1
|
Ramos S, Jeney V, Figueiredo A, Paixão T, Sambo MR, Quinhentos V, Martins R, Gouveia Z, Carlos AR, Ferreira A, Pais TF, Lainé H, Faísca P, Rebelo S, Cardoso S, Tolosano E, Penha-Gonçalves C, Soares MP. Targeting circulating labile heme as a defense strategy against malaria. Life Sci Alliance 2024; 7:e202302276. [PMID: 38307624 PMCID: PMC10837040 DOI: 10.26508/lsa.202302276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
Severe presentations of malaria emerge as Plasmodium (P.) spp. parasites invade and lyse red blood cells (RBC), producing extracellular hemoglobin (HB), from which labile heme is released. Here, we tested whether scavenging of extracellular HB and/or labile heme, by haptoglobin (HP) and/or hemopexin (HPX), respectively, counter the pathogenesis of severe presentations of malaria. We found that circulating labile heme is an independent risk factor for cerebral and non-cerebral presentations of severe P. falciparum malaria in children. Labile heme was negatively correlated with circulating HP and HPX, which were, however, not risk factors for severe P. falciparum malaria. Genetic Hp and/or Hpx deletion in mice led to labile heme accumulation in plasma and kidneys, upon Plasmodium infection This was associated with higher incidence of mortality and acute kidney injury (AKI) in ageing but not adult Plasmodium-infected mice, and was corroborated by an inverse correlation between heme and HPX with serological markers of AKI in P. falciparum malaria. In conclusion, HP and HPX act in an age-dependent manner to prevent the pathogenesis of severe presentation of malaria in mice and presumably in humans.
Collapse
Affiliation(s)
- Susana Ramos
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Tiago Paixão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Maria Rosário Sambo
- Hospital Pediátrico David Bernardino, Luanda, Angola
- Faculdade de Medicina, Universidade Agostinho Neto, Luanda, Angola
| | - Vatúsia Quinhentos
- Hospital Pediátrico David Bernardino, Luanda, Angola
- Faculdade de Medicina, Universidade Agostinho Neto, Luanda, Angola
| | - Rui Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Ana Ferreira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Hugo Lainé
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Pedro Faísca
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Sofia Rebelo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Emanuela Tolosano
- Department Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | | |
Collapse
|
2
|
Hamilton F, Mitchell R, Cunnington A, Ghazal P, Timpson NJ. HMOX1 STR polymorphism and malaria: an analysis of a large clinical dataset. Malar J 2022; 21:342. [PMID: 36397106 PMCID: PMC9670449 DOI: 10.1186/s12936-022-04352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Inducible expression of heme oxygenase-1 (encoded by the gene HMOX1) may determine protection from heme released during malaria infections. A variable length, short tandem GT(n) repeat (STR) in HMOX1 that may influence gene expression has been associated with outcomes of human malaria in some studies. In this study, an analysis of the association between variation at the STR in HMOX1 on severe malaria and severe malaria subtypes is presented in a large, prospectively collected dataset (MalariaGEN). METHODS The HMOX1 STR was imputed using a recently developed reference haplotype panel designed for STRs. The STR was classified by total length and split into three alleles based on an observed trimodal distribution of repeat lengths. Logistic regression was used to assess the association between this repeat on cases of severe malaria and severe malaria subtypes (cerebral malaria and severe malarial anaemia). Individual analyses were performed for each MalariaGEN collection site and combined for meta-analysis. One site (Kenya), had detailed clinical metadata, allowing the assessment of the effect of the STR on clinical variables (e.g. parasite count, platelet count) and regression analyses were performed to investigate whether the STR interacted with any clinical variables. RESULTS Data from 17,960 participants across 11 collection sites were analysed. In logistic regression, there was no strong evidence of association between STR length and severe malaria (Odds Ratio, OR: 0.96, 95% confidence intervals 0.91-1.02 per ten GT(n) repeats), although there did appear to be an association at some sites (e.g., Kenya, OR 0.90, 95% CI 0.82-0.99). There was no evidence of an interaction with any clinical variables. CONCLUSIONS Meta-analysis suggested that increasing HMOX1 STR length is unlikely to be reliably associated with severe malaria. It cannot be ruled out that repeat length may alter risk in specific populations, although whether this is due to chance variation, or true variation due to underlying biology (e.g., gene vs environment interaction) remains unanswered.
Collapse
Affiliation(s)
- Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK.
- Infection Sciences, North Bristol NHS Trust, Bristol, England, UK.
| | - Ruth Mitchell
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Aubrey Cunnington
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Peter Ghazal
- System Immunity Research Institute, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK
| |
Collapse
|
3
|
Hamilton FW, Somers J, Mitchell RE, Ghazal P, Timpson NJ. HMOX1 genetic polymorphisms and outcomes in infectious disease: A systematic review. PLoS One 2022; 17:e0267399. [PMID: 35551540 PMCID: PMC9098073 DOI: 10.1371/journal.pone.0267399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Heme-oxygenase 1 (HMOX1) is a critical stress response gene that catalyzes the multistep oxidation of heme. A GT(n) repeat of variable length in the promoter in has been associated with a wide range of human diseases, including infections. This paper aims to summarise and systematically review associations between the length of the HMOX1 GT(n) promoter and infectious disease in humans. METHODS A search using relevant terms was performed in PubMED and EMBASE through to 15/01/21 identifying all research that studied an association between the HMOX1 GT(n) repeat polymorphism and the incidence and/or outcome of any human infectious disease. Citations were screened for additional studies. Potential studies were screened for inclusion by two authors. Data was extracted on allele frequency, genotype, strength of association, mechanism of genotyping, and potential biases. A narrative review was performed across each type of infection. RESULTS 1,533 studies were identified in the search, and one via citation screening. Sixteen studies were ultimately included, seven in malaria, three in HIV, three in sepsis, and one each in pneumonia, hepatitis C, and acute respiratory distress syndrome (ARDS). Sample sizes for nearly all studies were small (biggest study, n = 1,646). Allelic definition was different across all included studies. All studies were at some risk of bias. In malaria, three studies suggested that longer alleles were associated with reduced risk of severe malaria, particularly malaria-induced renal dysfunction, with four studies identifying a null association. In sepsis, two studies suggested an association with longer alleles and better outcomes. CONCLUSIONS Despite the importance of HMOX1 in survival from infection, and the association between repeat length and gene expression, the clinical data supporting an association between repeat length and incidence and/or outcome of infection remain inconclusive.
Collapse
Affiliation(s)
- Fergus W. Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Infection Sciences, North Bristol NHS Trust, Bristol, United Kingdom
| | - Julia Somers
- Knight Cancer Research Building, Oregon Health and Sciences University, Portland, Oregon, United States of America
| | - Ruth E. Mitchell
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Peter Ghazal
- System Immunity Research Institute, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
4
|
Heme oxygenase-1, carbon monoxide, and malaria – The interplay of chemistry and biology. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Nakasone R, Ashina M, Abe S, Tanimura K, Van Rostenberghe H, Fujioka K. The Role of Heme Oxygenase-1 Promoter Polymorphisms in Perinatal Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3520. [PMID: 33805292 PMCID: PMC8037596 DOI: 10.3390/ijerph18073520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/19/2022]
Abstract
Heme oxygenase (HO) is the rate-limiting enzyme in the heme catabolic pathway, which degrades heme into equimolar amounts of carbon monoxide, free iron, and biliverdin. Its inducible isoform, HO-1, has multiple protective functions, including immune modulation and pregnancy maintenance, showing dynamic alteration during perinatal periods. As its contribution to the development of perinatal complications is speculated, two functional polymorphisms of the HMOX1 gene, (GT)n repeat polymorphism (rs3074372) and A(-413)T single nucleotide polymorphism (SNP) (rs2071746), were studied for their association with perinatal diseases. We systematically reviewed published evidence on HMOX1 polymorphisms in perinatal diseases and clarified their possible significant contribution to neonatal jaundice development, presumably due to their direct effect of inducing HO enzymatic activity in the bilirubin-producing pathway. However, the role of these polymorphisms seems limited for other perinatal complications such as bronchopulmonary dysplasia. We speculate that this is because the antioxidant or anti-inflammatory effect is not directly mediated by HO but by its byproducts, resulting in a milder effect. For better understanding, subtyping each morbidity by the level of exposure to causative environmental factors, simultaneous analysis of both polymorphisms, and the unified definition of short and long alleles in (GT)n repeats based on transcriptional capacity should be further investigated.
