoestrogens, can activate its expression in males causing endocrine disruption to wildlife and humans. Alkylphenols such as nonylphenol (NP) and octylphenol (OP) are industrial additives used in the manufacture of a wide variety of plastics and detergents, and can disrupt endocrine functions in exposed animals. For more than a decade, the freshwater cichlid fish Cichlasoma dimerus has been used for ecotoxicological studies in our laboratory. We recently found an up-regulation of VTG gene expression in livers of male fish exposed to OP, from a silent state to values similar to those of E2-induced fish. To better understand the underlying mechanisms behind the action of xenoestrogens, the aim of this study was to analyze the dose-response relationship of C. dimerus VTG and estrogen receptors (ERs) gene expression after waterborne exposure to 0.15, 1.5, 15, and 150μg/L OP for up to 1 month (0, 1, 3, 7, 14, 21, and 28 days). At the end of the experiment, histological features of exposed fish included active hepatocytes with basophilic cytoplasm and high eosinophilic content in their vascular system due to augmented expression of VTG. In testis, high preponderance of sperm was found in fish exposed to 150μg/L OP. A classic dose-response down-regulation of the expression of Na(+)/K(+)-ATPase, a "non-gender specific gene" used for comparison, was found with increasing OP concentrations. No VTG and very low levels of ERα were detected in control male livers, but an up-regulation of both genes was found in males exposed to 0.15 or 150μg/L OP. Moreover, VTG transcripts were significant as early as day 3 or day 1 of exposure to these OP concentrations, respectively. Nearly no response was detected in 1.5 and 15μg/L OP exposed-fish. Data was curve-fitted evidencing a nonmonotonic dose-response curve. Interestingly, ERβ2 mRNA expression was augmented above baseline levels only when males were exposed to the lowest OP concentration. We speculate that genomic control of vitellogenesis is under control of multiple steroid receptors with different affinities for ligands. ERβ isoform, only up-regulated with very low concentrations of ligand, would act as a sensors of OP (or E2) to induce ERα and VTG. With high OP concentrations, the expression of ERα isoform is promptly augmented, with the concomitant VTG transactivation.
Collapse
Affiliation(s)
- G Genovese
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Argentina; IBBEA, CONICET-UBA, Argentina.
| | - M Regueira
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Argentina
| | - R H Da Cuña
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Argentina; IBBEA, CONICET-UBA, Argentina
| | - M F Ferreira
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Argentina
| | - M L Varela
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Argentina
| | - F L Lo Nostro
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Argentina; IBBEA, CONICET-UBA, Argentina
| |
Collapse
|
48
|
Reyhanian Caspillo N, Volkova K, Hallgren S, Olsson PE, Porsch-Hällström I. Short-term treatment of adult male zebrafish (Danio Rerio) with 17α-ethinyl estradiol affects the transcription of genes involved in development and male sex differentiation. Comp Biochem Physiol C Toxicol Pharmacol 2014; 164:35-42. [PMID: 24747828 DOI: 10.1016/j.cbpc.2014.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/04/2023]
Abstract
The synthetic estrogen 17α-ethinyl estradiol (EE2) disturbs reproduction and causes gonadal malformation in fish. Effects on the transcription of genes involved in gonad development and function that could serve as sensitive biomarkers of reproductive effects in the field is, however, not well known. We have studied mRNA expression in testes and liver of adult zebrafish (Danio rerio) males treated with 0, 5 or 25 ng/L EE2for 14 days. qPCR analysis showed that the mRNA expression of four genes linked to zebrafish male sex determination and differentiation, Anti-Mullerian Hormone, Double sex and mab-related protein, Sry-related HMG box-9a and Nuclear receptor subfamily 5 group number 1b were significantly decreased by 25 ng/L, but not 5 ng/L EE2 compared with the levels in untreated fish. The decreased transcription was correlated with a previously shown spawning failure in these males (Reyhanian et al., 2011. Aquat Toxicol 105, 41-48), suggesting that decreased mRNA expression of genes regulating male sexual function could be involved in the functional sterility. The mRNA level of Cytochrome P-45019a, involved in female reproductive development, was unaffected by hormone treatment. The transcription of the female-specific Vitellogenin was significantly induced in testes. While testicular Androgen Receptor and the Estrogen Receptor-alpha mRNA levels were unchanged, Estrogen receptor-beta was significantly decreased by 25 ng/L EE2. Hepatic Estrogen Receptor-alpha mRNA was significantly increased by both exposure concentrations, while Estrogen Receptor-beta transcription was unaltered. The decreased transcription of male-predominant genes supports a demasculinization of testes by EE2 and might reflect reproductive disturbances in the environment.
