1
|
Zhao W, Chen Z, Fu W, Ye C, Fu H, Xu T, Wu B, Chen L, Shan SJ. Induction of apoptosis and hypoxic stress in malignant melanoma cells via graphene-mediated far-infrared radiation. BMC Cancer 2025; 25:620. [PMID: 40197161 PMCID: PMC11974076 DOI: 10.1186/s12885-025-14031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Malignant melanoma (MM) is a highly aggressive skin tumor with a rising incidence and poor prognosis. Although current clinical treatments, including surgery, targeted therapy, immunotherapy, and radiotherapy, have shown some efficacy, therapeutic options remain limited for elderly patients and those with metastatic disease, highlighting the urgent need for novel therapeutic strategies. In recent years, the unique far-infrared radiation (FIR) properties of graphene have demonstrated potential applications in cancer treatment. However, the mechanisms underlying FIR's effects in MM therapy remain poorly understood. METHODS This study systematically evaluated the inhibitory effects of FIR on MM through in vitro cell experiments, animal models, and molecular mechanism analysis. First, the B16F10 melanoma cell line was used as the experimental model. The effects of FIR on cell proliferation, apoptosis, and the cell cycle were assessed using CCK-8 assays and flow cytometry, while RNA sequencing was conducted to analyze the associated signaling pathways. Second, specific caspase inhibitors were employed to further validate the mechanisms of FIR-induced apoptosis. Finally, a syngeneic tumor transplantation model in C57BL/6J mice was established to comfirm the anti-tumor efficacy of FIR in vivo, thereby comprehensively elucidating its anti-cancer mechanisms. RESULTS The results demonstrated that FIR significantly inhibits MM. In vitro experiments revealed that FIR treatment markedly suppressed B16F10 cell proliferation, induced apoptosis, caused G0/G1 phase cell cycle arrest, and downregulated the expression of hypoxia-related proteins such as HIF-1α. In animal studies, FIR significantly inhibited tumor growth. RNA sequencing revealed that FIR exerts its anti-cancer effects through multiple signaling pathways. Notably, the use of caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK, which specifically inhibit caspase-3 and caspase-9, respectively, can rescue cells from apoptosis induced by FIR treatment. CONCLUSION This study systematically elucidated that FIR exerts anti-tumor effects through multiple mechanisms, including inducing MM cell apoptosis, exacerbating hypoxic stress, and causing cell cycle arrest. The findings provide new insights and approaches for MM treatment and establish a theoretical foundation for the clinical application of FIR in cancer therapy.
Collapse
Affiliation(s)
- Wumei Zhao
- Department of Dermatology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361101, China
| | - Ziwen Chen
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361101, China
| | - Wenxing Fu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361101, China
| | - Chenyan Ye
- Department of Dermatology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361101, China
| | - Haijing Fu
- Department of Dermatology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361101, China
| | - Tianyi Xu
- Department of Dermatology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361101, China
| | - Binghui Wu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361101, China.
| | - Lina Chen
- Department of cardiology, Shaoxing Central Hospital, Shaoxing, 312030, China.
| | - Shi-Jun Shan
- Department of Dermatology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361101, China.
- Jinhua Fifth Hospital, College of Mathematical Medicine, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
2
|
Butler AG, Bassi JK, Connelly AA, Melo MR, Allen AM, McDougall SJ. Vagal nerve stimulation dynamically alters anxiety-like behavior in rats. Brain Stimul 2025; 18:158-170. [PMID: 39892503 DOI: 10.1016/j.brs.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Electrical vagal nerve stimulation (VNS), at currents designed to target sensory, interoceptive neurons, decreases anxiety-like behavior. OBJECTIVE/HYPOTHESIS We hypothesized that different VNS current intensities would differentially alter anxiety-like behavior through the activation of distinct brainstem circuits. METHODS Electrodes were implanted to stimulate the left vagus nerve and to record diaphragm muscle and electrocardiogram activity. The VNS current required to elicit the A-fiber-mediated Hering-Breuer Reflex (HBR) was determined for each animal. Based on this threshold, animals received either sham stimulation or VNS at 1.5 (mid-intensity VNS) or 3 (higher-intensity VNS) times the threshold for HBR activation. Anxiety-like behavior was assessed using the elevated plus maze, open field test, and novelty-suppressed feeding test. Additionally, a place preference assay determined whether VNS is rewarding or aversive. Finally, a c-Fos assay was performed to evaluate VNS-driven neuronal activation within the brainstem. RESULTS Mid-intensity VNS reduced anxiety-like behavior in the elevated plus maze and open field test. Higher-intensity VNS was aversive during the place preference assay, confounding anxiety measures. Both intensities increased overall c-Fos expression in neurons within the nucleus of the solitary tract, but mid-intensity VNS specifically increased c-Fos expression in noradrenergic neurons within the nucleus of the solitary tract while decreasing it in the locus coeruleus. In contrast, higher-intensity VNS had no effect on c-Fos expression in noradrenergic neurons of either the nucleus of the solitary tract or locus coeruleus. CONCLUSION Delivery of VNS induced reproducible, current intensity-dependent, effects on anxiety-like and aversive behavior in rats.
Collapse
Affiliation(s)
- A G Butler
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - J K Bassi
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - A A Connelly
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - M R Melo
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - A M Allen
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia.
| | - S J McDougall
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Xu T, Fu H, Zhao W, Shan S. Far-infrared radiation alleviates steatohepatitis and fibrosis in metabolic dysfunction-associated fatty liver disease. Sci Rep 2024; 14:19292. [PMID: 39164313 PMCID: PMC11336198 DOI: 10.1038/s41598-024-69053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a disease that causes an abnormal accumulation of fat in the liver, triggering inflammation and fibrosis, the mechanism of which is not fully understood and for which there is a lack of specific drug therapy. Far-infrared radiation (FIR) has demonstrated evident therapeutic efficacy across various diseases, and novel nanomaterial graphene patches can emit it through electric heating. This study aimed to investigate the potential protective effects of FIR against MAFLD. Mice were fed with a MCD diet to mimic MAFLD progression, and histopathology analysis, biochemical analysis, RT-qPCR, and Western blotting analysis were performed to assess the effect of FIR on MAFLD in vivo. The effect of FIR treatment on MAFLD in vitro was investigated by biochemical analysis and gene expression profiling of hepatocytes. Mice subjected to the MCD diet and treated with FIR exhibited reduced hepatic lipid deposition, inflammation, fibrosis and liver damage. The therapeutic effect exerted by FIR in mice may be caused by the enhancement of AMPK phosphorylation and inhibition of the TGFβ1-SMAD2/3 pathway. Besides, FIR intervention alleviated MAFLD in hepatocytes in vitro and the results were verified by gene expression profiling. Our results revealed a promising potential of FIR as a novel therapeutic approach for MAFLD.
Collapse
Affiliation(s)
- Tianyi Xu
- Department of Dermatology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Haijing Fu
- Department of Dermatology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Wumei Zhao
- Department of Dermatology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Shijun Shan
- Department of Dermatology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.
- Chen Hongduo Academician Workstation, Shaoxing Central Hospital, Shaoxing, China.
- Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Dedek C, Azadgoleh MA, Prescott SA. Reproducible and fully automated testing of nocifensive behavior in mice. CELL REPORTS METHODS 2023; 3:100650. [PMID: 37992707 PMCID: PMC10783627 DOI: 10.1016/j.crmeth.2023.100650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Pain in rodents is often inferred from their withdrawal from noxious stimulation. Threshold stimulus intensity or response latency is used to quantify pain sensitivity. This usually involves applying stimuli by hand and measuring responses by eye, which limits reproducibility and throughput. We describe a device that standardizes and automates pain testing by providing computer-controlled aiming, stimulation, and response measurement. Optogenetic and thermal stimuli are applied using blue and infrared light, respectively. Precise mechanical stimulation is also demonstrated. Reflectance of red light is used to measure paw withdrawal with millisecond precision. We show that consistent stimulus delivery is crucial for resolving stimulus-dependent variations in withdrawal and for testing with sustained stimuli. Moreover, substage video reveals "spontaneous" behaviors for consideration alongside withdrawal metrics to better assess the pain experience. The entire process was automated using machine learning. RAMalgo (reproducible automated multimodal algometry) improves the standardization, comprehensiveness, and throughput of preclinical pain testing.
