1
|
de Oliveira MR, Souza TF, Arcos AN, Katak RDM, da Silva SRS, da Cruz JC, da Silva GF, Marinotti O, Terenius O, de Souza ADL, de Souza AQL. Fungi from Anopheles darlingi Root, 1926, larval breeding sites in the Brazilian Amazon. PLoS One 2024; 19:e0312624. [PMID: 39636874 PMCID: PMC11620424 DOI: 10.1371/journal.pone.0312624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
The fungi present in the breeding waters of mosquitoes have been scarcely investigated. This work explored the diversity of cultivable fungi present in the breeding sites of the South American malaria vector mosquito Anopheles darlingi. Water samples were collected from four sites located in the municipalities of Coari and São Gabriel da Cachoeira and four different culture media were used for the isolation of fungi. Two-hundred-and-six fungal strains were isolated and morphologically similar fungi were grouped into 30 morphotypes. Their taxonomic identities were assigned by macro and microscopic observations and sequencing of rDNA internal transcribed spacers (ITS1-5.8S-ITS2). Representatives of 26 morphotypes were identified at the genus level, one only at the family level, and three were not identified. The identified morphotypes belong to the phyla, Ascomycota (80.6%), Basidiomycota (11.7%), and Mucoromycota (2.4%), distributed in five classes, ten orders, 25 families, and 26 genera. This study fills a considerable knowledge gap about the fungi present in the breeding sites of An. darlingi mosquitoes.
Collapse
Affiliation(s)
- Marta Rodrigues de Oliveira
- Programa de Pós-graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Department of Entomology and Acarology, School de Agricultura "Luiz de Queiroz", University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Thiago Fernandes Souza
- Programa de Pós-graduação de Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Embrapa Amazônia Ocidental, Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Manaus, Amazonas, Brazil
| | - Adriano Nobre Arcos
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul / UFMS, Campo Grande, Mato Grosso do Sul, Brazil
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | - Ricardo de Melo Katak
- Programa de Pós-graduação de Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | | | - Jeferson Chagas da Cruz
- Embrapa Amazônia Ocidental, Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Manaus, Amazonas, Brazil
| | - Gilvan Ferreira da Silva
- Programa de Pós-graduação de Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Embrapa Amazônia Ocidental, Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Manaus, Amazonas, Brazil
| | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Olle Terenius
- Department of Cell and Molecular Biology, Microbiology, Uppsala University, Uppsala, Sweden
| | - Afonso Duarte Leão de Souza
- Programa de Pós-graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica—Centro de Apoio Multidisciplinar (CAM), Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
- Departamento de Química, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Antonia Queiroz Lima de Souza
- Programa de Pós-graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica—Centro de Apoio Multidisciplinar (CAM), Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
- Faculdade de Ciências Agrárias (FCA), Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
2
|
Kataki AS, Baldini F, Naorem AS. Evaluation of synergistic effect of entomopathogenic fungi Beauveria bassiana and Lecanicillium lecacii on the mosquito Culex quinquefaciatus. PLoS One 2024; 19:e0308707. [PMID: 39240894 PMCID: PMC11379303 DOI: 10.1371/journal.pone.0308707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/29/2024] [Indexed: 09/08/2024] Open
Abstract
Vector-borne diseases resulted into several cases of human morbidity and mortality over the years and among them is filariasis, caused by the mosquito Culex quinquefasciatus. Developing novel strategies for mosquito control without jeopardizing the environmental conditions has always been a topic of discussion and research. Integrated Vector Management (IVM) emphasizes a comprehensive approach and use of a range of strategies for vector control. Recent research evaluated the use of two entomopathogenic fungi; Beauveria bassiana and Lecanicillium lecanii in IVM, which can serve as potential organic insecticide for mosquito population control. However, their combined efficacy has not yet been evaluated against mosquito control in prior research and a gap of knowledge is still existing. So, this research was an attempt to bridge up the knowledge gap by (1) Assessing the combined efficacy of Beauveria bassiana and Lecanicillium lecanii on Culex quinquefasciatus (2) To investigate the sub-lethal concentration (LC50) of the combined fungal concentration and (3) To examine the post-mortem effects caused by the combined fungal concentration under Scanning Electron Microscope (SEM). The larval pathogenicity assay was performed on 4th instar C. quinquefasciatus larvae. Individual processed fungal solution of B. bassiana and L. lecanii were procured and to test the combined efficacy, the two solutions were mixed in equal proportions. To evaluate the sub-lethal concentration (LC50), different concentrations of the combined fungal solution were prepared by serial dilations. The mortality was recorded after 24 hours for each concentration. Upon treatment and evaluation, The LC50 values of B. bassiana and L. lecanii were 0.25 x 104 spores/ml and 0.12 x 104 spores/ml respectively and the combined fungal concentration was 0.06 x 103 spores/ml. This clearly indicated that the combined efficacy of the fungi is more significant. Further, SEM analysis revealed morphological deformities and extensive body perforations upon combined fungal treatment. These findings suggested that combining the two fungi can be a more effective way in controlling the population of Culex quinquefasciatus.
Collapse
Affiliation(s)
- Aditya Shankar Kataki
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- Department of Zoology, Cotton University, Guwahati, Assam, India
| | - Francesco Baldini
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | | |
Collapse
|
3
|
Cedergreen N, Pedersen KE, Fredensborg BL. Quantifying synergistic interactions: a meta-analysis of joint effects of chemical and parasitic stressors. Sci Rep 2023; 13:13641. [PMID: 37608060 PMCID: PMC10444819 DOI: 10.1038/s41598-023-40847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023] Open
Abstract
The global biodiversity crisis emphasizes our need to understand how different stressors (climatic, chemical, parasitic, etc.) interact and affect biological communities. We provide a comprehensive meta-analysis investigating joint effects of chemical and parasitic stressors for 1064 chemical-parasitic combinations using the Multiplicative model on mortality of arthropods. We tested both features of the experimental setup (control mortality, stressor effect level) and the chemical mode of action, host and parasite phylogeny, and parasite-host interaction traits as explanatory factors for deviations from the reference model. Synergistic interactions, defined as higher mortality than predicted, were significantly more frequent than no interactions or antagony. Experimental setup significantly affected the results, with studies reporting high (> 10%) control mortality or using low stressor effects (< 20%) being more synergistic. Chemical mode of action played a significant role for synergy, but there was no effects of host and parasite phylogeny, or parasite-host interaction traits. The finding that experimental design played a greater role in finding synergy than biological factors, emphasize the need to standardize the design of mixed stressor studies across scientific disciplines. In addition, combinations testing more biological traits e.g. avoidance, coping, and repair processes are needed to test biology-based hypotheses for synergistic interactions.
Collapse
Affiliation(s)
- Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Kathrine Eggers Pedersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Brian Lund Fredensborg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.
| |
Collapse
|
4
|
Genetics and immunity of Anopheles response to the entomopathogenic fungus Metarhizium anisopliae overlap with immunity to Plasmodium. Sci Rep 2022; 12:6315. [PMID: 35428783 PMCID: PMC9012835 DOI: 10.1038/s41598-022-10190-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022] Open
Abstract
Entomopathogenic fungi have been explored as a potential biopesticide to counteract the insecticide resistance issue in mosquitoes. However, little is known about the possibility that genetic resistance to fungal biopesticides could evolve in mosquito populations. Here, we detected an important genetic component underlying Anopheles coluzzii survival after exposure to the entomopathogenic fungus Metarhizium anisopliae. A familiality study detected variation for survival among wild mosquito isofemale pedigrees, and genetic mapping identified two loci that significantly influence mosquito survival after fungus exposure. One locus overlaps with a previously reported locus for Anopheles susceptibility to the human malaria parasite Plasmodium falciparum. Candidate gene studies revealed that two LRR proteins encoded by APL1C and LRIM1 genes in this newly mapped locus are required for protection of female A. coluzzii from M. anisopliae, as is the complement-like factor Tep1. These results indicate that natural Anopheles populations already segregate frequent genetic variation for differential mosquito survival after fungal challenge and suggest a similarity in Anopheles protective responses against fungus and Plasmodium. However, this immune similarity raises the possibility that fungus-resistant mosquitoes could also display enhanced resistance to Plasmodium, suggesting an advantage of selecting for fungus resistance in vector populations to promote naturally diminished malaria vector competence.
Collapse
|
5
|
Entomopathogenic Fungi for Pests and Predators Control in Beekeeping. Vet Sci 2022; 9:vetsci9020095. [PMID: 35202348 PMCID: PMC8875931 DOI: 10.3390/vetsci9020095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/18/2023] Open
Abstract
The emergence of resistance to chemical drugs in beekeeping is becoming a phenomenon of widespread concern. One promising alternative to the use of chemicals is entomopathogenic organisms that are environmentally friendly and are capable of stopping the expression of resistance once it has evolved. In the recent past, the scientific community has carried out several experiments addressing the use of microbiological control agents. In particular, experimental studies using entomopathogenic fungi have had more success in honey bee research. With their adherence properties and their ability to digest the cuticle and overcome the host defense mechanism, they could be a suitable ingredient in bioacaricides. Several promising fungi have been identified in the search for effective means to control pest populations. The data obtained from the different experiments are interesting and often favorable to their use, but there are also conflicting results. The aim of this review is to describe the state of the art on the topic under investigation.