Collapse
Affiliation(s)
- Ruka Nakasone
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (R.N.); (M.A.); (S.A.)
| | - Mariko Ashina
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (R.N.); (M.A.); (S.A.)
| | - Shinya Abe
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (R.N.); (M.A.); (S.A.)
| | - Kenji Tanimura
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Hans Van Rostenberghe
- Department of Paediatrics, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (R.N.); (M.A.); (S.A.)
| |
Collapse
|
6
|
Calonga‐Solís V, Amorim LM, Farias TDJ, Petzl‐Erler ML, Malheiros D, Augusto DG. Variation in genes implicated in B-cell development and antibody production affects susceptibility to pemphigus. Immunology 2021; 162:58-67. [PMID: 32926429 PMCID: PMC7730027 DOI: 10.1111/imm.13259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/23/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
Pemphigus foliaceus (PF) is an autoimmune blistering skin disease characterized by the presence of pathogenic autoantibodies against desmoglein 1, a component of intercellular desmosome junctions. PF occurs sporadically across the globe and is endemic in some Brazilian regions. Because PF is a B-cell-mediated disease, we aimed to study the impact of variants within genes encoding molecules involved in the different steps of B-cell development and antibody production on the susceptibility of endemic PF. We analysed 3,336 single nucleotide polymorphisms (SNPs) from 167 candidate genes genotyped with Illumina microarray in a cohort of 227 PF patients and 193 controls. After quality control and exclusion of non-informative and redundant SNPs, 607 variants in 149 genes remained in the logistic regression analysis, in which sex and ancestry were included as covariates. Our results revealed 10 SNPs within or nearby 11 genes that were associated with susceptibility to endemic PF (OR >1.56; p < 0.005): rs6657275*G (TGFB2); rs1818545*A (RAG1/RAG2/IFTAP);rs10781530*A (PAXX), rs10870140*G and rs10781522*A (TRAF2); rs535068*A (TNFRSF1B); rs324011*A (STAT6);rs6432018*C (YWHAQ); rs17149161*C (YWHAG); and rs2070729*C (IRF1). Interestingly, these SNPs have been previously associated with differential gene expression, mostly in peripheral blood, in publicly available databases. For the first time, we show that polymorphisms in genes involved in B-cell development and antibody production confer differential susceptibility to endemic PF, and therefore are candidates for possible functional studies to understand immunoglobulin gene rearrangement and its impact on diseases.
Collapse
Affiliation(s)
- Verónica Calonga‐Solís
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
| | - Leonardo M. Amorim
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
| | - Ticiana D. J. Farias
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
| | - Maria Luiza Petzl‐Erler
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
| | - Danielle Malheiros
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
| | - Danillo G. Augusto
- Programa de Pós‐Graduação em GenéticaDepartamento de GenéticaUniversidade Federal do ParanáCuritibaBrasil
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
7
|
Werren EA, Garcia O, Bigham AW. Identifying adaptive alleles in the human genome: from selection mapping to functional validation. Hum Genet 2020; 140:241-276. [PMID: 32728809 DOI: 10.1007/s00439-020-02206-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
The suite of phenotypic diversity across geographically distributed human populations is the outcome of genetic drift, gene flow, and natural selection throughout human evolution. Human genetic variation underlying local biological adaptations to selective pressures is incompletely characterized. With the emergence of population genetics modeling of large-scale genomic data derived from diverse populations, scientists are able to map signatures of natural selection in the genome in a process known as selection mapping. Inferred selection signals further can be used to identify candidate functional alleles that underlie putative adaptive phenotypes. Phenotypic association, fine mapping, and functional experiments facilitate the identification of candidate adaptive alleles. Functional investigation of candidate adaptive variation using novel techniques in molecular biology is slowly beginning to unravel how selection signals translate to changes in biology that underlie the phenotypic spectrum of our species. In addition to informing evolutionary hypotheses of adaptation, the discovery and functional annotation of adaptive alleles also may be of clinical significance. While selection mapping efforts in non-European populations are growing, there remains a stark under-representation of diverse human populations in current public genomic databases, of both clinical and non-clinical cohorts. This lack of inclusion limits the study of human biological variation. Identifying and functionally validating candidate adaptive alleles in more global populations is necessary for understanding basic human biology and human disease.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Obed Garcia
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California Los Angeles, 341 Haines Hall, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
de Azevedo-Quintanilha IG, Medeiros-de-Moraes IM, Ferreira AC, Reis PA, Vieira-de-Abreu A, Campbell RA, Weyrich AS, Bozza PT, Zimmerman GA, Castro-Faria-Neto HC. Haem oxygenase protects against thrombocytopaenia and malaria-associated lung injury. Malar J 2020; 19:234. [PMID: 32611348 PMCID: PMC7327213 DOI: 10.1186/s12936-020-03305-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background Malaria-triggered lung injury can occur in both severe and non-severe cases. Platelets may interact with parasitized erythrocytes, leukocytes and endothelium. These interactions can lead to microvessel obstructions and induce release of inflammatory mediators. Induction of the haem oxygenase enzyme is important in the host’s response to free haem and to several other molecules generated by infectious or non-infectious diseases. In addition, an important role for the haem oxygenase-1 isotype has been demonstrated in experimental cerebral malaria and in clinical cases. Therefore, the present work aims to determine the influence of haem oxygenase in thrombocytopaenia and acute pulmonary injury during infection with Plasmodium berghei strain NK65. Methods C57BL/6 mice were infected with P. berghei and analysed 7-10 days post-infection. For each experiment, Cobalt Protoporphyrin IX/CoPPIX or saline were administered. Bronchoalveolar lavage fluid was used for total and differential leukocyte count and for protein measurement. Lungs were used for histological analyses or for analysis of cytokines and western blotting. The lung permeability was analysed by Evans blue dye concentration. Platelet-leukocyte aggregate formation was assayed using the flow cytometer. Results Plasmodium berghei NK65 infection generated an intense lung injury, with increased levels of inflammatory mediators, oedema, and cell migration into the lung. Plasmodium berghei infection was also accompanied by marked thrombocytopaenia and formation of platelet-leukocyte aggregates in peripheral blood. Treatment with the HO-1 inducer cobalt protoporphyrin IX (CoPPIX) modified the inflammatory response but did not affect the evolution of parasitaemia. Animals treated with CoPPIX showed an improvement in lung injury, with decreased inflammatory infiltrate in the lung parenchyma, oedema and reduced thrombocytopaenia. Conclusion Data here presented suggest that treatment with CoPPIX inducer leads to less severe pulmonary lung injury and thrombocytopaenia during malaria infection, thus increasing animal survival.
Collapse
Affiliation(s)
| | | | - André C Ferreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.,Universidade Iguaçu, Nova Iguaçu, RJ, Brazil
| | - Patrícia A Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Adriana Vieira-de-Abreu
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robert A Campbell
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Andrew S Weyrich
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Guy A Zimmerman
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Hugo C Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Moxon CA, Gibbins MP, McGuinness D, Milner DA, Marti M. New Insights into Malaria Pathogenesis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:315-343. [PMID: 31648610 DOI: 10.1146/annurev-pathmechdis-012419-032640] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malaria remains a major public health threat in tropical and subtropical regions across the world. Even though less than 1% of malaria infections are fatal, this leads to about 430,000 deaths per year, predominantly in young children in sub-Saharan Africa. Therefore, it is imperative to understand why a subset of infected individuals develop severe syndromes and some of them die and what differentiates these cases from the majority that recovers. Here, we discuss progress made during the past decade in our understanding of malaria pathogenesis, focusing on the major human parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Christopher A Moxon
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; ,
| | - Matthew P Gibbins
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; ,
| | - Dagmara McGuinness
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; ,
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois 60603, USA.,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; , .,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
10
|
Penha-Gonçalves C. Genetics of Malaria Inflammatory Responses: A Pathogenesis Perspective. Front Immunol 2019; 10:1771. [PMID: 31417551 PMCID: PMC6682681 DOI: 10.3389/fimmu.2019.01771] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
Abstract
Despite significant progress in combating malaria in recent years the burden of severe disease and death due to Plasmodium infections remains a global public health concern. Only a fraction of infected people develops severe clinical syndromes motivating a longstanding search for genetic determinants of malaria severity. Strong genetic effects have been repeatedly ascribed to mutations and allelic variants of proteins expressed in red blood cells but the role of inflammatory response genes in disease pathogenesis has been difficult to discern. We revisited genetic evidence provided by inflammatory response genes that have been repeatedly associated to malaria, namely TNF, NOS2, IFNAR1, HMOX1, TLRs, CD36, and CD40LG. This highlighted specific genetic variants having opposing roles in the development of distinct malaria clinical outcomes and unveiled diverse levels of genetic heterogeneity that shaped the complex association landscape of inflammatory response genes with malaria. However, scrutinizing genetic effects of individual variants corroborates a pathogenesis model where pro-inflammatory genetic variants acting in early infection stages contribute to resolve infection but at later stages confer increased vulnerability to severe organ dysfunction driven by tissue inflammation. Human genetics studies are an invaluable tool to find genes and molecular pathways involved in the inflammatory response to malaria but their precise roles in disease pathogenesis are still unexploited. Genome editing in malaria experimental models and novel genotyping-by-sequencing techniques are promising approaches to delineate the relevance of inflammatory response gene variants in the natural history of infection thereby will offer new rational angles on adjuvant therapeutics for prevention and clinical management of severe malaria.