Collapse
Affiliation(s)
- Christopher Dedek
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Mehdi A Azadgoleh
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
5
|
Kang M, Lee DM, Hyun I, Rubab N, Kim SH, Kim SW. Advances in Bioresorbable Triboelectric Nanogenerators. Chem Rev 2023; 123:11559-11618. [PMID: 37756249 PMCID: PMC10571046 DOI: 10.1021/acs.chemrev.3c00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 09/29/2023]
Abstract
With the growing demand for next-generation health care, the integration of electronic components into implantable medical devices (IMDs) has become a vital factor in achieving sophisticated healthcare functionalities such as electrophysiological monitoring and electroceuticals worldwide. However, these devices confront technological challenges concerning a noninvasive power supply and biosafe device removal. Addressing these challenges is crucial to ensure continuous operation and patient comfort and minimize the physical and economic burden on the patient and the healthcare system. This Review highlights the promising capabilities of bioresorbable triboelectric nanogenerators (B-TENGs) as temporary self-clearing power sources and self-powered IMDs. First, we present an overview of and progress in bioresorbable triboelectric energy harvesting devices, focusing on their working principles, materials development, and biodegradation mechanisms. Next, we examine the current state of on-demand transient implants and their biomedical applications. Finally, we address the current challenges and future perspectives of B-TENGs, aimed at expanding their technological scope and developing innovative solutions. This Review discusses advancements in materials science, chemistry, and microfabrication that can advance the scope of energy solutions available for IMDs. These innovations can potentially change the current health paradigm, contribute to enhanced longevity, and reshape the healthcare landscape soon.
Collapse
Affiliation(s)
- Minki Kang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Inah Hyun
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Najaf Rubab
- Department
of Materials Science and Engineering, Gachon
University, Seongnam 13120, Republic
of Korea
| | - So-Hee Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Kupari J, Ernfors P. Molecular taxonomy of nociceptors and pruriceptors. Pain 2023; 164:1245-1257. [PMID: 36718807 PMCID: PMC10184562 DOI: 10.1097/j.pain.0000000000002831] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Jussi Kupari
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Fann LY, Cheng CC, Chien YC, Hsu CW, Chien WC, Huang YC, Chung RJ, Huang SH, Jiang YH, Yin SH, Cheng KW, Wu YP, Hsiao SH, Hsu SY, Huang YC, Chu CM. Effect of far-infrared radiation on inhibition of colonies on packaging during storage of sterilised surgical instruments. Sci Rep 2023; 13:8490. [PMID: 37231027 PMCID: PMC10212960 DOI: 10.1038/s41598-023-35352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
The sterilisation of surgical instruments is a major factor in infection control in the operating room (OR). All items used in the OR must be sterile for patient safety. Therefore, the present study evaluated the effect of far-infrared radiation (FIR) on the inhibition of colonies on packaging surface during the long-term storage of sterilised surgical instruments. From September 2021 to July 2022, 68.2% of 85 packages without FIR treatment showed microbial growth after incubation at 35 °C for 30 days and at room temperature for 5 days. A total of 34 bacterial species were identified, with the number of colonies increasing over time. In total, 130 colony-forming units were observed. The main microorganisms detected were Staphylococcus spp. (35%) and Bacillus spp. (21%) , Kocuria marina and Lactobacillus spp. (14%), and mould (5%). No colonies were found in 72 packages treated with FIR in the OR. Even after sterilisation, microbial growth can occur due to movement of the packages by staff, sweeping of floors, lack of high-efficiency particulate air filtration, high humidity, and inadequate hand hygiene. Thus, safe and simple far-infrared devices that allow continuous disinfection for storage spaces, as well as temperature and humidity control, help to reduce microorganisms in the OR.
Collapse
Affiliation(s)
- Li-Yun Fann
- Department of Nursing, Taipei City Hospital, Taipei, 10684, Taiwan
- Department of Nurse-Midwifery and Women Health, National Taipei University of Nursing and Health Sciences, Taipei, 11220, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Chih-Chien Cheng
- Univeraity of Taipei, Taipei, 10048, Taiwan
- Department of Obstetrics/Gynecology, Taipei City Hospital, Taipei, 10341, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242062, Taiwan
| | - Yung-Chen Chien
- Department of Inspection, Taipei City Hospital, Ren-Ai Branch, Taipei, 10629, Taiwan
| | - Cheng-Wei Hsu
- Department of Nursing, Taipei City Hospital, Taipei, 10684, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, 11490, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 11490, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei, 11490, Taiwan
| | - Yao-Ching Huang
- School of Public Health, National Defense Medical Center, Taipei, 11490, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei, 11490, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Shi-Hao Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Ying-Hua Jiang
- Department of Nursing, Taipei City Hospital, Taipei, 10684, Taiwan
| | - Shih-Han Yin
- Department of Nursing, Taipei City Hospital, Taipei, 10684, Taiwan
| | - Kai-Wen Cheng
- Department of Nursing, Taipei City Hospital, Taipei, 10684, Taiwan
| | - Yi-Ping Wu
- Department of Nursing, Taipei City Hospital, Taipei, 10684, Taiwan
| | - Sheng-Huang Hsiao
- Department of Neurosurgery, Taipei City Hospital, Ren-Ai Branch, Taipei, 10629, Taiwan.
| | - Shao-Yuan Hsu
- Department of Neurosurgery, Taipei City Hospital, Ren-Ai Branch, Taipei, 10629, Taiwan.
| | - Ying-Che Huang
- Department of Anesthesia and Critical Care Medicine, Taipei City Hospital, Ren-Ai Branch, Taipei, 10629, Taiwan.
| | - Chi-Ming Chu
- School of Public Health, National Defense Medical Center, Taipei, 11490, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
8
|
Manfron L, Filbrich L, Molitor V, Farnè A, Mouraux A, Legrain V. Perceptual simultaneity between nociceptive and visual stimuli depends on their spatial congruence. Exp Brain Res 2023:10.1007/s00221-023-06637-2. [PMID: 37222776 DOI: 10.1007/s00221-023-06637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
To protect our body against physical threats, it is important to integrate the somatic and extra-somatic inputs generated by these stimuli. Temporal synchrony is an important parameter determining multisensory interaction, and the time taken by a given sensory input to reach the brain depends on the length and conduction velocity of the specific pathways through which it is transmitted. Nociceptive inputs are transmitted through very slow conducting unmyelinated C and thinly myelinated Aδ nociceptive fibers. It was previously shown that to perceive a visual stimulus and a thermo-nociceptive stimulus applied on the hand as coinciding in time, the nociceptive stimulus must precede the visual one by 76 ms for nociceptive inputs conveyed by Aδ fibers and 577 ms for inputs conveyed by C fibers. Since spatial proximity is also hypothesized to contribute to multisensory interaction, the present study investigated the effect of spatial congruence between visual and nociceptive stimuli. Participants judged the temporal order of visual and nociceptive stimuli, with the visual stimuli flashed either next to the stimulated hand or next to the opposite unstimulated hand, and with nociceptive stimuli evoking responses mediated by either Aδ or C fibers. The amount of time by which the nociceptive stimulus had to precede the visual stimulus for them to be perceived as appearing concomitantly was smaller when the visual stimulus occurred near the hand receiving the nociceptive stimulus as compared to when it occurred near the contralateral hand. This illustrates the challenge for the brain to process the synchrony between nociceptive and non-nociceptive stimuli to enable their efficient interaction to optimize defensive reaction against physical dangers.
Collapse
Affiliation(s)
- Louise Manfron
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, boite COSY B1.53.04, 1200, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Lieve Filbrich
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, boite COSY B1.53.04, 1200, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Victoria Molitor
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, boite COSY B1.53.04, 1200, Brussels, Belgium
| | - Alessandro Farnè
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, France
| | - André Mouraux
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, boite COSY B1.53.04, 1200, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, boite COSY B1.53.04, 1200, Brussels, Belgium.
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
- Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
9
|
Lefaucheur JP, Abbas SA, Lefaucheur-Ménard I, Rouie D, Tebbal D, Bismuth J, Nordine T. Small nerve fiber selectivity of laser and intraepidermal electrical stimulation: A comparative study between glabrous and hairy skin. Neurophysiol Clin 2021; 51:357-374. [PMID: 34304975 DOI: 10.1016/j.neucli.2021.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES In clinical neurophysiology practice, various methods of stimulation can be used to activate small-diameter nociceptive cutaneous afferents located in the epidermis. These methods include different types of laser and intraepidermal electrical stimulation techniques. The diffusion of the stimulation in the skin, inside or under the epidermis, depends on laser wavelength and electrode design, in particular. The aim of this study was to compare several of these techniques in their ability to selectively stimulate small nerve fibers. METHODS In 8 healthy subjects, laser stimulation (using a CO2 or Nd:YAP laser) and intraepidermal electrical stimulation (using a micropatterned, concentric planar, or concentric needle electrode), were applied at increasing energy or intensity on the dorsal or volar aspect of the right hand or foot. The subjects were asked to define the perceived sensation (warm, pinprick, or electric shock sensation, corresponding to the activation of C fibers, Aδ fibers, or Aβ fibers, respectively) after each stimulation. Depending on the difference in the sensations perceived between dorsal (hairy skin with thin stratum corneum) and volar (glabrous skin with thick stratum corneum) stimulations, the diffusion of the stimulation inside or under the epidermis and the nature of the activated afferents were determined. RESULTS Regarding laser stimulation, the perceived sensations turned from warm to pinprick with increasing energies of stimulation, in particular with the Nd:YAP laser, of which pulse could penetrate deep in the skin according to its short wavelength. In contrast, CO2 laser stimulation produced only warm sensations and no pricking sensation when applied to the glabrous skin, perhaps due to a thicker stratum corneum and the shallow penetration of the CO2 laser pulse. Regarding intraepidermal electrical stimulation using concentric electrodes, the perceived sensations turned from pinprick to a combination of pinprick and electrical shocks with increasing intensities. Using the concentric planar electrode, the sensations perceived at high stimulation intensity even consisted of electric shocks without concomitant pinprick. In contrast, using the micropatterned electrode, only pinprick sensations were produced by the stimulation of the hairy skin, while the stimulation of the glabrous skin produced no sensation at all within the limits of stimulation intensities used in this study. CONCLUSIONS Using the CO2 laser or the micropatterned electrode, pinprick sensations were selectively produced by the stimulation of hairy skin, while only warm sensation or no sensation at all were produced by the stimulation of glabrous skin. These two techniques appear to be more selective with a limited diffusion of the stimulation into the skin, restricting the activation of sensory afferents to the most superficial and smallest intraepidermal nerve fibers.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France.