Collapse
|
6
|
Accoti A, Engdahl CS, Dimopoulos G. Discovery of Novel Entomopathogenic Fungi for Mosquito-Borne Disease Control. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:637234. [PMID: 37744144 PMCID: PMC10512396 DOI: 10.3389/ffunb.2021.637234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/28/2021] [Indexed: 09/26/2023]
Abstract
The increased application of chemical control programs has led to the emergence and spread of insecticide resistance in mosquitoes. Novel environmentally safe control strategies are currently needed for the control of disease vectors. The use of entomopathogenic fungi could be a suitable alternative to chemical insecticides. Currently, Beauveria spp. and Metarhizium spp. are the most widely used entomopathogenic fungi for mosquito control, but increasing the arsenal with additional fungi is necessary to mitigate the emergence of resistance. Entomopathogenic fungi are distributed in a wide range of habitats. We have performed a comprehensive screen for candidate mosquitocidal fungi from diverse outdoor environments in Maryland and Puerto Rico. An initial screening of 22 fungi involving exposure of adult Anopheles gambiae to 2-weeks-old fungal cultures identified five potent pathogenic fungi, one of which is unidentified and the remaining four belonging to the three genera Galactomyces sp., Isaria sp. and Mucor sp. These fungi were then screened against Aedes aegypti, revealing Isaria sp. as a potent mosquito killer. The entomopathogenic effects were confirmed through spore-dipping assays. We also probed further into the killing mechanisms of these fungi and investigated whether the mosquitocidal activities were the result of potential toxic fungus-produced metabolites. Preliminary assays involving the exposure of mosquitoes to sterile filtered fungal liquid cultures showed that Galactomyces sp., Isaria sp. and the unidentified isolate 1 were the strongest producers of factors showing lethality against An. gambiae. We have identified five fungi that was pathogenic for An. gambiae and one for Ae. aegypti, among these fungi, four of them (two strains of Galactomyces sp., Mucor sp., and the unidentified isolate 1) have never previously been described as lethal to insects. Further characterization of these entomopathogenic fungi and their metabolites needs to be done to confirm their potential use in biologic control against mosquitoes.
Collapse
Affiliation(s)
| | | | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
Li S, Xu C, Du G, Wang G, Tu X, Zhang Z. Synergy in Efficacy of Artemisia sieversiana Crude Extract and Metarhizium anisopliae on Resistant Oedaleus asiaticus. Front Physiol 2021; 12:642893. [PMID: 33828488 PMCID: PMC8019718 DOI: 10.3389/fphys.2021.642893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
In order to explore the synergistic control effect of crude extracts of Artemisia sieversiana and Metarhizium anisopliae on Oedaleus asiaticus, we used different doses of M. anisopliae and crude extracts of A. sieversiana singly and in combination, to determine their toxicities to fourth instar O. asiaticus. The results showed that the combination of 10% crude extract of A. sieversiana with 107 and 108 spores/g M. anisopliae concentrations and the combination of 20% crude extract of A. sieversiana with 107 and 108 spores/g M. anisopliae concentrations had significant effects on the mortality, body weight gain, body length gain, growth rate, and overall performance of O. asiaticus than those of the crude extract of A. sieversiana and M. anisopliae alone. Among them, the 20% A. sieversiana crude extract mixed with 108 spores/g M. anisopliae and 10% A. sieversiana crude extract combined with 107 spores/g M. anisopliae, had the best control efficacy. In order to clarify the biochemical mechanism underlying the immune responses of O. asiaticus to the pesticide treatments, we monitored the activities of four enzymes: superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT), and polyphenol oxidase (PPO). The results showed that the activities of three enzymes (SOD, CAT, and PPO) were significantly increased from the treatment with the combination of M. anisopliae mixed with crude extract of A. sieversiana. Interestingly, compared to the crude extract, the combination treatment did not significantly induce the expression of POD enzyme activity, which may be a biochemical factor for increasing the control effect of the combination treatment. Our results showed that the combination treatment had synergistic and antagonistic effects on host mortality, growth, development, and enzyme activities in O. asiaticus.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot, China
| | - Chaomin Xu
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot, China
| | - Guilin Du
- National Animal Husbandry Service, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guangjun Wang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot, China
| | - Xiongbing Tu
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot, China
| | - Zehua Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot, China
| |
Collapse
|
8
|
Effects of Chemical Insecticide Residues and Household Surface Type on a Beauveria bassiana-Based Biopesticide (Aprehend ®) for Bed Bug Management. INSECTS 2021; 12:insects12030214. [PMID: 33802315 PMCID: PMC7998477 DOI: 10.3390/insects12030214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022]
Abstract
The biopesticide Aprehend, containing spores of the entomopathogenic fungus Beauveria bassiana, is a biological control agent for the management of the common bed bug (Cimex lectularius L.) (Hemiptera: Cimicidae). The spores are applied in strategically placed barriers, which bed bugs walk across as they search for a bloodmeal. Application of chemical insecticides by the general public and professional pest managers is common, which means that Aprehend may be sprayed on existing insecticide residues. We evaluated the effect of chemical residues, of 22 different chemical insecticides on different household surface types. We found that residues from 12 chemical pesticides significantly reduced spore viability measured 5 weeks after application in comparison to the control. However, efficacy of Aprehend, as measured by bed bug mortality and mean survival time after exposure to sprayed surfaces, seven weeks after application was not impacted detrimentally. Furthermore, in some cases, efficacy of old chemical residues was enhanced by the combination of chemical and Aprehend seven weeks after application. Surface type also played a role in the relative efficacy of all products and combinations, particularly as the residues aged.
Collapse
|
9
|
Rukke BA, Salma U, Birkemoe T, Aak A. Blood deprivation and heat stress increase mortality in bed bugs (Cimex lectularius) exposed to insect pathogenic fungi or desiccant dust. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:121-128. [PMID: 32886388 DOI: 10.1111/mve.12477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Bed bugs (Cimex lectularius L.) have returned as a nuisance pest in the last 20 years. Different bed bug control measures in combination have not been thoroughly studied, although induction of multiple stressors may improve extermination. The effects of heat stress only, heat stress followed by exposure to insect pathogenic fungi, and heat stress followed by exposure to desiccant dust on starved and blood-fed bed bugs were investigated. Five days at 22 °C (control), 32 °C, 34 °C, or 36 °C (heat stress) did not cause mortality in adults. However, their starved first instar nymphs produced after heat stress suffered mortalities of 33%, 56% and 100%, respectively. Exposure to insect pathogenic fungi after heat stress increased the mortality of adults and their progeny compared to exposure to fungi without heat stress. The beneficial effects of heat stress were not observed in blood-fed bed bugs. Desiccant dust killed all nymphs within 2 days and all adults within 3 days regardless of previous heat stress, but survival time was prolonged by access to blood. This study highlights the advantage of combining different methods in pest management, and points to heat stress combined with blood deprivation as possible management elements to increase the control success.
Collapse
Affiliation(s)
- B A Rukke
- Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | - U Salma
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - T Birkemoe
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - A Aak
- Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
10
|
Peng Y, Tang J, Xie J. Transcriptomic Analysis of the Brown Planthopper, Nilaparvata lugens, at Different Stages after Metarhizium anisopliae Challenge. INSECTS 2020; 11:insects11020139. [PMID: 32102435 PMCID: PMC7073985 DOI: 10.3390/insects11020139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/24/2023]
Abstract
Nilaparvata lugens is one of the major pests of rice and results in substantial yield loss every year. Our previous study found that the entomopathogenic fungus Metarhizium anisopliae showed effective potential for controlling this pest. However, the mechanisms underlying M. anisopliae infection of N. lugens are not well known. In the present study, we further examined the transcriptome of N. lugens at 4 h, 8 h, 16 h, and 24 h after M. anisopliae infection by Illumina deep sequencing. In total, 174.17 Gb of data was collected after sequencing, from which 23,398 unigenes were annotated by various databases, including 3694 newly annotated genes. The results showed that there were 246 vs 75, 275 vs 586, 378 vs 1055, and 638 vs 182 up- and downregulated differentially expressed genes (DEGs) at 4 h, 8 h, 16 h, and 24 h after M. anisopliae infection, respectively. The biological functions and associated metabolic processes of these genes were determined with the Clusters of Orthologous Groups (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The DEGs data were verified using RT-qPCR. These results indicated that the DEGs during the initial fungal infection appropriately reflected the time course of the response to the fungal infection. Taken together, the results of this study provide new insights into the molecular mechanisms underlying the insect host response to fungal infection, especially during the initial stage of infection, and may improve the potential control strategies for N. lugens.
Collapse
Affiliation(s)
- Yifan Peng
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides/Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Jifeng Tang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jiaqin Xie
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides/Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence:
| |
Collapse
|
11
|
Ong'wen F, Onyango PO, Bukhari T. Direct and indirect effects of predation and parasitism on the Anopheles gambiae mosquito. Parasit Vectors 2020; 13:43. [PMID: 32000840 PMCID: PMC6990496 DOI: 10.1186/s13071-020-3915-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A good understanding of mosquito ecology is imperative for integrated vector control of malaria. In breeding sites, Anopheles larvae are concurrently exposed to predators and parasites. However, to our knowledge, there is no study on combined effects of predators and parasites on development and survival of larvae and their carry-over effects on adult survivorship and susceptibility to further parasite infection. METHODS This study focused on effects of the nymphs of the dragonfly Pantala flavescens and the parasitic fungus Beauveria bassiana on Anopheles gambiae, to determine: predation efficacy of nymphs against An. gambiae larvae; development rate of An. gambiae larvae in the presence of one, two or four constrained nymphs; efficacy of B. bassiana against An. gambiae larvae at doses of 3, 6 and 12 mg; and survival of adult mosquitoes exposed to B. bassiana, following pre-exposure to a constrained predator and/or parasite at the larval stage. The experiments consisted of survival bioassays quantified as pupation day, or dead larvae and/or adults. RESULTS Nymphs had an average predation efficacy of 88.3% (95% CI: 87.5-89.1) at 24 hours, against An. gambiae larvae. The presence of one or two nymphs reduced development time of larvae by 0.65 and 0.35 days, respectively. However, development time of larvae exposed to four nymphs was similar to the control larvae. Larvae exposed to 3, 6 and 12 mg of B. bassiana were 2.0, 2.5 and 3.5 times more likely to die, respectively, compared to control larvae. Adults not pre-exposed, those pre-exposed to predator, parasite, or both were 45.8, 67.4, 50.9 and 112.0 times more likely to die, respectively, compared to control that were unexposed to predator or parasite, at larval and adult stage. CONCLUSIONS This study shows that both predator and parasite can reduce larval population of An. gambiae, and presence of predator cues decreases development time in breeding sites, as well as, increases the susceptibility of emerging adult to fungus. Predator and parasite both have an additive effect on survival of adults exposed to B. bassiana. Field studies are required for an in-depth understanding of predator and parasite influence on mosquito development time, survival and susceptibility in nature.
