1
|
Chukwuanukwu RC, Agu CE, Ehiaghe A, Ezeagwuna D, Herrmann M, Udigwe G. Markers of neutrophil activation and some immune and haematological indices in malaria infection during pregnancy. BMC Immunol 2025; 26:28. [PMID: 40200152 PMCID: PMC11978171 DOI: 10.1186/s12865-025-00709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Neutrophils are the first responders to pathogen invasion and are important first-line defenders. The defence mechanism of activated neutrophils includes neutrophil extracellular traps (NETs) formation that immobilize pathogens, stop their spread within the tissues, and ultimately kill them. However, their roles in the context of malaria during pregnancy are still elusive. This study was conducted to investigate markers of neutrophil activation as well as immunological and haematological cellular responses during Plasmodium infection in pregnancy. METHOD A total of 340 pregnant women aged between 19 and 42 years were recruited for this study carried out in South-east, Nigeria. All the subjects were tested for malaria parasite (MP) status. Those infected with human immunodeficiency virus (HIV) and those with any other co-morbidity were excluded from the study. A total of 45 (13.2%) of the 340 pregnant women were positive for malaria. To assess immune, haematologic and NETs markers in the MP positive group, 45 matched malaria-negative pregnant women from the malaria negative group served as controls. Thus, the final study population was grouped into two categories: 45 pregnant women infected with Plasmodium falciparum and 45 pregnant malaria-negative control group. The neutrophil elastase concentration, myeloperoxidase activity, total white blood cell counts, white blood cell differential counts, platelet counts and haematocrit were assessed via standard laboratory methods. RESULTS Findings from this study revealed lower levels of myeloperoxidase in the malaria- infected cohort (p = 0.013) than in the malaria negative cohort. The neutrophil elastase levels were also lower in the malaria negative group (p = 0.042). The total white blood cells, platelet and neutrophil counts were lower (p = 0.046, 0.012 and 0.015, respectively) in the malaria infected group when compared to the controls. Conversely, lymphocyte counts were higher in the malaria-infected group (p = 0.003). No cases with high parasitaemia were encountered among the pregnant women infected with Plasmodium falciparum. CONCLUSION Malaria infection led to alterations in immune and haematological parameters in this group, with mild and moderate malaria parasitaemia in the study cohort. Although there were some significant differences, the assessed values remained mostly within the normal range. Further studies in a larger cohort assessing pregnant women infected with placental malaria and those with fatal outcomes are important to further investigate the role of NETs in malaria infection.
Collapse
Affiliation(s)
- Rebecca Chinyelu Chukwuanukwu
- Immunology Department, Faculty of Medical Laboratory Science, Nnamdi Azikiwe University, Awka, Nigeria.
- Department of Internal Medicine 3, Uniklinikum Erlangen, Erlangen and Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Chioma Esther Agu
- Immunology Department, Faculty of Medical Laboratory Science, Nnamdi Azikiwe University, Awka, Nigeria
| | - Alfred Ehiaghe
- Immunology Department, Faculty of Medical Laboratory Science, Nnamdi Azikiwe University, Awka, Nigeria
| | - Dorothy Ezeagwuna
- Department of Parasitology & Entomology, Faculty of Bioscience, Nnamdi Azikiwe University, Awka, Nigeria
| | - Martin Herrmann
- Department of Internal Medicine 3, Uniklinikum Erlangen, Erlangen and Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg, 68167, Germany
| | - Gerald Udigwe
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
2
|
Kyei-Baafour E, Kusi KA, Owusu-Yeboa E, Issahaque QA, Kumordjie S, Authur FKN, Dwomoh D, Singh SK, Dodoo D, Theisen M, Adu B. Wider antibody breadth against multiple Plasmodium falciparum antigens is associated with reduced risk of malaria in a transmission hotspot in southern Ghana. Int J Infect Dis 2025; 153:107804. [PMID: 39889952 DOI: 10.1016/j.ijid.2025.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/23/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025] Open
Abstract
OBJECTIVES Naturally acquired immunity to malaria results from repeated infection with Plasmodium parasites. However, identifying immune correlates of immunity against febrile malaria is quite challenging. Here we investigated antigenic targets of malaria protective antibodies in populations residing a malaria transmission hotspot in southern Ghana. METHOD We enrolled 973 children, aged 6 months to 12 years, in southern Ghana out of which 211 were infected at least once with Plasmodium falciparum in a 50-week longitudinal cohort study. Total IgG levels in baseline plasma samples were determined using indirect ELISA. RESULTS We found a significant association between higher IgG levels to MSP3 (adjusted P-value [aP] = 0.0002), GLURP-R2 (aP = 0.0026), MSP DBL2 (aP = 0.004) and N-MSP3 (aP = 0.002), and protection from febrile malaria. A negative association between higher antibody levels to MSP3, GMZ2, GLURP-R2 and MSPDBL2 and parasite density was also observed. Wider antibody breadth was associated with protection against febrile malaria and single, compared to multiple malaria episodes. CONCLUSIONS Specific antibody levels and breadth of responses against multiple P. falciparum surface antigens protect against febrile malaria, parasitaemia and multiple malaria episodes. This data supports the development of multivalent vaccines targeting P. falciparum surface antigens in high malaria endemic settings.
Collapse
Affiliation(s)
- Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Eunice Owusu-Yeboa
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Quratul-Ain Issahaque
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Selassie Kumordjie
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Fareed K N Authur
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Susheel Kumar Singh
- Biotherapeutic and Vaccine Research Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India; Centre for Medical Parasitology at Department of Immunology, and Microbiology and Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Dodoo
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Michael Theisen
- Centre for Medical Parasitology at Department of Immunology, and Microbiology and Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana.
| |
Collapse
|
3
|
Su Z, Li Q, Zhang Y, Liu T, Lv K, Feng A, Yang Y, Zhang Y, Wei Z, Sang X, Feng Y, Chen R, Jiang N, Chen Q. Ly6G + Neutrophils and Interleukin-17 Are Essential in Protection against Rodent Malaria Caused by Plasmodium berghei ANKA. RESEARCH (WASHINGTON, D.C.) 2024; 7:0559. [PMID: 39703777 PMCID: PMC11658117 DOI: 10.34133/research.0559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Neutrophils are essential in combating invading pathogens such as Plasmodium parasites, but the participation of their subpopulations and mechanisms in resistance to parasite infection are not fully understood. Our study identified a marked increase in Ly6G+ neutrophils in response to P. berghei ANKA infection. Depletion of these cells rendered mice more susceptible to infection. Elevated interleukin-17 (IL-17) levels, which increased the Ly6G+ neutrophil population, were also found to contribute to this protective effect. IL-17 depletion led to reduced neutrophil numbers and increased susceptibility. Furthermore, dihydroartemisinin (DHA) treatment enhanced neutrophil-mediated immune responses through up-regulation of CD18 and CXCR4 factors. These findings revealed key mechanisms of neutrophil and IL-17 interactions in malaria protection and highlighted DHA's potential to promote neutrophil function in combating malaria.
Collapse
Affiliation(s)
- Ziwei Su
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Tong Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Kunying Lv
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Anni Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Yixin Yang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Yanxin Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Zhiming Wei
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang 110866, China
| |
Collapse
|
4
|
Boyle MJ, Engwerda CR, Jagannathan P. The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat Rev Immunol 2024; 24:637-653. [PMID: 38862638 PMCID: PMC11688169 DOI: 10.1038/s41577-024-01041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.
Collapse
Affiliation(s)
- Michelle J Boyle
- Life Sciences Division, Burnet Institute, Melbourne, Victoria, Australia.
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Rosenkranz M, Nkumama IN, Ogwang R, Kraker S, Blickling M, Mwai K, Odera D, Tuju J, Fürle K, Frank R, Chepsat E, Kapulu MC, Study Team CS, Osier FH. Full-length MSP1 is a major target of protective immunity after controlled human malaria infection. Life Sci Alliance 2024; 7:e202301910. [PMID: 38803222 PMCID: PMC11106525 DOI: 10.26508/lsa.202301910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The merozoite surface protein 1 (MSP1) is the most abundant protein on the surface of the invasive merozoite stages of Plasmodium falciparum and has long been considered a key target of protective immunity. We used samples from a single controlled human malaria challenge study to test whether the full-length version of MSP1 (MSP1FL) induced antibodies that mediated Fc-IgG functional activity in five independent assays. We found that anti-MSP1FL antibodies induced complement fixation via C1q, monocyte-mediated phagocytosis, neutrophil respiratory burst, and natural killer cell degranulation as well as IFNγ production. Activity in each of these assays was strongly associated with protection. The breadth of MSP1-specific Fc-mediated effector functions was more strongly associated with protection than the individual measures and closely mirrored what we have previously reported using the same assays against merozoites. Our findings suggest that MSP1FL is an important target of functional antibodies that contribute to a protective immune response against malaria.
Collapse
Affiliation(s)
- Micha Rosenkranz
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Irene N Nkumama
- B Cell Immunology, German Cancer Research Centre, Heidelberg, Germany
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Sara Kraker
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marie Blickling
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Dennis Odera
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biotechnology and Biochemistry, Pwani University, Kilifi, Kenya
| | - Kristin Fürle
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Roland Frank
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Emily Chepsat
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Melissa C Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Chmi-Sika Study Team
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Faith Ha Osier
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
6
|
Nkumama IN, Ogwang R, Odera D, Musasia F, Mwai K, Nyamako L, Murungi L, Tuju J, Fürle K, Rosenkranz M, Kimathi R, Njuguna P, Hamaluba M, Kapulu MC, Frank R, Osier FHA. Breadth of Fc-mediated effector function correlates with clinical immunity following human malaria challenge. Immunity 2024; 57:1215-1224.e6. [PMID: 38788711 PMCID: PMC7616646 DOI: 10.1016/j.immuni.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Malaria is a life-threatening disease of global health importance, particularly in sub-Saharan Africa. The growth inhibition assay (GIA) is routinely used to evaluate, prioritize, and quantify the efficacy of malaria blood-stage vaccine candidates but does not reliably predict either naturally acquired or vaccine-induced protection. Controlled human malaria challenge studies in semi-immune volunteers provide an unparalleled opportunity to robustly identify mechanistic correlates of protection. We leveraged this platform to undertake a head-to-head comparison of seven functional antibody assays that are relevant to immunity against the erythrocytic merozoite stage of Plasmodium falciparum. Fc-mediated effector functions were strongly associated with protection from clinical symptoms of malaria and exponential parasite multiplication, while the gold standard GIA was not. The breadth of Fc-mediated effector function discriminated clinical immunity following the challenge. These findings present a shift in the understanding of the mechanisms that underpin immunity to malaria and have important implications for vaccine development.