Collapse
|
11
|
Yang M, Zhang H, Tao B, Pan H, Lu L, Yi H, Tang S. Possible association of HMOX1 and NQO1 polymorphisms with anti-tuberculosis drug-induced liver injury: A matched case-control study. J Clin Pharm Ther 2019; 44:534-542. [PMID: 30776144 DOI: 10.1111/jcpt.12818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/29/2018] [Accepted: 01/19/2019] [Indexed: 12/22/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Reactive metabolites from anti-tuberculosis (anti-TB) drugs can result in abnormal accumulation of reactive oxygen species (ROS), which plays an important role in anti-TB drug-induced liver injury (ATLI). Liver cells could keep the production of ROS in balance by antioxidant activities. The heme oxygenase 1, encoded by the HMOX1 gene and NADH:quinone oxidoreductase 1, encoded by the NQO1 gene are crucial mediators of cellular defense against ROS. The present study aimed to investigate the associations between HMOX1 and NQO1 polymorphisms and ATLI in Chinese anti-TB treatment population. METHODS A matched case-control study was conducted using 314 ATLI cases and 628 controls. Multivariate conditional logistic regression analysis was used to estimate the association between genotypes and risk of ATLI by the odds ratios (ORs) with 95% confidence intervals (CIs), with weight and use of hepatoprotectant as covariates. RESULTS AND DISCUSSION Patients carrying the GG genotype at rs2071748 in HMOX1 were at a higher risk of ATLI than those with the AA genotype (adjusted OR = 1.503, 95% CI: 1.005-2.249, P = 0.047), and significant differences were also found under the recessive (P = 0.015) and additive (P = 0.045) models. Subgroup analysis confirmed the relationship in mild hepatotoxicity cases under the recessive and additive models (adjusted OR = 1.714, 95% CI: 1.169-2.513, P = 0.006; adjusted OR = 1.287, 95% CI: 1.015-1.631, P = 0.037, respectively). WHAT IS NEW AND CONCLUSION This is the first study to explore the relationship between HMOX1, NQO1 polymorphisms and ATLI in Chinese anti-TB treatment population. Based on a matched case-control study, genetic polymorphisms of HMOX1 may be associated with susceptibility to ATLI in the Chinese population.
Collapse
Affiliation(s)
- Miaomiao Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiping Zhang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Bilin Tao
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third People's Hospital of Zhenjiang Affiliated to Jiangsu University, Zhenjiang, China
| | - Lihuan Lu
- Department of Tuberculosis, The Second People's Hospital of Changshu, Changshu, China
| | - Honggang Yi
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Pereira MLM, Marinho CRF, Epiphanio S. Could Heme Oxygenase-1 Be a New Target for Therapeutic Intervention in Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome? Front Cell Infect Microbiol 2018; 8:161. [PMID: 29868517 PMCID: PMC5964746 DOI: 10.3389/fcimb.2018.00161] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/26/2018] [Indexed: 01/17/2023] Open
Abstract
Malaria is a serious disease and was responsible for 429,000 deaths in 2015. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the main clinical complications of severe malaria; it is characterized by a high mortality rate and can even occur after antimalarial treatment when parasitemia is not detected. Rodent models of ALI/ARDS show similar clinical signs as in humans when the rodents are infected with murine Plasmodium. In these models, it was shown that the induction of the enzyme heme oxygenase 1 (HO-1) is protective against severe malaria complications, including cerebral malaria and ALI/ARDS. Increased lung endothelial permeability and upregulation of VEGF and other pro-inflammatory cytokines were found to be associated with malaria-associated ALI/ARDS (MA-ALI/ARDS), and both were reduced after HO-1 induction. Additionally, mice were protected against MA-ALI/ARDS after treatment with carbon monoxide- releasing molecules or with carbon monoxide, which is also released by the HO-1 activity. However, high HO-1 levels in inflammatory cells were associated with the respiratory burst of neutrophils and with an intensification of inflammation during episodes of severe malaria in humans. Here, we review the main aspects of HO-1 in malaria and ALI/ARDS, presenting the dual role of HO-1 and possibilities for therapeutic intervention by modulating this important enzyme.
Collapse
Affiliation(s)
- Marcelo L M Pereira
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudio R F Marinho
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sabrina Epiphanio
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Kuesap J, Na-Bangchang K. The Effect of ABO Blood Groups, Hemoglobinopathy, and Heme Oxygenase-1 Polymorphisms on Malaria Susceptibility and Severity. THE KOREAN JOURNAL OF PARASITOLOGY 2018; 56:167-173. [PMID: 29742871 PMCID: PMC5976019 DOI: 10.3347/kjp.2018.56.2.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 11/23/2022]
Abstract
Malaria is one of the most important public health problems in tropical areas on the globe. Several factors are associated with susceptibility to malaria and disease severity, including innate immunity such as blood group, hemoglobinopathy, and heme oxygenase-1 (HO-1) polymorphisms. This study was carried out to investigate association among ABO blood group, thalassemia types and HO-1 polymorphisms in malaria. The malarial blood samples were collected from patients along the Thai-Myanmar border. Determination of ABO blood group, thalassemia variants, and HO-1 polymorphisms were performed using agglutination test, low pressure liquid chromatography and polymerase chain reaction, respectively. Plasmodium vivax was the major infected malaria species in the study samples. Distribution of ABO blood type in the malaria-infected samples was similar to that in healthy subjects, of which blood type O being most prevalent. Association between blood group A and decreased risk of severe malaria was significant. Six thalassemia types (30%) were detected, i.e., hemoglobin E (HbE), β-thalassemia, α-thalassemia 1, α-thalassemia 2, HbE with α-thalassemia 2, and β-thalassemia with α-thalassemia 2. Malaria infected samples without thalassemia showed significantly higher risk to severe malaria. The prevalence of HO-1 polymorphisms, S/S, S/L and L/L were 25, 62, and 13%, respectively. Further study with larger sample size is required to confirm the impact of these 3 host genetic factors in malaria patients.
Collapse
Affiliation(s)
- Jiraporn Kuesap
- Faculty of Allied Health Sciences, Thammasat University. Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
14
|
Heme oxygenase-1 genetic variants and the conundrum of hyperbilirubinemia in African-American newborns. J Perinatol 2018; 38:345-350. [PMID: 29302043 DOI: 10.1038/s41372-017-0039-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 11/09/2022]
Abstract
BACKGROUND African-American (AA) infants are known to have, overall, lower bilirubin levels than infants of other ethnicities during their birth hospitalization. However, they are known to have a higher incidence of severe hyperbilirubinemia and are over represented in the US Kernicterus Registry. Heme oxygenase-1 (HO) is the rate limiting enzyme in heme metabolism leading to the equimolar production of bilirubin, carbon monoxide (CO) and free iron (Fe). Short (S) (GT)n repeats (<25) in the promoter region of the gene encoding the inducible HO-1 isozyme augment its expression, while long (L) repeats (>33) lead to an attenuation, modulating the production of bilirubin and CO. The impact of HO-1 promoter polymorphisms on bilirubin levels has not been well studied in (AA) infants. OBJECTIVE The objectives of this study were to compare the distribution of (GT)n repeat lengths in the HO-1 promoter region in a cohort of AA infants to those found in other ethnicities and to evaluate the contribution of this polymorphism to the degree of hyperbilirubinemia and the level of COHbc in this cohort. METHODS We prospectively studied a cohort of term AA infants with O+ mothers. Per hospital routine, infants' blood type, Rh status, direct antiglobulin test (DAT), and total bilirubin (TB) levels were checked prior to discharge. After parental consent, blood was collected for DNA extraction and carboxyhemoglobin (COHbc) measurements at the same time as the infants' newborn screen. An infant's TB percentile risk based on the Bhutani nomogram was used to determine need for phototherapy or follow-up. (GT)n repeat length in the HO-1 promoter was determined for each allele using PCR after DNA extraction from dried bloodspots. Size of allele lengths were typed as short (S, <25), medium (M, 25-33) or long (L, >33). RESULTS One hundred eighty infants were studied for a total of 360 separate alleles. 12.2% (44/360) of alleles were S which was significantly less than all other ethnicities reviewed. Carboxyhemoglobin (COHbc) levels and bilirubin percentiles were higher among infants who had at least one S allele when compared to those who had at least one L allele in the cohort as a whole: COHbc 0.92 ± 0.35 vs. 0.85 ± 0.37; p = 0.28 and Bilirubin percentile 48.6 ± 34.0 vs. 44.9 ± 31.6; p = 0.51. This relationship remained when only those infants who were DAT neg were examined: COHbc 0.81 ± 0.26 vs. 0.74 ± 0.21; p = 0.11 and Bilirubin percentile 43.6 ± 29.9 vs. 37.5 ± 28.7; p = 0.28. CONCLUSIONS The presence of L alleles of this variant is significantly greater among infants who are either African or of African descent. There was a trend toward lower COHbc levels among infants with at least one L allele as opposed to at least one S allele, although this did not have a statistically significant impact on TB risk percentile.