Collapse
Affiliation(s)
- Fedinand Ong'wen
- Department of Zoology, School of Physical and Biological Sciences, Maseno University, Maseno, Kenya
| | - Patrick Ogola Onyango
- Department of Zoology, School of Physical and Biological Sciences, Maseno University, Maseno, Kenya
| | - Tullu Bukhari
- Department of Zoology, School of Physical and Biological Sciences, Maseno University, Maseno, Kenya.
| |
Collapse
|
12
|
Bordalo MD, Gravato C, Beleza S, Campos D, Lopes I, Pestana JLT. Lethal and sublethal toxicity assessment of Bacillus thuringiensis var. israelensis and Beauveria bassiana based bioinsecticides to the aquatic insect Chironomus riparius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134155. [PMID: 31505347 DOI: 10.1016/j.scitotenv.2019.134155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Despite being considered environmentally safe, a deeper environmental risk assessment is needed for microbial insecticides; special attention should be devoted to their sublethal toxicity to non-target species. This study evaluated effects of VectoBac® 12AS - VB (based on the bacterium Bacillus thurigiensis var. israelensis) and Naturalis®-L - NL (based on the fungus Beauveria bassiana) on the aquatic insect Chironomus riparius life-history and biochemical responses. Acute tests estimated a 48 h-LC50 (median lethal concentration) of 1.85 μg/L (VB) and 34.7 mg/L (NL). Under sublethal exposure, VB decreased adults' emergence (LOEC - lowest observed effect concentration of 80 ng/L) while NL impaired larval growth (LOEC of 0.32 mg/L) and delayed emergence (LOEC of 2 mg/L for males and 0.8 mg/L for females). Despite not being monotonic, phenoloxidase activity increased (LOEC of 20 ng/L (VB) and 2 mg/L (NL)), suggesting activation of the immune system. There were no indications of oxidative damage nor neurotoxicity. Catalase activity was stimulated with all VB treatments, possibly associated with detoxification of immune response products. Under NL exposure, glutathione-S-transferase activity increased but did not show a dose-dependent response and, total glutathione decreased in the highest concentration. Exposure to both formulations caused the increase in protein content, while carbohydrate and lipids were not altered. This study revealed the susceptibility of C. riparius to VB and NL at concentrations below the ones recommended for field application, with potential population-level effects. These results add important information for the risk assessment of these microbial insecticides in aquatic ecosystems, considering relevant sublethal endpoints and raising concern about the adverse effects on non-target aquatic organisms.
Collapse
Affiliation(s)
- M D Bordalo
- Department of Biology & CESAM, University of Aveiro, Portugal.
| | - C Gravato
- Faculty of Sciences & CESAM, University of Lisbon, Portugal
| | - S Beleza
- Faculty of Sciences & CESAM, University of Lisbon, Portugal
| | - D Campos
- Department of Biology & CESAM, University of Aveiro, Portugal
| | - I Lopes
- Department of Biology & CESAM, University of Aveiro, Portugal
| | - J L T Pestana
- Department of Biology & CESAM, University of Aveiro, Portugal
| |
Collapse
|
13
|
Suresh M, Jeevanandam J, Chan YS, Danquah MK, Kalaiarasi JMV. Opportunities for Metal Oxide Nanoparticles as a Potential Mosquitocide. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00703-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Ιnteractions between Beauveria bassiana and Isaria fumosorosea and Their Hosts Sitophilus granarius (L.) and Sitophilus oryzae (L.) (Coleoptera: Curculionidae). INSECTS 2019; 10:insects10100362. [PMID: 31635123 PMCID: PMC6836108 DOI: 10.3390/insects10100362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/13/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022]
Abstract
The interactions between the entomopathogenic fungus Beauveria bassiana Balsamo (Vuillemin) (Hypocreales: Cordycipitaceae) and the entomopathogenic fungus Isaria fumosorosea (Wize) Brown and Smith (Hypocreales: Clavicipitaceae) were examined on young adults of Sitophilus granarius (L.) (Coleoptera: Curculionidae) and S. oryzae (L.) (Coleoptera: Curculionidae). Conidial suspensions of these entomopathogenic fungi were applied both separately and in combination, at three dosages, 104, 106, and 108 conidia/mL. Mortality of experimental adults was recorded daily for 15 days. An overall positive interaction between the pathogenic microorganisms was observed. Mean weevil mortality caused by the separate acting fungi, B. bassiana, ranged from 26.7% to 53.3% and from 36.6% to 63.3% for S. granarius and S. oryzae, respectively. The respective values for I. fumosorosea were 20.0%-53.3% and 46.7%-66.7%. The combined treatments showed a distinct interaction between the pathogens; for S. granarius, the interaction between the pathogens was additive in all combinations, whereas, for S. oryzae, the interaction was additive in seven and competitive in two of the combinations. Applying both entomopathogenic microorganisms may offer a method for weevil control that could be more effective than using each pathogen alone.
Collapse
|
15
|
Shikano I, Gomez L, Bellicanta GS, Jenkins NE. Persistence and Lethality of a Fungal Biopesticide (Aprehend) Applied to Insecticide-impregnated and Encasement-type Box Spring Covers for Bed Bug Management. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2489-2492. [PMID: 31115457 DOI: 10.1093/jee/toz135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 06/09/2023]
Abstract
The newly developed fungal biopesticide Aprehend, containing spores of Beauveria bassiana, is the first biological control agent to be incorporated into management programs to control the common bed bug (Cimex lectularius L.) (Hemiptera: Cimicidae). Aprehend is sprayed as barriers where bed bugs are likely to walk and pick up spores as they search for a bloodmeal. A key application target for Aprehend is the box spring, which may be covered by encasement-type or insecticide-impregnated covers. Since some insecticides can reduce the persistence of fungal spores, we tested the efficacy and spore germination percentages of Aprehend when applied to the two types of box spring covers. We found that spore germination was about 11% lower on the permethrin-impregnated ActiveGuard cover than on the encasement-type AllerEase cover. However, bed bugs exposed for 15 min to Aprehend on the two box spring covers suffered similarly high levels of mortality irrespective of the cover material. Thus, there was no inhibitory or additive effect of the ActiveGuard cover on bed bug mortality. Lastly, overall mortality was higher if bed bugs were exposed to Aprehend-treated ActiveGuard than the ActiveGuard cover alone. Our findings indicate that if pest managers are using ActiveGuard covers in combination with Aprehend, best practice would be to use ActiveGuard on mattresses and apply Aprehend directly to the box spring or to a box spring covered by an encasement-type cover.
Collapse
Affiliation(s)
| | - Lauren Gomez
- Department of Entomology, Pennsylvania State University, Merkle Lab, University Park, PA
| | - Giovani S Bellicanta
- Department of Entomology, Pennsylvania State University, Merkle Lab, University Park, PA
| | - Nina E Jenkins
- Department of Entomology, Pennsylvania State University, Merkle Lab, University Park, PA
| |
Collapse
|
16
|
Lovett B, Bilgo E, Millogo SA, Ouattarra AK, Sare I, Gnambani EJ, Dabire RK, Diabate A, St. Leger RJ. Transgenic Metarhizium rapidly kills mosquitoes in a malaria-endemic region of Burkina Faso. Science 2019; 364:894-897. [DOI: 10.1126/science.aaw8737] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/07/2019] [Indexed: 11/02/2022]
Abstract
Malaria control efforts require implementation of new technologies that manage insecticide resistance. Metarhizium pingshaense provides an effective, mosquito-specific delivery system for potent insect-selective toxins. A semifield trial in a MosquitoSphere (a contained, near-natural environment) in Soumousso, a region of Burkina Faso where malaria is endemic, confirmed that the expression of an insect-specific toxin (Hybrid) increased fungal lethality and the likelihood that insecticide-resistant mosquitoes would be eliminated from a site. Also, as Hybrid-expressing M. pingshaense is effective at very low spore doses, its efficacy lasted longer than that of the unmodified Metarhizium. Deployment of transgenic Metarhizium against mosquitoes could (subject to appropriate registration) be rapid, with products that could synergistically integrate with existing chemical control strategies to avert insecticide resistance.