Collapse
Affiliation(s)
- Irene N Nkumama
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany; Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; European Vaccine Initiative, Heidelberg, Germany
| | - Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Dennis Odera
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany; Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Fauzia Musasia
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Lydia Nyamako
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Linda Murungi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Department of Biotechnology and Biochemistry, Pwani University, Kilifi, Kenya
| | - Kristin Fürle
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Micha Rosenkranz
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Rinter Kimathi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Patricia Njuguna
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mainga Hamaluba
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Melissa C Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Roland Frank
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Faith H A Osier
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany; Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
7
|
Miura K. How to Accelerate Early Stage of Malaria Vaccine Development by Optimizing Functional Assays. Vaccines (Basel) 2024; 12:586. [PMID: 38932315 PMCID: PMC11209467 DOI: 10.3390/vaccines12060586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
While two Plasmodium falciparum circumsporozoite protein-based pre-erythrocytic vaccines (PEV), RTS,S and R21, have been approved by the WHO, no blood-stage vaccine (BSV) or transmission-blocking vaccine (TBV) has reached a phase 3 trial. One of the major obstacles that slows down malaria vaccine development is the shortage (or lack) of in vitro assays or animal models by which investigators can reasonably select the best vaccine formulation (e.g., antigen, adjuvant, or platform) and/or immunization strategy (e.g., interval of inoculation or route of immunization) before a human phase 2 trial. In the case of PEV, RTS,S and R21 have set a benchmark, and a new vaccine can be compared with (one of) the approved PEV directly in preclinical or early clinical studies. However, such an approach cannot be utilized for BSV or TBV development at this moment. The focus of this review is in vitro assays or in vivo models that can be used for P. falciparum BSV or TBV development, and I discuss important considerations during assay selection, standardization, qualification, validation, and interpretation of the assay results. Establishment of a robust assay/model with proper interpretation of the results is the one of key elements to accelerate future vaccine development.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
8
|
Uribe-Querol E, Rosales C. Neutrophils versus Protozoan Parasites: Plasmodium, Trichomonas, Leishmania, Trypanosoma, and Entameoba. Microorganisms 2024; 12:827. [PMID: 38674770 PMCID: PMC11051968 DOI: 10.3390/microorganisms12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophils are the most abundant polymorphonuclear granular leukocytes in human blood and are an essential part of the innate immune system. Neutrophils are efficient cells that eliminate pathogenic bacteria and fungi, but their role in dealing with protozoan parasitic infections remains controversial. At sites of protozoan parasite infections, a large number of infiltrating neutrophils is observed, suggesting that neutrophils are important cells for controlling the infection. Yet, in most cases, there is also a strong inflammatory response that can provoke tissue damage. Diseases like malaria, trichomoniasis, leishmaniasis, Chagas disease, and amoebiasis affect millions of people globally. In this review, we summarize these protozoan diseases and describe the novel view on how neutrophils are involved in protection from these parasites. Also, we present recent evidence that neutrophils play a double role in these infections participating both in control of the parasite and in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
9
|
Shukla R, Soni J, Kumar A, Pandey R. Uncovering the diversity of pathogenic invaders: insights into protozoa, fungi, and worm infections. Front Microbiol 2024; 15:1374438. [PMID: 38596382 PMCID: PMC11003270 DOI: 10.3389/fmicb.2024.1374438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Post COVID-19, there has been renewed interest in understanding the pathogens challenging the human health and evaluate our preparedness towards dealing with health challenges in future. In this endeavour, it is not only the bacteria and the viruses, but a greater community of pathogens. Such pathogenic microorganisms, include protozoa, fungi and worms, which establish a distinct variety of disease-causing agents with the capability to impact the host's well-being as well as the equity of ecosystem. This review summarises the peculiar characteristics and pathogenic mechanisms utilized by these disease-causing organisms. It features their role in causing infection in the concerned host and emphasizes the need for further research. Understanding the layers of pathogenesis encompassing the concerned infectious microbes will help expand targeted inferences with relation to the cause of the infection. This would strengthen and augment benefit to the host's health along with the maintenance of ecosystem network, exhibiting host-pathogen interaction cycle. This would be key to discover the layers underlying differential disease severities in response to similar/same pathogen infection.
Collapse
Affiliation(s)
- Richa Shukla
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Jyoti Soni
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Kumar
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Rathay V, Fürle K, Kiehl V, Ulmer A, Lanzer M, Thomson-Luque R. IgG Subclass Switch in Volunteers Repeatedly Immunized with the Full-Length Plasmodium falciparum Merozoite Surface Protein 1 (MSP1). Vaccines (Basel) 2024; 12:208. [PMID: 38400191 PMCID: PMC10893298 DOI: 10.3390/vaccines12020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are highly effective tools against infectious diseases and are also considered necessary in the fight against malaria. Vaccine-induced immunity is frequently mediated by antibodies. We have recently conducted a first-in-human clinical trial featuring SumayaVac-1, a malaria vaccine based on the recombinant, full-length merozoite surface protein 1 (MSP1FL) formulated with GLA-SE as an adjuvant. Vaccination with MSP1FL was safe and elicited sustainable IgG antibody titers that exceeded those observed in semi-immune populations from Africa. Moreover, IgG antibodies stimulated various Fc-mediated effector mechanisms associated with protection against malaria. However, these functionalities gradually waned. Here, we show that the initial two doses of SumayaVac-1 primarily induced the cytophilic subclasses IgG1 and IgG3. Unexpectedly, a shift in the IgG subclass composition occurred following the third and fourth vaccinations. Specifically, there was a progressive transition to IgG4 antibodies, which displayed a reduced capacity to engage in Fc-mediated effector functions and also exhibited increased avidity. In summary, our analysis of antibody responses to MSP1FL vaccination unveils a temporal shift towards noninflammatory IgG4 antibodies. These findings underscore the importance of considering the impact of IgG subclass composition on vaccine-induced immunity, particularly concerning Fc-mediated effector functions. This knowledge is pivotal in guiding the design of optimal vaccination strategies against malaria, informing decision making for future endeavors in this critical field.
Collapse
Affiliation(s)
- Veronika Rathay
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Kristin Fürle
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Viktoria Kiehl
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Anne Ulmer
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Lanzer
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Richard Thomson-Luque
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
- Sumaya-Biotech GmbH & Co. KG, 69115 Heidelberg, Germany
| |
Collapse
|
11
|
Mutemi DD, Tuju J, Ogwang R, Nyamako L, Wambui KM, Cruz IR, Villner P, Yman V, Kinyanjui SM, Rooth I, Ngasala B, Färnert A, Osier FHA. Antibody-Dependent Respiratory Burst against Plasmodium falciparum Merozoites in Individuals Living in an Area with Declining Malaria Transmission. Vaccines (Basel) 2024; 12:203. [PMID: 38400186 PMCID: PMC10892224 DOI: 10.3390/vaccines12020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Malaria transmission intensity affects the development of naturally acquired immunity to malaria. An absolute correlate measure of protection against malaria is lacking. However, antibody-mediated functions against Plasmodium falciparum correlate with protection against malaria. In children, antibody-mediated functions against P. falciparum decline with reduced exposure. It is unclear whether adults maintain antibody-mediated functions as malaria transmission declines. This study assessed antibody-dependent respiratory burst (ADRB) in individuals from an area with declining malaria transmission. In an age-matched analysis, we compare ADRB activity during high versus low malaria transmission periods. Age significantly predicted higher ADRB activity in the high (p < 0.001) and low (p < 0.001) malaria transmission periods. ADRB activity was higher during the high compared to the low malaria transmission period in older children and adults. Only older adults during the high malaria transmission period had their median ADRB activity above the ADRB cut-off. Ongoing P. falciparum infection influenced ADRB activity during the low (p = 0.01) but not the high (p = 0.29) malaria transmission period. These findings propose that naturally acquired immunity to P. falciparum is affected in children and adults as malaria transmission declines, implying that vaccines will be necessary to induce and maintain protection against malaria.
Collapse
Affiliation(s)
- Doreen D. Mutemi
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam 11102, Tanzania
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - Lydia Nyamako
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - Kennedy M. Wambui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Ivette R. Cruz
- Division of Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Pär Villner
- Division of Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Infectious Diseases, Södersjukhuset, 118 61 Stockholm, Sweden
| | - Samson M. Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
- Pwani University Bioscience Research Centre, Pwani University, Kilifi 80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
- School of Business Studies, Strathmore University, Nairobi 0200, Kenya
| | - Ingegerd Rooth
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Nyamisati Malaria Research Group, Pwani 61621, Tanzania
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam 11102, Tanzania
- Department of Women’s and Children’s Health, International Maternal and Child Health, Uppsala University, 751 05 Uppsala, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Faith H. A. Osier
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
- Centre of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
12
|
Thomson-Luque R, Stabler TC, Fürle K, Silva JC, Daubenberger C. Plasmodium falciparum merozoite surface protein 1 as asexual blood stage malaria vaccine candidate. Expert Rev Vaccines 2024; 23:160-173. [PMID: 38100310 DOI: 10.1080/14760584.2023.2295430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Malaria represents a public health challenge in tropical and subtropical regions, and currently deployed control strategies are likely insufficient to drive elimination of malaria. Development and improvement of malaria vaccines might be key to reduce disease burden. Vaccines targeting asexual blood stages of the parasite have shown limited efficacy when studied in human trials conducted over the past decades. AREAS COVERED Vaccine candidates based on the merozoite surface protein 1 (MSP1) were initially envisioned as one of the most promising approaches to provide immune protection against asexual blood-stage malaria. Successful immunization studies in monkey involved the use of the full-length MSP1 (MSP1FL) as vaccine construct. Vaccines using MSP1FL for immunization have the potential benefit of including numerous conserved B-cell and T-cell epitopes. This could result in improved parasite strain-transcending, protective immunity in the field. We review outcomes of clinical trials that utilized a variety of MSP1 constructs and formulations, including MSP1FL, either alone or in combination with other antigens, in both animal models and humans. EXPERT OPINION Novel approaches to analyze breadth and magnitude of effector functions of MSP1-targeting antibodies in volunteers undergoing experimental vaccination and controlled human malaria infection will help to define correlates of protective immunity.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Centre for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Sumaya-Biotech GmbH & Co. KG Heidelberg, Germany
| | - Thomas C Stabler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Basel Basel, Switzerland
- Swiss Tropical and Public Health Institute Allschwil, Switzerland
| | - Kristin Fürle
- Centre for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (GHTM IHMT, UNL), Lisbon, Portugal
| | - Claudia Daubenberger
- University of Basel Basel, Switzerland
- Swiss Tropical and Public Health Institute Allschwil, Switzerland
| |
Collapse
|
13
|
Rajneesh, Tiwari R, Singh VK, Kumar A, Gupta RP, Singh AK, Gautam V, Kumar R. Advancements and Challenges in Developing Malaria Vaccines: Targeting Multiple Stages of the Parasite Life Cycle. ACS Infect Dis 2023; 9:1795-1814. [PMID: 37708228 DOI: 10.1021/acsinfecdis.3c00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Malaria, caused by Plasmodium species, remains a major global health concern, causing millions of deaths annually. While the introduction of the RTS,S vaccine has shown promise, there is a pressing need for more effective vaccines due to the emergence of drug-resistant parasites and insecticide-resistant vectors. However, the complex life cycle and genetic diversity of the parasite, technical obstacles, limited funding, and the impact of the 2019 pandemic have hindered progress in malaria vaccine development. This review focuses on advancements in malaria vaccine development, particularly the ongoing clinical trials targeting antigens from different stages of the Plasmodium life cycle. Additionally, we discuss the rationale, strategies, and challenges associated with vaccine design, aiming to enhance the immune response and protective efficacy of vaccine candidates. A cost-effective and multistage vaccine could hold the key to controlling and eradicating malaria.
Collapse
Affiliation(s)
- Rajneesh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Tiwari
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vishal K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rohit P Gupta
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Applied Microbiology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh K Singh
- Faculty of Dental Science, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
14
|
Rosenkranz M, Fürle K, Hibbert J, Ulmer A, Ali A, Giese T, Blank A, Haefeli WE, Böhnlein E, Lanzer M, Thomson-Luque R. Multifunctional IgG/IgM antibodies and cellular cytotoxicity are elicited by the full-length MSP1 SumayaVac-1 malaria vaccine. NPJ Vaccines 2023; 8:112. [PMID: 37558673 PMCID: PMC10412566 DOI: 10.1038/s41541-023-00701-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023] Open
Abstract
Radical control of malaria likely requires a vaccine that targets both the asymptomatic liver stages and the disease-causing blood stages of the human malaria parasite Plasmodium falciparum. While substantial progress has been made towards liver stage vaccines, the development of a blood stage vaccine is lagging behind. We have recently conducted a first-in-human clinical trial to evaluate the safety and immunogenicity of the recombinant, full-length merozoite surface protein 1 (MSP1FL) formulated with GLA-SE as adjuvant. Here, we show that the vaccine, termed SumayaVac-1, elicited both a humoral and cellular immune response as well as a recall T cell memory. The induced IgG and IgM antibodies were able to stimulate various Fc-mediated effector mechanisms associated with protection against malaria, including phagocytosis, release of reactive oxygen species, production of IFN-γ as well as complement activation and fixation. The multifunctional activity of the humoral immune response remained for at least 6 months after vaccination and was comparable to that of naturally acquired anti-MSP1 antibodies from semi-immune adults from Kenya. We further present evidence of SumayaVac-1 eliciting a recallable cellular cytotoxicity by IFN-γ producing CD8+ T cells. Our study revitalizes MSP1FL as a relevant blood stage vaccine candidate and warrants further evaluation of SumayaVac-1 in a phase II efficacy trial.