| | - Samar A Abbas
- AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France
| | | | - Denis Rouie
- AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France
| | - Denise Tebbal
- AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France
| | - Julie Bismuth
- AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France
| | - Tarik Nordine
- Univ Paris Est Creteil, EA4391, ENT, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Clinical Neurophysiology Unit, F-94010 Creteil, France
| |
Collapse
|
10
|
Xia L, Cui C, Nicoli F, Al-Mousawi A, Campisi CC, Lazzeri D, Liu NF, Xie B, Li K, Zhang Y. Far Infrared Radiation Therapy for Gynecological Cancer-Related Lymphedema Is an Effective and Oncologically Safe Treatment: A Randomized-Controlled Trial. Lymphat Res Biol 2021; 20:164-174. [PMID: 34028298 DOI: 10.1089/lrb.2019.0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Gynecological cancer-related lymphedema (GCRL) is a devastating condition that adversely influences function, health, and quality of life. We conducted a randomized-controlled clinical study as well as in vitro experiments to investigate the efficacy and safety of far infrared radiation (FIR) to treat lymphedema in patients having previously undergone surgery for gynecological tumors. Materials and Methods: Seventy-four women with GCRL, cancer free for 5 years or more, were randomly allocated into two treatment groups: standard of care with bandage treatment and treatment with FIR plus bandage. Variations of fluid, circumference of lymphedematous limbs, serum tumor markers (cancer antigen 125 [CA125]), inguinal-pelvic lymph nodes, vagina, lungs, and adverse reactions were assessed after 1 year. In vitro experiments examined the effects on cell viability, proliferation, apoptosis, and the cell cycle of fibroblast, A2780, SKOV-3, HELA, and Ishikawa cells. Results: The FIR+bandage group showed significantly decreased tissue fluid and reduced limb circumference (p < 0.05) in comparison with the control group at 1 year. There was no increase of serum CA125 in both groups, and no recurrence of neoplasia or lymphadenopathy was detected. No adverse reactions were recorded. In addition, no changes were detected after FIR treatment for fibroblast, A2780, SKOV-3, HELA, and Ishikawa cells in cell viability, proliferation, apoptosis, and cell cycle. Conclusion: FIR can be used to treat patients with GCRL following gynecological cancer treatment. Following clinical and experimental studies, we confirm that FIR is an oncologically safe treatment for lymphedema in gynecological tumor patients.
Collapse
Affiliation(s)
- Liang Xia
- Department of Oral and Cranio-Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chunxiao Cui
- Department of Facial Plastic and Reconstructive Surgery, Fudan University, Eye & ENT Hospital, Shanghai, China
| | - Fabio Nicoli
- Department of Plastic and Reconstructive Surgery, University of Rome "Tor Vergata," Rome, Italy.,Department of Plastic and Reconstructive Surgery, Northumbria Healthcare NHS Foundation Trust, Northumberland, United Kingdom.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Plastic and Reconstructive Surgery, Royal Victoria Infirmary Hospital Newcastle NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Ahmed Al-Mousawi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Plastic and Reconstructive Surgery, Royal Victoria Infirmary Hospital Newcastle NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Corrado Cesare Campisi
- Unit of Lymphatic Surgery, Department of Surgery, University of Genoa, IRCCS University Hospital San Martino-IST National Institute for Cancer Research, Genoa, Italy
| | - Davide Lazzeri
- Plastic Reconstructive and Aesthetic Surgery Unit, Villa Salaria Clinic, Rome, Italy
| | - Ning Fei Liu
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| | - Bingying Xie
- Department of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ke Li
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| | - Yixin Zhang
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People's Hospital, Shanghai, China
| |
Collapse
|
11
|
Kim HY, Oh SY, Choi YM, Park JH, Kim HS, Jo I. Transient receptor potential vanilloid 2 mediates the inhibitory effect of far-infrared irradiation on adipogenic differentiation of tonsil-derived mesenchymal stem cells. Stem Cell Res 2021; 53:102291. [PMID: 33780730 DOI: 10.1016/j.scr.2021.102291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/14/2021] [Accepted: 03/11/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS Far-infrared (FIR) irradiation inhibits adipogenic differentiation of tonsil-derived mesenchymal stem cells (TMSCs) by activating Ca2+-dependent protein phosphatase 2B (PP2B), but it stimulates osteogenic differentiation in a PP2B-independent pathway. We investigated the potential involvement of transient receptor potential vanilloid (TRPV) channels, a well-known Ca2+-permeable channel, in the effects of FIR irradiation on adipogenic or osteogenic differentiation of TMSCs. METHODS TMSCs, in the absence or presence of activators or inhibitors, were exposed to FIR irradiation followed by adipogenic or osteogenic differentiation, which was assessed using Oil red O or Alizarin red S staining, respectively. RT-PCR, qRT-PCR, and Western blotting were used to determine gene and protein expression of calcium channels and adipocyte-specific markers. RESULTS Treatment with the calcium ionophore ionomycin simulated the inhibitory effect of FIR irradiation on adipogenic differentiation but had no effect on osteogenic differentiation, indicating the involvement of intracellular Ca2+ in adipogenic differentiation. Inhibition of pan-TRP channels using ruthenium red reversed the FIR irradiation-induced inhibition of adipogenic differentiation. Among the TRP channels tested, inhibition of the TRPV2 channel by tranilast or siRNA against TRPV2 attenuated the inhibitory effect of FIR irradiation on adipogenic differentiation, accompanied by a decrease in intracellular Ca2+ levels. By contrast, activation of the TRPV2 channel by probenecid simulated FIR irradiation-induced inhibition of adipogenic differentiation. Expectedly, the stimulatory effect of FIR irradiation on osteogenic differentiation was independent of the TRPV2 channel. CONCLUSION Our data demonstrate that the TRPV2 channel is a sensor/receptor for the inhibited adipogenic differentiation of TMSCs associated with FIR irradiation.
Collapse
Affiliation(s)
- Ha Yeong Kim
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Se-Young Oh
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea
| | - Young Min Choi
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea
| | - Jung-Hyun Park
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea.
| |
Collapse
|
12
|
Sharma G, Shin EJ, Sharma N, Nah SY, Mai HN, Nguyen BT, Jeong JH, Lei XG, Kim HC. Glutathione peroxidase-1 and neuromodulation: Novel potentials of an old enzyme. Food Chem Toxicol 2021; 148:111945. [PMID: 33359022 DOI: 10.1016/j.fct.2020.111945] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
Glutathione peroxidase (GPx) acts in co-ordination with other signaling molecules to exert its own antioxidant role. We have demonstrated the protective effects of GPx,/GPx-1, a selenium-dependent enzyme, on various neurodegenerative disorders (i.e., Parkinson's disease, Alzheimer's disease, cerebral ischemia, and convulsive disorders). In addition, we summarized the recent findings indicating that GPx-1 might play a role as a neuromodulator in neuropsychiatric conditions, such as, stress, bipolar disorder, schizophrenia, and drug intoxication. In this review, we attempted to highlight the mechanistic scenarios mediated by the GPx/GPx-1 gene in impacting these neurodegenerative and neuropsychiatric disorders, and hope to provide new insights on the therapeutic interventions against these disorders.
