1
|
Chabert M, Lacôte S, Marianneau P, Confort MP, Aurine N, Pédarrieu A, Doumbia B, Ould Baba Ould Gueya M, Habiboullah H, Beyatt ABEM, Lo MM, Nichols J, Sreenu VB, da Silva Filipe A, Colle MA, Pain B, Cêtre-Sossah C, Arnaud F, Ratinier M. Comparative study of two Rift Valley fever virus field strains originating from Mauritania. PLoS Negl Trop Dis 2024; 18:e0012728. [PMID: 39652604 DOI: 10.1371/journal.pntd.0012728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/19/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Rift Valley fever (RVF) is one of the major viral arthropod-borne diseases in Africa. In recent decades, RVF virus (RVFV), the causative agent of RVF, has been responsible for multiple outbreaks in West Africa with important consequences on human and animal health. In particular, an outbreak occurred in 2010 after heavy rains in the desertic region of Adrar, Mauritania. It was characterized by the appearance of severe clinical signs among dromedary camels. Another one occurred in 2013-2014 across Senegal and the southern part of Mauritania. In this study, we characterized two RVFV field strains isolated during these two outbreaks. The first strain, MRU25010-30, was isolated from a camel (2010) while the second, MRU2687-3, was isolated from a goat (2013). By deep-sequencing and rapid amplification of cDNA-ends by polymerase chain reaction, we successfully sequenced the complete genome of these two RVFV strains as well as the reference laboratory strain ZH548. Phylogenetic analysis showed that the two field viruses belong to two different RVFV genetic lineages. Moreover, we showed that MRU25010-30 replicates more efficiently in various in vitro cell culture models than MRU2687-3 and ZH548. In vivo, MRU25010-30 caused rapid death of BALB/c mice and proved to be more virulent than MRU2687-3, regardless of the route of inoculation (subcutaneous or intranasal). The virulence of MRU25010-30 is associated with a high viral load in the liver and serum of infected mice, while the death of mice infected with MRU2687-3 and ZH548 correlated with a high viral load in the brain. Altogether, the data presented in this study provide new avenues to unveil the molecular viral determinants that modulate RVFV virulence and replication capacity.
Collapse
Affiliation(s)
- Mehdi Chabert
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
- CIRAD, UMR ASTRE, Montpellier Cedex, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | | | | | - Marie-Pierre Confort
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Noémie Aurine
- Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Aurélie Pédarrieu
- CIRAD, UMR ASTRE, Montpellier Cedex, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Baba Doumbia
- Direction des Services Vétérinaires, Ministère de l'élevage, Nouakchott, Mauritania
| | | | | | | | | | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Vattipally B Sreenu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Bertrand Pain
- Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Catherine Cêtre-Sossah
- CIRAD, UMR ASTRE, Montpellier Cedex, France
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Frédérick Arnaud
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Maxime Ratinier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| |
Collapse
|
2
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
3
|
Alem F, Olanrewaju AA, Omole S, Hobbs HE, Ahsan N, Matulis G, Brantner CA, Zhou W, Petricoin EF, Liotta LA, Caputi M, Bavari S, Wu Y, Kashanchi F, Hakami RM. Exosomes originating from infection with the cytoplasmic single-stranded RNA virus Rift Valley fever virus (RVFV) protect recipient cells by inducing RIG-I mediated IFN-B response that leads to activation of autophagy. Cell Biosci 2021; 11:220. [PMID: 34953502 PMCID: PMC8710069 DOI: 10.1186/s13578-021-00732-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background Although multiple studies have demonstrated a role for exosomes during virus infections, our understanding of the mechanisms by which exosome exchange regulates immune response during viral infections and affects viral pathogenesis is still in its infancy. In particular, very little is known for cytoplasmic single-stranded RNA viruses such as SARS-CoV-2 and Rift Valley fever virus (RVFV). We have used RVFV infection as a model for cytoplasmic single-stranded RNA viruses to address this gap in knowledge. RVFV is a highly pathogenic agent that causes RVF, a zoonotic disease for which no effective therapeutic or approved human vaccine exist. Results We show here that exosomes released from cells infected with RVFV (designated as EXi-RVFV) serve a protective role for the host and provide a mechanistic model for these effects. Our results show that treatment of both naïve immune cells (U937 monocytes) and naïve non-immune cells (HSAECs) with EXi-RVFV induces a strong RIG-I dependent activation of IFN-B. We also demonstrate that this strong anti-viral response leads to activation of autophagy in treated cells and correlates with resistance to subsequent viral infection. Since we have shown that viral RNA genome is associated with EXi-RVFV, RIG-I activation might be mediated by the presence of packaged viral RNA sequences. Conclusions Using RVFV infection as a model for cytoplasmic single-stranded RNA viruses, our results show a novel mechanism of host protection by exosomes released from infected cells (EXi) whereby the EXi activate RIG-I to induce IFN-dependent activation of autophagy in naïve recipient cells including monocytes. Because monocytes serve as reservoirs for RVFV replication, this EXi-RVFV-induced activation of autophagy in monocytes may work to slow down or halt viral dissemination in the infected organism. These findings offer novel mechanistic insights that may aid in future development of effective vaccines or therapeutics, and that may be applicable for a better molecular understanding of how exosome release regulates innate immune response to other cytoplasmic single-stranded RNA viruses. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00732-z.
Collapse
Affiliation(s)
- Farhang Alem
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Adeyemi A Olanrewaju
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Samson Omole
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Heather E Hobbs
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Noor Ahsan
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA.,Lentigen Technology, Inc., Gaithersburg, MD, USA
| | - Graham Matulis
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Christine A Brantner
- Nanofabrication and Imaging Center, George Washington University, Washington, DC, USA
| | - Weidong Zhou
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel F Petricoin
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Lance A Liotta
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Yuntao Wu
- School of Systems Biology, George Mason University, Manassas, VA, USA.,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA
| | - Fatah Kashanchi
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Ramin M Hakami
- School of Systems Biology, George Mason University, Manassas, VA, USA. .,Center for Infectious Disease Research (Formerly, National Center for Biodefense and Infectious Diseases), George Mason University, Manassas, VA, USA.
| |
Collapse
|
4
|
Terasaki K, Kalveram B, Johnson KN, Juelich T, Smith JK, Zhang L, Freiberg AN, Makino S. Rift Valley fever virus 78kDa envelope protein attenuates virus replication in macrophage-derived cell lines and viral virulence in mice. PLoS Negl Trop Dis 2021; 15:e0009785. [PMID: 34516560 PMCID: PMC8460012 DOI: 10.1371/journal.pntd.0009785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/23/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus with a wide host range including ruminants and humans. RVFV outbreaks have had devastating effects on public health and the livestock industry in African countries. However, there is no approved RVFV vaccine for human use in non-endemic countries and no FDA-approved antiviral drug for RVFV treatment. The RVFV 78kDa protein (P78), which is a membrane glycoprotein, plays a role in virus dissemination in the mosquito host, but its biological role in mammalian hosts remains unknown. We generated an attenuated RVFV MP-12 strain-derived P78-High virus and a virulent ZH501 strain-derived ZH501-P78-High virus, both of which expressed a higher level of P78 and carried higher levels of P78 in the virion compared to their parental viruses. We also generated another MP-12-derived mutant virus (P78-KO virus) that does not express P78. MP-12 and P78-KO virus replicated to similar levels in fibroblast cell lines and Huh7 cells, while P78-High virus replicated better than MP-12 in Vero E6 cells, fibroblast cell lines, and Huh7 cells. Notably, P78-High virus and P78-KO virus replicated less efficiently and more efficiently, respectively, than MP-12 in macrophage cell lines. ZH501-P78-High virus also replicated poorly in macrophage cell lines. Our data further suggest that inefficient binding of P78-High virus to the cells led to inefficient virus internalization, low virus infectivity and reduced virus replication in a macrophage cell line. P78-High virus and P78-KO virus showed lower and higher virulence than MP-12, respectively, in young mice. ZH501-P78-High virus also exhibited lower virulence than ZH501 in mice. These data suggest that high levels of P78 expression attenuate RVFV virulence by preventing efficient virus replication in macrophages. Genetic alteration leading to increased P78 expression may serve as a novel strategy for the attenuation of RVFV virulence and generation of safe RVFV vaccines.