Collapse
Affiliation(s)
- Micha Rosenkranz
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristin Fürle
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Hibbert
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne Ulmer
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arin Ali
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Giese
- Institute for Immunology, Heidelberg University Hospital and German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Antje Blank
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Walter E Haefeli
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Michael Lanzer
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard Thomson-Luque
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
- Sumaya-Biotech GmbH & Co. KG, Heidelberg, Germany.
| |
Collapse
|
15
|
Ofori EA, Garcia-Senosiain A, Naghizadeh M, Kana IH, Dziegiel MH, Adu B, Singh S, Theisen M. Human blood neutrophils generate ROS through FcγR-signaling to mediate protection against febrile P. falciparum malaria. Commun Biol 2023; 6:743. [PMID: 37463969 PMCID: PMC10354059 DOI: 10.1038/s42003-023-05118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Blood phagocytes, such as neutrophils and monocytes, generate reactive oxygen species (ROS) as a part of host defense response against infections. We investigated the mechanism of Fcγ-Receptor (FcγR) mediated ROS production in these cells to understand how they contribute to anti-malarial immunity. Plasmodium falciparum merozoites opsonized with naturally occurring IgG triggered both intracellular and extracellular ROS generation in blood phagocytes, with neutrophils being the main contributors. Using specific inhibitors, we show that both FcγRIIIB and FcγRIIA acted synergistically to induce ROS production in neutrophils, and that NADPH oxidase 2 and the PI3K intracellular signal transduction pathway were involved in this process. High levels of neutrophil ROS were also associated with protection against febrile malaria in two geographically diverse malaria endemic regions from Ghana and India, stressing the importance of the cooperation between anti-malarial IgG and neutrophils in triggering ROS-mediated parasite killing as a mechanism for naturally acquired immunity against malaria.
Collapse
Affiliation(s)
- Ebenezer Addo Ofori
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Asier Garcia-Senosiain
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Naghizadeh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hanefeld Dziegiel
- Blood Bank KI 2034, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bright Adu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Subhash Singh
- ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India.
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Odera DO, Tuju J, Mwai K, Nkumama IN, Fürle K, Chege T, Kimathi R, Diehl S, Musasia FK, Rosenkranz M, Njuguna P, Hamaluba M, Kapulu MC, Frank R, Osier FHA. Anti-merozoite antibodies induce natural killer cell effector function and are associated with immunity against malaria. Sci Transl Med 2023; 15:eabn5993. [PMID: 36753561 PMCID: PMC7616656 DOI: 10.1126/scitranslmed.abn5993] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Natural killer (NK) cells are potent immune effectors that can be activated via antibody-mediated Fc receptor engagement. Using multiparameter flow cytometry, we found that NK cells degranulate and release IFN-γ upon stimulation with antibody-opsonized Plasmodium falciparum merozoites. Antibody-dependent NK (Ab-NK) activity was largely strain transcending and enhanced invasion inhibition into erythrocytes. Ab-NK was associated with the successful control of parasitemia after experimental malaria challenge in African adults. In an independent cohort study in children, Ab-NK increased with age, was boosted by concurrent P. falciparum infections, and was associated with a lower risk of clinical episodes of malaria. Nine of the 14 vaccine candidates tested induced Ab-NK, including some less well-characterized antigens: P41, P113, MSP11, RHOPH3, and Pf_11363200. These data highlight an important role of Ab-NK activity in immunity against malaria and provide a potential mechanism for evaluating vaccine candidates.
Collapse
Affiliation(s)
- Dennis O. Odera
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Irene N. Nkumama
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristin Fürle
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy Chege
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Rinter Kimathi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Stefan Diehl
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Fauzia K. Musasia
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Micha Rosenkranz
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Patricia Njuguna
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mainga Hamaluba
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Melissa C. Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Roland Frank
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Faith H. A. Osier
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Life Sciences, Imperial College London, UK
| |
Collapse
|
18
|
Niaré K, Chege T, Rosenkranz M, Mwai K, Saßmannshausen Z, Odera D, Nyamako L, Tuju J, Alfred T, Waitumbi JN, Ogutu B, Sirima SB, Awandare G, Kouriba B, Rayner JC, Osier FHA. Characterization of a novel Plasmodium falciparum merozoite surface antigen and potential vaccine target. Front Immunol 2023; 14:1156806. [PMID: 37122725 PMCID: PMC10140549 DOI: 10.3389/fimmu.2023.1156806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Detailed analyses of genetic diversity, antigenic variability, protein localization and immunological responses are vital for the prioritization of novel malaria vaccine candidates. Comprehensive approaches to determine the most appropriate antigen variants needed to provide broad protection are challenging and consequently rarely undertaken. Methods Here, we characterized PF3D7_1136200, which we named Asparagine-Rich Merozoite Antigen (ARMA) based on the analysis of its sequence, localization and immunogenicity. We analyzed IgG and IgM responses against the common variants of ARMA in independent prospective cohort studies in Burkina Faso (N = 228), Kenya (N = 252) and Mali (N = 195) using a custom microarray, Div-KILCHIP. Results We found a marked population structure between parasites from Africa and Asia. African isolates shared 34 common haplotypes, including a dominant pair although the overall selection pressure was directional (Tajima's D = -2.57; Fu and Li's F = -9.69; P < 0.02). ARMA was localized to the merozoite surface, IgG antibodies induced Fc-mediated degranulation of natural killer cells and strongly inhibited parasite growth in vitro. We found profound serological diversity, but IgG and IgM responses were highly correlated and a hierarchical clustering analysis identified only three major serogroups. Protective IgG and IgM antibodies appeared to target both cross-reactive and distinct epitopes across variants. However, combinations of IgG and IgM antibodies against selected variants were associated with complete protection against clinical episodes of malaria. Discussion Our systematic strategy exploits genomic data to deduce the handful of antigen variants with the strongest potential to induce broad protection and may be broadly applicable to other complex pathogens for which effective vaccines remain elusive.
Collapse
Affiliation(s)
- Karamoko Niaré
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
- Malaria Research and Training Centre (MRTC), Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
- *Correspondence: Karamoko Niaré, ; Faith H. A. Osier,
| | - Timothy Chege
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
| | - Micha Rosenkranz
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kennedy Mwai
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Zoe Saßmannshausen
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dennis Odera
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lydia Nyamako
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
| | - James Tuju
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
| | - Tiono Alfred
- Public Health Department, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - John N. Waitumbi
- Basic Science Laboratory, US Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - Bernhards Ogutu
- Kenya Medical Research Institute, Centre for Clinical Research, Nairobi, Kenya
| | | | - Gordon Awandare
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Bourema Kouriba
- Malaria Research and Training Centre (MRTC), Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Centre d’Infectiologie Charles Mérieux-Mali, Bamako, Mali
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Faith H. A. Osier
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Centre for Geographic Medicine Research—Coast, Kilifi, Kenya
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Karamoko Niaré, ; Faith H. A. Osier,
| |
Collapse
|
19
|
Kyei-Baafour E, Kusi KA, Arthur FK, Tiendrebeogo RW, Owusu-Yeboa E, Singh SK, Friedrich S, Gerds TA, Dodoo D, Theisen M, Adu B. High opsonic phagocytosis activity and growth inhibition of merozoites are associated with RON4 antibody levels and protect against febrile malaria in Ghanaian children. Front Immunol 2023; 14:1161301. [PMID: 37197657 PMCID: PMC10183564 DOI: 10.3389/fimmu.2023.1161301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Background Naturally acquired immunity to malaria may involve different immune mechanisms working in concert, however, their respective contributions and potential antigenic targets have not been clearly established. Here, we assessed the roles of opsonic phagocytosis and antibody-mediated merozoite growth inhibition in Plasmodium falciparum (P. falciparum) infection outcomes in Ghanaian children. Methods The levels of merozoite opsonic phagocytosis, growth inhibition activities and six P. falciparum antigen-specific IgG of plasma samples from children (n=238, aged 0.5 to 13 years) were measured at baseline prior to the malaria seasons in southern Ghana. The children were then actively and passively followed up for febrile malaria and asymptomatic P. falciparum infection detection in a 50-week longitudinal cohort. P. falciparum infection outcome was modelled as a function of the measured immune parameters while accounting for important demographic factors. Results High plasma activity of opsonic phagocytosis [adjusted odds ratio (aOR)= 0.16; 95%CI= 0.05 - 0.50, p = 0.002], and growth inhibition (aOR=0.15; 95% CI = 0.04-0.47; p = 0.001) were individually associated with protection against febrile malaria. There was no evidence of correlation (b= 0.13; 95% CI= -0.04-0.30; p=0.14) between the two assays. IgG antibodies against MSPDBL1 correlated with opsonic phagocytosis (OP) while IgG against PfRh2a correlated with growth inhibition. Notably, IgG antibodies against RON4 correlated with both assays. Conclusion Opsonic phagocytosis and growth inhibition are protective immune mechanisms against malaria that may be acting independently to confer overall protection. Vaccines incorporating RON4 may benefit from both immune mechanisms.
Collapse
Affiliation(s)
- Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon Accra, Ghana
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon Accra, Ghana
| | - Fareed K.N. Arthur
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Regis W. Tiendrebeogo
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Eunice Owusu-Yeboa
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon Accra, Ghana
| | - Susheel K. Singh
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Sarah Friedrich
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Medical Statistics, University Medical Center Goettingen, Goettingen, Germany
| | - Thomas A. Gerds
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Dodoo
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon Accra, Ghana
| | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon Accra, Ghana
- *Correspondence: Bright Adu,
| |
Collapse
|
20
|
Varela ELP, Gomes ARQ, da Silva Barbosa dos Santos A, de Carvalho EP, Vale VV, Percário S. Potential Benefits of Lycopene Consumption: Rationale for Using It as an Adjuvant Treatment for Malaria Patients and in Several Diseases. Nutrients 2022; 14:5303. [PMID: 36558462 PMCID: PMC9787606 DOI: 10.3390/nu14245303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Malaria is a disease that affects thousands of people around the world every year. Its pathogenesis is associated with the production of reactive oxygen and nitrogen species (RONS) and lower levels of micronutrients and antioxidants. Patients under drug treatment have high levels of oxidative stress biomarkers in the body tissues, which limits the use of these drugs. Therefore, several studies have suggested that RONS inhibition may represent an adjuvant therapeutic strategy in the treatment of these patients by increasing the antioxidant capacity of the host. In this sense, supplementation with antioxidant compounds such as zinc, selenium, and vitamins A, C, and E has been suggested as part of the treatment. Among dietary antioxidants, lycopene is the most powerful antioxidant among the main carotenoids. This review aimed to describe the main mechanisms inducing oxidative stress during malaria, highlighting the production of RONS as a defense mechanism against the infection induced by the ischemia-reperfusion syndrome, the metabolism of the parasite, and the metabolism of antimalarial drugs. Furthermore, the effects of lycopene on several diseases in which oxidative stress is implicated as a cause are outlined, providing information about its mechanism of action, and providing an evidence-based justification for its supplementation in malaria.