Collapse
|
15
|
Understanding host-parasite relationship: the immune central nervous system microenvironment and its effect on brain infections. Parasitology 2017; 145:988-999. [PMID: 29231805 DOI: 10.1017/s0031182017002189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The central nervous system (CNS) has been recognized as an immunologically specialized microenvironment, where immune surveillance takes a distinctive character, and where delicate neuronal networks are sustained by anti-inflammatory factors that maintain local homeostasis. However, when a foreign agent such as a parasite establishes in the CNS, a set of immune defences is mounted and several immune molecules are released to promote an array of responses, which ultimately would control the infection and associated damage. Instead, a host-parasite relationship is established, in the context of which a close biochemical coevolution and communication at all organization levels between two complex organisms have developed. The ability of the parasite to establish in its host is associated with several evasion mechanisms to the immune response and its capacity for exploiting host-derived molecules. In this context, the CNS is deeply involved in modulating immune functions, either protective or pathogenic, and possibly in parasitic activity as well, via interactions with evolutionarily conserved molecules such as growth factors, neuropeptides and hormones. This review presents available evidence on some examples of CNS parasitic infections inducing different morbi-mortality grades in low- or middle-income countries, to illustrate how the CNS microenvironment affect pathogen establishment, growth, survival and reproduction in immunocompetent hosts. A better understanding of the influence of the CNS microenvironment on neuroinfections may provide relevant insights into the mechanisms underlying these pathologies.
Collapse
|
16
|
Gibbons SJ, Grover M, Choi KM, Wadhwa A, Zubair A, Wilson LA, Wu Y, Abell TL, Hasler WL, Koch KL, McCallum RW, Nguyen LAB, Parkman HP, Sarosiek I, Snape WJ, Tonascia J, Hamilton FA, Pasricha PJ, Farrugia G. Repeat polymorphisms in the Homo sapiens heme oxygenase-1 gene in diabetic and idiopathic gastroparesis. PLoS One 2017; 12:e0187772. [PMID: 29161307 PMCID: PMC5697813 DOI: 10.1371/journal.pone.0187772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/25/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Idiopathic and diabetic gastroparesis in Homo sapiens cause significant morbidity. Etiology or risk factors have not been clearly identified. Failure to sustain elevated heme oxygenase-1 (HO1) expression is associated with delayed gastric emptying in diabetic mice and polymorphisms in the HO1 gene (HMOX1, NCBI Gene ID:3162) are associated with worse outcomes in other diseases. AIM Our hypothesis was that longer polyGT alleles are more common in the HMOX1 genes of individuals with gastroparesis than in controls without upper gastrointestinal motility disorders. METHODS Repeat length was determined in genomic DNA. Controls with diabetes (84 type 1, 84 type 2) and without diabetes (n = 170) were compared to diabetic gastroparetics (99 type 1, 72 type 2) and idiopathic gastroparetics (n = 234). Correlations of repeat lengths with clinical symptom sub-scores on the gastroparesis cardinal symptom index (GCSI) were done. Statistical analyses of short (<29), medium and long (>32) repeat alleles and differences in allele length were used to test for associations with gastroparesis. RESULTS The distribution of allele lengths was different between groups (P = 0.016). Allele lengths were longest in type 2 diabetics with gastroparesis (29.18±0.35, mean ± SEM) and longer in gastroparetics compared to non-diabetic controls (28.50±0.14 vs 27.64±0.20 GT repeats/allele, P = 0.0008). Type 2 diabetic controls had longer alleles than non-diabetic controls. In all gastroparetic groups, allele lengths were longer in African Americans compared to other racial groups, differences in the proportion of African Americans in the groups accounted for the differences between gastroparetics and controls. Diabetic gastroparetics with 1 or 2 long alleles had worse GCSI nausea sub-scores (3.30±0.23) as compared to those with 0 long alleles (2.66±0.12), P = 0.022. CONCLUSIONS Longer poly-GT repeats in the HMOX1 gene are more common in African Americans with gastroparesis. Nausea symptoms are worse in subjects with longer alleles.
Collapse
Affiliation(s)
- Simon J. Gibbons
- Mayo Clinic, Enteric NeuroScience Program, Rochester, Minnesota, United States of America
| | - Madhusudan Grover
- Mayo Clinic, Enteric NeuroScience Program, Rochester, Minnesota, United States of America
| | - Kyoung Moo Choi
- Mayo Clinic, Enteric NeuroScience Program, Rochester, Minnesota, United States of America
| | - Akhilesh Wadhwa
- Mayo Clinic, Enteric NeuroScience Program, Rochester, Minnesota, United States of America
| | - Adeel Zubair
- Mayo Clinic, Enteric NeuroScience Program, Rochester, Minnesota, United States of America
| | - Laura A. Wilson
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yanhong Wu
- Mayo Clinic, Medical Genomics Program, Rochester, Minnesota, United States of America
| | - Thomas L. Abell
- University of Louisville, Louisville, Kentucky, United States of America
| | - William L. Hasler
- University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kenneth L. Koch
- Wake Forest University, Winston-Salem, North Carolina, United States of America
| | | | | | - Henry P. Parkman
- Temple University, Philadelphia, Pennsylvania, United States of America
| | - Irene Sarosiek
- Texas Tech University, El Paso, Texas, United States of America
| | - William J. Snape
- California Pacific Medical Center, San Francisco, California, United States of America
| | - James Tonascia
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Frank A. Hamilton
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States of America
| | - Pankaj J. Pasricha
- Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Gianrico Farrugia
- Mayo Clinic, Enteric NeuroScience Program, Rochester, Minnesota, United States of America
| |
Collapse
|
17
|
Lao W, Kang H, Jin G, Chen L, Chu Y, Sun J, Sun B. Evaluation of the relationship between MARCO and CD36 single-nucleotide polymorphisms and susceptibility to pulmonary tuberculosis in a Chinese Han population. BMC Infect Dis 2017; 17:488. [PMID: 28693442 PMCID: PMC5504633 DOI: 10.1186/s12879-017-2595-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/05/2017] [Indexed: 02/08/2023] Open
Abstract
Background Gene polymorphisms impact greatly on a person’s susceptibility to pulmonary tuberculosis (PTB). Macrophage receptor with collagenous structure (MARCO) and CD36 are two scavenger receptors (SRs) that can recognize Mycobacterium tuberculosis (Mtb) and play a key role in tuberculosis infection. Gene polymorphisms of MARCO and CD36 may contribute to tuberculosis risk. Methods To investigate whether genetic polymorphisms of MARCO and CD36 are associated with susceptibility to PTB, genomic DNA samples from patients (n = 202) and healthy controls (n = 216) were collected and analyzed by polymerase chain reaction with high-resolution melting analysis. Results We studied two single nucleotide polymorphisms (SNPs) in MARCO (rs12998782 and rs17009726) and three SNPs in CD36 (rs1194182, rs3211956 and rs10499859). Rs12998782 (P = 0.018) might be associated with susceptibility to PTB. Rs1194182 (P < 0.01) and rs10499859 (P < 0.001) might be associated with resistance to PTB. Rs17009726 and rs3211956 were not associated with susceptibility/resistance to PTB. Conclusions These data showed that MARCO rs12998782 may increase PTB risk while two SNPs of CD36, rs1194182 and rs10499859 may reduce the risk, indicating MARCO and CD36 as important receptors in response to PTB. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2595-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenting Lao
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Hui Kang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China.
| | - Guojiang Jin
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Li Chen
- Department of Blood Transfusion, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Yang Chu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Jiao Sun
- Tuberculosis Research Institute of Shenyang Tenth People's Hospital, Shenyang, Liaoning Province, 110041, China
| | - Bingqi Sun
- Tuberculosis Research Institute of Shenyang Tenth People's Hospital, Shenyang, Liaoning Province, 110041, China
| |
Collapse
|
18
|
Thongdee P, Na-Bangchang K. The role of heme-oxygenase-1 in pathogenesis of cerebral malaria in the co-culture model of human brain microvascular endothelial cell and ITG Plasmodium falciparum-infected red blood cells. ASIAN PAC J TROP MED 2017; 10:20-24. [PMID: 28107860 DOI: 10.1016/j.apjtm.2016.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/29/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE To investigate the role of human host heme-oxygenase-1 (HO-1) in pathogenesis of cerebral malaria in the in vitro model. METHODS The effect of human host HO-1 [human brain microvascular endothelial cell (HBMEC)] on hemoglobin degradation in the co-culture model of HBMEC and ITG Plasmodium falciparum-infected red cells (iRBC) through measurement of the enzymatic products iron and bilirubin. RESULTS Following exposure to the HO-1 inducer CoPPIX at all concentrations, the HBMEC cells apoptosis occurred, which could be prominently observed at 15 μM of 3 h exposure. In contrast, there was no significant change in the morphology in the non-exposed iRBC at all concentrations and exposure time. This observation was in agreement with the levels of the enzymatic degradation products iron and bilirubin, of which the highest levels (106.03 and 1753.54% of baseline level, respectively) were observed at 15 μM vs. 20 μM at 3 h vs. 24 h exposure. For the effect of the HO-1 inhibitor ZnPPIX, HBMEC cell morphology was mostly unchanged, but significant inhibitory effect on cell apoptosis was seen at 10 μM for the exposure period of 3 h (37.17% of baseline level). The degree of the inhibitory effect as reflected by the level of iron produced was not clearly observed (highest effect at 10 μM and 3 h exposure). CONCLUSIONS Results provide at least in part, insight into the contribution of HO-1 on CM pathogenesis and need to be confirmed in animal model.