Collapse
|
17
|
Elliott RC, Smith DL, Echodu DC. Synergy and timing: a concurrent mass medical campaign predicted to augment indoor residual spraying for malaria. Malar J 2019; 18:160. [PMID: 31060554 PMCID: PMC6501353 DOI: 10.1186/s12936-019-2788-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/23/2019] [Indexed: 11/12/2022] Open
Abstract
Background Control programmes for high burden countries are tasked with charting effective multi-year strategies for malaria control within significant resource constraints. Synergies between different control tools, in which more than additive benefit accrues from interventions used together, are of interest because they may be used to obtain savings or to maximize health impact per expenditure. One commonly used intervention in sub-Saharan Africa is indoor residual spraying (IRS), typically deployed through a mass campaign. While possible synergies between IRS and long-lasting insecticide-treated nets (LLINs) have been investigated in multiple transmission settings, coordinated synergy between IRS and other mass medical distribution campaigns have not attracted much attention. Recently, a strong timing-dependent synergy between an IRS campaign and a mass drug administration (MDA) was theoretically quantified. These synergistic benefits likely differ across settings depending on transmission intensity and its overall seasonal pattern. Methods High coverage interventions are modelled in different transmission environments using two methods: a Ross–Macdonald model variant and openmalaria simulations. The impact of each intervention strategy was measured through its ability to prevent host infections over time, and the effects were compared to the baseline case of deploying interventions in isolation. Results By modelling IRS and MDA together and varying their deployment times, a strong synergy was found when the administered interventions overlapped. The added benefit of co-timed interventions was robust to differences in the models. In the Ross–Macdonald model, the impact compared was roughly double the sequential interventions in most transmission settings. Openmalaria simulations of this medical control augmentation of an IRS campaign show an even stronger response with the same timing relationship. Conclusions The strong synergies found for these control tools between the complementary interventions demonstrate a general feature of effective concurrent campaign-style vector and medical interventions. A mass treatment campaign is normally short-lived, especially in higher transmission settings. When co-timed, the rapid clearing of the host parasite reservoir via chemotherapy is protected from resurgence by the longer duration of the vector control. An effective synchronous treatment campaign has the potential to greatly augment the impact of indoor residual spraying. Mass screening and treatment (MSAT) with highly sensitive rapid diagnostic tests may demonstrate a comparable trend while mass LLIN campaigns may similarly coordinate with MDA/MSAT.
Collapse
Affiliation(s)
- Richard C Elliott
- Micron School of Materials Science and Engineering, Boise State University, Engineering Building, Suite 338, Boise, ID, 83725, USA. .,Pilgrim Africa, 115 N 85th St #202, Seattle, WA, 98103, USA.
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, 2301 Fifth Ave., Suite 600, Seattle, WA, 98121, USA
| | | |
Collapse
|
18
|
Transgenic Metarhizium pingshaense synergistically ameliorates pyrethroid-resistance in wild-caught, malaria-vector mosquitoes. PLoS One 2018; 13:e0203529. [PMID: 30192847 PMCID: PMC6128571 DOI: 10.1371/journal.pone.0203529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/22/2018] [Indexed: 11/19/2022] Open
Abstract
Transgenic Metarhizium pingshaense expressing the spider neurotoxin Hybrid (Met-Hybrid) kill mosquitoes faster and at lower spore doses than wild-type strains. In this study, we demonstrate that this approach dovetails with the cornerstone of current malaria control: pyrethroid-insecticides, which are the cornerstone of current malaria control. We used World Health Organization (WHO) tubes, to compare the impact on insecticide resistance of Met-Hybrid with red fluorescent M. pingshaense (Met-RFP), used as a proxy for the wild-type fungus. Insecticides killed less than 20% of Anopheles coluzzii and Anopheles gambiae s.s. mosquitoes collected in a malaria endemic region of Burkina Faso where pyrethroid use is common. Seven days post-infection, mortality for insecticide-sensitive and resistant mosquitoes averaged 94% with Met-Hybrid and 64% with Met-RFP, with LT80 values of 5.32±0.199 days and 7.76±0.183 days, respectively. Eighty nine percent of insecticide-resistant mosquitoes exposed to permethrin five days post-infection with Met-Hybrid died within 24 hours: only 22% died from Met-Hybrid alone over this 24-hour period. Compared to Met-RFP, Met-Hybrid also significantly reduced flight capacity of mosquitoes 3 to 5 days post-infection. Based on WHOPES phase I laboratory susceptibility bioassays, transgenic Met-Hybrid provides effective biological control for adult African malaria vectors that may be used to synergistically manage insecticide resistance with current methods.
Collapse
|
19
|
Duke SO. Interaction of Chemical Pesticides and Their Formulation Ingredients with Microbes Associated with Plants and Plant Pests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7553-7561. [PMID: 29975525 DOI: 10.1021/acs.jafc.8b02316] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chemical pesticides and their formulation ingredients can have unintended effects on microbes associated with plants and plant pests. These effects can be due to direct effects on the microbes or to effects on crops or weeds that subsequently affect the microbes. In addition to fungicides, some insecticides, herbicides, and formulation compounds are toxic to plant pathogenic microbes, as well as to potentially beneficial microbes, such as those that infect insect pests. These chemicals, especially herbicides, can also indirectly affect microbes through their effects on crops and weeds. For example, glyphosate strongly impairs shikimic acid pathway-based plant defenses to microbial diseases in glyphosate-susceptible plants, significantly increasing its efficacy as an herbicide. Some herbicides induce plant defenses against plant pathogens. For a complete understanding of integrated pest management and overall cost/benefit of pesticide use, much more information is needed on microbial/pesticide interactions.
Collapse
Affiliation(s)
- Stephen O Duke
- USDA-ARS , Natural Products Utilization Research Unit , P.O. Box 1848, University , Mississippi 38677 , United States of America
| |
Collapse
|
20
|
Popko DA, Henke JA, Mullens BA, Walton WE. Evaluation of Two Entomopathogenic Fungi for Control of Culex quinquefasciatus (Diptera: Culicidae) in Underground Storm Drains in the Coachella Valley, California, United States. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:654-665. [PMID: 29294059 DOI: 10.1093/jme/tjx233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Commercially available formulations of two entomopathogenic fungi, Beauveria bassiana (Bals.-Criv.) Vuill. (Hypocreales: Clavicipitaceae) and Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae), were assessed for control of Culex quinquefasciatus Say (Diptera: Culicidae) in underground storm drain systems (USDS) in the Coachella Valley of southern California. Each of three treatments, the two fungi or a water control, was applied to 1 m2 of vertical wall at eight USDS sites in spring and autumn of 2015. Fungal infectivity and lethality were assessed at 1 d and 1, 2, and 4 wk post-application. Overnight bioassays using adult lab-reared female mosquitoes were carried out on the treated USDS wall areas and then mosquitoes were held in the laboratory for up to 21 d to allow fungal infections to be expressed. Postmortem fungal sporulation was assessed up to 2 wk at 100% humidity. Mosquito-fungal interactions also were assessed in bioassays of the three treatments on filter paper exposed to USDS conditions during autumn. Metarhizium anisopliae killed mosquitoes faster than B. bassiana; nevertheless, both freshly applied formulations caused greater than 80% mortality. Fungal persistence declined significantly after 1 wk under USDS conditions, but some infectivity persisted for more than 4 wk. Beauveria bassiana was more effective against Cx. qinquefasciatus in the spring, while M. anisopliae was more effective in the cooler conditions during autumn. USDS environmental conditions (e.g., temperature, relative humidity, standing water) influenced fungal-related mortality and infection of Cx. quinquefasciatus. The utility of these fungal formulations for mosquito abatement in the Coachella Valley and implications for fungal control agents in USDS environments are discussed.
Collapse
Affiliation(s)
- David A Popko
- Department of Entomology, University of California, Riverside, CA
| | - Jennifer A Henke
- Coachella Valley Mosquito and Vector Control District, Indio, CA
| | | | - William E Walton
- Department of Entomology, University of California, Riverside, CA
| |
Collapse
|
21
|
Vivekanandhan P, Karthi S, Shivakumar MS, Benelli G. Synergistic effect of entomopathogenic fungus Fusarium oxysporum extract in combination with temephos against three major mosquito vectors. Pathog Glob Health 2018; 112:37-46. [PMID: 29457957 PMCID: PMC6056833 DOI: 10.1080/20477724.2018.1438228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Mosquito control using chemical insecticides is facing a major challenge due to development of insecticide resistance. Improving the efficiency of existing insecticides using synergistic secondary metabolites of biological origin is increasingly being researched. Herein, we evaluated the toxicity of Fusarium oxysporum extract alone and in binary combinations with temephos, on larvae and pupae of Anopheles stephensi, Aedes aegypti and Culex quinquefaciatus. F. oxysporum extract was characterized using TLC, FT-IR and GC-MS. After 24 h of exposure, the binary combination of temephos + F. oxysporum extract (1:1 ratio) was highly toxic to larvae of An. stephensi (LC50: 35.927 μg/ml), Ae. aegypti (LC50: 20.763 μg/ml) and Cx. quinquefasciatus, (LC50: 51.199 μg/ml). For pupae LC50 values were 38.668, 26.394, and 72.086 μg/ml, respectively. Histology studies of mosquitoes exposed to F. oxysporum extract showed vacuolation in epithelium, as well as in adipose, and muscle tissues of larval midgut. Overall, our results show that the synergistic combination of temephos and F. oxysporum extract is highly effective to control mosquito young instars.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Molecular Entomology Lab, Department of Biotechnology, Periyar University, Salem, India
| | - Sengodan Karthi
- Molecular Entomology Lab, Department of Biotechnology, Periyar University, Salem, India
| | | | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
22
|
Aldridge RL, Kaufman PE, Bloomquist JR, Gezan SA, Linthicum KJ. Application Site and Mosquito Age Influences Malathion- and Permethrin-Induced Mortality in Culex quinquefasciatus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1692-1698. [PMID: 28968685 DOI: 10.1093/jme/tjx160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 06/07/2023]
Abstract
Concentrations of malathion and permethrin typical in droplets generated from ultra-low-volume and low-volume applications used to control mosquito populations were evaluated for efficacy against multiple-aged Culex quinquefasciatus Say (Diptera: Culicidae), using a topical bioassay. Although insecticide droplets will impinge on many exoskeletal body regions and a range of ages of mosquitoes in a population, traditional mosquito topical bioassays focus pesticide application to the mesothoracic pleural or dorsal regions across an average mosquito age (e.g., 3-7 d). Our results document nonuniform insecticide sensitivity across body regions at ages not previously assessed in mosquitoes (teneral and 14-d old). We expect our findings to influence the topical bioassay process, illustrating the difference in mosquito body regions and ages that ultimately may explain insecticide effectiveness wherever droplets impinge upon the mosquito body during field control applications.