Collapse
Affiliation(s)
- Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Antônio Rafael Quadros Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Aline da Silva Barbosa dos Santos
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Eliete Pereira de Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Valdicley Vieira Vale
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
21
|
Aguilar-Castro J, Cervantes-Candelas LA, Buendía-González FO, Fernández-Rivera O, Nolasco-Pérez TDJ, López-Padilla MS, Chavira-Ramírez DR, Cervantes-Sandoval A, Legorreta-Herrera M. Testosterone induces sexual dimorphism during infection with Plasmodium berghei ANKA. Front Cell Infect Microbiol 2022; 12:968325. [PMID: 36237427 PMCID: PMC9551224 DOI: 10.3389/fcimb.2022.968325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria is the most lethal parasitic disease worldwide; men exhibit higher mortality and more severe symptomatology than women; however, in most studies of immune response in malaria, sex is not considered a variable. Sex hormones 17β-oestradiol and testosterone are responsible for the main physiological differences between sexes. When interacting with their receptors on different immune cells, they modify the expression of genes that modulate cell proliferation, differentiation, and synthesis of cytokines. The immunosuppressive activity of testosterone is well accepted; however, its participation in the sexual dimorphism of the immune response to malaria has not been studied. In this work, we analysed whether altering the concentration of testosterone, through increasing the concentration of this hormone for exogenous administration for three weeks, or gonadectomy before infection with Plasmodium berghei ANKA affects different cells of the immune response necessary for parasite clearance. We also assessed the concentration of pro-and anti-inflammatory cytokines in male and female CBA/Ca mice infected or not with the parasite. Our results show that testosterone changes affect females more than males, resulting in sex-associated patterns. Testosterone administration increased parasitaemia in intact males while reducing it in intact females leading to a dimorphic pattern. In addition, gonadectomy increased parasitaemia in both sexes. Moreover, testosterone administration prevented both weight loss caused by the infection in females and hypothermia in gonadectomized mice of both sexes. Boosting testosterone concentration increased CD3+ and CD8+ populations but decreased the B220+ cells exclusively in females. Additionally, testosterone reduced IFN-γ concentration and increased IL-6 levels only in females, while in males, testosterone increased the number of NK cells. Finally, gonadectomy decreased TNF-α concentration in both sexes. Our results demonstrate that testosterone induces different patterns depending on sex and testosterone concentration. The results of this work contribute to understanding the impact of modifying testosterone concentration on the immune response specific against Plasmodium and the participation of this hormone in sexual dimorphism in malaria.
Collapse
Affiliation(s)
- Jesús Aguilar-Castro
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Antonio Cervantes-Candelas
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Fidel Orlando Buendía-González
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Omar Fernández-Rivera
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Teresita de Jesús Nolasco-Pérez
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Monserrat Sofía López-Padilla
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - David Roberto Chavira-Ramírez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Armando Cervantes-Sandoval
- Laboratorio de Aplicaciones Computacionales, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México, Mexico
| | - Martha Legorreta-Herrera
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Martha Legorreta-Herrera,
| |
Collapse
|
22
|
Mansourou A, Joos C, Niass O, Diouf B, Tall A, Perraut R, Niang M, Toure-Balde A. Improvement of the antibody-dependent respiratory burst assay for assessing protective immune responses to malaria. Open Biol 2022; 12:210288. [PMID: 35291880 PMCID: PMC8924748 DOI: 10.1098/rsob.210288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The antibody-dependent respiratory burst (ADRB) assay is a sensitive isoluminol-based chemiluminescence (CL) functional assay designed to assess the capacity of opsonizing antibodies against merozoites to induce neutrophil respiratory burst. ADRB was shown to measure protective immunity against malaria in endemic areas, but the assay needed further improvement to ensure better sensitivity and reproducibility. Here, we adjusted parameters such as the freezing-thawing procedure of merozoites, merozoites's concentration and the buffer solution's pH, and we used the improved assay to measure ADRB activity of 207 sera from 97 and 110 individuals living, respectively, in Dielmo and Ndiop villages with differing malaria endemicity. The improvement led to increased CL intensity and assay sensitivity, and a higher reproducibility. In both areas, ADRB activity correlated with malaria endemicity and individual's age discriminated groups with and without clinical malaria episodes, and significantly correlated with in vivo clinical protection from Plasmodium falciparum malaria. Our results demonstrate that the improved ADRB assay can be valuably used to assess acquired immunity during monitoring by control programmes and/or clinical trials.
Collapse
Affiliation(s)
| | - Charlotte Joos
- Unité Immunologie, 36 Avenue Pasteur, 220 Dakar, Sénégal
| | - Oumy Niass
- Unité Immunologie, 36 Avenue Pasteur, 220 Dakar, Sénégal
| | - Babacar Diouf
- Unité Immunologie, 36 Avenue Pasteur, 220 Dakar, Sénégal
| | - Adama Tall
- Unité Epidémiologie, 36 Avenue Pasteur, 220 Dakar, Sénégal
| | - Ronald Perraut
- Unité Immunologie, 36 Avenue Pasteur, 220 Dakar, Sénégal
| | - Makhtar Niang
- Unité Immunologie, 36 Avenue Pasteur, 220 Dakar, Sénégal
| | | |
Collapse
|
23
|
Kapulu MC, Kimani D, Njuguna P, Hamaluba M, Otieno E, Kimathi R, Tuju J, Sim BKL, Abdi AI, Abebe Y, Bejon P, Billingsley PF, Bull PC, de Laurent Z, Hoffman SL, James ER, Kariuki S, Kinyanjui S, Kivisi C, Makale J, Marsh K, Mohammed KS, Mosobo M, Musembi J, Musyoki J, Muthui M, Mwacharo J, Mwai K, Ngoi JM, Ngoto O, Nkumama I, Ndungu F, Odera D, Ogutu B, Olewe F, Omuoyo D, Ong’echa J, Osier F, Richie TL, Shangala J, Wambua J, Williams TN. Controlled human malaria infection (CHMI) outcomes in Kenyan adults is associated with prior history of malaria exposure and anti-schizont antibody response. BMC Infect Dis 2022; 22:86. [PMID: 35073864 PMCID: PMC8785382 DOI: 10.1186/s12879-022-07044-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/11/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Individuals living in endemic areas acquire immunity to malaria following repeated parasite exposure. We sought to assess the controlled human malaria infection (CHMI) model as a means of studying naturally acquired immunity in Kenyan adults with varying malaria exposure.
Methods
We analysed data from 142 Kenyan adults from three locations representing distinct areas of malaria endemicity (Ahero, Kilifi North and Kilifi South) enrolled in a CHMI study with Plasmodium falciparum sporozoites NF54 strain (Sanaria® PfSPZ Challenge). To identify the in vivo outcomes that most closely reflected naturally acquired immunity, parameters based on qPCR measurements were compared with anti-schizont antibody levels and residence as proxy markers of naturally acquired immunity.
Results
Time to endpoint correlated more closely with anti-schizont antibodies and location of residence than other parasite parameters such as growth rate or mean parasite density. Compared to observational field-based studies in children where 0.8% of the variability in malaria outcome was observed to be explained by anti-schizont antibodies, in the CHMI model the dichotomized anti-schizont antibodies explained 17% of the variability.
Conclusions
The CHMI model is highly effective in studying markers of naturally acquired immunity to malaria.
Trial registration Clinicaltrials.gov number NCT02739763. Registered 15 April 2016
Collapse
|
24
|
O'Flaherty K, Roe M, Fowkes FJ. The role of naturally acquired antimalarial antibodies in subclinical
Plasmodium
spp. infection. J Leukoc Biol 2022; 111:1097-1105. [PMID: 35060185 PMCID: PMC9303632 DOI: 10.1002/jlb.5mr1021-537r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Katherine O'Flaherty
- Disease Elimination Program Burnet Institute for Medical Research and Public Health Melbourne Australia
| | - Merryn Roe
- Disease Elimination Program Burnet Institute for Medical Research and Public Health Melbourne Australia
- School of Public Health and Preventive Medicine Monash University Melbourne Australia
| | - Freya J.I. Fowkes
- Disease Elimination Program Burnet Institute for Medical Research and Public Health Melbourne Australia
- School of Public Health and Preventive Medicine Monash University Melbourne Australia
- Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health, The University of Melbourne Melbourne Australia
- Department of Infectious Disease Monash University Melbourne Australia
| |
Collapse
|
25
|
Mandala WL, Harawa V, Dzinjalamala F, Tembo D. The role of different components of the immune system against Plasmodium falciparum malaria: Possible contribution towards malaria vaccine development. Mol Biochem Parasitol 2021; 246:111425. [PMID: 34666102 PMCID: PMC8655617 DOI: 10.1016/j.molbiopara.2021.111425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
Plasmodium falciparum malaria still remains a major global public health challenge with over 220 million new cases and well over 400,000 deaths annually. Most of the deaths occur in sub-Saharan Africa which bears 90 % of the malaria cases. Such high P. falciparum malaria-related morbidity and mortality rates pose a huge burden on the health and economic wellbeing of the countries affected. Lately, substantial gains have been made in reducing malaria morbidity and mortality through intense malaria control initiatives such as use of effective antimalarials, intensive distribution and use of insecticide-treated nets (ITNs), and implementation of massive indoor residual spraying (IRS) campaigns. However, these gains are being threatened by widespread resistance of the parasite to antimalarials, and the vector to insecticides. Over the years the use of vaccines has proven to be the most reliable, cost-effective and efficient method for controlling the burden and spread of many infectious diseases, especially in resource poor settings with limited public health infrastructure. Nonetheless, this had not been the case with malaria until the most promising malaria vaccine candidate, RTS,S/AS01, was approved for pilot implementation programme in three African countries in 2015. This was regarded as the most important breakthrough in the fight against malaria. However, RTS,S/AS01 has been found to have some limitations, the main ones being low efficacy in certain age groups, poor immunogenicity and need for almost three boosters to attain a reasonable efficacy. Thus, the search for a more robust and effective malaria vaccine still continues and a better understanding of naturally acquired immune responses to the various stages, including the transmissible stages of the parasite, could be crucial in rational vaccine design. This review therefore compiles what is currently known about the basic biology of P. falciparum and the natural malaria immune response against malaria and progress made towards vaccine development.
Collapse
Affiliation(s)
- Wilson L Mandala
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi; Malawi Liverpool Wellcome Trust, Blantyre, Malawi.
| | | | - Fraction Dzinjalamala
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | | |
Collapse
|
26
|
Opi DH, Kurtovic L, Chan JA, Horton JL, Feng G, Beeson JG. Multi-functional antibody profiling for malaria vaccine development and evaluation. Expert Rev Vaccines 2021; 20:1257-1272. [PMID: 34530671 DOI: 10.1080/14760584.2021.1981864] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A vaccine would greatly accelerate current global efforts toward malaria elimination. While a partially efficacious vaccine has been achieved for Plasmodium falciparum, a major bottleneck in developing highly efficacious vaccines is a lack of reliable correlates of protection, and the limited application of assays that quantify functional immune responses to evaluate and down-select vaccine candidates in pre-clinical studies and clinical trials. AREAS COVERED In this review, we describe the important role of antibodies in immunity against malaria and detail the nature and functional activities of antibodies against the malaria-causing parasite. We highlight the growing understanding of antibody effector functions against malaria and in vitro assays to measure these functional antibody responses. We discuss the application of these assays to quantify antibody functions in vaccine development and evaluation. EXPERT OPINION It is becoming increasingly clear that multiple antibody effector functions are involved in immunity to malaria. Therefore, we propose that evaluating vaccine candidates needs to move beyond individual assays or measuring IgG magnitude alone. Instead, vaccine evaluation should incorporate the full breadth of antibody response types and harness a wider range of assays measuring functional antibody responses. We propose a 3-tier approach to implementing assays to inform vaccine evaluation.