Collapse
Affiliation(s)
- Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (KT); (SM)
| | - Birte Kalveram
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kendra N. Johnson
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Terry Juelich
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jennifer K. Smith
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lihong Zhang
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander N. Freiberg
- Institute of Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (KT); (SM)
| |
Collapse
|
5
|
Cartwright HN, Barbeau DJ, McElroy AK. Rift Valley Fever Virus Is Lethal in Different Inbred Mouse Strains Independent of Sex. Front Microbiol 2020; 11:1962. [PMID: 32973712 PMCID: PMC7472459 DOI: 10.3389/fmicb.2020.01962] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/24/2020] [Indexed: 01/22/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic arbovirus affecting humans and livestock in Africa and the Arabian Peninsula. The majority of human cases are mild and self-limiting; however, severe cases can result in hepatitis, encephalitis, or hemorrhagic fever. There is a lack of immunocompetent mouse models that faithfully recapitulate the varied clinical outcomes of RVF in humans. However, there are easily accessible and commonly used inbred mouse strains that have never been challenged with wild-type RVFV. Here, RVFV susceptibility and pathogenesis were evaluated across five commonly used inbred laboratory mouse strains: C57BL/6J, 129S1/SvlmJ, NOD/ShiLtJ, A/J, and NZO/HILtJ. Comparisons between different mouse strains, challenge doses, and sexes revealed exquisite susceptibility to wild-type RVFV in an almost uniform manner. Never before challenged NOD/ShiLtJ, A/J, and NZO/HILtJ mice showed similar phenotypes of Rift Valley fever disease as previously tested inbred mouse strains. The majority of infected mice died or were euthanized by day 5 post-infection due to overwhelming hepatic disease as evidenced by gross liver pathology and high viral RNA loads in the liver. Mice surviving past day 6 across all strains succumbed to late-onset encephalitis. Remarkably, sex was not found to impact survival or viral load and showed only modest effect on time to death and weight loss for any of the challenged mouse strains following RVFV infection. Regardless of sex, these inbred mouse strains displayed extreme susceptibility to wild-type RVFV down to one virus particle.
Collapse
Affiliation(s)
- Haley N Cartwright
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dominique J Barbeau
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anita K McElroy
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Javelle E, Lesueur A, Pommier de Santi V, de Laval F, Lefebvre T, Holweck G, Durand GA, Leparc-Goffart I, Texier G, Simon F. The challenging management of Rift Valley Fever in humans: literature review of the clinical disease and algorithm proposal. Ann Clin Microbiol Antimicrob 2020; 19:4. [PMID: 31969141 PMCID: PMC6977312 DOI: 10.1186/s12941-020-0346-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/12/2020] [Indexed: 01/01/2023] Open
Abstract
Rift Valley Fever (RVF) is an emerging zoonotic arbovirus with a complex cycle of transmission that makes difficult the prediction of its expansion. Recent outbreaks outside Africa have led to rediscover the human disease but it remains poorly known. The wide spectrum of acute and delayed manifestations with potential unfavorable outcome much complicate the management of suspected cases and prediction of morbidity and mortality during an outbreak. We reviewed literature data on bio-clinical characteristics and treatments of RVF human illness. We identified gaps in the field and provided a practical algorithm to assist clinicians in the cases assessment, determination of setting of care and prolonged follow-up.
Collapse
Affiliation(s)
- Emilie Javelle
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France. .,IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Univ, Marseille, France.
| | - Alexandre Lesueur
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France
| | - Vincent Pommier de Santi
- IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Univ, Marseille, France.,French Armed Forces Centre for Epidemiology and Public Health (CESPA), Marseille, France
| | - Franck de Laval
- French Armed Forces Centre for Epidemiology and Public Health (CESPA), Marseille, France.,INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Aix Marseille Univ, Marseille, France
| | - Thibault Lefebvre
- French Military Health Service, RSMA Medical Unit, Paris, Mayotte, France
| | - Guillaume Holweck
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France
| | - Guillaume André Durand
- French Armed Forces Biomedical Research Institute (IRBA)-CNR des arbovirus-IHU Méditerranée Infection, Marseille, France.,IRD 190, Inserm 1207, IHU Méditerranée Infection, AP-HM, UVE, Aix-Marseille Univ, Marseille, France
| | - Isabelle Leparc-Goffart
- French Armed Forces Biomedical Research Institute (IRBA)-CNR des arbovirus-IHU Méditerranée Infection, Marseille, France.,IRD 190, Inserm 1207, IHU Méditerranée Infection, AP-HM, UVE, Aix-Marseille Univ, Marseille, France
| | - Gaëtan Texier
- IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Univ, Marseille, France.,French Armed Forces Centre for Epidemiology and Public Health (CESPA), Marseille, France
| | - Fabrice Simon
- Laveran Military Teaching Hospital, CS500413384, Marseille Cedex 13, France.,IRD 190, Inserm 1207, IHU Méditerranée Infection, AP-HM, UVE, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
7
|
IFITM3 Clusters on Virus Containing Endosomes and Lysosomes Early in the Influenza A Infection of Human Airway Epithelial Cells. Viruses 2019; 11:v11060548. [PMID: 31212878 PMCID: PMC6631848 DOI: 10.3390/v11060548] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 11/20/2022] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) have been shown to strongly affect influenza A virus (IAV) infectivity in tissue culture. Moreover, polymorphisms in IFITM3 have been associated with the severity of the disease in humans. IFITM3 appears to act early in the infection, but its mechanism of action and potential interactions with incoming IAV structures are not yet defined. Here, we visualized endogenous IFITM3 interactions with IAV in the human lung epithelial cell line A549 and in primary human airway epithelial cells employing stimulated emission depletion super-resolution microscopy. By applying an iterative approach for the cluster definition and computational cluster analysis, we found that IFITM3 reorganizes into clusters as IAV infection progresses. IFITM3 cluster formation started at 2-3 h post infection and increased over time to finally coat IAV-containing endosomal vesicles. This IAV-induced phenotype was due to the endosomal recruitment of IFITM3 rather than to an overall increase in the IFITM3 abundance. While the IAV-induced IFITM3 clustering and localization to endosomal vesicles was comparable in primary human airway epithelial cells and the human lung epithelial cell line A549, the endogenous IFITM3 signal was higher in primary cells. Moreover, we observed IFITM3 signals adjacent to IAV-containing recycling endosomes.