Collapse
Affiliation(s)
- Pimwan Thongdee
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand.
| |
Collapse
|
19
|
Kayano ACAV, Dos-Santos JCK, Bastos MF, Carvalho LJ, Aliberti J, Costa FTM. Pathophysiological Mechanisms in Gaseous Therapies for Severe Malaria. Infect Immun 2016; 84:874-882. [PMID: 26831465 PMCID: PMC4807480 DOI: 10.1128/iai.01404-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over 200 million people worldwide suffer from malaria every year, a disease that causes 584,000 deaths annually. In recent years, significant improvements have been achieved on the treatment of severe malaria, with intravenous artesunate proving superior to quinine. However, mortality remains high, at 8% in children and 15% in adults in clinical trials, and even worse in the case of cerebral malaria (18% and 30%, respectively). Moreover, some individuals who do not succumb to severe malaria present long-term cognitive deficits. These observations indicate that strategies focused only on parasite killing fail to prevent neurological complications and deaths associated with severe malaria, possibly because clinical complications are associated in part with a cerebrovascular dysfunction. Consequently, different adjunctive therapies aimed at modulating malaria pathophysiological processes are currently being tested. However, none of these therapies has shown unequivocal evidence in improving patient clinical status. Recently, key studies have shown that gaseous therapies based mainly on nitric oxide (NO), carbon monoxide (CO), and hyperbaric (pressurized) oxygen (HBO) alter vascular endothelium dysfunction and modulate the host immune response to infection. Considering gaseous administration as a promising adjunctive treatment against severe malaria cases, we review here the pathophysiological mechanisms and the immunological aspects of such therapies.
Collapse
Affiliation(s)
- Ana Carolina A V Kayano
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - João Conrado K Dos-Santos
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Marcele F Bastos
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Leonardo J Carvalho
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Júlio Aliberti
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Fabio T M Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
20
|
Soares MP, Weiss G. The Iron age of host-microbe interactions. EMBO Rep 2015; 16:1482-500. [PMID: 26474900 DOI: 10.15252/embr.201540558] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/23/2015] [Indexed: 12/25/2022] Open
Abstract
Microbes exert a major impact on human health and disease by either promoting or disrupting homeostasis, in the latter instance leading to the development of infectious diseases. Such disparate outcomes are driven by the ever-evolving genetic diversity of microbes and the countervailing host responses that minimize their pathogenic impact. Host defense strategies that limit microbial pathogenicity include resistance mechanisms that exert a negative impact on microbes, and disease tolerance mechanisms that sustain host homeostasis without interfering directly with microbes. While genetically distinct, these host defense strategies are functionally integrated, via mechanisms that remain incompletely defined. Here, we explore the general principles via which host adaptive responses regulating iron (Fe) metabolism impact on resistance and disease tolerance to infection.
Collapse
Affiliation(s)
| | - Günter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University, Innsbruck, Austria
| |
Collapse
|
21
|
Rommelaere S, Millet V, Rihet P, Atwell S, Helfer E, Chasson L, Beaumont C, Chimini G, Sambo MDR, Viallat A, Penha-Gonçalves C, Galland F, Naquet P. Serum pantetheinase/vanin levels regulate erythrocyte homeostasis and severity of malaria. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3039-52. [PMID: 26343328 DOI: 10.1016/j.ajpath.2015.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 06/18/2015] [Accepted: 07/16/2015] [Indexed: 11/16/2022]
Abstract
Tissue pantetheinase, encoded by the VNN1 gene, regulates response to stress, and previous studies have shown that VNN genes contribute to the susceptibility to malaria. Herein, we evaluated the role of pantetheinase on erythrocyte homeostasis and on the development of malaria in patients and in a new mouse model of pantetheinase insufficiency. Patients with cerebral malaria have significantly reduced levels of serum pantetheinase activity (PA). In mouse, we show that a reduction in serum PA predisposes to severe malaria, including cerebral malaria and severe anemia. Therefore, scoring pantetheinase in serum may serve as a severity marker in malaria infection. This disease triggers an acute stress in erythrocytes, which enhances cytoadherence and hemolysis. We speculated that serum pantetheinase might contribute to erythrocyte resistance to stress under homeostatic conditions. We show that mutant mice with a reduced serum PA are anemic and prone to phenylhydrazine-induced anemia. A cytofluorometric and spectroscopic analysis documented an increased frequency of erythrocytes with an autofluorescent aging phenotype. This is associated with an enhanced oxidative stress and shear stress-induced hemolysis. Red blood cell transfer and bone marrow chimera experiments show that the aging phenotype is not cell intrinsic but conferred by the environment, leading to a shortening of red blood cell half-life. Therefore, serum pantetheinase level regulates erythrocyte life span and modulates the risk of developing complicated malaria.
Collapse
Affiliation(s)
- Samuel Rommelaere
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France
| | - Virginie Millet
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France
| | - Pascal Rihet
- Technological Advances for Genomics and Clinics (TAGC), Aix-Marseille Université, UMR_S 1090, INSERM U1090, Marseille, France
| | - Scott Atwell
- Marseilles Interdisciplinary Nanoscience Centre, Aix-Marseille Université, CNRS UMR7325, Marseille, France
| | - Emmanuèle Helfer
- Marseilles Interdisciplinary Nanoscience Centre, Aix-Marseille Université, CNRS UMR7325, Marseille, France
| | - Lionel Chasson
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France
| | - Carole Beaumont
- Biomedical Research Center Bichat-Beaujon, Université Paris Diderot, INSERM U773, Paris, France
| | - Giovanna Chimini
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France
| | | | - Annie Viallat
- Marseilles Interdisciplinary Nanoscience Centre, Aix-Marseille Université, CNRS UMR7325, Marseille, France
| | | | - Franck Galland
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France.
| | - Philippe Naquet
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France.
| |
Collapse
|
22
|
Hansson HH, Maretty L, Balle C, Goka BQ, Luzon E, Nkrumah FN, Schousboe ML, Rodrigues OP, Bygbjerg IC, Kurtzhals JAL, Alifrangis M, Hempel C. Polymorphisms in the Haem Oxygenase-1 promoter are not associated with severity of Plasmodium falciparum malaria in Ghanaian children. Malar J 2015; 14:153. [PMID: 25888733 PMCID: PMC4396170 DOI: 10.1186/s12936-015-0668-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background Haem oxygenase-1 (HO-1) catabolizes haem and has both cytotoxic and cytoprotective effects. Polymorphisms in the promoter of the Haem oxygenase-1 (HMOX1) gene encoding HO-1 have been associated with several diseases including severe malaria. The objective of this study was to determine the allele and genotype frequencies of two single nucleotide polymorphisms; A(−413)T and G(−1135)A, and a (GT)n repeat length polymorphism in the HMOX1 promoter in paediatric malaria patients and controls to determine possible associations with malaria disease severity. Methods Study participants were Ghanaian children (n=296) admitted to the emergency room at the Department of Child Health, Korle-Bu Teaching Hospital, Accra, Ghana during the malaria season from June to August in 1995, 1996 and 1997, classified as having uncomplicated malaria (n=101) or severe malaria (n=195; defined as severe anaemia (n=63) or cerebral malaria (n=132)). Furthermore, 287 individuals without a detectable Plasmodium infection or asymptomatic carriers of the parasite were enrolled as controls. Blood samples from participants were extracted for DNA and allele and genotype frequencies were determined with allele-specific PCR, restriction fragment length analysis and microsatellite analysis. Results The number of (GT)n repeats in the study participants varied between 21 and 46 with the majority of alleles having lengths of 26 (8.1%), 29/30 (13.2/17.9%) and 39/40 (8.0/13.8%) repeats, and was categorized into short, medium and long repeats. The (−413)T allele was very common (69.8%), while the (−1135)A allele was present in only 17.4% of the Ghanaian population. The G(−1135)A locus was excluded from further analysis after failing the Hardy-Weinberg equilibrium test. No significant differences in allele or genotype distribution of the A(−413)T and (GT)n repeat polymorphisms were found between the controls and the malaria patients, or between the disease groups, for any of the analysed polymorphisms and no associations with malaria severity were found. Conclusion These results contribute to the understanding of the role of HMOX1/HO-1. This current study did not find any evidence of association between HMOX1 promoter polymorphisms and malaria susceptibility or severe malaria and hence contradicts previous findings. Further studies are needed to fully elucidate the relationship between HMOX1 polymorphisms and malarial disease.