Collapse
Affiliation(s)
- Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
13
|
Anand SM, Fernando ME, Suhasini B, Valarmathi K, Elancheralathan K, Srinivasaprasad ND, Sujit S, Thirumalvalavan K, Prabhakaran CA, Jeyashree K. The Role of Far Infrared Therapy in the Unassisted Maturation of Arterio-venous Fistula in Patients with Chronic Kidney Disease. Indian J Nephrol 2020; 30:307-315. [PMID: 33707817 PMCID: PMC7869642 DOI: 10.4103/ijn.ijn_122_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 06/14/2019] [Indexed: 12/04/2022] Open
Abstract
Introduction: The goal of arterio-venous fistula (AVF) creation is to achieve a well-functioning access that can be cannulated repetitively and can provide adequate flow for the dialysis. The objective of this study was to assess the role of far infrared (FIR) therapy in the unassisted maturation of newly created AVF in patients with chronic kidney disease (CKD). Materials and Methods: In this prospective open labeled randomised control trial, 107 patients were randomized. Participants in the control arm received oral clopidogrel 75 mg once daily for 30 days along with isometric hand exercise, whereas those in the test arm received FIR therapy twice weekly, 40 min session each, for 4 weeks. A biopsy from venous end was taken during fistula surgery. Doppler study of AVF was done at the end of the 4th and 12th week to assess AVF. Vascular access guidelines proposed by National Kidney Foundation –Kidney Disease Outcomes Quality Initiative (NKF- KDOQI) in 2006 were adapted to define the maturation of AVF. Results: Out of 107 patients, 51 were randomized to the test arm and 56 to the control arm. During follow-up, the blood flow rate through AVF (Qa) and the diameter of the cephalic vein draining (CVd) the AVF were measured. At the end of 3 months, Qa in Radio-Cephalic Fistula (RCF) was high in the test arm (p–0.003). The AVF failures were 5 (10.2%) and 14 (28%) in the test and control arms, respectively (p: 0.025). However, when adjusted for AVF failure within 6 h of surgery (may be related to surgical technique) this difference in AVF patency was statistically insignificant (p: 0.121). The mean Qa was high in patients with an arterial intimal medial thickness (AIMT) <0.5 mm. The IMT of the anastomosed artery had statistically significant correlation with the primary failure rate of AVF (P < 0.001). Conclusion: In patients with CKD, FIR therapy was effective in increasing the AVF blood flow rate at the end of 3 months, though the difference in primary failure rate was statistically insignificant.
Collapse
Affiliation(s)
- S Murugesh Anand
- Department of Nephrology, Government Stanley Medical College and Hospital, Chennai, Tamil Nadu, India
| | - M Edwin Fernando
- Department of Nephrology, Government Stanley Medical College and Hospital, Chennai, Tamil Nadu, India
| | - B Suhasini
- Department of Radio-Diagnosis, Government Stanley Medical College and Hospital, Chennai, Tamil Nadu, India
| | - K Valarmathi
- Department of Pathology, Government Stanley Medical College and Hospital, Chennai, Tamil Nadu, India
| | - K Elancheralathan
- Vascular Surgery, Government Stanley Medical College and Hospital, Chennai, Tamil Nadu, India
| | - N D Srinivasaprasad
- Department of Nephrology, Government Stanley Medical College and Hospital, Chennai, Tamil Nadu, India
| | - S Sujit
- Department of Nephrology, Government Stanley Medical College and Hospital, Chennai, Tamil Nadu, India
| | - K Thirumalvalavan
- Department of Nephrology, Government Stanley Medical College and Hospital, Chennai, Tamil Nadu, India
| | - C Arun Prabhakaran
- Department of Pathology, Government Stanley Medical College and Hospital, Chennai, Tamil Nadu, India
| | - K Jeyashree
- Department of Community Medicine, Velammal Medical College Hospital, Madurai, Tamil Nadu, India
| |
Collapse
|
14
|
Lee DW, Kim E, Jeong I, Kim HK, Kim S, Park HC. Schwann cells selectively myelinate primary motor axons via neuregulin-ErbB signaling. Glia 2020; 68:2585-2600. [PMID: 32589818 DOI: 10.1002/glia.23871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 11/06/2022]
Abstract
Spinal motor neurons project their axons out of the spinal cord via the motor exit point (MEP) and regulate their target muscle fibers for diverse behaviors. Several populations of glial cells including Schwann cells, MEP glia, and perineurial glia are tightly associated with spinal motor axons in nerve fascicles. Zebrafish have two types of spinal motor neurons, primary motor neurons (PMNs) and secondary motor neurons (SMNs). PMNs are implicated in the rapid response, whereas SMNs are implicated in normal and slow movements. However, the precise mechanisms mediating the distinct functions of PMNs and SMNs in zebrafish are unclear. In this study, we found that PMNs were myelinated by MEP glia and Schwann cells, whereas SMNs remained unmyelinated at the examined stages. Immunohistochemical analysis revealed that myelinated PMNs solely innervated fast muscle through a distributed neuromuscular junction (NMJ), whereas unmyelinated SMNs innervated both fast and slow muscle through distributed and myoseptal NMJs, respectively, indicating that myelinated PMNs could provide rapid responses for startle and escape movements, while unmyelinated SMNs regulated normal, slow movement. Further, we demonstrate that neuregulin 1 (Nrg1) type III-ErbB signaling provides a key instructive signal that determines the myelination of primary motor axons by MEP glia and Schwann cells. Perineurial glia ensheathed unmyelinated secondary motor axons and myelinated primary motor nerves. Ensheathment required interaction with both MEP glia and Schwann cells. Collectively, these data suggest that primary and secondary motor neurons contribute to the regulation of movement in zebrafish with distinct patterns of myelination.
Collapse
Affiliation(s)
- Dong-Won Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Eunmi Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Inyoung Jeong
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Hwan-Ki Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| |
Collapse
|
15
|
Does Motor Cortex Engagement During Movement Preparation Differentially Inhibit Nociceptive Processing in Patients with Chronic Whiplash Associated Disorders, Chronic Fatigue Syndrome and Healthy Controls? An Experimental Study. J Clin Med 2020; 9:jcm9051520. [PMID: 32443565 PMCID: PMC7290436 DOI: 10.3390/jcm9051520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Patients with chronic fatigue syndrome (CFS) and chronic whiplash associated disorders (cWAD) present a reduced ability to activate central descending nociceptive inhibition after exercise, compared to measurements before exercise. It was hypothesised that a dysfunctional motor-induced inhibition of nociception partly explains this dysfunctional exercise-induced hypoalgesia. This study investigates if engagement of the motor system during movement preparation inhibits nociception-evoked brain responses in these patients as compared to healthy controls (HC). METHODS The experiment used laser-evoked potentials (LEPs) during three conditions (no task, mental task, movement preparation) while recording brain activity with a 32-channel electroencephalogram in 21 patients with cWAD, 20 patients with CFS and 18 HC. Two-factor mixed design Analysis of variance were used to evaluate differences in LEP amplitudes and latencies. RESULTS No differences in N1, N2, N2P2, and P2 LEP amplitudes were found between the HC, CFS, and cWAD groups. After nociceptive stimulation, N1, N2 (only at hand location), N2P2, and P2 LEP amplitudes significantly decreased during movement preparation compared to no task (within group differences). CONCLUSION Movement preparation induces a similar attenuation of LEPs in patients with CFS, patients with cWAD and HC. These findings do not support reduced motor-induced nociceptive inhibition in these patients.