Collapse
Affiliation(s)
- D Herbert Opi
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Jo-Anne Chan
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Jessica L Horton
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Gaoqian Feng
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
27
|
Tan ZC, Murphy MC, Alpay HS, Taylor SD, Meyer AS. Tensor-structured decomposition improves systems serology analysis. Mol Syst Biol 2021; 17:e10243. [PMID: 34487431 PMCID: PMC8420856 DOI: 10.15252/msb.202110243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/04/2023] Open
Abstract
Systems serology provides a broad view of humoral immunity by profiling both the antigen-binding and Fc properties of antibodies. These studies contain structured biophysical profiling across disease-relevant antigen targets, alongside additional measurements made for single antigens or in an antigen-generic manner. Identifying patterns in these measurements helps guide vaccine and therapeutic antibody development, improve our understanding of diseases, and discover conserved regulatory mechanisms. Here, we report that coupled matrix-tensor factorization (CMTF) can reduce these data into consistent patterns by recognizing the intrinsic structure of these data. We use measurements from two previous studies of HIV- and SARS-CoV-2-infected subjects as examples. CMTF outperforms standard methods like principal components analysis in the extent of data reduction while maintaining equivalent prediction of immune functional responses and disease status. Under CMTF, model interpretation improves through effective data reduction, separation of the Fc and antigen-binding effects, and recognition of consistent patterns across individual measurements. Data reduction also helps make prediction models more replicable. Therefore, we propose that CMTF is an effective general strategy for data exploration in systems serology.
Collapse
Affiliation(s)
- Zhixin Cyrillus Tan
- Bioinformatics Interdepartmental ProgramUniversity of California, Los AngelesLos AngelesCAUSA
| | - Madeleine C Murphy
- Computational and Systems BiologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Hakan S Alpay
- Department of Computer ScienceUniversity of California, Los AngelesLos AngelesCAUSA
| | - Scott D Taylor
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCAUSA
| | - Aaron S Meyer
- Bioinformatics Interdepartmental ProgramUniversity of California, Los AngelesLos AngelesCAUSA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCAUSA
- Jonsson Comprehensive Cancer CenterUniversity of California, Los AngelesLos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCAUSA
| |
Collapse
|
28
|
Neutrophils dominate in opsonic phagocytosis of P. falciparum blood-stage merozoites and protect against febrile malaria. Commun Biol 2021; 4:984. [PMID: 34413459 PMCID: PMC8376957 DOI: 10.1038/s42003-021-02511-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 12/29/2022] Open
Abstract
Antibody-mediated opsonic phagocytosis (OP) of Plasmodium falciparum blood-stage merozoites has been associated with protection against malaria. However, the precise contribution of different peripheral blood phagocytes in the OP mechanism remains unknown. Here, we developed an in vitro OP assay using peripheral blood leukocytes that allowed us to quantify the contribution of each phagocytic cell type in the OP of merozoites. We found that CD14 + +CD16- monocytes were the dominant phagocytic cells at very low antibody levels and Fc gamma receptor (FcγR) IIA plays a key role. At higher antibody levels however, neutrophils were the main phagocytes in the OP of merozoites with FcγRIIIB acting synergistically with FcγRIIA in the process. We found that OP activity by neutrophils was strongly associated with protection against febrile malaria in longitudinal cohort studies performed in Ghana and India. Our results demonstrate that peripheral blood neutrophils are the main phagocytes of P. falciparum blood-stage merozoites.
Collapse
|
29
|
Chua CLL, Ng IMJ, Yap BJM, Teo A. Factors influencing phagocytosis of malaria parasites: the story so far. Malar J 2021; 20:319. [PMID: 34271941 PMCID: PMC8284020 DOI: 10.1186/s12936-021-03849-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
There are seven known species of Plasmodium spp. that can infect humans. The human host can mount a complex network of immunological responses to fight infection and one of these immune functions is phagocytosis. Effective and timely phagocytosis of parasites, accompanied by the activation of a regulated inflammatory response, is beneficial for parasite clearance. Functional studies have identified specific opsonins, particularly antibodies and distinct phagocyte sub-populations that are associated with clinical protection against malaria. In addition, cellular and molecular studies have enhanced the understanding of the immunological pathways and outcomes following phagocytosis of malaria parasites. In this review, an integrated view of the factors that can affect phagocytosis of infected erythrocytes and parasite components, the immunological consequences and their association with clinical protection against Plasmodium spp. infection is provided. Several red blood cell disorders and co-infections, and drugs that can influence phagocytic capability during malaria are also discussed. It is hoped that an enhanced understanding of this immunological process can benefit the design of new therapeutics and vaccines to combat this infectious disease.
Collapse
Affiliation(s)
| | - Ida May Jen Ng
- School of Biosciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Bryan Ju Min Yap
- School of Biosciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Department of Medicine, The Doherty Institute, University of Melbourne, Victoria, Australia.
| |
Collapse
|
30
|
Minassian AM, Silk SE, Barrett JR, Nielsen CM, Miura K, Diouf A, Loos C, Fallon JK, Michell AR, White MT, Edwards NJ, Poulton ID, Mitton CH, Payne RO, Marks M, Maxwell-Scott H, Querol-Rubiera A, Bisnauthsing K, Batra R, Ogrina T, Brendish NJ, Themistocleous Y, Rawlinson TA, Ellis KJ, Quinkert D, Baker M, Lopez Ramon R, Ramos Lopez F, Barfod L, Folegatti PM, Silman D, Datoo M, Taylor IJ, Jin J, Pulido D, Douglas AD, de Jongh WA, Smith R, Berrie E, Noe AR, Diggs CL, Soisson LA, Ashfield R, Faust SN, Goodman AL, Lawrie AM, Nugent FL, Alter G, Long CA, Draper SJ. Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. MED 2021; 2:701-719.e19. [PMID: 34223402 PMCID: PMC8240500 DOI: 10.1016/j.medj.2021.03.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/19/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Development of an effective vaccine against the pathogenic blood-stage infection of human malaria has proved challenging, and no candidate vaccine has affected blood-stage parasitemia following controlled human malaria infection (CHMI) with blood-stage Plasmodium falciparum. METHODS We undertook a phase I/IIa clinical trial in healthy adults in the United Kingdom of the RH5.1 recombinant protein vaccine, targeting the P. falciparum reticulocyte-binding protein homolog 5 (RH5), formulated in AS01B adjuvant. We assessed safety, immunogenicity, and efficacy against blood-stage CHMI. Trial registered at ClinicalTrials.gov, NCT02927145. FINDINGS The RH5.1/AS01B formulation was administered using a range of RH5.1 protein vaccine doses (2, 10, and 50 μg) and was found to be safe and well tolerated. A regimen using a delayed and fractional third dose, in contrast to three doses given at monthly intervals, led to significantly improved antibody response longevity over ∼2 years of follow-up. Following primary and secondary CHMI of vaccinees with blood-stage P. falciparum, a significant reduction in parasite growth rate was observed, defining a milestone for the blood-stage malaria vaccine field. We show that growth inhibition activity measured in vitro using purified immunoglobulin G (IgG) antibody strongly correlates with in vivo reduction of the parasite growth rate and also identify other antibody feature sets by systems serology, including the plasma anti-RH5 IgA1 response, that are associated with challenge outcome. CONCLUSIONS Our data provide a new framework to guide rational design and delivery of next-generation vaccines to protect against malaria disease. FUNDING This study was supported by USAID, UK MRC, Wellcome Trust, NIAID, and the NIHR Oxford-BRC.
Collapse
Affiliation(s)
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Carolin Loos
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Ashlin R. Michell
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael T. White
- Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Ian D. Poulton
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Celia H. Mitton
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Ruth O. Payne
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Michael Marks
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Hector Maxwell-Scott
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Antonio Querol-Rubiera
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Karen Bisnauthsing
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Tatiana Ogrina
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Nathan J. Brendish
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | | | | | | | - Doris Quinkert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Megan Baker
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Lea Barfod
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Daniel Silman
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Mehreen Datoo
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Iona J. Taylor
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Willem A. de Jongh
- ExpreSion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, Hørsholm 2970, Denmark
| | - Robert Smith
- Clinical BioManufacturing Facility, University of Oxford, Oxford OX3 7JT, UK
| | - Eleanor Berrie
- Clinical BioManufacturing Facility, University of Oxford, Oxford OX3 7JT, UK
| | | | | | | | | | - Saul N. Faust
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anna L. Goodman
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | | | - Fay L. Nugent
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
31
|
Neutrophils and Influenza: A Thin Line between Helpful and Harmful. Vaccines (Basel) 2021; 9:vaccines9060597. [PMID: 34199803 PMCID: PMC8228962 DOI: 10.3390/vaccines9060597] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 01/01/2023] Open
Abstract
Influenza viruses are one of the most prevalent respiratory pathogens known to humans and pose a significant threat to global public health each year. Annual influenza epidemics are responsible for 3-5 million infections worldwide and approximately 500,000 deaths. Presently, yearly vaccinations represent the most effective means of combating these viruses. In humans, influenza viruses infect respiratory epithelial cells and typically cause localized infections of mild to moderate severity. Neutrophils are the first innate cells to be recruited to the site of the infection and possess a wide range of effector functions to eliminate viruses. Some well-described effector functions include phagocytosis, degranulation, the production of reactive oxygen species (ROS), and the formation of neutrophil extracellular traps (NETs). However, while these mechanisms can promote infection resolution, they can also contribute to the pathology of severe disease. Thus, the role of neutrophils in influenza viral infection is nuanced, and the threshold at which protective functions give way to immunopathology is not well understood. Moreover, notable differences between human and murine neutrophils underscore the need to exercise caution when applying murine findings to human physiology. This review aims to provide an overview of neutrophil characteristics, their classic effector functions, as well as more recently described antibody-mediated effector functions. Finally, we discuss the controversial role these cells play in the context of influenza virus infections and how our knowledge of this cell type can be leveraged in the design of universal influenza virus vaccines.
Collapse
|
32
|
Pirahmadi S, Zakeri S, Djadid ND, Mehrizi AA. A review of combination adjuvants for malaria vaccines: a promising approach for vaccine development. Int J Parasitol 2021; 51:699-717. [PMID: 33798560 DOI: 10.1016/j.ijpara.2021.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/18/2020] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
It is obvious that there is a critical need for an efficient malaria vaccine to accelerate malaria eradication. Currently, recombinant subunit vaccination against malaria using proteins and peptides is gaining attention. However, one of the major drawbacks of this approach is the lack of an efficient and durable immune response. Therefore, subunit vaccines require adjuvants to make the vaccine sufficiently immunogenic. Considering the history of the RTS,S vaccine, it seems likely that no single adjuvant is capable of eliciting all the protective immune responses required in many malarial subunit vaccines and the use of combination adjuvants will be increasingly important as the science of malaria vaccines advances. In light of this, it appears that identifying the most effective mixture of adjuvants with minimal adverse effects offers tremendous opportunities in improving the efficacy of vaccines against malaria. Owing to the importance of a multi-adjuvanted approach in subunit malaria vaccine development, this review paper outlines some of the best known combination adjuvants used in malaria subunit vaccines, focusing on their proposed mechanisms of action, their immunological properties, and their notable results. The aim of the present review is to consolidate these findings to aid the application of these combination adjuvants in experimental malaria vaccines.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Navid D Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram A Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
33
|
Abstract
Introduction: An effective vaccine against malaria forms a global health priority. Both naturally acquired immunity and sterile protection induced by irradiated sporozoite immunization were described decades ago. Still no vaccine exists that sufficiently protects children in endemic areas. Identifying immunological correlates of vaccine efficacy can inform rational vaccine design and potentially accelerate clinical development.Areas covered: We discuss recent research on immunological correlates of malaria vaccine efficacy, including: insights from state-of-the-art omics platforms and systems vaccinology analyses; functional anti-parasitic assays; pre-immunization predictors of vaccine efficacy; and comparison of correlates of vaccine efficacy against controlled human malaria infections (CHMI) and against naturally acquired infections.Expert Opinion: Effective vaccination may be achievable without necessarily understanding immunological correlates, but the relatively disappointing efficacy of malaria vaccine candidates in target populations is concerning. Hypothesis-generating omics and systems vaccinology analyses, alongside assessment of pre-immunization correlates, have the potential to bring about paradigm-shifts in malaria vaccinology. Functional assays may represent in vivo effector mechanisms, but have scarcely been formally assessed as correlates. Crucially, evidence is still meager that correlates of vaccine efficacy against CHMI correspond with those against naturally acquired infections in target populations. Finally, the diversity of immunological assays and efficacy endpoints across malaria vaccine trials remains a major confounder.