Collapse
|
8
|
Maluleke MR, Phosiwa M, van Schalkwyk A, Michuki G, Lubisi BA, Kegakilwe PS, Kemp SJ, Majiwa PAO. A comparative genome analysis of Rift Valley Fever virus isolates from foci of the disease outbreak in South Africa in 2008-2010. PLoS Negl Trop Dis 2019; 13:e0006576. [PMID: 30897082 PMCID: PMC6445458 DOI: 10.1371/journal.pntd.0006576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 04/02/2019] [Accepted: 10/25/2018] [Indexed: 01/14/2023] Open
Abstract
Rift Valley fever (RVF) is a re-emerging zoonotic disease responsible for major losses in livestock production, with negative impact on the livelihoods of both commercial and resource-poor farmers in sub-Sahara African countries. The disease remains a threat in countries where its mosquito vector thrives. Outbreaks of RVF usually follow weather conditions which favour increase in mosquito populations. Such outbreaks are usually cyclical, occurring every 10–15 years. Recent outbreaks of the disease in South Africa have occurred unpredictably and with increased frequency. In 2008, outbreaks were reported in Mpumalanga, Limpopo and Gauteng provinces, followed by 2009 outbreaks in KwaZulu-Natal, Mpumalanga and Northern Cape provinces and in 2010 in the Eastern Cape, Northern Cape, Western Cape, North West, Free State and Mpumalanga provinces. By August 2010, 232 confirmed infections had been reported in humans, with 26 confirmed deaths.To investigate the evolutionary dynamics of RVF viruses (RVFVs) circulating in South Africa, we undertook complete genome sequence analysis of isolates from animals at discrete foci of the 2008–2010 outbreaks. The genome sequences of these viruses were compared with those of the viruses from earlier outbreaks in South Africa and in other countries. The data indicate that one 2009 and all the 2008 isolates from South Africa and Madagascar (M49/08) cluster in Lineage C or Kenya-1. The remaining of the 2009 and 2010 isolates cluster within Lineage H, except isolate M259_RSA_09, which is a probable segment M reassortant. This information will be useful to agencies involved in the control and management of Rift Valley fever in South Africa and the neighbouring countries. A single RVF virus serotype exists, yet differences in virulence and pathogenicity of the virus have been observed. This necessitates the need for detailed genetic characterization of various isolates of the virus. Some of the RVF virus isolates that caused the 2008–2010 disease outbreaks in South Africa were most probably reassortants resulting from exchange of portions of the genome, particularly those of segment M. Although clear association between RVFV genotype and phenotype has not been established, various amino acid substitutions have been implicated in the phenotype. Viruses with amino acid substitutions from glycine to glutamic acid at position 277 of segment M have been shown to be more virulent in mice in comparison to viruses with glycine at the same position. Phylogenetic analysis carried out in this study indicated that the viruses responsible for the 2008–2010 RVF outbreaks in South Africa were not introduced from outside the country, but mutated over time and caused the outbreaks when environmental conditions became favourable.
Collapse
Affiliation(s)
- Moabi R. Maluleke
- ARC-Onderstepoort Veterinary Research, Gauteng, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Gauteng, South Africa
| | - Maanda Phosiwa
- ARC-Onderstepoort Veterinary Research, Gauteng, South Africa
| | | | - George Michuki
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Phemelo S. Kegakilwe
- Department of Agriculture, Land Reform and Rural Development, Veterinary Services, Northern Cape Province, South Africa
| | - Steve J. Kemp
- Department of Veterinary Tropical Diseases, University of Pretoria, Gauteng, South Africa
| | - Phelix A. O. Majiwa
- ARC-Onderstepoort Veterinary Research, Gauteng, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Gauteng, South Africa
- * E-mail:
| |
Collapse
|
9
|
Terasaki K, Juelich TL, Smith JK, Kalveram B, Perez DD, Freiberg AN, Makino S. A single-cycle replicable Rift Valley fever phlebovirus vaccine carrying a mutated NSs confers full protection from lethal challenge in mice. Sci Rep 2018; 8:17097. [PMID: 30459418 PMCID: PMC6244155 DOI: 10.1038/s41598-018-35472-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) is a pathogen of Rift Valley fever, which is a mosquito-borne zoonotic disease for domestic livestock and humans in African countries. Currently, no approved vaccine is available for use in non-endemic areas. The MP-12 strain is so far the best live attenuated RVFV vaccine candidate because of its good protective efficacy in animal models. However, there are safety concerns for use of MP-12 in humans. We previously developed a single-cycle replicable MP-12 (scMP-12) which lacks NSs gene and undergoes only a single round of viral replication because of its impaired ability to induce membrane-membrane fusion. In the present study, we generated an scMP-12 mutant (scMP-12-mutNSs) carrying a mutant NSs, which degrades double-stranded RNA-dependent protein kinase R but does not inhibit host transcription. Immunization of mice with a single dose (105 PFU) of scMP-12-mutNSs elicited RVFV neutralizing antibodies and high titers of anti-N IgG production and fully protected the mice from lethal wild-type RVFV challenge. Immunogenicity and protective efficacy of scMP-12-mutNSs were better than scMP-12, demonstrating that scMP-12-mutNSs is a more efficacious vaccine candidate than scMP-12. Furthermore, our data suggested that RVFV vaccine efficacy can be improved by using this specific NSs mutant.
Collapse
Affiliation(s)
- Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.,Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - Terry L Juelich
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - Jennifer K Smith
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - Birte Kalveram
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - David D Perez
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - Alexander N Freiberg
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.,Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.,UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.,The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.,Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States. .,Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States. .,UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States. .,The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States. .,Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.
| |
Collapse
|
10
|
Ikegami T, Balogh A, Nishiyama S, Lokugamage N, Saito TB, Morrill JC, Shivanna V, Indran SV, Zhang L, Smith JK, Perez D, Juelich TL, Morozov I, Wilson WC, Freiberg AN, Richt JA. Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model. PLoS One 2017; 12:e0189250. [PMID: 29267298 PMCID: PMC5739399 DOI: 10.1371/journal.pone.0189250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/23/2017] [Indexed: 01/05/2023] Open
Abstract
Rift Valley fever phlebovirus (RVFV) causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2-3 dpi. Recombinant SA51 (rSA51) and Zinga (rZinga) strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies.
Collapse
Affiliation(s)
- Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Aaron Balogh
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Shoko Nishiyama
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nandadeva Lokugamage
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tais B. Saito
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John C. Morrill
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Vinay Shivanna
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Sabarish V. Indran
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Lihong Zhang
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jennifer K. Smith
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David Perez
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Terry L. Juelich
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - William C. Wilson
- United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Diseases Research Unit, Manhattan, Kansas, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
11
|
Nishiyama S, Slack OAL, Lokugamage N, Hill TE, Juelich TL, Zhang L, Smith JK, Perez D, Gong B, Freiberg AN, Ikegami T. Attenuation of pathogenic Rift Valley fever virus strain through the chimeric S-segment encoding sandfly fever phlebovirus NSs or a dominant-negative PKR. Virulence 2016; 7:871-881. [PMID: 27248570 DOI: 10.1080/21505594.2016.1195528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Rift Valley fever is a mosquito-borne zoonotic disease affecting ruminants and humans. Rift Valley fever virus (RVFV: family Bunyaviridae, genus Phlebovirus) causes abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or retinitis in humans. The live-attenuated MP-12 vaccine is conditionally licensed for veterinary use in the US. However, this vaccine lacks a marker for the differentiation of vaccinated from infected animals (DIVA). NSs gene is dispensable for RVFV replication, and thus, rMP-12 strains lacking NSs gene is applicable to monitor vaccinated animals. However, the immunogenicity of MP-12 lacking NSs was not as high as parental MP-12. Thus, chimeric MP-12 strains encoding NSs from either Toscana virus (TOSV), sandfly fever Sicilian virus (SFSV) or Punta Toro virus Adames strain (PTA) were characterized previously. Although chimeric MP-12 strains are highly immunogenic, the attenuation through the S-segment remains unknown. Using pathogenic ZH501 strain, we aimed to demonstrate the attenuation of ZH501 strain through chimeric S-segment encoding either the NSs of TOSV, SFSV, PTA, or Punta Toro virus Balliet strain (PTB). In addition, we characterized rZH501 encoding a human dominant-negative PKR (PKRΔE7), which also enhances the immunogenicity of MP-12. Study done on mice revealed that attenuation of rZH501 occurred through the S-segment encoding either PKRΔE7 or SFSV NSs. However, rZH501 encoding either TOSV, PTA, or PTB NSs in the S-segment uniformly caused lethal encephalitis. Our results indicated that the S-segments encoding PKRΔE7 or SFSV NSs are attenuated and thus applicable toward next generation MP-12 vaccine candidates that encode a DIVA marker.