Collapse
|
16
|
Sharma N, Shin EJ, Kim NH, Cho EH, Nguyen BT, Jeong JH, Jang CG, Nah SY, Kim HC. Far-infrared Ray-mediated Antioxidant Potentials are Important for Attenuating Psychotoxic Disorders. Curr Neuropharmacol 2020; 17:990-1002. [PMID: 30819085 PMCID: PMC7052827 DOI: 10.2174/1570159x17666190228114318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Far-infrared ray (FIR) is an electromagnetic wave that produces various health benefits against pathophysiological conditions, such as diabetes mellitus, renocardiovascular disorders, stress, and depression etc. However, the therapeutic ap-plication on the FIR-mediated protective potentials remains to be further extended. To achieve better understanding on FIR-mediated therapeutic potentials, we summarized additional findings in the present study that exposure to FIR ameliorates stressful condition, memory impairments, drug dependence, and mitochondrial dysfunction in the central nervous system. In this review, we underlined that FIR requires modulations of janus kinase 2 / signal transducer and activator of transcription 3 (JAK2/STAT3), nuclear factor E2-related factor 2 (Nrf-2), muscarinic M1 acetylcholine receptor (M1 mAChR), dopamine D1 receptor, protein kinase C δ gene, and glutathione peroxidase-1 gene for exerting the protective potentials in response to neuropsychotoxic conditions
Collapse
Affiliation(s)
- Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Nam Hun Kim
- College of Forest and Environmental Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Medical School, Kangwon National University, Chunchon 24341, Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Choon Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University Suwon 16419, Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| |
Collapse
|
17
|
Calabrò RS, Chillura A, Billeri L, Cannavò A, Buda A, Molonia F, Manuli A, Bramanti P, Naro A. Peri-Personal Space Tracing by Hand-Blink Reflex Modulation in Patients with Chronic Disorders of Consciousness. Sci Rep 2020; 10:1712. [PMID: 32015445 PMCID: PMC6997168 DOI: 10.1038/s41598-020-58625-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
The assessment of awareness in patients with chronic Disorders of Consciousness (DoC), including Unresponsive Wakefulness Syndrome (UWS) and Minimally Conscious State (MCS), is challenging. The level of awareness impairment may depend on the degree of deterioration of the large-scale cortical-thalamo-cortical networks induced by brain injury. Electrophysiological approaches may shed light on awareness presence in patients with DoC by estimating cortical functions related to the cortical-thalamo-cortical networks including, for example, the cortico-subcortical processes generating motor responses to the perturbation of the peri-personal space (PPS). We measured the amplitude, latency, and duration of the hand-blink reflex (HBR) responses by recording electromyography (EMG) signals from both the orbicularis oculi muscles while electrically stimulating the median nerve at the wrist. Such a BR is thought to be mediated by a neural circuit at the brainstem level. Despite its defensive-response nature, HBR can be modulated by the distance between the stimulated hand and the face. This suggests a functional top-down control of HBR as reflected by HBR features changes (latency, amplitude, and magnitude). We therefore estimated HBR responses in a sample of patients with DoC (8 MCS and 12 UWS, compared to 15 healthy controls -HC) while performing a motor task targeting the PPS. This consisted of passive movements in which the hand of the subject was positioned at different distances from the participant's face. We aimed at demonstrating a residual top-down modulation of HBR properties, which could be useful to differentiate patients with DoC and, potentially, demonstrate awareness preservation. We found a decrease in latency, and an increase in duration and magnitude of HBR responses, which were all inversely related to the hand-to-face distance in HC and patients with MCS, but not in individuals with UWS. Our data suggest that only patients with MCS have preserved, residual, top-down modulation of the processes related to the PPS from higher-order cortical areas to sensory-motor integration network. Although the sample size was relatively small, being thus our data preliminary, HBR assessment seems a rapid, easy, and first-level tool to differentiate patients with MCS from those with UWS. We may also hypothesize that such a HBR modulation suggests awareness preservation.
Collapse
Affiliation(s)
| | | | - Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | - Antonio Buda
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| |
Collapse
|
18
|
Far-Infrared-Emitting Sericite Board Upregulates Endothelial Nitric Oxide Synthase Activity through Increasing Biosynthesis of Tetrahydrobiopterin in Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1813282. [PMID: 31781259 PMCID: PMC6875339 DOI: 10.1155/2019/1813282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 11/24/2022]
Abstract
Far-infrared ray (FIR) therapy has been reported to exert beneficial effects on cardiovascular function by elevating endothelial nitric oxide synthesis (eNOS) activity and nitric oxide (NO) production. Tetrahydrobiopterin (BH4) is a key determinant of eNOS-dependent NO synthesis in vascular endothelial cells. However, whether BH4 synthesis is associated with the effects of FIR on eNOS/NO production has not yet been investigated. In this study, we investigated the effects of FIR on BH4-dependent eNOS/NO production and vascular function. We used FIR-emitting sericite boards as an experimental material and placed human umbilical vein endothelial cells (HUVECs) and Sprague–Dawley rats on the boards with or without FIR irradiation and then evaluated vascular relaxation by detecting NO generation, BH4 synthesis, and Akt/eNOS activation. Our results showed that FIR radiation significantly enhanced Akt/eNOS phosphorylation and NO production in human endothelial cells and aorta tissues. FIR can also induce BH4 storage by elevating levels of enzymes (e.g., guanosine triphosphate cyclohydrolase-1, 6-pyruvoyl tetrahydrobiopterin synthase, sepiapterin reductase, and dihydrofolate reductase), which ultimately results in NO production. These results indicate that FIR upregulated eNOS-dependent NO generation via BH4 synthesis and Akt phosphorylation, which contributes to the regulation of vascular function. This might develop potential clinical application of FIR to treat vascular diseases by augmenting the BH4/NO pathway.
Collapse
|
19
|
Cataldo A, Ferrè ER, Haggard P. Thermonociceptive interaction: interchannel pain modulation occurs before intrachannel convergence of warmth. J Neurophysiol 2019; 121:1798-1808. [PMID: 30864857 DOI: 10.1152/jn.00341.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nonnoxious warmth reduces both perceived pain intensity and the amplitude of EEG markers of pain. However, the spatial properties of thermonociceptive interaction, and the level of sensory processing at which it occurs, remain unclear. We investigated whether interchannel warmth-pain interactions occur before or after intrachannel spatial summation of warmth. Warm stimuli were applied to the fingers of the right hand. Their number and location were manipulated in different conditions. A concomitant noxious test pulse was delivered to the middle finger using a CO2 laser. We replicated the classical suppressive effect of warmth on both perceived pain intensity and EEG markers. Importantly, inhibition of pain was not affected by the location and the number of thermal stimuli, even though they increased the perceived intensity of warmth. Our results therefore suggest that the inhibitory effect of warmth on pain is not somatotopically organized. The results also rule out the possibility that warmth affects nociceptive processing after intrachannel warmth summation. NEW & NOTEWORTHY We used spatial summation of warmth as a model to investigate thermonociceptive interactions. Painful CO2 laser pulses were delivered during different thermal conditions. We found that warmth inhibited pain regardless of its location. Crucially, spatial summation of multiple warm stimuli did not further inhibit pain. These findings suggest that warmth-pain interaction occurs independently of or after spatial summation of warmth.
Collapse
Affiliation(s)
- Antonio Cataldo
- Institute of Cognitive Neuroscience, University College London , London , United Kingdom.,Centre for Studies and Research in Cognitive Neuroscience, Alma Mater Studiorum - University of Bologna , Cesena , Italy.,Institute of Philosophy, University of London , London , United Kingdom
| | - Elisa Raffaella Ferrè
- Department of Psychology, Royal Holloway University of London , Surrey , United Kingdom
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London , London , United Kingdom.,Institute of Philosophy, University of London , London , United Kingdom
| |
Collapse
|
20
|
Engskov AS, Rubin AT, Åkeson J. Single and double pain responses to individually titrated ultra-short laser stimulation in humans. BMC Anesthesiol 2019; 19:29. [PMID: 30832563 PMCID: PMC6399816 DOI: 10.1186/s12871-019-0702-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background This preclinical study in humans was designed to selectively induce delayed nociceptive pain responses to individually titrated laser stimulation, enabling separate bedside intensity scoring of both immediate and delayed pain. Methods Forty-four (fourteen female) healthy volunteers were subjected to repeated nociceptive dermal stimulation in the plantar arc, based on ultra-short carbon dioxide laser with individually titrated energy levels associated with mild pain. Results Data was analysed in 42 (12 female) subjects, and 29 of them (11 females) consistently reported immediate and delayed pain responses at second-long intervals to each nociceptive stimulus. All single pain responses were delayed and associated with lower levels (p = 0.003) of laser energy density (median 61; IQR 54–71 mJ/mm2), compared with double pain responses (88; 64–110 mJ/mm2). Pain intensity levels associated with either kind of response were readily assessable at bedside. Conclusions This study is the first one to show in humans that individually titrated ultra-short pulses of laser stimulation, enabling separate pain intensity scoring of immediate and delayed responses at bedside, can be used to selectively induce and evaluate delayed nociceptive pain, most likely reflecting C-fibre-mediated transmission. These findings might facilitate future research on perception and management of C-fibre-mediated pain in humans.
Collapse
Affiliation(s)
- Anna Sellgren Engskov
- Department of Clinical Sciences Malmö, Anaesthesiology and Intensive Care Medicine, Lund University, Skåne University Hospital, Carl Bertil Laurells gata 9, 3rd floor, SE-20502, Malmö, Sweden.