Collapse
Affiliation(s)
- Robert L Aldridge
- United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, 1600 SW 23rd Dr., Gainesville, FL 32608
| | - Phillip E Kaufman
- Entomology and Nematology Department, P.O. Box 110620, University of Florida, Gainesville, FL 32611
| | - Jeffrey R Bloomquist
- Entomology and Nematology Department, Emerging Pathogens Institute, P.O. Box 100009, University of Florida, Gainesville, FL 32611
| | - Salvador A Gezan
- School of Forest Resources and Conservation, P.O. Box 110410, University of Florida, Gainesville, FL 32611
| | - Kenneth J Linthicum
- United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, 1600 SW 23rd Dr., Gainesville, FL 32608
| |
Collapse
|
23
|
Fisher JJ, Castrillo LA, Donzelli BGG, Hajek AE. Starvation and Imidacloprid Exposure Influence Immune Response by Anoplophora glabripennis (Coleoptera: Cerambycidae) to a Fungal Pathogen. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1451-1459. [PMID: 28482047 DOI: 10.1093/jee/tox124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 06/07/2023]
Abstract
In several insect systems, fungal entomopathogens synergize with neonicotinoid insecticides which results in accelerated host death. Using the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), an invasive woodborer inadvertently introduced into North America and Europe, we investigated potential mechanisms in the synergy between the entomopathogenic fungus Metarhizium brunneum Petch and the insecticide imidacloprid. A potential mechanism underlying this synergy could be imidacloprid's ability to prevent feeding shortly after administration. We investigated whether starvation would have an impact similar to imidacloprid exposure on the mortality of fungal-inoculated beetles. Using real-time PCR to quantify fungal load in inoculated beetles, we determined how starvation and pesticide exposure impacted beetles' ability to tolerate or resist a fungal infection. The effect of starvation and pesticide exposure on the encapsulation and melanization immune responses of the beetles was also quantified. Starvation had a similar impact on the survival of M. brunneum-inoculated beetles compared to imidacloprid exposure. The synergy, however, was not completely due to starvation, as imidacloprid reduced the beetles' melanotic encapsulation response and capsule area, while starvation did not significantly reduce these immune responses. Our results suggest that there are multiple interacting mechanisms involved in the synergy between M. brunneum and imidacloprid.
Collapse
Affiliation(s)
- Joanna J Fisher
- Department of Entomology, Cornell University, Ithaca, NY 14853-2601
| | | | - Bruno G G Donzelli
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853-5904
| | - Ann E Hajek
- Department of Entomology, Cornell University, Ithaca, NY 14853-2601
| |
Collapse
|
24
|
Community perceptions on outdoor malaria transmission in Kilombero Valley, Southern Tanzania. Malar J 2017; 16:274. [PMID: 28676051 PMCID: PMC5496602 DOI: 10.1186/s12936-017-1924-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/29/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extensive use of indoor residual spraying (IRS) and insecticide-treated nets (ITNs) in Africa has contributed to a significant reduction in malaria transmission. Even so, residual malaria transmission persists in many regions, partly driven by mosquitoes that bite people outdoors. In areas where Anopheles gambiae s.s. is a dominant vector, most interventions target the reduction of indoor transmission. The increased use of ITNs/LLINs and IRS has led to the decline of this species. As a result, less dominant vectors such as Anopheles funestus and Anopheles arabiensis, both also originally indoor vectors but are increasingly biting outdoors, contribute more to residual malaria transmission. The study reports the investigated community perceptions on malaria and their implications of this for ongoing outdoor malaria transmission and malaria control efforts. METHODS This was a qualitative study conducted in two rural villages and two peri-urban areas located in Kilombero Valley in south-eastern Tanzania. 40 semi-structured in-depth interviews and 8 focus group discussions were conducted with men and women who had children under the age of five. The Interviews and discussions focused on (1) community knowledge of malaria transmission, and (2) the role of such knowledge on outdoor malaria transmission as a contributing factor to residual malaria transmission. RESULTS The use of bed nets for malaria prevention has been stressed in a number of campaigns and malaria prevention programmes. Most people interviewed believe that there is outdoor malaria transmission since they use interventions while indoors, but they are unaware of changing mosquito host-seeking behaviour. Participants pointed out that they were frequently bitten by mosquitoes during the evening when outdoors, compared to when they were indoors. Most participants stay outdoors in the early evening to undertake domestic tasks that cannot be conducted indoors. House structure, poor ventilation and warm weather conditions were reported to be the main reasons for staying outdoors during the evening. Participants reported wearing long sleeved clothes, fanning and slapping themselves, using repellents, and burning cow dung and neem tree leaves to chase away mosquitoes. CONCLUSIONS Community understanding of multiple prevention strategies is crucial given changes in mosquito host seeking behaviour and the increased incidence of outdoor biting. The current low use of outdoor control measures is attributed largely to limited awareness of outdoor transmission. Improved community understanding of outdoor malaria transmission is critical: efforts to reduce or eliminate malaria transmission will not be successful if the control of outdoor transmission is not emphasized.
Collapse
|
25
|
Mascarin GM, Jaronski ST. The production and uses of Beauveria bassiana as a microbial insecticide. World J Microbiol Biotechnol 2016; 32:177. [PMID: 27628337 DOI: 10.1007/s11274-016-2131-3] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/20/2016] [Indexed: 12/19/2022]
Abstract
Among invertebrate fungal pathogens, Beauveria bassiana has assumed a key role in management of numerous arthropod agricultural, veterinary and forestry pests. Beauveria is typically deployed in one or more inundative applications of large numbers of aerial conidia in dry or liquid formulations, in a chemical paradigm. Mass production is mainly practiced by solid-state fermentation to yield hydrophobic aerial conidia, which remain the principal active ingredient of mycoinsecticides. More robust and cost-effective fermentation and formulation downstream platforms are imperative for its overall commercialization by industry. Hence, where economics allow, submerged liquid fermentation provides alternative method to produce effective and stable propagules that can be easily formulated as dry stable preparations. Formulation also continues to be a bottleneck in the development of stable and effective commercial Beauveria-mycoinsecticides in many countries, although good commercial formulations do exist. Future research on improving fermentation and formulation technologies coupled with the selection of multi-stress tolerant and virulent strains is needed to catalyze the widespread acceptance and usefulness of this fungus as a cost-effective mycoinsecticide. The role of Beauveria as one tool among many in integrated pest management, rather than a stand-alone management approach, needs to be better developed across the range of crop systems. Here, we provide an overview of mass-production and formulation strategies, updated list of registered commercial products, major biocontrol programs and ecological aspects affecting the use of Beauveria as a mycoinsecticide.
Collapse
Affiliation(s)
- Gabriel Moura Mascarin
- EMBRAPA Rice and Beans, Rod. GO-462, km 12, Zona Rural, St. Antônio de Goiás, GO, 75375-000, Brazil.
| | - Stefan T Jaronski
- United States Department of Agriculture, Agriculture Research Service, Pest Management Research Unit, Northern Plains Agricultural Research Laboratory, 1500 N. Central Avenue, Sidney, MT, 59270, USA
| |
Collapse
|
26
|
Insecticide Resistance and Management Strategies in Urban Ecosystems. INSECTS 2016; 7:insects7010002. [PMID: 26751480 PMCID: PMC4808782 DOI: 10.3390/insects7010002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 01/02/2023]
Abstract
The increased urbanization of a growing global population makes imperative the development of sustainable integrated pest management (IPM) strategies for urban pest control. This emphasizes pests that are closely associated with the health and wellbeing of humans and domesticated animals. Concurrently there are regulatory requirements enforced to minimize inadvertent exposures to insecticides in the urban environment. Development of insecticide resistance management (IRM) strategies in urban ecosystems involves understanding the status and mechanisms of insecticide resistance and reducing insecticide selection pressure by combining multiple chemical and non-chemical approaches. In this review, we will focus on the commonly used insecticides and molecular and physiological mechanisms underlying insecticide resistance in six major urban insect pests: house fly, German cockroach, mosquitoes, red flour beetle, bed bugs and head louse. We will also discuss several strategies that may prove promising for future urban IPM programs.
Collapse
|
27
|
Heinig RL, Paaijmans KP, Hancock PA, Thomas MB. The potential for fungal biopesticides to reduce malaria transmission under diverse environmental conditions. J Appl Ecol 2015; 52:1558-1566. [PMID: 26792946 PMCID: PMC4716011 DOI: 10.1111/1365-2664.12522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effectiveness of conventional malaria vector control is being threatened by the spread of insecticide resistance. One promising alternative to chemicals is the use of naturally-occurring insect-killing fungi. Numerous laboratory studies have shown that isolates of fungal pathogens such as Beauveria bassiana can infect and kill adult mosquitoes, including those resistant to chemical insecticides.Unlike chemical insecticides, fungi may take up to a week or more to kill mosquitoes following exposure. This slow kill speed can still reduce malaria transmission because the malaria parasite itself takes at least eight days to complete its development within the mosquito. However, both fungal virulence and parasite development rate are strongly temperature-dependent, so it is possible that biopesticide efficacy could vary across different transmission environments.We examined the virulence of a candidate fungal isolate against two key malaria vectors at temperatures from 10-34 °C. Regardless of temperature, the fungus killed more than 90% of exposed mosquitoes within the predicted duration of the malarial extrinsic incubation period, a result that was robust to realistic diurnal temperature variation.We then incorporated temperature sensitivities of a suite of mosquito, parasite and fungus life-history traits that are important determinants of malaria transmission into a stage-structured malaria transmission model. The model predicted that, at achievable daily fungal infection rates, fungal biopesticides have the potential to deliver substantial reductions in the density of malaria-infectious mosquitoes across all temperatures representative of malaria transmission environments.Synthesis and applications. Our study combines empirical data and theoretical modelling to prospectively evaluate the potential of fungal biopesticides to control adult malaria vectors. Our results suggest that Beauveria bassiana could be a potent tool for malaria control and support further development of fungal biopesticides to manage infectious disease vectors.