Collapse
Affiliation(s)
- Helle H Hansson
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Lasse Maretty
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Christina Balle
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Bamenla Q Goka
- Department of Child Health, Korle Bu Teaching Hospital, PO Box KB 77, Korle Bu, Accra, Ghana.
| | - Elisa Luzon
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Francis N Nkrumah
- Noguchi Memorial Institute for Medical Research, PO Box LG 581, Legon, Ghana.
| | - Mette L Schousboe
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Onike P Rodrigues
- Department of Child Health, Korle Bu Teaching Hospital, PO Box KB 77, Korle Bu, Accra, Ghana.
| | - Ib Christian Bygbjerg
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Jørgen A L Kurtzhals
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Michael Alifrangis
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Casper Hempel
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| |
Collapse
|
23
|
Differential positive selection of malaria resistance genes in three indigenous populations of Peninsular Malaysia. Hum Genet 2015; 134:375-92. [PMID: 25634076 DOI: 10.1007/s00439-014-1525-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/25/2014] [Indexed: 10/24/2022]
Abstract
The indigenous populations from Peninsular Malaysia, locally known as Orang Asli, continue to adopt an agro-subsistence nomadic lifestyle, residing primarily within natural jungle habitats. Leading a hunter-gatherer lifestyle in a tropical jungle environment, the Orang Asli are routinely exposed to malaria. Here we surveyed the genetic architecture of individuals from four Orang Asli tribes with high-density genotyping across more than 2.5 million polymorphisms. These tribes reside in different geographical locations in Peninsular Malaysia and belong to three main ethno-linguistic groups, where there is minimal interaction between the tribes. We first dissect the genetic diversity and admixture between the tribes and with neighboring urban populations. Later, by implementing five metrics, we investigated the genome-wide signatures for positive natural selection of these Orang Asli, respectively. Finally, we searched for evidence of genomic adaptation to the pressure of malaria infection. We observed that different evolutionary responses might have emerged in the different Orang Asli communities to mitigate malaria infection.
Collapse
|
24
|
Mangano VD, Modiano D. An evolutionary perspective of how infection drives human genome diversity: the case of malaria. Curr Opin Immunol 2014; 30:39-47. [PMID: 24996199 DOI: 10.1016/j.coi.2014.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/31/2014] [Accepted: 06/04/2014] [Indexed: 11/26/2022]
Abstract
Infection with malaria parasites has imposed a strong selective pressure on the human genome, promoting the convergent evolution of a diverse range of genetic adaptations, many of which are harboured by the red blood cell, which hosts the pathogenic stage of the Plasmodium life cycle. Recent genome-wide and multi-centre association studies of severe malaria have consistently identified ATP2B4, encoding the major Ca(2+) pump of erythrocytes, as a novel resistance locus. Evidence is also accumulating that interaction occurs among resistance loci, the most recent example being negative epistasis among alpha-thalassemia and haptoglobin type 2. Finally, studies on the effect of haemoglobin S and C on parasite transmission to mosquitoes have suggested that protective variants could increase in frequency enhancing parasite fitness.
Collapse
Affiliation(s)
- Valentina D Mangano
- Department of Public Health and Infectious Diseases, University of Rome 'La Sapienza', Rome, Italy; Istituto Pasteur, Fondazione Cenci Bolognetti, University of Rome 'La Sapienza', Rome, Italy.
| | - David Modiano
- Department of Public Health and Infectious Diseases, University of Rome 'La Sapienza', Rome, Italy; Istituto Pasteur, Fondazione Cenci Bolognetti, University of Rome 'La Sapienza', Rome, Italy.
| |
Collapse
|
25
|
Zhang G, Skorokhod OA, Khoo SK, Aguilar R, Wiertsema S, Nhabomba AJ, Marrocco T, McNamara-Smith M, Manaca MN, Barbosa A, Quintó L, Hayden CM, Goldblatt J, Guinovart C, Alonso PL, Dobaño C, Schwarzer E, LeSouëf PN. Plasma advanced oxidative protein products are associated with anti-oxidative stress pathway genes and malaria in a longitudinal cohort. Malar J 2014; 13:134. [PMID: 24693973 PMCID: PMC4230024 DOI: 10.1186/1475-2875-13-134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/27/2014] [Indexed: 01/05/2023] Open
Abstract
Background Advanced oxidation protein products (AOPP) are newly identified efficient oxidative stress biomarkers. In a longitudinal birth cohort the effects were investigated of genetic polymorphisms in five oxidative pathway genes on AOPP levels. Methods This study is part of a three-arm randomized, double-blind, placebo-controlled trial. Three hundred and twelve children were included in the present study with AOPP levels measured at 2.5, 5.5, 10.5, 15 and 24 months of age. Twelve polymorphisms were genotyped in five oxidative stress pathway genes: glutathione reductase (GSR), glutamylcysteine synthetase (GCLC), glutathione S-transferase (GST) P1, haem oxygenase 1 (HMOX1) and superoxide dismutase 2 (SOD2) in 298 children. There were 284 children assessed for anaemia and clinical malaria infection at the age of 24 months. Results Two principal components (PCA1 and PCA2) were derived from the AOPP levels measured at the five time points. PCA1 was significantly associated with anaemia (p = 0.0002), and PCA2 with clinical malaria infection (p = 0.047). In the K-Means Cluster Analysis based on levels of AOPP, children were clustered into two groups: Group A (lower AOPP levels) and Group B (higher AOPP levels). The cluster membership was significantly associated with anaemia (p =0.003) as well as with the GSR RS3594 polymorphism (p = 0.037). Mixed linear regression analyses found that the single nucleotide polymorphisms GCLC RS10948751 and HMOX1 RS17885925 were significantly associated with AOPP levels (p = 0.030 and p = 0.027, respectively). Conclusion Plasma AOPP levels were predictive for anaemia and oxidative stress markers for clinical malaria infection in two year old children. Several polymorphisms in GCLC, GSR and HMOX1 genes were associated with oxidative stress status of these children.
Collapse
Affiliation(s)
- Guicheng Zhang
- School of Paediatrics and Child Health, University of Western Australia, c/o 100 Roberts Rd, Subiaco, WA 6008 Perth, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Modeling malaria infection and immunity against variant surface antigens in Príncipe Island, West Africa. PLoS One 2014; 9:e88110. [PMID: 24520349 PMCID: PMC3919732 DOI: 10.1371/journal.pone.0088110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/07/2014] [Indexed: 11/21/2022] Open
Abstract
After remarkable success of vector control campaigns worldwide, concerns about loss of immunity against Plasmodium falciparum due to lack of exposure to the parasite are relevant since an increase of severe cases in less immune individuals is expected. We present a mathematical model to investigate the impact of reducing exposure to the parasite on the immune repertoire against P. falciparum erythrocyte membrane protein 1 (PfEMP1) variants. The model was parameterized with data from Príncipe Island, West Africa, and applied to simulate two alternative transmission scenarios: one where control measures are continued to eventually drive the system to elimination; and another where the effort is interrupted after 6 years of its initiation and the system returns to the initial transmission potential. Population dynamics of parasite prevalence predict that in a few years infection levels return to the pre-control values, while the re-acquisition of the immune repertoire against PfEMP1 is slower, creating a window for increased severity. The model illustrates the consequences of loss of immune repertoire against PfEMP1 in a given setting and can be applied to other regions where similar data may be available.
Collapse
|
27
|
NOS2 variants reveal a dual genetic control of nitric oxide levels, susceptibility to Plasmodium infection, and cerebral malaria. Infect Immun 2013; 82:1287-95. [PMID: 24379293 DOI: 10.1128/iai.01070-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nitric oxide (NO) is a proposed component of malaria pathogenesis, and the inducible nitric oxide synthase gene (NOS2) has been associated to malaria susceptibility. We analyzed the role of NOS2 polymorphisms on NO bioavailability and on susceptibility to infection, Plasmodium carrier status and clinical malaria. Two distinct West African sample collections were studied: a population-based collection of 1,168 apparently healthy individuals from the Príncipe Island and a hospital-based cohort of 269 Angolan children. We found that two NOS2 promoter single-nucleotide polymorphism (SNP) alleles associated to low NO plasma levels in noninfected individuals were also associated to reduced risk of pre-erythrocytic infection as measured anti-CSP antibody levels (6.25E-04 < P < 7.57E-04). In contrast, three SNP alleles within the NOS2 cistronic region conferring increased NO plasma levels in asymptomatic carriers were strongly associated to risk of parasite carriage (8.00E-05 < P < 7.90E-04). Notwithstanding, three SNP alleles in this region protected from cerebral malaria (7.90E-4 < P < 4.33E-02). Cohesively, the results revealed a dual regimen in the genetic control of NO bioavailability afforded by NOS2 depending on the infection status. NOS2 promoter variants operate in noninfected individuals to decrease both NO bioavailability and susceptibility to pre-erythrocytic infection. Conversely, NOS2 cistronic variants (namely, rs6505469) operate in infected individuals to increase NO bioavailability and confer increased susceptibility to unapparent infection but protect from cerebral malaria. These findings corroborate the hypothesis that NO anti-inflammatory properties impact on different steps of malaria pathogenesis, explicitly by favoring infection susceptibility and deterring severe malaria syndromes.