| | | | - Jonas Åkeson
- Department of Clinical Sciences Malmö, Anaesthesiology and Intensive Care Medicine, Lund University, Skåne University Hospital, Carl Bertil Laurells gata 9, 3rd floor, SE-20502, Malmö, Sweden
| |
Collapse
|
21
|
Sharma N, Shin EJ, Kim NH, Cho EH, Jeong JH, Jang CG, Nah SY, Nabeshima T, Yoneda Y, Cadet JL, Kim HC. Protective potentials of far-infrared ray against neuropsychotoxic conditions. Neurochem Int 2019; 122:144-148. [DOI: 10.1016/j.neuint.2018.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022]
|
22
|
Chang Y. The effect of far infrared radiation therapy on inflammation regulation in lipopolysaccharide-induced peritonitis in mice. SAGE Open Med 2018; 6:2050312118798941. [PMID: 30210795 PMCID: PMC6131272 DOI: 10.1177/2050312118798941] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/13/2018] [Indexed: 11/27/2022] Open
Abstract
Objective: Far infrared radiation has been widely used in a variety of healthcare
institutions and clinical research. Previous studies have shown that far
infrared radiation can promote blood circulation and enhance the functioning
of the immune system. Many patients receiving peritoneal dialysis have been
co-treated with far infrared radiation to reduce the occurrence of
inflammation. This study seeks to evaluate the effects of far infrared
radiation therapy on inflammation. Method: We used the lipopolysaccharide-induced peritonitis mouse model to study the
effect of far infrared radiation treatment. Sixteen mice were randomly
divided into two groups, a far infrared radiation treatment group
(n = 8) and a non-far infrared radiation treatment
group (n = 8). Collected blood samples were studied by
analyzing the RNA level of peripheral blood mononuclear cells and the plasma
protein levels of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α),
and endothelial nitric oxide synthase (eNOS). Results: The administration of far infrared radiation inhibited the RNA levels of
interleukin-6 and TNF-α after stimulation by lipopolysaccharide. The far
infrared radiation treatment inhibited the endothelial nitric oxide synthase
RNA levels at 1 h, but the RNA levels returned close to the baseline level
after 2 h. In the control group, the endothelial nitric oxide synthase RNA
levels were continuously decreasing. The interleukin-6 concentration in the
plasma of the far infrared radiation group showed significant inhibition
30 min after lipopolysaccharide stimulation. The tumor necrosis factor alpha
RNA concentration in plasma of the far infrared radiation group was
significantly reduced 2 h after lipopolysaccharide stimulation. Conclusion: Far infrared radiation therapy can inhibit interleukin-6 and tumor necrosis
factor alpha RNA levels of peripheral blood mononuclear cells and recover
endothelial nitric oxide synthase expression. These results demonstrate that
far infrared radiation therapy might aid in reducing the level of
inflammation experienced by patients going through peritoneal dialysis
treatment.
Collapse
Affiliation(s)
- Yuanmay Chang
- Institute of Long-Term Care, MacKay Medical College, New Taipei City, Taiwan.,Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
23
|
Lee JM, Kim KH. Effect of near-infrared rays on female menstrual pain in Korea. Nurs Health Sci 2017; 19:366-372. [PMID: 28686000 DOI: 10.1111/nhs.12356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/26/2017] [Accepted: 03/23/2017] [Indexed: 01/21/2023]
Abstract
Most Korean women who experience menstrual pain have reported taking pain medicine and making use of complementary alternative therapies. However, because some interventions may cause side effects, more effective pain-relieving measures need to be identified. This study using a non-equivalent group design, evaluated the effects of near-infrared rays on dysmenorrhea among Korean women. The experimental group wore a near-infrared ray abdominal belt for the duration of one menstrual cycle until the end of the menstrual period, while the control group used hot packs. The level of menstrual pain, menstrual pain duration, and pain medicine use were measured. The menstrual pain, average menstrual pain duration, and use of analgesics were reduced in the near-infrared rays group. The results of this study indicate that the near-infrared ray LED belt was effective in reducing menstrual pain, menstrual pain duration compared to the use of analgesics in Korean women with dysmenorrhea. Therefore, near-infrared rays may be used to relieve menstrual pain and improve the quality of life of women with dysmenorrhea in Korea.
Collapse
Affiliation(s)
- Jin-Min Lee
- Department of Computer and Electron Communication, Yanbian Jilin China, Yanbian University of Science and Technology, Yanji City, Jilin Province, China
| | - Kye-Ha Kim
- Department of Nursing, Chosun University, Gwangju, South Korea
| |
Collapse
|
24
|
Jones L, Downie LE, Korb D, Benitez-del-Castillo JM, Dana R, Deng SX, Dong PN, Geerling G, Hida RY, Liu Y, Seo KY, Tauber J, Wakamatsu TH, Xu J, Wolffsohn JS, Craig JP. TFOS DEWS II Management and Therapy Report. Ocul Surf 2017; 15:575-628. [DOI: 10.1016/j.jtos.2017.05.006] [Citation(s) in RCA: 888] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023]
|
25
|
Slimani H, Plaghki L, Ptito M, Kupers R. Pain hypersensitivity in congenital blindness is associated with faster central processing of C-fibre input. Eur J Pain 2016; 20:1519-29. [DOI: 10.1002/ejp.876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2016] [Indexed: 11/11/2022]
Affiliation(s)
- H. Slimani
- Chaire de recherche Harland Sanders en Sciences de la vision; École d'Optométrie; Université de Montréal; Canada
- BRAINlab; Department of Neuroscience and Pharmacology; Faculty of Health and Medical Sciences; Panum Institute; University of Copenhagen; Denmark
| | - L. Plaghki
- Unité COSY; Institute of Neuroscience; Université Catholique de Louvain; Brussels Belgium
| | - M. Ptito
- Chaire de recherche Harland Sanders en Sciences de la vision; École d'Optométrie; Université de Montréal; Canada
- BRAINlab; Department of Neuroscience and Pharmacology; Faculty of Health and Medical Sciences; Panum Institute; University of Copenhagen; Denmark
- Laboratory of Neuropsychiatry; Psychiatric Centre Copenhagen; University of Copenhagen; Denmark
| | - R. Kupers
- Chaire de recherche Harland Sanders en Sciences de la vision; École d'Optométrie; Université de Montréal; Canada
- BRAINlab; Department of Neuroscience and Pharmacology; Faculty of Health and Medical Sciences; Panum Institute; University of Copenhagen; Denmark
| |
Collapse
|
26
|
Gilligan CJ, Borsook D. The Promise of Effective Pain Treatment Outcomes: Rallying Academic Centers to Lead the Charge. PAIN MEDICINE 2015. [PMID: 26219090 DOI: 10.1111/pme.12772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher J Gilligan
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David Borsook
- Department of Anesthesia, Center for Pain and the Brain, Critical Care and Pain Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
El Bitar N, Pollin B, Karroum E, Pincedé I, Mouraux A, Le Bars D. Thermoregulatory vasomotor tone of the rat tail and paws in thermoneutral conditions and its impact on a behavioral model of acute pain. J Neurophysiol 2014; 112:2185-98. [PMID: 25008410 DOI: 10.1152/jn.00721.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The tail and paws in rodents are heat exchangers involved in the maintenance of core body temperature (T(core)). They are also the most widely used target organs to study acute or chronic "models" of pain. We describe the fluctuations of vasomotor tone in the tail and paws in conditions of thermal neutrality and the constraints of these physiological processes on the responses to thermal nociceptive stimuli, commonly used as an index of pain. Skin temperatures were recorded with a calibrated thermal camera to monitor changes of vasomotor tone in the tail and paws of awake and anesthetized rats. In thermoneutral conditions, the sympathetic tone fluctuated at a rate of two to seven cycles/h. Increased mean arterial blood pressure (MAP; ∼46 mmHg) was followed by increased heart rate (HR; ∼45 beats/min) within 30 s, vasoconstriction of extremities (3.5-7°C range) within 3-5 min, and increased T(core) (∼0.7°C) within 6 min. Decreased MAP was followed by opposite events. There was a high correlation between HR and T(core) recorded 5-6 min later. The reaction time of the animal's response to a radiant thermal stimulus-heat ramp (6°C/s, 20 mm(2) spot) generated by a CO2 laser-directed to the tail depends on these variations. Consequently, the fluctuations in tail and paw temperature thus represent a serious confound for thermal nociceptive tests, particularly when they are conducted at thermal neutrality.
Collapse
Affiliation(s)
- Nabil El Bitar
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - Bernard Pollin
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - Elias Karroum
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - Ivanne Pincedé
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - André Mouraux
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Daniel Le Bars
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| |
Collapse
|
28
|
Doufas AG, Tian L, Padrez KA, Suwanprathes P, Cardell JA, Maecker HT, Panousis P. Experimental pain and opioid analgesia in volunteers at high risk for obstructive sleep apnea. PLoS One 2013; 8:e54807. [PMID: 23382975 PMCID: PMC3558510 DOI: 10.1371/journal.pone.0054807] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/17/2012] [Indexed: 01/20/2023] Open
Abstract
Background Obstructive sleep apnea (OSA) is characterized by recurrent nocturnal hypoxia and sleep disruption. Sleep fragmentation caused hyperalgesia in volunteers, while nocturnal hypoxemia enhanced morphine analgesic potency in children with OSA. This evidence directly relates to surgical OSA patients who are at risk for airway compromise due to postoperative use of opioids. Using accepted experimental pain models, we characterized pain processing and opioid analgesia in male volunteers recruited based on their risk for OSA. Methods After approval from the Intitutional Review Board and informed consent, we assessed heat and cold pain thresholds and tolerances in volunteers after overnight polysomnography (PSG). Three pro-inflammatory and 3 hypoxia markers were determined in the serum. Pain tests were performed at baseline, placebo, and two effect site concentrations of remifentanil (1 and 2 µg/ml), an μ-opioid agonist. Linear mixed effects regression models were employed to evaluate the association of 3 PSG descriptors [wake after sleep onset, number of sleep stage shifts, and lowest oxyhemoglobin saturation (SaO2) during sleep] and all serum markers with pain thresholds and tolerances at baseline, as well as their changes under remifentanil. Results Forty-three volunteers (12 normal and 31 with a PSG-based diagnosis of OSA) were included in the analysis. The lower nadir SaO2 and higher insulin growth factor binding protein-1 (IGFBP-1) were associated with higher analgesic sensitivity to remifentanil (SaO2, P = 0.0440; IGFBP-1, P = 0.0013). Other pro-inflammatory mediators like interleukin-1β and tumor necrosis factor-α (TNF-α) were associated with an enhanced sensitivity to the opioid analgesic effect (IL-1β, P = 0.0218; TNF-α, P = 0.0276). Conclusions Nocturnal hypoxemia in subjects at high risk for OSA was associated with an increased potency of opioid analgesia. A serum hypoxia marker (IGFBP-1) was associated with hypoalgesia and increased potency to opioid analgesia; other pro-inflammatory mediators also predicted an enhanced opioid potency. Trial Registration: ClinicalTrials.gov NCT00672737.