Collapse
Affiliation(s)
- Shoko Nishiyama
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Olga A L Slack
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Nandadeva Lokugamage
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Terence E Hill
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Terry L Juelich
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,b Galveston National Laboratory, The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Lihong Zhang
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,b Galveston National Laboratory, The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Jennifer K Smith
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,b Galveston National Laboratory, The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - David Perez
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Bin Gong
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,b Galveston National Laboratory, The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,c The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Alexander N Freiberg
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,b Galveston National Laboratory, The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,c The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,d The Sealy Center for Vaccine Development, The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - Tetsuro Ikegami
- a Department of Pathology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,c The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston , Galveston , TX , USA.,d The Sealy Center for Vaccine Development, The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| |
Collapse
|
12
|
Mudhasani R, Tran JP, Retterer C, Kota KP, Whitehouse CA, Bavari S. Protein Kinase R Degradation Is Essential for Rift Valley Fever Virus Infection and Is Regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 Ligase. PLoS Pathog 2016; 12:e1005437. [PMID: 26837067 PMCID: PMC4737497 DOI: 10.1371/journal.ppat.1005437] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)FBXW11 E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCFFBXW11 E3 ligase. We further show that disrupting the assembly of the SCFFBXW11-NSs E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCFFBXW11-NSs E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCFFBXW11 complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection. Rift Valley fever (RVF) is a severe disease caused by infection with the Rift Valley fever virus (RVFV) that affects humans and livestock and occurs in large epidemics. Currently there are no FDA-approved drugs or vaccines to treat RVF. Many viruses have evolved unique strategies to overcome host immune responses in order to establish infection. One protein of RVFV called NSs is responsible for over-powering cellular antiviral defenses. NSs is known to degrade double-stranded (ds) RNA-dependent protein kinase (PKR), but neither the mechanism nor the functional significance of this activity has been fully understood. In this study we show that NSs promotes PKR degradation by recruiting PKR to the E3 ligase complex called SCF (SKP1-CUL1-F-box)FBXW11. A short stretch of six amino acids called the degron sequence in NSs regulates the NSs- FBXW11 interaction and is required for the assembly of the SCFFBXW11 complex. We further show that disruption of the SCFFBXW11-NSs complex, with either a small molecule or with NSs degron viral mutants, can block PKR degradation. Surprisingly, when NSs mediated PKR degradation was blocked, NSs was essential and sufficient to activate PKR, causing potent inhibition of RVFV infection by suppressing viral protein synthesis. Therefore early PKR activation induced by inactivation of the SCFFBXW11 is sufficient to induce potent inhibition of RVFV infection. These findings may provide new molecular targets for therapeutic intervention of this important disease.
Collapse
Affiliation(s)
- Rajini Mudhasani
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Julie P. Tran
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Cary Retterer
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Krishna P. Kota
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- Perkin Elmer, Waltham, Massachusetts, United States of America
| | - Chris A. Whitehouse
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sina Bavari
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Jansen van Vuren P, Shalekoff S, Grobbelaar AA, Archer BN, Thomas J, Tiemessen CT, Paweska JT. Serum levels of inflammatory cytokines in Rift Valley fever patients are indicative of severe disease. Virol J 2015; 12:159. [PMID: 26437779 PMCID: PMC4595326 DOI: 10.1186/s12985-015-0392-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/23/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Rift Valley fever (RVF) is a mosquito-borne viral zoonosis affecting domestic and wild ruminants, camels and humans. Outbreaks of RVF are characterized by a sudden onset of abortions and high mortality amongst domestic ruminants. Humans develop disease ranging from a mild flu-like illness to more severe complications including hemorrhagic syndrome, ocular and neurological lesions and death. During the RVF outbreak in South Africa in 2010/11, a total of 278 human cases were laboratory confirmed, including 25 deaths. The role of the host inflammatory response to RVF pathogenesis is not completely understood. METHODS Virus load in serum from human fatal and non-fatal cases was determined by standard tissue culture infective dose 50 (TCID50) titration on Vero cells. Patient serum concentration of chemokines and cytokines involved in inflammatory responses (IL-8, RANTES, CXCL9, MCP-1, IP-10, IL-1β, IL-6, IL-10, TNF and IL-12p70) was determined using cytometric bead assays and flow cytometry. RESULTS Fatal cases had a 1-log10 higher TCID50/ml serum concentration of RVF virus (RVFV) than survivors (p < 0.05). There were no significant sequence differences between isolates recovered from fatal and non-fatal cases. Chemokines and pro- and anti-inflammatory cytokines were detected at significantly increased (IL-8, CXCL9, MCP-1, IP-10, IL-10) or decreased (RANTES) levels when comparing fatal cases to infected survivors and uninfected controls, or when comparing combined infected patients to uninfected controls. CONCLUSIONS The results suggest that regulation of the host inflammatory responses plays an important role in the outcome of RVFV infection in humans. Dysregulation of the inflammatory response contributes to a fatal outcome. The cytokines and chemokines identified in this study that correlate with fatal outcomes warrant further investigation as markers for disease severity.
Collapse
Affiliation(s)
- Petrus Jansen van Vuren
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa. .,Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.
| | - Sharon Shalekoff
- Centre for HIV and STIs, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa. .,Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| | - Antoinette A Grobbelaar
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa.
| | - Brett N Archer
- Outbreak Response Unit, Division of Public Health, Surveillance and Response, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa.
| | - Juno Thomas
- Outbreak Response Unit, Division of Public Health, Surveillance and Response, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa.
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa. .,Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| | - Janusz T Paweska
- Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases division of the National Health Laboratory Service, Sandringham, South Africa. .,Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa. .,Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
14
|
Wiley CA, Bhardwaj N, Ross TM, Bissel SJ. Emerging Infections of CNS: Avian Influenza A Virus, Rift Valley Fever Virus and Human Parechovirus. Brain Pathol 2015; 25:634-50. [PMID: 26276027 PMCID: PMC4538697 DOI: 10.1111/bpa.12281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/22/2015] [Indexed: 11/28/2022] Open
Abstract
History is replete with emergent pandemic infections that have decimated the human population. Given the shear mass of humans that now crowd the earth, there is every reason to suspect history will repeat itself. We describe three RNA viruses that have recently emerged in the human population to mediate severe neurological disease. These new diseases are results of new mutations in the infectious agents or new exposure pathways to the agents or both. To appreciate their pathogenesis, we summarize the essential virology and immune response to each agent. Infection is described in the context of known host defenses. Once the viruses evade immune defenses and enter central nervous system (CNS) cells, they rapidly co-opt host RNA processing to a cataclysmic extent. It is not clear why the brain is particularly susceptible to RNA viruses; but perhaps because of its tremendous dependence on RNA processing for physiological functioning, classical mechanisms of host defense (eg, interferon disruption of viral replication) are diminished or not available. Effectiveness of immunity, immunization and pharmacological therapies is reviewed to contextualize the scope of the public health challenge. Unfortunately, vaccines that confer protection from systemic disease do not necessarily confer protection for the brain after exposure through unconventional routes.