Collapse
Affiliation(s)
| | - Matthew B B McCall
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
34
|
Songsaigath S, Makiuchi T, Putaporntip C, Pattanawong U, Kuamsab N, Tachibana H, Jongwutiwes S. Immunoglobulin G responses to variant forms of Plasmodium vivax merozoite surface protein 9 upon natural infection in Thailand. Sci Rep 2021; 11:3201. [PMID: 33547377 PMCID: PMC7864938 DOI: 10.1038/s41598-021-82928-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022] Open
Abstract
Merozoite surface protein 9 (MSP9) constitutes a ligand complex involved in erythrocyte invasion by malarial merozoites and is a promising vaccine target. Plasmodium vivax MSP9 (PvMSP9) is immunogenic upon natural malaria exposure. To address whether sequence diversity in PvMSP9 among field isolates could affect natural antibody responses, the recombinant proteins representing two variants each for the N- and the C-terminal domains of PvMSP-9 were used as antigens to assess antibody reactivity among 246 P. vivax-infected patients’ sera from Tak and Ubon Ratchathani Provinces in Thailand. Results revealed that the seropositivity rates of IgG antibodies to the N-terminal antigens were higher than those to the C-terminal antigens (87.80% vs. 67.48%). Most seropositive sera were reactive to both variants, suggesting the presence of common epitopes. Variant-specific antibodies to the N- and the C-terminal antigens were detected in 15.85% and 16.70% of serum samples, respectively. These seropositivity rates were not significant difference between provinces. The seropositivity rates, levels and avidity of anti-PvMSP9 antibodies exhibited positive trends towards increasing malaria episodes. The IgG isotype responses to the N- and the C-terminal antigens were mainly IgG1 and IgG3. The profile of IgG responses may have implications for development of PvMSP9-based vaccine.
Collapse
Affiliation(s)
- Sunisa Songsaigath
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Urassaya Pattanawong
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
35
|
Ssewanyana I, Rek J, Rodriguez I, Wu L, Arinaitwe E, Nankabirwa JI, Beeson JG, Mayanja-Kizza H, Rosenthal PJ, Dorsey G, Kamya MR, Drakeley C, Greenhouse B, Tetteh KKA. Impact of a Rapid Decline in Malaria Transmission on Antimalarial IgG Subclasses and Avidity. Front Immunol 2021; 11:576663. [PMID: 33584643 PMCID: PMC7873448 DOI: 10.3389/fimmu.2020.576663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022] Open
Abstract
Understanding how immunity to malaria is affected by declining transmission is important to aid vaccine design and understand disease resurgence. Both IgG subclasses and avidity of antigen-specific responses are important components of an effective immune response. Using a multiplex bead array assay, we measured the total IgG, IgG subclasses, and avidity profiles of responses to 18 P. falciparum blood stage antigens in samples from 160 Ugandans collected at two time points during high malaria transmission and two time points following a dramatic reduction in transmission. Results demonstrated that, for the antigens tested, (i) the rate of decay of total IgG following infection declined with age and was driven consistently by the decrease in IgG3 and occasionally the decrease in IgG1; (ii) the proportion of IgG3 relative to IgG1 in the absence of infection increased with age; (iii) the increase in avidity index (the strength of association between the antibody and antigen) following infection was largely due to a rapid loss of non-avid compared to avid total IgG; and (iv) both avid and non-avid total IgG in the absence of infection increased with age. Further studies are required to understand the functional differences between IgG1 and IgG3 in order to determine their contribution to the longevity of protective immunity to malaria. Measuring changes in antibody avidity may be a better approach of detecting affinity maturation compared to avidity index due to the differential expansion and contraction of high and low avidity total IgG.
Collapse
Affiliation(s)
- Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Isabel Rodriguez
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Lindsey Wu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,School of Medicine, Makerere University, Kampala, Uganda
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | | | - Philip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,School of Medicine, Makerere University, Kampala, Uganda
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
36
|
Ghosh D, Stumhofer JS. The spleen: "epicenter" in malaria infection and immunity. J Leukoc Biol 2021; 110:753-769. [PMID: 33464668 PMCID: PMC8518401 DOI: 10.1002/jlb.4ri1020-713r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
The spleen is a complex secondary lymphoid organ that plays a crucial role in controlling blood‐stage infection with Plasmodium parasites. It is tasked with sensing and removing parasitized RBCs, erythropoiesis, the activation and differentiation of adaptive immune cells, and the development of protective immunity, all in the face of an intense inflammatory environment. This paper describes how these processes are regulated following infection and recognizes the gaps in our current knowledge, highlighting recent insights from human infections and mouse models.
Collapse
Affiliation(s)
- Debopam Ghosh
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
37
|
Pullulan-Coated Iron Oxide Nanoparticles for Blood-Stage Malaria Vaccine Delivery. Vaccines (Basel) 2020; 8:vaccines8040651. [PMID: 33153189 PMCID: PMC7711541 DOI: 10.3390/vaccines8040651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Vaccines against blood-stage malaria often aim to induce antibodies to neutralize parasite entry into red blood cells, interferon gamma (IFNγ) produced by T helper 1 (Th1) CD4+ T cells or interleukin 4 (IL-4) produced by T helper 2 (Th2) cells to provide B cell help. One vaccine delivery method for suitable putative malaria protein antigens is the use of nanoparticles as vaccine carriers. It has been previously shown that antigen conjugated to inorganic nanoparticles in the viral-particle size range (~40–60 nm) can induce protective antibodies and T cells against malaria antigens in a rodent malaria challenge model. Herein, it is shown that biodegradable pullulan-coated iron oxide nanoparticles (pIONPs) can be synthesized in this same size range. The pIONPs are non-toxic and do not induce conventional pro-inflammatory cytokines in vitro and in vivo. We show that murine blood-stage antigen MSP4/5 from Plasmodium yoelii could be chemically conjugated to pIONPs and the use of these conjugates as immunogens led to the induction of both specific antibodies and IFNγ CD4+ T cells reactive to MSP4/5 in mice, comparable to responses to MSP4/5 mixed with classical adjuvants (e.g., CpG or Alum) that preferentially induce Th1 or Th2 cells individually. These results suggest that biodegradable pIONPs warrant further exploration as carriers for developing blood-stage malaria vaccines.
Collapse
|
38
|
Tsamesidis I, Egwu CO, Pério P, Augereau JM, Benoit-Vical F, Reybier K. An LC-MS Assay to Measure Superoxide Radicals and Hydrogen Peroxide in the Blood System. Metabolites 2020; 10:metabo10050175. [PMID: 32354089 PMCID: PMC7280988 DOI: 10.3390/metabo10050175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
Red blood cells are constantly exposed to reactive species under physiological or pathological conditions or during administration of xenobiotics. Regardless of the source, its accurate quantification is paramount in the area of theragnostics, which had been elusive up until now. Even if there are a lot of approaches to evaluate the oxidative stress, very sensitive methods are missing for the blood system. We therefore sought to apply a highly sensitive approach, by liquid chromatography coupled to mass spectrometry (UPLC–MS), for the quantification of reactive species such as superoxide radical and hydrogen peroxide using dihydroethidium (DHE) and coumarin boronic acid (CBA) probes respectively through the detection of 2-hydroxyethidium (2OH-E+) and 7-hydroxycoumarin (COH). The use of the high-resolution mass spectrometry associated to UPLC ensured a selective detection of superoxide and hydrogen peroxide in the blood system under diverse conditions such as oxidized red blood cells (RBCs), untreated and treated parasitized RBCs. Moreover, this technique allowed the determination of reactive species in human plasma. This protocol provides a huge opportunity for in-depth study of several pathological conditions vis-a-vis their treatment in modern medicine.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Pharmadev, UMR 152, Université de Toulouse, IRD, UPS, 31400 Toulouse, France; (C.O.E.); (P.P.); (K.R.)
- Correspondence:
| | - Chinedu O. Egwu
- Pharmadev, UMR 152, Université de Toulouse, IRD, UPS, 31400 Toulouse, France; (C.O.E.); (P.P.); (K.R.)
- CNRS, LCC, Laboratoire de Chimie de Coordination, Université de Toulouse, 31077 Toulouse CEDEX 4, France; (J.-M.A.); (F.B.-V.)
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse CEDEX 4, France
- Alex-Ekwueme Federal University, Ndufu-Alike Ikwo P.M.B. 1010, Ebonyi State, Nigeria
| | - Pierre Pério
- Pharmadev, UMR 152, Université de Toulouse, IRD, UPS, 31400 Toulouse, France; (C.O.E.); (P.P.); (K.R.)
| | - Jean-Michel Augereau
- CNRS, LCC, Laboratoire de Chimie de Coordination, Université de Toulouse, 31077 Toulouse CEDEX 4, France; (J.-M.A.); (F.B.-V.)
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse CEDEX 4, France
| | - Françoise Benoit-Vical
- CNRS, LCC, Laboratoire de Chimie de Coordination, Université de Toulouse, 31077 Toulouse CEDEX 4, France; (J.-M.A.); (F.B.-V.)
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse CEDEX 4, France
| | - Karine Reybier
- Pharmadev, UMR 152, Université de Toulouse, IRD, UPS, 31400 Toulouse, France; (C.O.E.); (P.P.); (K.R.)
| |
Collapse
|
39
|
Tokplonou L, Nouatin O, Sonon P, M'po G, Glitho S, Agniwo P, Gonzalez-Ortiz D, Tchégninougbo T, Ayitchédji A, Favier B, Donadi EA, Milet J, Luty AJF, Massougbodji A, Garcia A, Ibikounlé M, Courtin D. Schistosoma haematobium infection modulates Plasmodium falciparum parasite density and antimalarial antibody responses. Parasite Immunol 2020; 42:e12702. [PMID: 32020650 DOI: 10.1111/pim.12702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
AIMS Schistosomiasis and malaria are endemic in sub-Saharan Africa where Schistosoma haematobium (Sh) and Plasmodium falciparum (Pf) coinfections are thus frequent. We explored the effect of Sh infection on antibody responses directed to Pf merozoite antigens and on malaria susceptibility in Beninese children. METHODS AND RESULTS A total of 268 children were followed during a malaria transmission season. Detection of Pf infection was performed by microscopy and rapid diagnostic tests. Sh infection was determined in urine by microscopy. Antimalarial antibody, cytokine and HLA-G concentrations were quantified by ELISA. The expression of HLA-G receptors by immune cells was assessed by flow cytometry. Children infected by Sh had higher concentrations of IgG1 directed to MSP3 and GLURPR0 , IgG2 directed to GLURPR0 and IgG3 directed to MSP3, GLURPR0 and GLURPR2 and have lower Pf densities than those uninfected by Sh. No difference in cytokine and HLA-G concentrations was observed between Sh egg carriers and non-carriers. CONCLUSION Schistosoma haematobium modulates host immune responses directed to Pf antigens. The absence of immune downregulation usually observed during helminth infections is surprising in our study. We hypothesize that the stage of Sh development could partly explain the immune pathways leading to increased antibody levels that favour better control of Pf parasitemia.