Collapse
Affiliation(s)
- Nasim Reyhanian Caspillo
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden; Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| | - Kristina Volkova
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden; Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Stefan Hallgren
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - Per-Erik Olsson
- Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Inger Porsch-Hällström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| |
Collapse
|
49
|
Carroll KJ, Esain V, Garnaas MK, Cortes M, Dovey MC, Nissim S, Frechette GM, Liu SY, Kwan W, Cutting CC, Harris JM, Gorelick DA, Halpern ME, Lawson ND, Goessling W, North TE. Estrogen defines the dorsal-ventral limit of VEGF regulation to specify the location of the hemogenic endothelial niche. Dev Cell 2014; 29:437-53. [PMID: 24871948 DOI: 10.1016/j.devcel.2014.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 01/26/2014] [Accepted: 04/10/2014] [Indexed: 11/30/2022]
Abstract
Genetic control of hematopoietic stem and progenitor cell (HSPC) function is increasingly understood; however, less is known about the interactions specifying the embryonic hematopoietic niche. Here, we report that 17β-estradiol (E2) influences production of runx1+ HSPCs in the AGM region by antagonizing VEGF signaling and subsequent assignment of hemogenic endothelial (HE) identity. Exposure to exogenous E2 during vascular niche development significantly disrupted flk1+ vessel maturation, ephrinB2+ arterial identity, and specification of scl+ HE by decreasing expression of VEGFAa and downstream arterial Notch-pathway components; heat shock induction of VEGFAa/Notch rescued E2-mediated hematovascular defects. Conversely, repression of endogenous E2 activity increased somitic VEGF expression and vascular target regulation, shifting assignment of arterial/venous fate and HE localization; blocking E2 signaling allowed venous production of scl+/runx1+ cells, independent of arterial identity acquisition. Together, these data suggest that yolk-derived E2 sets the ventral boundary of hemogenic vascular niche specification by antagonizing the dorsal-ventral regulatory limits of VEGF.
Collapse
Affiliation(s)
- Kelli J Carroll
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Virginie Esain
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Maija K Garnaas
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mauricio Cortes
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Michael C Dovey
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sahar Nissim
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory M Frechette
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Y Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Wanda Kwan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Claire C Cutting
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James M Harris
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Nathan D Lawson
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wolfram Goessling
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Trista E North
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
50
|
Aromatase, estrogen receptors and brain development in fish and amphibians. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:152-62. [PMID: 25038582 DOI: 10.1016/j.bbagrm.2014.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022]
Abstract
Estrogens affect brain development of vertebrates, not only by impacting activity and morphology of existing circuits, but also by modulating embryonic and adult neurogenesis. The issue is complex as estrogens can not only originate from peripheral tissues, but also be locally produced within the brain itself due to local aromatization of androgens. In this respect, teleost fishes are quite unique because aromatase is expressed exclusively in radial glial cells, which represent pluripotent cells in the brain of all vertebrates. Expression of aromatase in the brain of fish is also strongly stimulated by estrogens and some androgens. This creates a very intriguing positive auto-regulatory loop leading to dramatic aromatase expression in sexually mature fish with elevated levels of circulating steroids. Looking at the effects of estrogens or anti-estrogens in the brain of adult zebrafish showed that estrogens inhibit rather than stimulate cell proliferation and newborn cell migration. The functional meaning of these observations is still unclear, but these data suggest that the brain of fish is experiencing constant remodeling under the influence of circulating steroids and brain-derived neurosteroids, possibly permitting a diversification of sexual strategies, notably hermaphroditism. Recent data in frogs indicate that aromatase expression is limited to neurons and do not concern radial glial cells. Thus, until now, there is no other example of vertebrates in which radial progenitors express aromatase. This raises the question of when and why these new features were gained and what are their adaptive benefits. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|