Collapse
Affiliation(s)
| | - Nitin Bhardwaj
- Department of Infectious Diseases and MicrobiologyUniversity of PittsburghPittsburghPA
- Present address:
Sanofi Pasteur1755 Steeles Avenue WestTorontoOntarioCanadaM2R 3T4
| | - Ted M. Ross
- Center for Vaccine DevelopmentUniversity of GeorgiaAthensGA
- Department of Infectious DiseasesUniversity of GeorgiaAthensGA
| | | |
Collapse
|
15
|
Rift Valley Fever Virus MP-12 Vaccine Is Fully Attenuated by a Combination of Partial Attenuations in the S, M, and L Segments. J Virol 2015; 89:7262-76. [PMID: 25948740 DOI: 10.1128/jvi.00135-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and characterized by a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), which has a tripartite negative-stranded RNA genome (consisting of the S, M, and L segments). Further spread of RVF into countries where the disease is not endemic may affect the economy and public health, and vaccination is an effective approach to prevent the spread of RVFV. A live-attenuated MP-12 vaccine is one of the best-characterized RVF vaccines for safety and efficacy and is currently conditionally licensed for use for veterinary purposes in the United States. Meanwhile, as of 2015, no other RVF vaccine has been conditionally or fully licensed for use in the United States. The MP-12 strain is derived from wild-type pathogenic strain ZH548, and its genome encodes 23 mutations in the three genome segments. However, the mechanism of MP-12 attenuation remains unknown. We characterized the attenuation of wild-type pathogenic strain ZH501 carrying a mutation(s) of the MP-12 S, M, or L segment in a mouse model. Our results indicated that MP-12 is attenuated by the mutations in the S, M, and L segments, while the mutations in the M and L segments confer stronger attenuation than those in the S segment. We identified a combination of 3 amino acid changes, Y259H (Gn), R1182G (Gc), and R1029K (L), that was sufficient to attenuate ZH501. However, strain MP-12 with reversion mutations at those 3 sites was still highly attenuated. Our results indicate that MP-12 attenuation is supported by a combination of multiple partial attenuation mutations and a single reversion mutation is less likely to cause a reversion to virulence of the MP-12 vaccine. IMPORTANCE Rift Valley fever (RVF) is a mosquito-transmitted viral disease that is endemic to Africa and that has the potential to spread into other countries. Vaccination is considered an effective way to prevent the disease, and the only available veterinary RVF vaccine in the United States is a live-attenuated MP-12 vaccine, which is conditionally licensed. Strain MP-12 is different from its parental pathogenic RVFV strain, strain ZH548, because of the presence of 23 mutations. This study determined the role of individual mutations in the attenuation of the MP-12 strain. We found that full attenuation of MP-12 occurs by a combination of multiple mutations. Our findings indicate that a single reversion mutation will less likely cause a major reversion to virulence of the MP-12 vaccine.
Collapse
|
16
|
Terasaki K, Makino S. Interplay between the Virus and Host in Rift Valley Fever Pathogenesis. J Innate Immun 2015; 7:450-8. [PMID: 25766761 DOI: 10.1159/000373924] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022] Open
Abstract
Rift Valley fever virus (RVFV) belongs to the genus Phlebovirus, family Bunyaviridae, and carries single-stranded tripartite RNA segments. The virus is transmitted by mosquitoes and has caused large outbreaks among ruminants and humans in sub-Saharan African and Middle East countries. The disease is characterized by a sudden onset of fever, headache, muscle pain, joint pain, photophobia, and weakness. In most cases, patients recover from the disease after a period of weeks, but some also develop retinal or macular changes, which result in vision impairment that lasts for an undefined period of time, and severe disease, characterized by hemorrhagic fever or encephalitis. The virus also causes febrile illness resulting in a high rate of spontaneous abortions in ruminants. The handling of wild-type RVFV requires high-containment facilities, including biosafety level 4 or enhanced biosafety level 3 laboratories. Nonetheless, studies clarifying the mechanisms of the RVFV-induced diseases and preventing them are areas of active research throughout the world. By primarily referring to recent studies using several animal model systems, protein expression systems, and specific mutant viruses, this review describes the current knowledge about the mechanisms of pathogenesis of RVF and biological functions of various viral proteins that affect RVFV pathogenicity.
Collapse
Affiliation(s)
- Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Tex., USA
| | | |
Collapse
|
17
|
Mudhasani R, Kota KP, Retterer C, Tran JP, Whitehouse CA, Bavari S. High content image-based screening of a protease inhibitor library reveals compounds broadly active against Rift Valley fever virus and other highly pathogenic RNA viruses. PLoS Negl Trop Dis 2014; 8:e3095. [PMID: 25144302 PMCID: PMC4140764 DOI: 10.1371/journal.pntd.0003095] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/03/2014] [Indexed: 12/20/2022] Open
Abstract
High content image-based screening was developed as an approach to test a protease inhibitor small molecule library for antiviral activity against Rift Valley fever virus (RVFV) and to determine their mechanism of action. RVFV is the causative agent of severe disease of humans and animals throughout Africa and the Arabian Peninsula. Of the 849 compounds screened, 34 compounds exhibited ≥50% inhibition against RVFV. All of the hit compounds could be classified into 4 distinct groups based on their unique chemical backbone. Some of the compounds also showed broad antiviral activity against several highly pathogenic RNA viruses including Ebola, Marburg, Venezuela equine encephalitis, and Lassa viruses. Four hit compounds (C795-0925, D011-2120, F694-1532 and G202-0362), which were most active against RVFV and showed broad-spectrum antiviral activity, were selected for further evaluation for their cytotoxicity, dose response profile, and mode of action using classical virological methods and high-content imaging analysis. Time-of-addition assays in RVFV infections suggested that D011-2120 and G202-0362 targeted virus egress, while C795-0925 and F694-1532 inhibited virus replication. We showed that D011-2120 exhibited its antiviral effects by blocking microtubule polymerization, thereby disrupting the Golgi complex and inhibiting viral trafficking to the plasma membrane during virus egress. While G202-0362 also affected virus egress, it appears to do so by a different mechanism, namely by blocking virus budding from the trans Golgi. F694-1532 inhibited viral replication, but also appeared to inhibit overall cellular gene expression. However, G202-0362 and C795-0925 did not alter any of the morphological features that we examined and thus may prove to be good candidates for antiviral drug development. Overall this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals and to determine their mechanism of action and any possible deleterious effects on host cellular biology. Rift Valley fever (RVF) is an arthropod-borne viral zoonosis that occurs in large parts of sub-Saharan and North Africa and in 2000 emerged outside the African continent for the first time, raising concerns that it could further expand its geographical range. The disease in humans can result in encephalitis or hemorrhagic fever and in ruminants often results in abortion in pregnant females. Due to the lack of a licensed and commercially available vaccine, efforts to discover effective antiviral drugs are underway. Drug discovery using high content image-based screening is an effective tool that has been successfully used to identify new drugs. In this study, we developed an image-based assay to identify compounds active against RVF virus and other highly pathogenic human viruses. We demonstrated the usefulness of our image-based high content assay in identifying potential RVF antivirals by screening a small subset of chemical compounds for inhibition of RVF virus in a human cell line (HeLa) and partially characterized their mechanism of action within infected cells. The methods we developed in this study will be useful in discovering new effective drugs to combat Rift Valley fever.