Collapse
|
28
|
Yeo TW, Lampah DA, Kenangalem E, Tjitra E, Price RN, Anstey NM. Increased carboxyhemoglobin in adult falciparum malaria is associated with disease severity and mortality. J Infect Dis 2013; 208:813-7. [PMID: 23852587 DOI: 10.1093/infdis/jit253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heme oxygenase 1 expression is increased in pediatric patients with malaria. The carboxyhemoglobin level (a measure of heme oxygenase 1 activity) has not been assessed in adult patients with malaria. Results of pulse co-oximetry revealed that the mean carboxyhemoglobin level was elevated in 29 Indonesian adults with severe falciparum malaria (10%; 95% confidence interval [CI], 8%-13%) and in 20 with severe sepsis (8%; 95% CI, 5%-12%), compared with the mean levels in 32 patients with moderately severe malaria (7%; 95% CI, 5%-8%) and 36 controls (3.6%; 95% CI, 3%-5%; P < .001). An increased carboxyhemoglobin level was associated with an increased odds of death among patients with severe malaria (odds ratio, 1.2 per percentage point increase; 95% CI, 1.02-1.5). While also associated with severity and fatality, methemoglobin was only modestly increased in patients with severe malaria. Increased carboxyhemoglobin levels during severe malaria and sepsis may exacerbate organ dysfunction by reducing oxygen carriage and cautions against the use of adjunctive CO therapy, which was proposed on the basis of mouse models.
Collapse
Affiliation(s)
- Tsin W Yeo
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Royal Darwin Hospital, Darwin, Australia.
| | | | | | | | | | | |
Collapse
|
29
|
Ball EA, Sambo MR, Martins M, Trovoada MJ, Benchimol C, Costa J, Antunes Gonçalves L, Coutinho A, Penha-Gonçalves C. IFNAR1 Controls Progression to Cerebral Malaria in Children and CD8+ T Cell Brain Pathology in Plasmodium berghei–Infected Mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:5118-27. [DOI: 10.4049/jimmunol.1300114] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
The host genetic diversity in malaria infection. J Trop Med 2012; 2012:940616. [PMID: 23316245 PMCID: PMC3532872 DOI: 10.1155/2012/940616] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/06/2012] [Accepted: 11/19/2012] [Indexed: 02/06/2023] Open
Abstract
Populations exposed to Plasmodium infection develop genetic mechanisms of protection against severe disease. The clinical manifestation of malaria results primarily from the lysis of infected erythrocytes and subsequent immune and inflammatory responses. Herein, we review the genetic alterations associated with erythrocytes or mediators of the immune system, which might influence malaria outcome. Moreover, polymorphisms in genes related to molecules involved in mechanisms of cytoadherence and their influence on malaria pathology are also discussed. The results of some studies have suggested that the combinatorial effects of a set of genetic factors in the erythrocyte-immunology pathway might be relevant to host resistance or susceptibility against Plasmodium infection. However, these results must be interpreted with caution because of the differences observed in the functionality and frequency of polymorphisms within different populations. With the recent advances in molecular biology techniques, more robust studies with reliable data have been reported, and the results of these studies have identified individual genetic factors for consideration in preventing severe disease and the individual response to treatment.
Collapse
|
31
|
Metabolic Adaptation to Tissue Iron Overload Confers Tolerance to Malaria. Cell Host Microbe 2012; 12:693-704. [DOI: 10.1016/j.chom.2012.10.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/28/2012] [Accepted: 10/08/2012] [Indexed: 11/23/2022]
|
32
|
Cummins NW, Weaver EA, May SM, Croatt AJ, Foreman O, Kennedy RB, Poland GA, Barry MA, Nath KA, Badley AD. Heme oxygenase-1 regulates the immune response to influenza virus infection and vaccination in aged mice. FASEB J 2012; 26:2911-8. [PMID: 22490782 PMCID: PMC3382093 DOI: 10.1096/fj.11-190017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 03/26/2012] [Indexed: 01/08/2023]
Abstract
Underlying mechanisms of individual variation in severity of influenza infection and response to vaccination are poorly understood. We investigated the effect of reduced heme oxygenase-1 (HO-1) expression on vaccine response and outcome of influenza infection. HO-1-deficient and wild-type (WT) mice (kingdom, Animalia; phylum, Chordata; genus/species, Mus musculus) were infected with influenza virus A/PR/8/34 with or without prior vaccination with an adenoviral-based influenza vaccine. A genome-wide association study evaluated the expression of single-nucleotide polymorphisms (SNPs) in the HO-1 gene and the response to influenza vaccination in healthy humans. HO-1-deficient mice had decreased survival after influenza infection compared to WT mice (median survival 5.5 vs. 6.5 d, P=0.016). HO-1-deficient mice had impaired production of antibody following influenza vaccination compared to WT mice (mean antibody titer 869 vs. 1698, P=0.02). One SNP in HO-1 and one SNP in the constitutively expressed isoform HO-2 were independently associated with decreased antibody production after influenza vaccination in healthy human volunteers (P=0.017 and 0.014, respectively). HO-1 deficient mice were paired with sex- and age-matched WT controls. HO-1 affects the immune response to both influenza infection and vaccination, suggesting that therapeutic induction of HO-1 expression may represent a novel adjuvant to enhance influenza vaccine effectiveness.
Collapse
Affiliation(s)
| | | | | | | | - Oded Foreman
- The Jackson Laboratory, Sacramento, California, USA
| | - Richard B. Kennedy
- Vaccine Research Group, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA; and
| | - Gregory A. Poland
- Vaccine Research Group, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA; and
| | | | | | | |
Collapse
|
33
|
Larsen R, Gouveia Z, Soares MP, Gozzelino R. Heme cytotoxicity and the pathogenesis of immune-mediated inflammatory diseases. Front Pharmacol 2012; 3:77. [PMID: 22586395 PMCID: PMC3343703 DOI: 10.3389/fphar.2012.00077] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/11/2012] [Indexed: 01/01/2023] Open
Abstract
Heme, iron (Fe) protoporphyrin IX, functions as a prosthetic group in a range of hemoproteins essential to support life under aerobic conditions. The Fe contained within the prosthetic heme groups of these hemoproteins can catalyze the production of reactive oxygen species. Presumably for this reason, heme must be sequestered within those hemoproteins, thereby shielding the reactivity of its Fe-heme. However, under pathologic conditions associated with oxidative stress, some hemoproteins can release their prosthetic heme groups. While this heme is not necessarily damaging per se, it becomes highly cytotoxic in the presence of a range of inflammatory mediators such as tumor necrosis factor. This can lead to tissue damage and, as such, exacerbate the pathologic outcome of several immune-mediated inflammatory conditions. Presumably, targeting “free heme” may be used as a therapeutic intervention against these diseases.
Collapse
|
34
|
Walther M, De Caul A, Aka P, Njie M, Amambua-Ngwa A, Walther B, Predazzi IM, Cunnington A, Deininger S, Takem EN, Ebonyi A, Weis S, Walton R, Rowland-Jones S, Sirugo G, Williams SM, Conway DJ. HMOX1 gene promoter alleles and high HO-1 levels are associated with severe malaria in Gambian children. PLoS Pathog 2012; 8:e1002579. [PMID: 22438807 PMCID: PMC3305414 DOI: 10.1371/journal.ppat.1002579] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/26/2012] [Indexed: 01/16/2023] Open
Abstract
Heme oxygenase 1 (HO-1) is an essential enzyme induced by heme and multiple stimuli associated with critical illness. In humans, polymorphisms in the HMOX1 gene promoter may influence the magnitude of HO-1 expression. In many diseases including murine malaria, HO-1 induction produces protective anti-inflammatory effects, but observations from patients suggest these may be limited to a narrow range of HO-1 induction, prompting us to investigate the role of HO-1 in malaria infection. In 307 Gambian children with either severe or uncomplicated P. falciparum malaria, we characterized the associations of HMOX1 promoter polymorphisms, HMOX1 mRNA inducibility, HO-1 protein levels in leucocytes (flow cytometry), and plasma (ELISA) with disease severity. The (GT)(n) repeat polymorphism in the HMOX1 promoter was associated with HMOX1 mRNA expression in white blood cells in vitro, and with severe disease and death, while high HO-1 levels were associated with severe disease. Neutrophils were the main HO-1-expressing cells in peripheral blood, and HMOX1 mRNA expression was upregulated by heme-moieties of lysed erythrocytes. We provide mechanistic evidence that induction of HMOX1 expression in neutrophils potentiates the respiratory burst, and propose this may be part of the causal pathway explaining the association between short (GT)(n) repeats and increased disease severity in malaria and other critical illnesses. Our findings suggest a genetic predisposition to higher levels of HO-1 is associated with severe illness, and enhances the neutrophil burst leading to oxidative damage of endothelial cells. These add important information to the discussion about possible therapeutic manipulation of HO-1 in critically ill patients.