Collapse
Affiliation(s)
- Léonidas Tokplonou
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin.,UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France.,Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Odilon Nouatin
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin
| | - Paulin Sonon
- Laboratory of Clinical Immunology, Ribeirão Preto Medicine School, University of São Paulo, São Paulo, Brazil
| | - Grace M'po
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin.,Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Sonya Glitho
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin.,Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Privat Agniwo
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin.,Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Daniel Gonzalez-Ortiz
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France
| | | | | | - Benoit Favier
- CEA-Université Paris Sud INSERM U1184, IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Eduardo A Donadi
- Laboratory of Clinical Immunology, Ribeirão Preto Medicine School, University of São Paulo, São Paulo, Brazil
| | - Jacqueline Milet
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Adrian J F Luty
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin
| | - André Garcia
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Moudachirou Ibikounlé
- Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin.,Laboratory of Clinical Immunology, Ribeirão Preto Medicine School, University of São Paulo, São Paulo, Brazil
| | - David Courtin
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France
| |
Collapse
|
40
|
Kana IH, Singh SK, Garcia-Senosiain A, Dodoo D, Singh S, Adu B, Theisen M. Breadth of Functional Antibodies Is Associated With Plasmodium falciparum Merozoite Phagocytosis and Protection Against Febrile Malaria. J Infect Dis 2020; 220:275-284. [PMID: 30820557 DOI: 10.1093/infdis/jiz088] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/26/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The specific targets of functional antibodies against Plasmodium falciparum merozoites remain largely unexplored and, more importantly, their relevance to naturally acquired immunity in longitudinal cohort studies (LCSs) is yet to be tested. METHODS Functionality of immunoglobulin G (IgG) antibodies against 24 merozoite antigens was determined at the baseline of an LCS in Ghana using a bead-based opsonic phagocytosis assay (BPA). Antigen-specific IgG3 subclass antibodies were quantified in the same samples by the Luminex multiplex system. RESULTS A wide range of BPA activity was observed across the different antigens. High BPA responses of nMSP3K1, GLURP-R2, MSP23D7, MSP119k, and PfRh2-2030 coupled beads were significantly associated with a higher probability of children not experiencing febrile malaria. Children with high breadth of functional antibodies against these antigens together with cMSP33D7 had a significantly reduced risk of febrile malaria (adjusted hazard ratio, 0.36 [95% confidence interval, .18-.72]; P = .004). Five of the 6 BPA activities significantly (likelihood ratio rest, P ≤ .05) contributed to the protective immunity observed with the IgG3 antibodies. CONCLUSIONS The development of BPA allowed profiling of functional antibodies in an LCS. Identification of targets of opsonic phagocytosis may have implications in the development of a subunit malaria vaccine.
Collapse
Affiliation(s)
- Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susheel Kumar Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Asier Garcia-Senosiain
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon
| | | | - Bright Adu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
41
|
Aitken EH, Mahanty S, Rogerson SJ. Antibody effector functions in malaria and other parasitic diseases: a few needles and many haystacks. Immunol Cell Biol 2020; 98:264-275. [DOI: 10.1111/imcb.12320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/02/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Elizabeth H Aitken
- Department of Medicine The Doherty Institute The University of Melbourne 792 Elizabeth Street Melbourne VIC 3000 Australia
| | - Siddhartha Mahanty
- Department of Medicine The Doherty Institute The University of Melbourne 792 Elizabeth Street Melbourne VIC 3000 Australia
| | - Stephen J Rogerson
- Department of Medicine The Doherty Institute The University of Melbourne 792 Elizabeth Street Melbourne VIC 3000 Australia
| |
Collapse
|
42
|
Blank A, Fürle K, Jäschke A, Mikus G, Lehmann M, Hüsing J, Heiss K, Giese T, Carter D, Böhnlein E, Lanzer M, Haefeli WE, Bujard H. Immunization with full-length Plasmodium falciparum merozoite surface protein 1 is safe and elicits functional cytophilic antibodies in a randomized first-in-human trial. NPJ Vaccines 2020; 5:10. [PMID: 32025341 PMCID: PMC6994672 DOI: 10.1038/s41541-020-0160-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
A vaccine remains a priority in the global fight against malaria. Here, we report on a single-center, randomized, double-blind, placebo and adjuvant-controlled, dose escalation phase 1a safety and immunogenicity clinical trial of full-length Plasmodium falciparum merozoite surface protein 1 (MSP1) in combination with GLA-SE adjuvant. Thirty-two healthy volunteers were vaccinated at least three times with MSP1 plus adjuvant, adjuvant alone, or placebo (24:4:4) to evaluate the safety and immunogenicity. MSP1 was safe, well tolerated and immunogenic, with all vaccinees sero-converting independent of the dose. The MSP1-specific IgG and IgM titers persisted above levels found in malaria semi-immune humans for at least 6 months after the last immunization. The antibodies were variant- and strain-transcending and stimulated respiratory activity in granulocytes. Furthermore, full-length MSP1 induced memory T-cells. Our findings encourage challenge studies as the next step to evaluate the efficacy of full-length MSP1 as a vaccine candidate against falciparum malaria (EudraCT 2016-002463-33).
Collapse
Affiliation(s)
- Antje Blank
- Klinische Pharmakologie und Pharmakoepidemiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Kristin Fürle
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Anja Jäschke
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Gerd Mikus
- Klinische Pharmakologie und Pharmakoepidemiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Monika Lehmann
- Koordinierungszentrum für Klinische Studien (KKS), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Johannes Hüsing
- Koordinierungszentrum für Klinische Studien (KKS), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Kirsten Heiss
- PEPperPRINT GmbH, Rischerstrasse 12, 69123 Heidelberg, Germany
| | - Thomas Giese
- Institut für Immunologie, Universitätsklinikum Heidelberg und Deutsches Zentrum für Infektionsforschung (DZIF) Standort Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Darrick Carter
- PAI Life Sciences, 1616 Eastlake Ave E, Suite 550, Seattle, WA 98102 USA
| | - Ernst Böhnlein
- Sumaya Biotech GmbH & Co. KG, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Walter E. Haefeli
- Klinische Pharmakologie und Pharmakoepidemiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hermann Bujard
- Sumaya Biotech GmbH & Co. KG, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Kapulu MC, Njuguna P, Hamaluba MM. Controlled Human Malaria Infection in Semi-Immune Kenyan Adults (CHMI-SIKA): a study protocol to investigate in vivo Plasmodium falciparum malaria parasite growth in the context of pre-existing immunity. Wellcome Open Res 2019; 3:155. [PMID: 31803847 PMCID: PMC6871356 DOI: 10.12688/wellcomeopenres.14909.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 01/09/2023] Open
Abstract
Malaria remains a major public health burden despite approval for implementation of a partially effective pre-erythrocytic malaria vaccine. There is an urgent need to accelerate development of a more effective multi-stage vaccine. Adults in malaria endemic areas may have substantial immunity provided by responses to the blood stages of malaria parasites, but field trials conducted on several blood-stage vaccines have not shown high levels of efficacy. We will use the controlled human malaria infection (CHMI) models with malaria-exposed volunteers to identify correlations between immune responses and parasite growth rates in vivo. Immune responses more strongly associated with control of parasite growth should be prioritized to accelerate malaria vaccine development. We aim to recruit up to 200 healthy adult volunteers from areas of differing malaria transmission in Kenya, and after confirming their health status through clinical examination and routine haematology and biochemistry, we will comprehensively characterize immunity to malaria using >100 blood-stage antigens. We will administer 3,200 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (PfSPZ Challenge) by direct venous inoculation. Serial quantitative polymerase chain reaction to measure parasite growth rate in vivo will be undertaken. Clinical and laboratory monitoring will be undertaken to ensure volunteer safety. In addition, we will also explore the perceptions and experiences of volunteers and other stakeholders in participating in a malaria volunteer infection study. Serum, plasma, peripheral blood mononuclear cells and whole blood will be stored to allow a comprehensive assessment of adaptive and innate host immunity. We will use CHMI in semi-immune adult volunteers to relate parasite growth outcomes with antibody responses and other markers of host immunity. Registration: ClinicalTrials.gov identifier NCT02739763.
Collapse
Affiliation(s)
- Melissa C. Kapulu
- KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, UK
| | | | | | - CHMI-SIKA Study Team
- KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, UK
| |
Collapse
|
44
|
Kurtovic L, Boyle MJ, Opi DH, Kennedy AT, Tham WH, Reiling L, Chan JA, Beeson JG. Complement in malaria immunity and vaccines. Immunol Rev 2019; 293:38-56. [PMID: 31556468 PMCID: PMC6972673 DOI: 10.1111/imr.12802] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Developing efficacious vaccines for human malaria caused by Plasmodium falciparum is a major global health priority, although this has proven to be immensely challenging over the decades. One major hindrance is the incomplete understanding of specific immune responses that confer protection against disease and/or infection. While antibodies to play a crucial role in malaria immunity, the functional mechanisms of these antibodies remain unclear as most research has primarily focused on the direct inhibitory or neutralizing activity of antibodies. Recently, there is a growing body of evidence that antibodies can also mediate effector functions through activating the complement system against multiple developmental stages of the parasite life cycle. These antibody‐complement interactions can have detrimental consequences to parasite function and viability, and have been significantly associated with protection against clinical malaria in naturally acquired immunity, and emerging findings suggest these mechanisms could contribute to vaccine‐induced immunity. In order to develop highly efficacious vaccines, strategies are needed that prioritize the induction of antibodies with enhanced functional activity, including the ability to activate complement. Here we review the role of complement in acquired immunity to malaria, and provide insights into how this knowledge could be used to harness complement in malaria vaccine development.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | | | | | - Alexander T Kennedy
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia
| | | | - Jo-Anne Chan
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia.,Department of Microbiology, Monash University, Clayton, Vic., Australia.,Department of Medicine, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
45
|
Kana IH, Garcia-Senosiain A, Singh SK, Tiendrebeogo RW, Chourasia BK, Malhotra P, Sharma SK, Das MK, Singh S, Adu B, Theisen M. Cytophilic Antibodies Against Key Plasmodium falciparum Blood Stage Antigens Contribute to Protection Against Clinical Malaria in a High Transmission Region of Eastern India. J Infect Dis 2019; 218:956-965. [PMID: 29733355 DOI: 10.1093/infdis/jiy258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
Background The collection of clinical data from a tribal population in a malaria-endemic area of India suggests the occurrence of naturally acquired immunity (NAI) against Plasmodium falciparum malaria. Methods Quantity and functionality of immunoglobulin G (IgG) antibodies against intact merozoites and recombinant proteins were assessed in a 13-month longitudinal cohort study of 121 individuals, 3-60 years of age. Results Opsonic phagocytosis of merozoites activity was strongly associated (hazard ratio [HR] = 0.34; 95% confidence interval [CI] = .18-.66; P = .0013) with protection against febrile malaria. Of the different IgG subclasses, only IgG3 antibodies against intact whole merozoites was significantly associated with protection against febrile malaria (HR = 0.47; 95% CI = .26-.86; P = .01). Furthermore, a combination of IgG3 antibody responses against Pf12, MSP3.7, MSP3.3, and MSP2FC27 was strongly associated with protection against febrile malaria (HR = 0.15; 95% CI, .06-.37; P = .0001). Conclusions These data suggest that NAI may, at least in part, be explained by opsonic phagocytosis of merozoites and IgG3 responses against whole merozoites, and in particular to a combination of 4 antigens is critical in this population. These results may have implications in the development of a subunit malaria vaccine. Opsonic phagocytosis of Plasmodium falciparum merozoites was associated with protection against clinical malaria in an India population. Antibody profiling identified four merozoite antigens (Pf12, MSP3.7, MSP3.3, and MSP2) as targets of protective Immunoglobuline G3 antibodies.