Collapse
Affiliation(s)
- Rajini Mudhasani
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Krishna P. Kota
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Cary Retterer
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Julie P. Tran
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Chris A. Whitehouse
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sina Bavari
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Murakami S, Terasaki K, Ramirez SI, Morrill JC, Makino S. Development of a novel, single-cycle replicable rift valley Fever vaccine. PLoS Negl Trop Dis 2014; 8:e2746. [PMID: 24651859 PMCID: PMC3961198 DOI: 10.1371/journal.pntd.0002746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/30/2014] [Indexed: 12/25/2022] Open
Abstract
Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, neuroinvasiveness and neurovirulence of MP-12 in mice may be a concern when vaccinating certain individuals, especially those that are immunocompromised. We have developed a novel, single-cycle replicable MP-12 (scMP-12), which carries an L RNA, M RNA mutant encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function, and S RNA encoding N protein and green fluorescent protein. The scMP-12 underwent efficient amplification, then formed plaques and retained the introduced mutation after serial passages in a cell line stably expressing viral envelope proteins. However, inoculation of the scMP-12 into naïve cells resulted in a single round of viral replication, and production of low levels of noninfectious virus-like particles. Intracranial inoculation of scMP-12 into suckling mice did not cause clinical signs or death, a finding which demonstrated that the scMP-12 lacked neurovirulence. Mice immunized with a single dose of scMP-12 produced neutralizing antibodies, whose titers were higher than in mice immunized with replicon particles carrying L RNA and S RNA encoding N protein and green fluorescent protein. Moreover, 90% of the scMP-12-immunized mice were protected from wild-type RVFV challenge by efficiently suppressing viremia and replication of the challenge virus in the liver and the spleen. These data demonstrated that scMP-12 is a safe and immunogenic RVFV vaccine candidate.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Disease Models, Animal
- Female
- Mice
- Mutant Proteins/genetics
- Mutant Proteins/metabolism
- Rift Valley Fever/prevention & control
- Rift Valley fever virus/genetics
- Rift Valley fever virus/immunology
- Rift Valley fever virus/physiology
- Survival Analysis
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/adverse effects
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/adverse effects
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virus Internalization
- Virus Replication
Collapse
Affiliation(s)
- Shin Murakami
- Department of Microbiology and Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kaori Terasaki
- Department of Microbiology and Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sydney I. Ramirez
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John C. Morrill
- Department of Microbiology and Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shinji Makino
- Department of Microbiology and Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, the University of Texas Medical Branch, Galveston, Texas, United States of America
- UTMB Center for Tropical Diseases, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, the University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Paweska JT. Rift Valley Fever. Emerg Infect Dis 2014. [DOI: 10.1016/b978-0-12-416975-3.00006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
20
|
Abstract
Phytophthora sp. is a genus in the oomycetes, which are similar to filamentous fungi in morphology and habitat, but phylogenetically more closely related to brown algae and diatoms and fall in the kingdom Stramenopila. In the past few years, several viruses have been characterized in Phytophthora species, including four viruses from Phytophthora infestans, the late blight pathogen, and an endornavirus from an unnamed Phytophthora species from Douglas fir. Studies on Phytophthora viruses have revealed several interesting systems. Phytophthora infestans RNA virus 1 (PiRV-1) and PiRV-2 are likely the first members of two new virus families; studies on PiRV-3 support the establishment of a new virus genus that is not affiliated with established virus families; PiRV-4 is a member of Narnaviridae, most likely in the genus Narnavirus; and Phytophthora endornavirus 1 (PEV1) was the first nonplant endornavirus at the time of reporting. Viral capsids have not been found in any of the above-mentioned viruses. PiRV-1 demonstrated a unique genome organization that requires further examination, and PiRV-2 may have played a role in late blight resurgence in 1980s-1990s.
Collapse
Affiliation(s)
- Guohong Cai
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA.
| | | |
Collapse
|
21
|
Abstract
We show that interferon-induced transmembrane protein 1 (IFITM-1), IFITM-2, and IFITM-3 exhibit a broad spectrum of antiviral activity against several members of the Bunyaviridae family, including Rift Valley fever virus (RVFV), La Crosse virus, Andes virus, and Hantaan virus, all of which can cause severe disease in humans and animals. We found that RVFV was restricted by IFITM-2 and -3 but not by IFITM-1, whereas the remaining viruses were equally restricted by all IFITMs. Indeed, at low doses of alpha interferon (IFN-α), IFITM-2 and -3 mediated more than half of the antiviral activity of IFN-α against RVFV. IFITM-2 and -3 restricted RVFV infection mostly by preventing virus membrane fusion with endosomes, while they had no effect on virion attachment to cells, endocytosis, or viral replication kinetics. We found that large fractions of IFITM-2 and IFITM-3 occupy vesicular compartments that are distinct from the vesicles coated by IFITM-1. In addition, although overexpression of all IFITMs expanded vesicular and acidified compartments within cells, there were marked phenotypic differences among the vesicular compartments occupied by IFITMs. Collectively, our data provide new insights into the possible mechanisms by which the IFITM family members restrict distinct viruses.
Collapse
|
22
|
Lihoradova OA, Indran SV, Kalveram B, Lokugamage N, Head JA, Gong B, Tigabu B, Juelich TL, Freiberg AN, Ikegami T. Characterization of Rift Valley fever virus MP-12 strain encoding NSs of Punta Toro virus or sandfly fever Sicilian virus. PLoS Negl Trop Dis 2013; 7:e2181. [PMID: 23638202 PMCID: PMC3630143 DOI: 10.1371/journal.pntd.0002181] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/15/2013] [Indexed: 12/22/2022] Open
Abstract
Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) is a mosquito-borne zoonotic pathogen which can cause hemorrhagic fever, neurological disorders or blindness in humans, and a high rate of abortion in ruminants. MP-12 strain, a live-attenuated candidate vaccine, is attenuated in the M- and L-segments, but the S-segment retains the virulent phenotype. MP-12 was manufactured as an Investigational New Drug vaccine by using MRC-5 cells and encodes a functional NSs gene, the major virulence factor of RVFV which 1) induces a shutoff of the host transcription, 2) inhibits interferon (IFN)-β promoter activation, and 3) promotes the degradation of dsRNA-dependent protein kinase (PKR). MP-12 lacks a marker for differentiation of infected from vaccinated animals (DIVA). Although MP-12 lacking NSs works for DIVA, it does not replicate efficiently in type-I IFN-competent MRC-5 cells, while the use of type-I IFN-incompetent cells may negatively affect its genetic stability. To generate modified MP-12 vaccine candidates encoding a DIVA marker, while still replicating efficiently in MRC-5 cells, we generated recombinant MP-12 encoding Punta Toro virus Adames strain NSs (rMP12-PTNSs) or Sandfly fever Sicilian virus NSs (rMP12-SFSNSs) in place of MP-12 NSs. We have demonstrated that those recombinant MP-12 viruses inhibit IFN-β mRNA synthesis, yet do not promote the degradation of PKR. The rMP12-PTNSs, but not rMP12-SFSNSs, replicated more efficiently than recombinant MP-12 lacking NSs in MRC-5 cells. Mice vaccinated with rMP12-PTNSs or rMP12-SFSNSs induced neutralizing antibodies at a level equivalent to those vaccinated with MP-12, and were efficiently protected from wild-type RVFV challenge. The rMP12-PTNSs and rMP12-SFSNSs did not induce antibodies cross-reactive to anti-RVFV NSs antibody and are therefore applicable to DIVA. Thus, rMP12-PTNSs is highly efficacious, replicates efficiently in MRC-5 cells, and encodes a DIVA marker, all of which are important for vaccine development for Rift Valley fever. Upon outbreak of zoonotic viral diseases in herds of animals, early detection of naturally infected animals and prevention of further viral spread are important for minimizing the impact of outbreak in the society. Vaccination may compromise the identification of infected animals since both natural infection and vaccination induce antibodies specific to the pathogen. Therefore, new generation vaccines should have a marker to differentiate infected from vaccinated animals (DIVA). Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen which can cause hemorrhagic fever, neurological disorders or blindness in humans and a high-rate abortion in ruminants. MP-12 strain, a live-attenuated candidate vaccine, is safe and immunogenic, but lacks a DIVA marker. In this study, we developed and characterized improved MP-12 viruses which encode a DIVA marker by replacing the virulence gene with that of serologically distinct viruses belonging to the same genera. The novel MP-12 variant with such DIVA marker was highly efficacious and replicated efficiently in human diploid cells for vaccine production, and will become alternative candidate vaccines of MP-12 for veterinary applications.