Collapse
Affiliation(s)
- Anthony G Doufas
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The blink reflex elicited by the electrical stimulation of the median nerve at the wrist [hand blink reflex (HBR)] is a subcortical, defensive response that is enhanced when the stimulated hand is inside the peripersonal space of the face. Such enhancement results from a tonic, top-down modulation of the excitability of the brainstem interneurons mediating the HBR. Here we aim to (1) characterize the somatotopical specificity of this top-down modulation and investigate its dependence on (2) cognitive expectations and (3) the presence of objects protecting the face, in healthy humans. Experiment 1 showed that the somatotopical specificity of the HBR enhancement is partially homosegmental, i.e., it is greater for the HBR elicited by the stimulation of the hand near the face compared with the other hand, always kept far from the face. Experiment 2 showed that the HBR is enhanced only when participants expect to receive stimuli on the hand close to the face and is thus strongly dependent on cognitive expectations. Experiment 3 showed that the HBR enhancement by hand-face proximity is suppressed when a thin wooden screen is placed between the participants' face and their hand. Thus, the screen reduces the extension of the defensive peripersonal space, so that the hand is never inside the peripersonal space of the face, even in the "near" condition. Together, these findings indicate a fine somatotopical and cognitive tuning of the excitability of brainstem circuits subserving the HBR, whose strength is adjusted depending on the context in a purposeful manner.
Collapse
|
30
|
Pincedé I, Pollin B, Meert T, Plaghki L, Le Bars D. Psychophysics of a nociceptive test in the mouse: ambient temperature as a key factor for variation. PLoS One 2012; 7:e36699. [PMID: 22629325 PMCID: PMC3356344 DOI: 10.1371/journal.pone.0036699] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/12/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The mouse is increasingly used in biomedical research, notably in behavioral neurosciences for the development of tests or models of pain. Our goal was to provide the scientific community with an outstanding tool that allows the determination of psychophysical descriptors of a nociceptive reaction, which are inaccessible with conventional methods: namely the true threshold, true latency, conduction velocity of the peripheral fibers that trigger the response and latency of the central decision-making process. METHODOLOGY/PRINCIPAL FINDINGS Basically, the procedures involved heating of the tail with a CO(2) laser, recording of tail temperature with an infrared camera and stopping the heating when the animal reacted. The method is based mainly on the measurement of three observable variables, namely the initial temperature, the heating rate and the temperature reached at the actual moment of the reaction following random variations in noxious radiant heat. The initial temperature of the tail, which itself depends on the ambient temperature, very markedly influenced the behavioral threshold, the behavioral latency and the conduction velocity of the peripheral fibers but not the latency of the central decision-making. CONCLUSIONS/SIGNIFICANCE We have validated a psychophysical approach to nociceptive reactions for the mouse, which has already been described for rats and Humans. It enables the determination of four variables, which contribute to the overall latency of the response. The usefulness of such an approach was demonstrated by providing new fundamental findings regarding the influence of ambient temperature on nociceptive processes. We conclude by challenging the validity of using as "pain index" the reaction time of a behavioral response to an increasing heat stimulus and emphasize the need for a very careful control of the ambient temperature, as a prevailing environmental source of variation, during any behavioral testing of mice.
Collapse
Affiliation(s)
- Ivanne Pincedé
- Team “Pain", INSERM UMRS 975, CNRS UMR 7225, Paris, France
- Université Pierre et Marie Curie, Faculté de Médecine UPMC, Paris, France
| | - Bernard Pollin
- Team “Pain", INSERM UMRS 975, CNRS UMR 7225, Paris, France
- Université Pierre et Marie Curie, Faculté de Médecine UPMC, Paris, France
| | - Theo Meert
- Department of Psychology, University of Leuven, Leuven, Belgium
| | - Léon Plaghki
- Unité READ, Université Catholique de Louvain, Brussels, Belgium
| | - Daniel Le Bars
- Team “Pain", INSERM UMRS 975, CNRS UMR 7225, Paris, France
- Université Pierre et Marie Curie, Faculté de Médecine UPMC, Paris, France
| |
Collapse
|
31
|
Churyukanov M, Plaghki L, Legrain V, Mouraux A. Thermal detection thresholds of Aδ- and C-fibre afferents activated by brief CO2 laser pulses applied onto the human hairy skin. PLoS One 2012; 7:e35817. [PMID: 22558230 PMCID: PMC3338467 DOI: 10.1371/journal.pone.0035817] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 03/27/2012] [Indexed: 11/19/2022] Open
Abstract
Brief high-power laser pulses applied onto the hairy skin of the distal end of a limb generate a double sensation related to the activation of Aδ- and C-fibres, referred to as first and second pain. However, neurophysiological and behavioural responses related to the activation of C-fibres can be studied reliably only if the concomitant activation of Aδ-fibres is avoided. Here, using a novel CO(2) laser stimulator able to deliver constant-temperature heat pulses through a feedback regulation of laser power by an online measurement of skin temperature at target site, combined with an adaptive staircase algorithm using reaction-time to distinguish between responses triggered by Aδ- and C-fibre input, we show that it is possible to estimate robustly and independently the thermal detection thresholds of Aδ-fibres (46.9±1.7°C) and C-fibres (39.8±1.7°C). Furthermore, we show that both thresholds are dependent on the skin temperature preceding and/or surrounding the test stimulus, indicating that the Aδ- and C-fibre afferents triggering the behavioural responses to brief laser pulses behave, at least partially, as detectors of a change in skin temperature rather than as pure level detectors. Most importantly, our results show that the difference in threshold between Aδ- and C-fibre afferents activated by brief laser pulses can be exploited to activate C-fibres selectively and reliably, provided that the rise in skin temperature generated by the laser stimulator is well-controlled. Our approach could constitute a tool to explore, in humans, the physiological and pathophysiological mechanisms involved in processing C- and Aδ-fibre input, respectively.
Collapse
Affiliation(s)
- Maxim Churyukanov
- Institute of Neuroscience (IONS), Université catholique de Louvain, Brussels, Belgium
- Department of Nervous Diseases, The I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Pathophysiology of Pain, Institute of General Pathology and Pathophysiology RAMS, Moscow, Russia
| | - Léon Plaghki
- Institute of Neuroscience (IONS), Université catholique de Louvain, Brussels, Belgium
| | - Valéry Legrain
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - André Mouraux
- Institute of Neuroscience (IONS), Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
32
|
Sambo CF, Liang M, Cruccu G, Iannetti GD. Defensive peripersonal space: the blink reflex evoked by hand stimulation is increased when the hand is near the face. J Neurophysiol 2012; 107:880-9. [DOI: 10.1152/jn.00731.2011] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrical stimulation of the median nerve at the wrist may elicit a blink reflex [hand blink reflex (HBR)] mediated by a neural circuit at brain stem level. As, in a Sherringtonian sense, the blink reflex is a defensive response, in a series of experiments we tested, in healthy volunteers, whether and how the HBR is modulated by the proximity of the stimulated hand to the face. Electromyographic activity was recorded from the orbicularis oculi, bilaterally. We observed that the HBR is enhanced when the stimulated hand is inside the peripersonal space of the face, compared with when it is outside, irrespective of whether the proximity of the hand to the face is manipulated by changing the position of the arm ( experiment 1) or by rotating the head while keeping the arm position constant ( experiment 3). Experiment 2 showed that such HBR enhancement has similar magnitude when the participants have their eyes closed. Experiments 4 and 5 showed, respectively, that the blink reflex elicited by the electrical stimulation of the supraorbital nerve, as well as the N20 wave of the somatosensory evoked potentials elicited by the median nerve stimulation, are entirely unaffected by hand position. Taken together, our results provide compelling evidence that the brain stem circuits mediating the HBR in humans undergo tonic and selective top-down modulation from higher order cortical areas responsible for encoding the location of somatosensory stimuli in external space coordinates. These findings support the existence of a “defensive” peripersonal space, representing a safety margin advantageous for survival.