Collapse
Affiliation(s)
- R L Heinig
- Center for Infectious Disease Dynamics and Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Krijn P Paaijmans
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | - Matthew B Thomas
- Center for Infectious Disease Dynamics and Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
28
|
The potential for fungal biopesticides to reduce malaria transmission under diverse environmental conditions. Curr Nutr Rep 2015. [PMID: 26792946 DOI: 10.1007/s13668-012-0032-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effectiveness of conventional malaria vector control is being threatened by the spread of insecticide resistance. One promising alternative to chemicals is the use of naturally-occurring insect-killing fungi. Numerous laboratory studies have shown that isolates of fungal pathogens such as Beauveria bassiana can infect and kill adult mosquitoes, including those resistant to chemical insecticides.Unlike chemical insecticides, fungi may take up to a week or more to kill mosquitoes following exposure. This slow kill speed can still reduce malaria transmission because the malaria parasite itself takes at least eight days to complete its development within the mosquito. However, both fungal virulence and parasite development rate are strongly temperature-dependent, so it is possible that biopesticide efficacy could vary across different transmission environments.We examined the virulence of a candidate fungal isolate against two key malaria vectors at temperatures from 10-34 °C. Regardless of temperature, the fungus killed more than 90% of exposed mosquitoes within the predicted duration of the malarial extrinsic incubation period, a result that was robust to realistic diurnal temperature variation.We then incorporated temperature sensitivities of a suite of mosquito, parasite and fungus life-history traits that are important determinants of malaria transmission into a stage-structured malaria transmission model. The model predicted that, at achievable daily fungal infection rates, fungal biopesticides have the potential to deliver substantial reductions in the density of malaria-infectious mosquitoes across all temperatures representative of malaria transmission environments.Synthesis and applications. Our study combines empirical data and theoretical modelling to prospectively evaluate the potential of fungal biopesticides to control adult malaria vectors. Our results suggest that Beauveria bassiana could be a potent tool for malaria control and support further development of fungal biopesticides to manage infectious disease vectors.
Collapse
|
29
|
Electrostatic coating enhances bioavailability of insecticides and breaks pyrethroid resistance in mosquitoes. Proc Natl Acad Sci U S A 2015; 112:12081-6. [PMID: 26324912 DOI: 10.1073/pnas.1510801112] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insecticide resistance poses a significant and increasing threat to the control of malaria and other mosquito-borne diseases. We present a novel method of insecticide application based on netting treated with an electrostatic coating that binds insecticidal particles through polarity. Electrostatic netting can hold small amounts of insecticides effectively and results in enhanced bioavailability upon contact by the insect. Six pyrethroid-resistant Anopheles mosquito strains from across Africa were exposed to similar concentrations of deltamethrin on electrostatic netting or a standard long-lasting deltamethrin-coated bednet (PermaNet 2.0). Standard WHO exposure bioassays showed that electrostatic netting induced significantly higher mortality rates than the PermaNet, thereby effectively breaking mosquito resistance. Electrostatic netting also induced high mortality in resistant mosquito strains when a 15-fold lower dose of deltamethrin was applied and when the exposure time was reduced to only 5 s. Because different types of particles adhere to electrostatic netting, it is also possible to apply nonpyrethroid insecticides. Three insecticide classes were effective against strains of Aedes and Culex mosquitoes, demonstrating that electrostatic netting can be used to deploy a wide range of active insecticides against all major groups of disease-transmitting mosquitoes. Promising applications include the use of electrostatic coating on walls or eave curtains and in trapping/contamination devices. We conclude that application of electrostatically adhered particles boosts the efficacy of WHO-recommended insecticides even against resistant mosquitoes. This innovative technique has potential to support the use of unconventional insecticide classes or combinations thereof, potentially offering a significant step forward in managing insecticide resistance in vector-control operations.
Collapse
|
30
|
Ishii M, Takeshita J, Ishiyama M, Tani M, Koike M, Aiuchi D. Evaluation of the pathogenicity and infectivity of entomopathogenic hypocrealean fungi, isolated from wild mosquitoes in Japan and Burkina Faso, against female adult Anopheles stephensi mosquitoes. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2015.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Saddler A, Burda PC, Koella JC. Resisting infection by Plasmodium berghei increases the sensitivity of the malaria vector Anopheles gambiae to DDT. Malar J 2015; 14:134. [PMID: 25888982 PMCID: PMC4379605 DOI: 10.1186/s12936-015-0646-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/08/2015] [Indexed: 01/25/2023] Open
Abstract
Background The evolution of insecticide resistance threatens current malaria control methods, which rely heavily on chemical insecticides. The magnitude of the threat will be determined by the phenotypic expression of resistance in those mosquitoes that can transmit malaria. These differ from the majority of the mosquito population in two main ways; they carry sporozoites (the infectious stage of the Plasmodium parasite) and they are relatively old, as they need to survive the development period of the malaria parasite. This study examines the effects of infection by Plasmodium berghei and of mosquito age on the sensitivity to DDT in a DDT-resistant strain of Anopheles gambiae. Methods DDT-resistant Anopheles gambiae (ZANU) mosquitoes received a blood meal from either a mouse infected with Plasmodium berghei or an uninfected mouse. 10 and 19 days post blood meal the mosquitoes were exposed to 2%, 1% or 0% DDT using WHO test kits. 24 hrs after exposure, mortality and Plasmodium infection status of the mosquitoes were recorded. Results Sensitivity to DDT increased with the mosquitoes’ age and was higher in mosquitoes that had fed on Plasmodium-infected mice than in those that had not been exposed to the parasite. The latter effect was mainly due to the high sensitivity of mosquitoes that had fed on an infected mouse but were not themselves infected, while the sensitivity to DDT was only slightly higher in mosquitoes infected by Plasmodium than in those that had fed on an uninfected mouse. Conclusions The observed pattern indicates a cost of parasite-resistance. It suggests that, in addition to the detrimental effect of insecticide-resistance on control, the continued use of insecticides in a population of insecticide-resistant mosquitoes could select mosquitoes to be more susceptible to Plasmodium infection, thus further decreasing the efficacy of the control.
Collapse
Affiliation(s)
- Adam Saddler
- Division of Biology, Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 2PZ, UK. .,Faculté des Sciences, Institut de Biologie, Université de Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland. .,Department of Health Interventions, Swiss Tropical and Public Health Institute, Socinstrasse, 57, CH-4002, Basel, Switzerland. .,Ifakara Health Institute, Box 74, Bagamoyo, Tanzania. .,University of Basel, Petersplatz 1, Basel, 4003, Switzerland.
| | | | - Jacob C Koella
- Faculté des Sciences, Institut de Biologie, Université de Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
32
|
Heinig RL, Thomas MB. Interactions between a fungal entomopathogen and malaria parasites within a mosquito vector. Malar J 2015; 14:22. [PMID: 25626485 PMCID: PMC4318179 DOI: 10.1186/s12936-014-0526-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/21/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mosquitoes are becoming increasingly resistant to the chemical insecticides currently available for malaria vector control, spurring interest in alternative management tools. One promising technology is the use of fungal entomopathogens. Fungi have been shown to impact the potential for mosquitoes to transmit malaria by reducing mosquito longevity and altering behaviour associated with flight and host location. Additionally, fungi could impact the development of malaria parasites within the mosquito via competition for resources or effects on the mosquito immune system. This study evaluated whether co-infection or superinfection with the fungal entomopathogen Beauveria bassiana affected malaria infection progress in Anopheles stephensi mosquitoes. METHODS The study used two parasite species to examine possible effects of fungal infection at different parasite development stages. First, the rodent malaria model Plasmodium yoelii was used to explore interactions at the oocyst stage. Plasmodium yoelii produces high oocyst densities in infected mosquitoes and thus was expected to maximize host immunological and resource demands. Second, fungal interactions with mature sporozoites were evaluated by infecting mosquitoes with the human malaria species Plasmodium falciparum, which is highly efficient at invading mosquito salivary glands. RESULTS With P. yoelii, there was no evidence that fungal co-infection (on the same day as the blood meal) or superinfection (during a subsequent gonotrophic cycle after parasite infection) affected the proportion of mosquitoes with oocysts, the number of oocysts per infected mosquito or the number of sporozoites per oocyst. Similarly, for P. falciparum, there was no evidence that fungal infection affected sporozoite prevalence. Furthermore, there was no impact of infection with either malaria species on fungal virulence as measured by mosquito survival time. CONCLUSIONS These results suggest that the impact of fungus on malaria control potential is limited to the well-established effects on mosquito survival and transmission behaviour. Direct or indirect interactions between fungus and malaria parasites within mosquitoes appear to have little additional influence.