Collapse
Affiliation(s)
- Olga A. Lihoradova
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sabarish V. Indran
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Birte Kalveram
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nandadeva Lokugamage
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jennifer A. Head
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bin Gong
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bersabeh Tigabu
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Terry L. Juelich
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Indran SV, Lihoradova OA, Phoenix I, Lokugamage N, Kalveram B, Head JA, Tigabu B, Smith JK, Zhang L, Juelich TL, Gong B, Freiberg AN, Ikegami T. Rift Valley fever virus MP-12 vaccine encoding Toscana virus NSs retains neuroinvasiveness in mice. J Gen Virol 2013; 94:1441-1450. [PMID: 23515022 DOI: 10.1099/vir.0.051250-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rift Valley fever is a mosquito-borne zoonotic disease endemic to sub-Saharan Africa. Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) causes high rates of abortion and fetal malformation in pregnant ruminants, and haemorrhagic fever, neurological disorders or blindness in humans. The MP-12 strain is a highly efficacious and safe live-attenuated vaccine candidate for both humans and ruminants. However, MP-12 lacks a marker to differentiate infected from vaccinated animals. In this study, we originally aimed to characterize the efficacy of a recombinant RVFV MP-12 strain encoding Toscana virus (TOSV) NSs gene in place of MP-12 NSs (rMP12-TOSNSs). TOSV NSs promotes the degradation of dsRNA-dependent protein kinase (PKR) and inhibits interferon-β gene up-regulation without suppressing host general transcription. Unexpectedly, rMP12-TOSNSs increased death in vaccinated outbred mice and inbred BALB/c or C57BL/6 mice. Immunohistochemistry showed diffusely positive viral antigens in the thalamus, hypothalamus and brainstem, including the medulla. No viral antigens were detected in spleen or liver, which is similar to the antigen distribution of moribund mice infected with MP-12. These results suggest that rMP12-TOSNSs retains neuroinvasiveness in mice. Our findings demonstrate that rMP12-TOSNSs causes neuroinvasion without any hepatic disease and will be useful for studying the neuroinvasion mechanism of RVFV and TOSV.
Collapse
Affiliation(s)
- Sabarish V Indran
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Olga A Lihoradova
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Inaia Phoenix
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nandadeva Lokugamage
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Birte Kalveram
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer A Head
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bersabeh Tigabu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer K Smith
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lihong Zhang
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Terry L Juelich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bin Gong
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander N Freiberg
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.,Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tetsuro Ikegami
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
24
|
Ikegami T. Molecular biology and genetic diversity of Rift Valley fever virus. Antiviral Res 2012; 95:293-310. [PMID: 22710362 DOI: 10.1016/j.antiviral.2012.06.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/05/2012] [Accepted: 06/05/2012] [Indexed: 01/25/2023]
Abstract
Rift Valley fever virus (RVFV), a member of the family Bunyaviridae, genus Phlebovirus, is the causative agent of Rift Valley fever (RVF), a mosquito-borne disease of ruminant animals and humans. The generation of a large sequence database has facilitated studies of the evolution and spread of the virus. Bayesian analyses indicate that currently circulating strains of RVFV are descended from an ancestral species that emerged from a natural reservoir in Africa when large-scale cattle and sheep farming were introduced during the 19th century. Viruses descended from multiple lineages persist in that region, through infection of reservoir animals and vertical transmission in mosquitoes, emerging in years of heavy rainfall to cause epizootics and epidemics. On a number of occasions, viruses from these lineages have been transported outside the enzootic region through the movement of infected animals or mosquitoes, triggering outbreaks in countries such as Egypt, Saudi Arabia, Mauritania and Madagascar, where RVF had not previously been seen. Such viruses could potentially become established in their new environments through infection of wild and domestic ruminants and other animals and vertical transmission in local mosquito species. Despite their extensive geographic dispersion, all strains of RVFV remain closely related at the nucleotide and amino acid level. The high degree of conservation of genes encoding the virion surface glycoproteins suggests that a single vaccine should protect against all currently circulating RVFV strains. Similarly, preservation of the sequence of the RNA-dependent RNA polymerase across viral lineages implies that antiviral drugs targeting the enzyme should be effective against all strains. Researchers should be encouraged to collect additional RVFV isolates and perform whole-genome sequencing and phylogenetic analysis, so as to enhance our understanding of the continuing evolution of this important virus. This review forms part of a series of invited papers in Antiviral Research on the genetic diversity of emerging viruses.
Collapse
Affiliation(s)
- Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch, MMNP3.206D, 301 University Blvd. Galveston, TX 77555-0436, USA.
| |
Collapse
|
25
|
Pathogenesis of emerging severe fever with thrombocytopenia syndrome virus in C57/BL6 mouse model. Proc Natl Acad Sci U S A 2012; 109:10053-8. [PMID: 22665769 DOI: 10.1073/pnas.1120246109] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The discovery of an emerging viral disease, severe fever with thrombocytopenia syndrome (SFTS), caused by SFTS virus (SFTSV), has prompted the need to understand pathogenesis of SFTSV. We are unique in establishing an infectious model of SFTS in C57/BL6 mice, resulting in hallmark symptoms of thrombocytopenia and leukocytopenia. Viral RNA and histopathological changes were identified in the spleen, liver, and kidney. However, viral replication was only found in the spleen, which suggested the spleen to be the principle target organ of SFTSV. Moreover, the number of macrophages and platelets were largely increased in the spleen, and SFTSV colocalized with platelets in cytoplasm of macrophages in the red pulp of the spleen. In vitro cellular assays further revealed that SFTSV adhered to mouse platelets and facilitated the phagocytosis of platelets by mouse primary macrophages, which in combination with in vivo findings, suggests that SFTSV-induced thrombocytopenia is caused by clearance of circulating virus-bound platelets by splenic macrophages. Thus, this study has elucidated the pathogenic mechanisms of thrombocytopenia in a mouse model resembling human SFTS disease.