Collapse
Affiliation(s)
- Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Asier Garcia-Senosiain
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Régis Wendpayangde Tiendrebeogo
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Bishwanath Kumar Chourasia
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Surya K Sharma
- National Institute of Malaria Research, Indian Council of Medical Research, New Delhi, India
| | - Manoj K Das
- National Institute of Malaria Research, Field Unit, Ranchi (Jharkhand), India
| | - Subhash Singh
- Indian Institute of Integrative Medicine, Canal Road, Jammu, India
| | - Bright Adu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
46
|
Illingworth JJ, Alanine DG, Brown R, Marshall JM, Bartlett HE, Silk SE, Labbé GM, Quinkert D, Cho JS, Wendler JP, Pattinson DJ, Barfod L, Douglas AD, Shea MW, Wright KE, de Cassan SC, Higgins MK, Draper SJ. Functional Comparison of Blood-Stage Plasmodium falciparum Malaria Vaccine Candidate Antigens. Front Immunol 2019; 10:1254. [PMID: 31214195 PMCID: PMC6558156 DOI: 10.3389/fimmu.2019.01254] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
The malaria genome encodes over 5,000 proteins and many of these have also been proposed to be potential vaccine candidates, although few of these have been tested clinically. RH5 is one of the leading blood-stage Plasmodium falciparum malaria vaccine antigens and Phase I/II clinical trials of vaccines containing this antigen are currently underway. Its likely mechanism of action is to elicit antibodies that can neutralize merozoites by blocking their invasion of red blood cells (RBC). However, many other antigens could also elicit neutralizing antibodies against the merozoite, and most of these have never been compared directly to RH5. The objective of this study was to compare a range of blood-stage antigens to RH5, to identify any antigens that outperform or synergize with anti-RH5 antibodies. We selected 55 gene products, covering 15 candidate antigens that have been described in the literature and 40 genes selected on the basis of bioinformatics functional prediction. We were able to make 20 protein-in-adjuvant vaccines from the original selection. Of these, S-antigen and CyRPA robustly elicited antibodies with neutralizing properties. Anti-CyRPA IgG generally showed additive GIA with anti-RH5 IgG, although high levels of anti-CyRPA-specific rabbit polyclonal IgG were required to achieve 50% GIA. Our data suggest that further vaccine antigen screening efforts are required to identify a second merozoite target with similar antibody-susceptibility to RH5.
Collapse
Affiliation(s)
| | | | - Rebecca Brown
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Sarah E Silk
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Doris Quinkert
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jee Sun Cho
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jason P Wendler
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Lea Barfod
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Michael W Shea
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Katherine E Wright
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Douglas AD, Baldeviano GC, Jin J, Miura K, Diouf A, Zenonos ZA, Ventocilla JA, Silk SE, Marshall JM, Alanine DGW, Wang C, Edwards NJ, Leiva KP, Gomez-Puerta LA, Lucas CM, Wright GJ, Long CA, Royal JM, Draper SJ. A defined mechanistic correlate of protection against Plasmodium falciparum malaria in non-human primates. Nat Commun 2019; 10:1953. [PMID: 31028254 PMCID: PMC6486575 DOI: 10.1038/s41467-019-09894-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/02/2019] [Indexed: 01/25/2023] Open
Abstract
Malaria vaccine design and prioritization has been hindered by the lack of a mechanistic correlate of protection. We previously demonstrated a strong association between protection and merozoite-neutralizing antibody responses following vaccination of non-human primates against Plasmodium falciparum reticulocyte binding protein homolog 5 (PfRH5). Here, we test the mechanism of protection. Using mutant human IgG1 Fc regions engineered not to engage complement or FcR-dependent effector mechanisms, we produce merozoite-neutralizing and non-neutralizing anti-PfRH5 chimeric monoclonal antibodies (mAbs) and perform a passive transfer-P. falciparum challenge study in Aotus nancymaae monkeys. At the highest dose tested, 6/6 animals given the neutralizing PfRH5-binding mAb c2AC7 survive the challenge without treatment, compared to 0/6 animals given non-neutralizing PfRH5-binding mAb c4BA7 and 0/6 animals given an isotype control mAb. Our results address the controversy regarding whether merozoite-neutralizing antibody can cause protection against P. falciparum blood-stage infections, and highlight the quantitative challenge of achieving such protection.
Collapse
Affiliation(s)
- Alexander D Douglas
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - G Christian Baldeviano
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Jing Jin
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Zenon A Zenonos
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Julio A Ventocilla
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Sarah E Silk
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Jennifer M Marshall
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Daniel G W Alanine
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Chuan Wang
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Nick J Edwards
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Karina P Leiva
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Luis A Gomez-Puerta
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Carmen M Lucas
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Joseph M Royal
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Simon J Draper
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
48
|
Ndungu FM, Mwacharo J, Wambua J, Njuguna P, Marsh K, Drakeley C, Bejon P. A seven-year study on the effect of the pre-erythrocytic malaria vaccine candidate RTS,S/AS01 E on blood stage immunity in young Kenyan children. Wellcome Open Res 2019; 4:42. [PMID: 31168483 PMCID: PMC6545824 DOI: 10.12688/wellcomeopenres.15002.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2019] [Indexed: 01/06/2023] Open
Abstract
Background: RTS,S/AS01
E, the most advanced malaria vaccine confers partial immunity. The vaccine-induced pre-erythrocytic immunity reduces exposure to blood-stage parasites, delaying acquisition of antibodies to blood-stage antigens. However, the duration of this effect is unknown. Methods: We measured, by enzyme-linked immunosorbent assay, IgG-antibodies to 4
Plasmodium falciparum blood-stage antigens (AMA1, MSP1
42, EBA175, and MSP3) on 314 children randomized to receive RTS,S/AS01
E or Rabies vaccine at 5 – 17 months of age in a phase 2b trial in Kenya, and thereafter participated in a 7-year study of the duration of vaccine immunity. Results: Antibody levels to MSP1
42, AMA1 and EBA175 were slightly lower among the RTS,S/AS01
E recipients, relative to the Rabies-control vaccinees, during the first 48 months of surveillance. Irrespective of vaccine arm, antibody levels to merozoite antigens were positively associated with the risk for malaria. However, this was only apparent at high levels for EBA175 and AMA1 and was not evident after adjusting for heterogeneity in malaria-exposure. Among children with asymptomatic parasitaemia, antibody levels were associated with reduced clinical malaria. Conclusions: The reduction in levels of antibodies to blood-stage antigens induced by vaccination with RTS,S/AS01
E can last for several years. In absence of asymptomatic infection, anti-merozoite antibody levels were unreliable correlates of clinical immunity.
Collapse
Affiliation(s)
- Francis M Ndungu
- Department of Biosciences, KEMRI/Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - Jedida Mwacharo
- Department of Biosciences, KEMRI/Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - Juliana Wambua
- Department of Biosciences, KEMRI/Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - Patricia Njuguna
- Department of Biosciences, KEMRI/Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - Kevin Marsh
- Department of Biosciences, KEMRI/Wellcome Trust Research Programme, Kilifi, 80108, Kenya
| | - Chris Drakeley
- Infection & Immunity Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Philip Bejon
- Infection & Immunity Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
49
|
Damelang T, Rogerson SJ, Kent SJ, Chung AW. Role of IgG3 in Infectious Diseases. Trends Immunol 2019; 40:197-211. [PMID: 30745265 DOI: 10.1016/j.it.2019.01.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
IgG3 comprises only a minor fraction of IgG and has remained relatively understudied until recent years. Key physiochemical characteristics of IgG3 include an elongated hinge region, greater molecular flexibility, extensive polymorphisms, and additional glycosylation sites not present on other IgG subclasses. These characteristics make IgG3 a uniquely potent immunoglobulin, with the potential for triggering effector functions including complement activation, antibody (Ab)-mediated phagocytosis, or Ab-mediated cellular cytotoxicity (ADCC). Recent studies underscore the importance of IgG3 effector functions against a range of pathogens and have provided approaches to overcome IgG3-associated limitations, such as allotype-dependent short Ab half-life, and excessive proinflammatory activation. Understanding the molecular and functional properties of IgG3 may facilitate the development of improved Ab-based immunotherapies and vaccines against infectious diseases.
Collapse
Affiliation(s)
- Timon Damelang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
50
|
Mbengue B, Fall MM, Varela ML, Loucoubar C, Joos C, Fall B, Niang MS, Niang B, Mbow M, Dieye A, Perraut R. Analysis of antibody responses to selected Plasmodium falciparum merozoite surface antigens in mild and cerebral malaria and associations with clinical outcomes. Clin Exp Immunol 2019; 196:86-96. [PMID: 30580455 DOI: 10.1111/cei.13254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2018] [Indexed: 11/28/2022] Open
Abstract
Merozoite surface proteins (MSPs) are critical for parasite invasion; they represent attractive targets for antibody-based protection against clinical malaria. To identify protection-associated target MSPs, the present study analysed antibody responses to whole merozoite extract (ME) and to defined MSP recombinant antigens in hospitalized patients from a low endemic urban area as a function of disease severity (mild versus cerebral malaria). Sera from 110 patients with confirmed severe cerebral malaria (CM) and 91 patients with mild malaria (MM) were analysed (mean age = 29 years) for total and subclass immunoglobulin (Ig)G to ME and total IgG to MSP1p19, MSP2, MSP3, MSP4 and MSP5 by enzyme-linked immunosorbent assay (ELISA). Functional antibody responses were evaluated using the antibody-dependent respiratory burst (ADRB) assay in a subset of sera. There was a trend towards higher IgG1 and IgG4 levels to ME in CM compared to MM; only ME IgM responses differed significantly between fatal and surviving CM patients. Increased prevalence of IgG to individual MSPs was found in the CM compared to the MM group, including significantly higher levels of IgG to MSP4 and MSP5 in the former. Sera from fatal (24·5%) versus surviving cases showed significantly lower IgG to MSP1p19 and MSP3 (P < 0·05). ADRB assay readouts correlated with high levels of anti-MSP IgG, and trended higher in sera from patients with surviving compared to fatal CM outcome (P = 0·07). These results document strong differential antibody responses to MSP antigens as targets of protective immunity against CM and in particular MSP1p19 and MSP3 as prognostic indicators.
Collapse
Affiliation(s)
- B Mbengue
- Service d'Immunologie FMPO, Université Cheikh Anta Diop de Dakar, Senegal.,Unité d'Immunogénétique, Institut Pasteur de Dakar, IPD, Senegal
| | - M M Fall
- Service de Réanimation, Hôpital Principal de Dakar, HPD, Senegal
| | - M-L Varela
- Unité d'Immunologie, Institut Pasteur de Dakar, IPD, Senegal
| | - C Loucoubar
- Groupe de Biostatistique et Bioinformatique, IPD, Senegal
| | - C Joos
- Unité d'Immunologie, Institut Pasteur de Dakar, IPD, Senegal
| | - B Fall
- Fédération des Laboratoires, Hôpital Principal de Dakar, HPD, Senegal
| | - M S Niang
- Service d'Immunologie FMPO, Université Cheikh Anta Diop de Dakar, Senegal
| | - B Niang
- Service de Réanimation, Hôpital Principal de Dakar, HPD, Senegal
| | - M Mbow
- Service d'Immunologie FMPO, Université Cheikh Anta Diop de Dakar, Senegal
| | - A Dieye
- Service d'Immunologie FMPO, Université Cheikh Anta Diop de Dakar, Senegal.,Unité d'Immunogénétique, Institut Pasteur de Dakar, IPD, Senegal
| | - R Perraut
- Unité d'Immunogénétique, Institut Pasteur de Dakar, IPD, Senegal.,Unité d'Immunologie, Institut Pasteur de Dakar, IPD, Senegal
| |
Collapse
|