Collapse
Affiliation(s)
- Rebecca L Heinig
- Merkle Laboratory, The Pennsylvania State University, University Park, PA, 16803, USA.
| | - Matthew B Thomas
- Merkle Laboratory, The Pennsylvania State University, University Park, PA, 16803, USA.
| |
Collapse
|
33
|
Sternberg ED, Waite JL, Thomas MB. Evaluating the efficacy of biological and conventional insecticides with the new 'MCD bottle' bioassay. Malar J 2014; 13:499. [PMID: 25515850 PMCID: PMC4300847 DOI: 10.1186/1475-2875-13-499] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/12/2014] [Indexed: 11/17/2022] Open
Abstract
Background Control of mosquitoes requires the ability to evaluate new insecticides and to monitor resistance to existing insecticides. Monitoring tools should be flexible and low cost so that they can be deployed in remote, resource poor areas. Ideally, a bioassay should be able to simulate transient contact between mosquitoes and insecticides, and it should allow for excito-repellency and avoidance behaviour in mosquitoes. Presented here is a new bioassay, which has been designed to meet these criteria. This bioassay was developed as part of the Mosquito Contamination Device (MCD) project and, therefore, is referred to as the MCD bottle bioassay. Methods Presented here are two experiments that serve as a proof-of-concept for the MCD bottle bioassay. The experiments used four insecticide products, ranging from fast-acting, permethrin-treated, long-lasting insecticide nets (LLINs) that are already widely used for malaria vector control, to the slower acting entomopathogenic fungus, Beauveria bassiana, that is currently being evaluated as a prospective biological insecticide. The first experiment used the MCD bottle to test the effect of four different insecticides on Anopheles stephensi with a range of exposure times (1 minute, 3 minutes, 1 hour). The second experiment is a direct comparison of the MCD bottle and World Health Organization (WHO) cone bioassay that tests a subset of the insecticides (a piece of LLIN and a piece of netting coated with B. bassiana spores) and a further reduced exposure time (5 seconds) against both An. stephensi and Anopheles gambiae. Immediate knockdown and mortality after 24 hours were assessed using logistic regression and daily survival was assessed using Cox proportional hazards models. Results Across both experiments, fungus performed much more consistently than the chemical insecticides but measuring the effect of fungus required monitoring of mosquito mortality over several days to a week. Qualitatively, the MCD bottle and WHO cone performed comparably, although knockdown and 24 hour mortality tended to be higher in some, but not all, groups of mosquitoes exposed using the WHO cone. Conclusion The MCD bottle is feasible as a flexible, low-cost method for testing insecticidal materials. It is promising as a tool for testing transient contact and for capturing the effects of mosquito behavioural responses to insecticides.
Collapse
Affiliation(s)
- Eleanore D Sternberg
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA, USA.
| | | | | |
Collapse
|
34
|
Snetselaar J, Andriessen R, Suer RA, Osinga AJ, Knols BG, Farenhorst M. Development and evaluation of a novel contamination device that targets multiple life-stages of Aedes aegypti. Parasit Vectors 2014; 7:200. [PMID: 24766772 PMCID: PMC4005817 DOI: 10.1186/1756-3305-7-200] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/31/2014] [Indexed: 11/30/2022] Open
Abstract
Background The increasing global threat of Dengue demands new and easily applicable vector control methods. Ovitraps provide a low-tech and inexpensive means to combat Dengue vectors. Here we describe the development and optimization process of a novel contamination device that targets multiple life-stages of the Aedes aegypti mosquito. Special focus is directed to the diverse array of control agents deployed in this trap, covering adulticidal, larvicidal and autodissemination impacts. Methods Different trap prototypes and their parts are described, including a floater to contaminate alighting gravid mosquitoes. The attractiveness of the trap, different odor lures and floater design were studied using fluorescent powder adhering to mosquito legs and via choice tests. We demonstrate the mosquitocidal impacts of the control agents: a combination of the larvicide pyriproxyfen and the adulticidal fungus Beauveria bassiana. The impact of pyriproxyfen was determined in free-flight dissemination experiments. The effect on larval development inside the trap and in surrounding breeding sites was measured, as well as survival impacts on recaptured adults. Results The developmental process resulted in a design that consists of a black 3 Liter water-filled container with a ring-shaped floater supporting vertically placed gauze dusted with the control agents. On average, 90% of the mosquitoes in the fluorescence experiments made contact with the gauze on the floater. Studies on attractants indicated that a yeast-containing tablet was the most attractive odor lure. Furthermore, the fungus Beauveria bassiana was able to significantly increase mortality of the free-flying adults compared to controls. Dissemination of pyriproxyfen led to >90% larval mortality in alternative breeding sites and 100% larval mortality in the trap itself, against a control mortality of around 5%. Conclusion This ovitrap is a promising new tool in the battle against Dengue. It has proven to be attractive to Aedes aegypti mosquitoes and effective in contaminating these with Beauveria bassiana. Furthermore, we show that the larvicide pyriproxyfen is successfully disseminated to breeding sites close to the trap. Its low production and operating costs enable large scale deployment in Dengue-affected locations.
Collapse
|
35
|
Nardini L, Blanford S, Coetzee M, Koekemoer LL. Effect of Beauveria bassiana infection on detoxification enzyme transcription in pyrethroid resistant Anopheles arabiensis: a preliminary study. Trans R Soc Trop Med Hyg 2014; 108:221-7. [PMID: 24561325 DOI: 10.1093/trstmh/tru021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Fungal biopesticides are of great interest to vector control scientists as they provide a novel and environmentally friendly alternative to insecticide use. The aim of this study was to determine whether genes associated with pyrethroid resistance in Anopheles arabiensis from Sudan and South Africa are further induced following exposure to the entomopathogenic fungus, Beauveria bassiana (strain GHA). METHODS Following B. bassiana bioassays, RNA was extracted from infected mosquitoes and the transcription of four important insecticide resistance genes, CYP9L1, CYP6M2 and CYP4G16 (cytochrome P450s) and TPX4 (thioredoxin peroxidase) was investigated using quantitative real-time PCR. RESULTS Beauveria bassiana strain GHA was highly infective and virulent against An. arabiensis. In terms of changes in gene transcription, overall, the fold change (FC) values for each gene in the infected strains, were lower than 1.5. The FC values of CYP9L1, CYP6M2 and TPX4, were significantly lower than the FC values of the same genes in uninfected resistant An. arabiensis. CONCLUSION These data suggest that B. bassiana does not enhance the pyrethroid resistant phenotype on a molecular level as the two An. arabiensis strains used here, with different pyrethroid resistance mechanisms, revealed no increase in pre-existing metabolic transcripts. This supports the fact that fungal pathogens are suitable candidates for vector control, particularly with regard to the development of novel vector control strategies.
Collapse
Affiliation(s)
- Luisa Nardini
- Vector Control Reference Laboratory, Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, a Division of the National Health Laboratory Services, Private Bag X4, Sandringham, 2131, Johannesburg, South Africa
| | | | | | | |
Collapse
|
36
|
Insecticide Resistance in Insect Vectors of Disease with Special Reference to Mosquitoes: A Potential Threat to Global Public Health. HEALTH SCOPE 2013. [DOI: 10.5812/jhs.9840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Karunamoorthi K, Sabesan S. Insecticide Resistance in Insect Vectors of Disease with Special Reference to Mosquitoes: A Potential Threat to Global Public Health. HEALTH SCOPE 2013. [DOI: 10.17795/jhealthscope-9840] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Zhong D, Chang X, Zhou G, He Z, Fu F, Yan Z, Zhu G, Xu T, Bonizzoni M, Wang MH, Cui L, Zheng B, Chen B, Yan G. Relationship between knockdown resistance, metabolic detoxification and organismal resistance to pyrethroids in Anopheles sinensis. PLoS One 2013; 8:e55475. [PMID: 23405157 PMCID: PMC3566193 DOI: 10.1371/journal.pone.0055475] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/23/2012] [Indexed: 11/18/2022] Open
Abstract
Anopheles sinensis is the most important vector of malaria in Southeast Asia, including China. Currently, the most effective measure to prevent malaria transmission relies on vector control through the use of insecticides, primarily pyrethroids. Extensive use of insecticides poses strong selection pressure on mosquito populations for resistance. Resistance to insecticides can arise due to mutations in the insecticide target site (target site resistance), which in the case of pyrethroids is the para-type sodium channel gene, and/or the catabolism of the insecticide by detoxification enzymes before it reaches its target (metabolic detoxification resistance). In this study, we examined deltamethrin resistance in An. sinensis from China and investigated the relative importance of target site versus metabolic detoxification mechanisms in resistance. A high frequency (>85%) of nonsynonymous mutations in the para gene was found in populations from central China, but not in populations from southern China. Metabolic detoxification as measured by the activity of monooxygenases and glutathione S-transferases (GSTs) was detected in populations from both central and southern China. Monooxygenase activity levels were significantly higher in the resistant than the susceptible mosquitoes, independently of their geographic origin. Stepwise multiple regression analyses in mosquito populations from central China found that both knockdown resistance (kdr) mutations and monooxygenase activity were significantly associated with deltamethrin resistance, with monooxygenase activity playing a stronger role. These results demonstrate the importance of metabolic detoxification in pyrethroid resistance in An. sinensis, and suggest that different mechanisms of resistance could evolve in geographically different populations.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California Irvine, Irvine, California, United States of America
| | - Xuelian Chang
- Program in Public Health, College of Health Sciences, University of California Irvine, Irvine, California, United States of America
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Department of Pathogen Biology, Bengbu Medical College, Anhui, China
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California Irvine, Irvine, California, United States of America
| | - Zhengbo He
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, People's Republic of China
| | - Fengyang Fu
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, People's Republic of China
| | - Zhentian Yan
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, People's Republic of China
| | - Guoding Zhu
- Program in Public Health, College of Health Sciences, University of California Irvine, Irvine, California, United States of America
- Division of Malaria Control, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Tielong Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Mariangela Bonizzoni
- Program in Public Health, College of Health Sciences, University of California Irvine, Irvine, California, United States of America
| | - Mei-Hui Wang
- Program in Public Health, College of Health Sciences, University of California Irvine, Irvine, California, United States of America
| | - Liwang Cui
- Department of Entomology, the Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Bin Zheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, People's Republic of China
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
39
|
Kamareddine L. The biological control of the malaria vector. Toxins (Basel) 2012; 4:748-67. [PMID: 23105979 PMCID: PMC3475227 DOI: 10.3390/toxins4090748] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/29/2012] [Accepted: 09/03/2012] [Indexed: 02/05/2023] Open
Abstract
The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes.