Collapse
Affiliation(s)
- C. F. Sambo
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom; and
| | - M. Liang
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom; and
| | - G. Cruccu
- Department of Neurology and Psychiatry, La Sapienza University, Rome, Italy
| | - G. D. Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom; and
| |
Collapse
|
33
|
Vatansever F, Hamblin MR. Far infrared radiation (FIR): its biological effects and medical applications. ACTA ACUST UNITED AC 2012; 4:255-266. [PMID: 23833705 DOI: 10.1515/plm-2012-0034] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Far infrared (FIR) radiation (λ = 3-100 μm) is a subdivision of the electromagnetic spectrum that has been investigated for biological effects. The goal of this review is to cover the use of a further sub-division (3- 12 μm) of this waveband, that has been observed in both in vitro and in vivo studies, to stimulate cells and tissue, and is considered a promising treatment modality for certain medical conditions. Technological advances have provided new techniques for delivering FIR radiation to the human body. Specialty lamps and saunas, delivering pure FIR radiation (eliminating completely the near and mid infrared bands), have became safe, effective, and widely used sources to generate therapeutic effects. Fibers impregnated with FIR emitting ceramic nanoparticles and woven into fabrics, are being used as garments and wraps to generate FIR radiation, and attain health benefits from its effects.
Collapse
Affiliation(s)
- Fatma Vatansever
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; and Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
34
|
Arendt-Nielsen L, Hoeck HC. Optimizing the early phase development of new analgesics by human pain biomarkers. Expert Rev Neurother 2011; 11:1631-1651. [DOI: 10.1586/ern.11.147] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
35
|
Mouraux A, Iannetti GD, Colon E, Nozaradan S, Legrain V, Plaghki L. Nociceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors. J Neurosci 2011; 31:6079-87. [PMID: 21508233 PMCID: PMC6632977 DOI: 10.1523/jneurosci.3977-10.2011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 01/10/2011] [Accepted: 01/14/2011] [Indexed: 12/26/2022] Open
Abstract
The periodic presentation of a sensory stimulus induces, at certain frequencies of stimulation, a sustained electroencephalographic response known as steady-state evoked potential (SS-EP). In the somatosensory, visual, and auditory modalities, SS-EPs are considered to constitute an electrophysiological correlate of cortical sensory networks resonating at the frequency of stimulation. In the present study, we describe and characterize, for the first time, SS-EPs elicited by the selective activation of skin nociceptors in humans. The stimulation consisted of 2.3-s-long trains of 16 identical infrared laser pulses (frequency, 7 Hz), applied to the dorsum of the left and right hand and foot. Two different stimulation energies were used. The low energy activated only C-nociceptors, whereas the high energy activated both Aδ- and C-nociceptors. Innocuous electrical stimulation of large-diameter Aβ-fibers involved in the perception of touch and vibration was used as control. The high-energy nociceptive stimulus elicited a consistent SS-EP, related to the activation of Aδ-nociceptors. Regardless of stimulus location, the scalp topography of this response was maximal at the vertex. This was noticeably different from the scalp topography of the SS-EPs elicited by innocuous vibrotactile stimulation, which displayed a clear maximum over the parietal region contralateral to the stimulated side. Therefore, we hypothesize that the SS-EPs elicited by the rapid periodic thermal activation of nociceptors may reflect the activation of a network that is preferentially involved in processing nociceptive input and may thus provide some important insight into the cortical processes generating painful percepts.
Collapse
Affiliation(s)
- André Mouraux
- Institute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
36
|
Tzabazis AZ, Klukinov M, Crottaz-Herbette S, Nemenov MI, Angst MS, Yeomans DC. Selective nociceptor activation in volunteers by infrared diode laser. Mol Pain 2011; 7:18. [PMID: 21426575 PMCID: PMC3070669 DOI: 10.1186/1744-8069-7-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/22/2011] [Indexed: 11/11/2022] Open
Abstract
Background Two main classes of peripheral sensory neurons contribute to thermal pain sensitivity: the unmyelinated C fibers and thinly myelinated Aδ fibers. These two fiber types may differentially underlie different clinical pain states and distinctions in the efficacy of analgesic treatments. Methods of differentially testing C and Aδ thermal pain are widely used in animal experimentation, but these methods are not optimal for human volunteer and patient use. Thus, this project aimed to provide psychophysical and electrophysiological evidence that whether different protocols of infrared diode laser stimulation, which allows for direct activation of nociceptive terminals deep in the skin, could differentially activate Aδ or C fiber thermonociceptors in volunteers. Results Short (60 ms), high intensity laser pulses (SP) evoked monomodal "pricking" pain which was not enhanced by topical capsaicin, whereas longer, lower power pulses (LP) evoked monomodal "burning" pain which was enhanced by topical capsaicin. SP also produced cortical evoked EEG potentials consistent with Aδ mediation, the amplitude of which was directly correlated with pain intensity but was not affected by topical capsaicin. LP also produced a distinct evoked potential pattern the amplitude of which was also correlated with pain intensity, which was enhanced by topical capsaicin, and the latency of which could be used to estimate the conduction velocity of the mediating nociceptive fibers. Conclusions Psychophysical and electrophysiological data were consistent with the ability of short high intensity infrared laser pulses to selectively produce Aδ mediated pain and of longer pulses to selectively produce C fiber mediated thermal pain. Thus, the use of these or similar protocols may be useful in developing and testing novel therapeutics based on the differential molecular mechanisms underlying activation of the two fiber types (e.g., TRPV1, TRPV2, etc). In addition, these protocol may be useful in determining the fiber mediation of different clinical pain types which may, in turn be useful in treatment choice.
Collapse
|
37
|
Mitchell K, Bates BD, Keller JM, Lopez M, Scholl L, Navarro J, Madian N, Haspel G, Nemenov MI, Iadarola MJ. Ablation of rat TRPV1-expressing Adelta/C-fibers with resiniferatoxin: analysis of withdrawal behaviors, recovery of function and molecular correlates. Mol Pain 2010; 6:94. [PMID: 21167052 PMCID: PMC3019206 DOI: 10.1186/1744-8069-6-94] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 12/17/2010] [Indexed: 11/10/2022] Open
Abstract
Background Ablation of TRPV1-expressing nociceptive fibers with the potent capsaicin analog resiniferatoxin (RTX) results in long lasting pain relief. RTX is particularly adaptable to focal application, and the induced chemical axonopathy leads to analgesia with a duration that is influenced by dose, route of administration, and the rate of fiber regeneration. TRPV1 is expressed in a subpopulation of unmyelinated C- and lightly myelinated Adelta fibers that detect changes in skin temperature at low and high rates of noxious heating, respectively. Here we investigate fiber-type specific behaviors, their time course of recovery and molecular correlates of axon damage and nociception using infrared laser stimuli following an RTX-induced peripheral axonopathy. Results RTX was injected into rat hind paws (mid-plantar) to produce thermal hypoalgesia. An infrared diode laser was used to stimulate Adelta fibers in the paw with a small-diameter (1.6 mm), high-energy, 100 msec pulse, or C-fibers with a wide-diameter (5 mm), long-duration, low-energy pulse. We monitored behavioral responses to indicate loss and regeneration of fibers. At the site of injection, responses to C-fiber stimuli were significantly attenuated for two weeks after 5 or 50 ng RTX. Responses to Adelta stimuli were significantly attenuated for two weeks at the highest intensity stimulus, and for 5 weeks to a less intense Adelta stimulus. Stimulation on the toe, a site distal to the injection, showed significant attenuation of Adelta responses for 7- 8 weeks after 5 ng, or 9-10 weeks after 50 ng RTX. In contrast, responses to C-fiber stimuli exhibited basically normal responses at 5 weeks after RTX. During the period of fiber loss and recovery, molecular markers for nerve regeneration (ATF3 and galanin) are upregulated in the dorsal root ganglia (DRG) when behavior is maximally attenuated, but markers of nociceptive activity (c-Fos in spinal cord and MCP-1 in DRG), although induced immediately after RTX treatment, returned to normal. Conclusion Behavioral recovery following peripheral RTX treatment is linked to regeneration of TRPV1-expressing Adelta and C-fibers and sustained expression of molecular markers. Infrared laser stimulation is a potentially valuable tool for evaluating the behavioral role of Adelta fibers in pain and pain control.
Collapse
Affiliation(s)
- Kendall Mitchell
- Neurobiology and Pain Therapeutics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gascon E, Moqrich A. Heterogeneity in primary nociceptive neurons: From molecules to pathology. Arch Pharm Res 2010; 33:1489-507. [DOI: 10.1007/s12272-010-1003-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 01/17/2023]
|