Collapse
|
26
|
The dominant-negative inhibition of double-stranded RNA-dependent protein kinase PKR increases the efficacy of Rift Valley fever virus MP-12 vaccine. J Virol 2012; 86:7650-61. [PMID: 22573861 DOI: 10.1128/jvi.00778-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rift Valley fever virus (RVFV), belonging to the genus Phlebovirus, family Bunyaviridae, is endemic to sub-Saharan Africa and causes a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. MP-12 is the only RVFV strain excluded from the select-agent rule and handled at a biosafety level 2 (BSL2) laboratory. MP-12 encodes a functional major virulence factor, the NSs protein, which contributes to its residual virulence in pregnant ewes. We found that 100% of mice subcutaneously vaccinated with recombinant MP-12 (rMP12)-murine PKRN167 (mPKRN167), which encodes a dominant-negative form of mouse double-stranded RNA (dsRNA)-dependent protein kinase (PKR) in place of NSs, were protected from wild-type (wt) RVFV challenge, while 72% of mice vaccinated with MP-12 were protected after challenge. rMP12-mPKRN167 induced alpha interferon (IFN-α) in sera, accumulated RVFV antigens in dendritic cells at the local draining lymph nodes, and developed high levels of neutralizing antibodies, while parental MP-12 induced neither IFN-α nor viral-antigen accumulation at the draining lymph node yet induced a high level of neutralizing antibodies. The present study suggests that the expression of a dominant-negative PKR increases the immunogenicity and efficacy of live-attenuated RVFV vaccine, which will lead to rational design of safe and highly immunogenic RVFV vaccines for livestock and humans.
Collapse
|
27
|
Nfon CK, Marszal P, Zhang S, Weingartl HM. Innate immune response to Rift Valley fever virus in goats. PLoS Negl Trop Dis 2012; 6:e1623. [PMID: 22545170 PMCID: PMC3335883 DOI: 10.1371/journal.pntd.0001623] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/06/2012] [Indexed: 12/31/2022] Open
Abstract
Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-γ, IL-12 and other proinflammatory cytokines but not IFN-α. Despite the lack of IFN-α, innate immunity via the IL-12 to IFN-γ circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings.
Collapse
Affiliation(s)
- Charles K. Nfon
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- * E-mail: (CKN); (HMW)
| | - Peter Marszal
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Shunzhen Zhang
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Hana M. Weingartl
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail: (CKN); (HMW)
| |
Collapse
|
28
|
Abstract
Rift Valley fever (RVF) is an emerging zoonotic disease distributed in sub-Saharan African countries and the Arabian Peninsula. The disease is caused by the Rift Valley fever virus (RVFV) of the family Bunyaviridae and the genus Phlebovirus. The virus is transmitted by mosquitoes, and virus replication in domestic ruminant results in high rates of mortality and abortion. RVFV infection in humans usually causes a self-limiting, acute and febrile illness; however, a small number of cases progress to neurological disorders, partial or complete blindness, hemorrhagic fever, or thrombosis. This review describes the pathology of RVF in human patients and several animal models, and summarizes the role of viral virulence factors and host factors that affect RVFV pathogenesis.
Collapse
|
29
|
Ross TM, Bhardwaj N, Bissel SJ, Hartman AL, Smith DR. Animal models of Rift Valley fever virus infection. Virus Res 2012; 163:417-23. [DOI: 10.1016/j.virusres.2011.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/21/2011] [Accepted: 10/27/2011] [Indexed: 11/24/2022]
|
30
|
Tissue tropism and target cells of NSs-deleted rift valley fever virus in live immunodeficient mice. PLoS Negl Trop Dis 2011; 5:e1421. [PMID: 22163058 PMCID: PMC3232203 DOI: 10.1371/journal.pntd.0001421] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/24/2011] [Indexed: 01/05/2023] Open
Abstract
Background Rift Valley fever virus (RVFV) causes disease in livestock and humans. It can be transmitted by mosquitoes, inhalation or physical contact with the body fluids of infected animals. Severe clinical cases are characterized by acute hepatitis with hemorrhage, meningoencephalitis and/or retinitis. The dynamics of RVFV infection and the cell types infected in vivo are poorly understood. Methodology/Principal Findings RVFV strains expressing humanized Renilla luciferase (hRLuc) or green fluorescent protein (GFP) were generated and inoculated to susceptible Ifnar1-deficient mice. We investigated the tissue tropism in these mice and the nature of the target cells in vivo using whole-organ imaging and flow cytometry. After intraperitoneal inoculation, hRLuc signal was observed primarily in the thymus, spleen and liver. Macrophages infiltrating various tissues, in particular the adipose tissue surrounding the pancreas also expressed the virus. The liver rapidly turned into the major luminescent organ and the mice succumbed to severe hepatitis. The brain remained weakly luminescent throughout infection. FACS analysis in RVFV-GFP-infected mice showed that the macrophages, dendritic cells and granulocytes were main target cells for RVFV. The crucial role of cells of the monocyte/macrophage/dendritic lineage during RVFV infection was confirmed by the slower viral dissemination, decrease in RVFV titers in blood, and prolonged survival of macrophage- and dendritic cell-depleted mice following treatment with clodronate liposomes. Upon dermal and nasal inoculations, the viral dissemination was primarily observed in the lymph node draining the injected ear and in the lungs respectively, with a significant increase in survival time. Conclusions/Significance These findings reveal the high levels of phagocytic cells harboring RVFV during viral infection in Ifnar1-deficient mice. They demonstrate that bioluminescent and fluorescent viruses can shed new light into the pathogenesis of RVFV infection. Rift Valley fever, caused by a member of the Bunyaviridae family, has spread during recent years to most sub-Saharan African countries, in Egypt and in the Arabian peninsula. The virus can be transmitted by insect vectors or by direct contacts with infectious tissues. The analysis of virus replication and dissemination in laboratory animals has been hampered by the need to euthanize sufficient numbers of animals and to assay appropriate organs at various time points after infection to evaluate the viral replication. By following the bioluminescence and fluorescence of Rift Valley fever viruses expressing light reporters, we were able to track the real-time dissemination of the viruses in live immunodeficient mice. We showed that the first infected organs were the thymus, spleen and liver, but the liver rapidly became the main location of viral replication. Phagocytes also appeared as important targets, and their systemic depletion by use of clodronate liposomes decreased the number of viruses in the blood, delayed the viral dissemination and prolonged the survival of the infected mice.
Collapse
|
31
|
Abstract
Rift Valley fever virus (RVFV) is a zoonotic pathogen that primarily affects ruminants but can also be lethal in humans. A negative-stranded RNA virus of the family Bunyaviridae, this pathogen is transmitted mainly via mosquito vectors. RVFV has shown the ability to inflict significant damage to livestock and is also a threat to public health. While outbreaks have traditionally occurred in sub-Saharan Africa, recent outbreaks in the Middle East have raised awareness of the potential of this virus to spread to Europe, Asia, and the Americas. Although the virus was initially characterized almost 80 years ago, the only vaccine approved for widespread veterinary use is an attenuated strain that has been associated with significant pathogenic side effects. However, increased understanding of the molecular biology of the virus over the last few years has led to recent advances in vaccine design and has enabled the development of more-potent prophylactic measures to combat infection. In this review, we discuss several aspects of RVFV, with particular emphasis on the molecular components of the virus and their respective roles in pathogenesis and an overview of current vaccine candidates. Progress in understanding the epidemiology of Rift Valley fever has also enabled prediction of potential outbreaks well in advance, thus providing another tool to combat the physical and economic impact of this disease.
Collapse
|