Collapse
Affiliation(s)
- Michael Walther
- Medical Research Council Laboratories, Fajara, Banjul, Gambia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Glass EJ, Crutchley S, Jensen K. Living with the enemy or uninvited guests: functional genomics approaches to investigating host resistance or tolerance traits to a protozoan parasite, Theileria annulata, in cattle. Vet Immunol Immunopathol 2012; 148:178-89. [PMID: 22482839 PMCID: PMC7112524 DOI: 10.1016/j.vetimm.2012.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 09/25/2011] [Accepted: 03/06/2012] [Indexed: 12/20/2022]
Abstract
Many breeds of cattle with long histories of living in areas of endemic disease have evolved mechanisms that enable them to co-exist with specific pathogens. Understanding the genes that control tolerance and resistance could provide new strategies to improve the health and welfare of livestock. Around one sixth of the world cattle population is estimated to be at risk from one of the most debilitating tick-borne diseases of cattle, caused by the protozoan parasite, Theileria annulata. The parasite mainly infects cells of the myeloid lineage which are also the main producers of inflammatory cytokines. If an infectious or inflammatory insult is sufficiently great, inflammatory cytokines produced by macrophages enter the circulation and induce an acute phase proteins (APP) response. The Bos taurus Holstein breed produces higher and more prolonged levels of inflammatory cytokine induced APP than the Bos indicus Sahiwal breed in response to experimental infection with T. annulata. The Sahiwal exhibits significantly less pathology and survives infection, unlike the Holstein breed. Therefore, we hypothesised that the causal genes were likely to be expressed in macrophages and control the production of inflammatory cytokines. A functional genomics approach revealed that the transcriptome profile of the B. taurus macrophages was more associated with an inflammatory programme than the B. indicus macrophages. In particular the most differentially expressed gene was a member of the signal regulatory protein (SIRP) family. These are mainly expressed on myeloid cell surfaces and control inflammatory responses. Other differentially expressed genes included bovine major histocompatibility complex (MHC) (BoLA) class II genes, particularly BoLA DQ, and transforming growth factor (TGF)B2. We are now exploring whether sequence and functional differences in the bovine SIRP family may underlie the resistance or tolerance to T. annulata between the breeds. Potentially, our research may also have more general implications for the control of inflammatory processes against other pathogens. Genes controlling the balance between pathology and protection may determine how livestock can survive in the face of infectious onslaught. Next generation sequencing and RNAi methodologies for livestock species will bring new opportunities to link diversity at the genome level to functional differences in health traits in livestock species.
Collapse
Affiliation(s)
- Elizabeth J Glass
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | | | | |
Collapse
|
36
|
Association between the haptoglobin and heme oxygenase 1 genetic profiles and soluble CD163 in susceptibility to and severity of human malaria. Infect Immun 2012; 80:1445-54. [PMID: 22290142 DOI: 10.1128/iai.05933-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intravascular hemolysis is a hallmark event in the immunopathology of malaria that results in increased systemic concentrations of free hemoglobin (Hb). The oxidation of Hb by free radicals causes the release of heme, which amplifies inflammation. To circumvent the detrimental effects of free heme, hosts have developed several homeostatic mechanisms, including the enzyme haptoglobin (Hp), which scavenges cell-free Hb, the monocyte receptor CD163, which binds to Hb-Hp complexes, and heme oxygenase-1 (HO-1), which degrades intracellular free heme. We tested the association between these three main components of the host response to hemolysis and susceptibility to malaria in a Brazilian population. The genetic profiles of the HMOX1 and Hp genes and the plasma levels of a serum inflammatory marker, the soluble form of the CD163 receptor (sCD163), were studied in 264 subjects, including 78 individuals with symptomatic malaria, 106 individuals with asymptomatic malaria, and 80 uninfected individuals. We found that long (GT)n repeats in the microsatellite polymorphism region of the HMOX1 gene, the Hp2 allele, and the Hp2.2 genotype were associated with symptomatic malaria. Moreover, increased plasma concentrations of heme, Hp, HO-1, and sCD163 were associated with susceptibility to malaria. The validation of these results could support the development of targeted therapies and aid in reducing the severity of malaria.
Collapse
|
37
|
Perkins DJ, Were T, Davenport GC, Kempaiah P, Hittner JB, Ong'echa JM. Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci 2011; 7:1427-42. [PMID: 22110393 PMCID: PMC3221949 DOI: 10.7150/ijbs.7.1427] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 11/05/2022] Open
Abstract
Greater than 80% of malaria-related mortality occurs in sub-Saharan Africa due to infections with Plasmodium falciparum. The majority of P. falciparum-related mortality occurs in immune-naïve infants and young children, accounting for 18% of all deaths before five years of age. Clinical manifestations of severe falciparum malaria vary according to transmission intensity and typically present as one or more life-threatening complications, including: hyperparasitemia; hypoglycemia; cerebral malaria; severe malarial anemia (SMA); and respiratory distress. In holoendemic transmission areas, SMA is the primary clinical manifestation of severe childhood malaria, with cerebral malaria occurring only in rare cases. Mortality rates from SMA can exceed 30% in pediatric populations residing in holoendemic transmission areas. Since the vast majority of the morbidity and mortality occurs in immune-naïve African children less than five years of age, with SMA as the primary manifestation of severe disease, this review will focus primarily on the innate immune mechanisms that govern malaria pathogenesis in this group of individuals. The pathophysiological processes that contribute to SMA involve direct and indirect destruction of parasitized and non-parasitized red blood cells (RBCs), inefficient and/or suppression of erythropoiesis, and dyserythropoiesis. While all of these causal etiologies may contribute to reduced hemoglobin (Hb) concentrations in malaria-infected individuals, data from our laboratory and others suggest that SMA in immune-naïve children is characterized by a reduced erythropoietic response. One important cause of impaired erythroid responses in children with SMA is dysregulation in the innate immune response. Phagocytosis of malarial pigment hemozoin (Hz) by monocytes, macrophages, and neutrophils is a central factor for promoting dysregulation in innate inflammatory mediators. As such, the role of P. falciparum-derived Hz (PfHz) in mediating suppression of erythropoiesis through its ability to cause dysregulation in pro- and anti-inflammatory cytokines, growth factors, chemokines, and effector molecules is discussed in detail. An improved understanding of the etiological basis of suppression of erythropoietic responses in children with SMA may offer the much needed therapeutic alternatives for control of this global disease burden.
Collapse
Affiliation(s)
- Douglas J Perkins
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque NM, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
A linkage between presence of Sickle Haemoglobin (HbS) and protection from malaria infection and clinical manifestations in certain areas was suspected from early observations and progressively elucidated by more recent studies. Research has confirmed the abovementioned connection, but also clarified how such protection may be abolished by coexistence of sickle cell trait (HbS trait) and alpha thalassemia, which may explain the relatively low incidence of HbS trait in the Mediterranean. The mechanisms of such protective effect are now being investigated: factors of genetic, molecular and immunological nature are prominent. As for genetic factors attention is given to the role of the red blood cell (RBC) membrane complement regulatory proteins as polymorphisms of these components seem to be associated with resistance to severe malaria; genetic ligands like the Duffy group blood antigen, necessary for erythrocytic invasion, and human protein CD36, a major receptor for P. falciparum-infected RBC's, are also under scrutiny: attention is focused also on plasmodium erythrocyte-binding antigens, which bind to RBC surface components. Genome-wide linkage and association studies are now carried out too, in order to identify genes associated with malaria resistance. Only a minor role is attributed to intravascular sickling, phagocytosis and haemolysis, while specific molecular mechanisms are the object of intensive research: among these a decisive role is played by a biochemical sequence, involving activation of haeme oxygenase (HMO-1), whose effect appears mediated by carbon monoxide (CO). A central role in protection from malaria is also played by immunological factors, which may stimulate antibody production to plasmodium antigens in the early years of life; the role of agents like pathogenic CD8 T-cells has been suggested while the effects of molecular actions on the immunity mechanism are presently investigated. It thus appears that protection from malaria can be explained by interaction of different factors: the elucidation of such mechanisms may prove valuable for the prevention and treatment strategy of a disease which still affects large parts of the world.
Collapse
Affiliation(s)
- Sandro Eridani
- Department of Biomedical Science and Technology, University of Milan, Milan, Italy
| |
Collapse
|
39
|
Driss A, Hibbert JM, Wilson NO, Iqbal SA, Adamkiewicz TV, Stiles JK. Genetic polymorphisms linked to susceptibility to malaria. Malar J 2011; 10:271. [PMID: 21929748 PMCID: PMC3184115 DOI: 10.1186/1475-2875-10-271] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/19/2011] [Indexed: 12/26/2022] Open
Abstract
The influence of host genetics on susceptibility to Plasmodium falciparum malaria has been extensively studied over the past twenty years. It is now clear that malaria parasites have imposed strong selective forces on the human genome in endemic regions. Different genes have been identified that are associated with different malaria related phenotypes. Factors that promote severity of malaria include parasitaemia, parasite induced inflammation, anaemia and sequestration of parasitized erythrocytes in brain microvasculature. Recent advances in human genome research technologies such as genome-wide association studies (GWAS) and fine genotyping tools have enabled the discovery of several genetic polymorphisms and biomarkers that warrant further study in host-parasite interactions. This review describes and discusses human gene polymorphisms identified thus far that have been shown to be associated with susceptibility or resistance to P. falciparum malaria. Although some polymorphisms play significant roles in susceptibility to malaria, several findings are inconclusive and contradictory and must be considered with caution. The discovery of genetic markers associated with different malaria phenotypes will help elucidate the pathophysiology of malaria and enable development of interventions or cures. Diversity in human populations as well as environmental effects can influence the clinical heterogeneity of malaria, thus warranting further investigations with a goal of developing new interventions, therapies and better management against malaria.
Collapse
Affiliation(s)
- Adel Driss
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | | | |
Collapse
|