Collapse
Affiliation(s)
- Layla Kamareddine
- Department of Biology, American University of Beirut, Bliss Street, Beirut 11072020, Lebanon.
| |
Collapse
|
40
|
Does Cattle Milieu Provide a Potential Point to Target Wild Exophilic Anopheles arabiensis (Diptera: Culicidae) with Entomopathogenic Fungus? A Bioinsecticide Zooprophylaxis Strategy for Vector Control. J Parasitol Res 2012; 2012:280583. [PMID: 22934152 PMCID: PMC3425831 DOI: 10.1155/2012/280583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/30/2012] [Indexed: 11/17/2022] Open
Abstract
Background. Anopheles arabiensis is increasingly dominating malaria transmission in Africa. The exophagy in mosquitoes threatens the effectiveness of indoor vector control strategies. This study aimed to evaluate the effectiveness of fungus against An. arabiensis when applied on cattle and their environments. Methods. Experiments were conducted under semi-field and small-scale field conditions within Kilombero valley. The semi-field reared females of 5–7 days old An. arabiensis were exposed to fungus-treated and untreated calf. Further, wild An. arabiensis were exposed to fungus-treated calves, mud-huts, and their controls. Mosquitoes were recaptured the next morning and proportion fed, infected, and survived were evaluated. Experiments were replicated three times using different individuals of calves. Results. A high proportion of An. arabiensis was fed on calves (>0.90) and become infected (0.94) while resting on fungus-treated mud walls than on other surfaces. However, fungus treatments reduced fecundity and survival of mosquitoes.
Conclusion. This study demonstrates for the first time the potential of cattle and their milieu for controlling An. arabiensis. Most of An. arabiensis were fed and infected while resting on fungus-treated mud walls than on other surfaces. Fungus treatments reduced fecundity and survival of mosquitoes. These results suggest deployment of bioinsecticide zooprophylaxis against exophilic An. arabiensis.
Collapse
|
41
|
Singh G, Prakash S. Lethal effects of Aspergillus niger against mosquitoes vector of filaria, malaria, and dengue: a liquid mycoadulticide. ScientificWorldJournal 2012; 2012:603984. [PMID: 22629156 PMCID: PMC3354556 DOI: 10.1100/2012/603984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/09/2012] [Indexed: 11/18/2022] Open
Abstract
Aspergillus niger is a fungus of the genus Aspergillus. It has caused a disease called black mold on certain fruits and vegetables. The culture filtrates released from the A. niger ATCC 66566 were grown in Czapek dox broth (CDB) then filtered with flash chromatograph and were used for the bioassay after a growth of thirty days. The result demonstrated these mortalities with LC50, LC90, and LC99 values of Culex quinquefasciatus 0.76, 3.06, and 4.75, Anopheles stephensi 1.43, 3.2, and 3.86, and Aedes aegypti 1.43, 2.2, and 4.1 μl/cm2, after exposure of seven hours. We have calculated significant LT90 values of Cx. quinquefasciatus 4.5, An. stephensi 3.54, and Ae. aegypti 6.0 hrs, respectively. This liquid spray of fungal culture isolate of A. niger can reduce malaria, dengue, and filarial transmission. These results significantly support broadening the current vector control paradigm beyond chemical adulticides.
Collapse
Affiliation(s)
- Gavendra Singh
- Environmental and Advanced Parasitology and Vector Control Biotechnology Laboratories, Department of Zoology, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra 282005, India
| | | |
Collapse
|
42
|
Mitri C, Vernick KD. Anopheles gambiae pathogen susceptibility: the intersection of genetics, immunity and ecology. Curr Opin Microbiol 2012; 15:285-91. [PMID: 22538050 DOI: 10.1016/j.mib.2012.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 03/26/2012] [Accepted: 04/02/2012] [Indexed: 01/15/2023]
Abstract
Mosquitoes are the major arthropod vectors of human diseases such as malaria and viral encephalitis. However, each mosquito species does not transmit every pathogen, owing to reasons that include specific evolutionary histories, mosquito immune system structure, and ecology. Even a competent vector species for a pathogen displays a wide range of variation between individuals for pathogen susceptibility, and therefore efficiency of disease transmission. Understanding the molecular and genetic mechanisms that determine heterogeneities in transmission efficiency within a vector species could help elaborate new vector control strategies. This review discusses mechanisms of host-defense in Anopheles gambiae, and sources of genetic and ecological variation in the operation of these protective factors. Comparison is made between functional studies using Plasmodium or fungus, and we call attention to the limitations of generalizing gene phenotypes from experiments done in a single genetically simple colony.
Collapse
Affiliation(s)
- Christian Mitri
- Institut Pasteur, Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), 28 rue du Docteur Roux, Paris 75015, France
| | | |
Collapse
|
43
|
Mnyone LL, Lyimo IN, Lwetoijera DW, Mpingwa MW, Nchimbi N, Hancock PA, Russell TL, Kirby MJ, Takken W, Koenraadt CJM. Exploiting the behaviour of wild malaria vectors to achieve high infection with fungal biocontrol agents. Malar J 2012; 11:87. [PMID: 22449130 PMCID: PMC3337815 DOI: 10.1186/1475-2875-11-87] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/26/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Control of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania. RESULTS Survival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced. CONCLUSIONS Entomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy.
Collapse
Affiliation(s)
- Ladslaus L Mnyone
- Biomedical and Environmental Group, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Tanzania
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
- Pest Management Centre, Sokoine University of Agriculture, P.O. Box 3110, Morogoro, Tanzania
| | - Issa N Lyimo
- Biomedical and Environmental Group, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Tanzania
- Faculty of Biomedical and Life Sciences, University of Glasgow, 120 University Place, G12 8TA Glasgow, UK
| | - Dickson W Lwetoijera
- Biomedical and Environmental Group, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Tanzania
| | - Monica W Mpingwa
- Biomedical and Environmental Group, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Tanzania
| | - Nuru Nchimbi
- Biomedical and Environmental Group, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Tanzania
| | | | - Tanya L Russell
- Biomedical and Environmental Group, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Tanzania
- The University of Queensland, School of Population Health, Australian Centre for Tropical and International Health, Brisbane 4006, Australia
- Vector Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Matthew J Kirby
- Biomedical and Environmental Group, Ifakara Health Institute, P.O. Box 53, Off Mlabani Passage, Ifakara, Tanzania
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Constantianus JM Koenraadt
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| |
Collapse
|
44
|
Parasite-insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee. Sci Rep 2012; 2:326. [PMID: 22442753 PMCID: PMC3310228 DOI: 10.1038/srep00326] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/23/2012] [Indexed: 11/11/2022] Open
Abstract
In ecosystems, a variety of biological, chemical and physical stressors may act in combination to induce illness in populations of living organisms. While recent surveys reported that parasite-insecticide interactions can synergistically and negatively affect honeybee survival, the importance of sequence in exposure to stressors has hardly received any attention. In this work, Western honeybees (Apis mellifera) were sequentially or simultaneously infected by the microsporidian parasite Nosema ceranae and chronically exposed to a sublethal dose of the insecticide fipronil, respectively chosen as biological and chemical stressors. Interestingly, every combination tested led to a synergistic effect on honeybee survival, with the most significant impacts when stressors were applied at the emergence of honeybees. Our study presents significant outcomes on beekeeping management but also points out the potential risks incurred by any living organism frequently exposed to both pathogens and insecticides in their habitat.
Collapse
|
45
|
Abdul-Ghani R, Al-Mekhlafi AM, Alabsi MS. Microbial control of malaria: biological warfare against the parasite and its vector. Acta Trop 2012; 121:71-84. [PMID: 22100545 DOI: 10.1016/j.actatropica.2011.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/31/2011] [Accepted: 11/04/2011] [Indexed: 01/31/2023]
Abstract
Microbial applications in malaria transmission control have drawn global attention. Mosquito midgut microbiota can modulate vector immunity and block Plasmodium development. Paratransgenic manipulation of bacterial symbionts and Wolbachia can affect reproductive characteristics of mosquitoes. Bacillus-based biolarvicides can control mosquito larvae in different breeding habitats, but their effectiveness differs according to the type of formulation applied, and the physical and ecological conditions of the environment. Entomopathogenic fungi show promise as effective and evolution-proof agents against adult mosquitoes. In addition, transgenic fungi can express anti-plasmodial effector molecules that can target the parasite inside its vector. Despite showing effectiveness in domestic environments as well as against insecticide-resistant mosquitoes, claims towards their deployability in the field and their possible use in integrated vector management programmes have yet to be investigated. Viral pathogens show efficacy in the interruption of sporogonic development of the parasite, and protozoal pathogens exert direct pathogenic potential on larvae and adults with substantial effects on mosquito longevity and fecundity. However, the technology required for their isolation and maintenance impedes their field application. Many agents show promising findings; however, the question remains about the epidemiologic reality of these approaches because even those that have been tried under field conditions still have certain limitations. This review addresses aspects of the microbial control of malaria between proof-of-concept and epidemiologic reality.
Collapse
|
46
|
The effects of age, exposure history and malaria infection on the susceptibility of Anopheles mosquitoes to low concentrations of pyrethroid. PLoS One 2011; 6:e24968. [PMID: 21966392 PMCID: PMC3178580 DOI: 10.1371/journal.pone.0024968] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 08/25/2011] [Indexed: 11/19/2022] Open
Abstract
Chemical insecticides are critical components of malaria control programs. Their ability to eliminate huge numbers of mosquitoes allows them to swiftly interrupt disease transmission, but that lethality also imposes immense selection for insecticide resistance. Targeting control at the small portion of the mosquito population actually responsible for transmitting malaria parasites to humans would reduce selection for resistance, yet maintain effective malaria control. Here, we ask whether simply lowering the concentration of the active ingredient in insecticide formulations could preferentially kill mosquitoes infected with malaria and/or those that are potentially infectious, namely, old mosquitoes. Using modified WHO resistance-monitoring assays, we exposed uninfected Anopheles stephensi females to low concentrations of the pyrethroid permethrin at days 4, 8, 12, and 16 days post-emergence and monitored survival for at least 30 days to evaluate the immediate and long-term effects of repeated exposure as mosquitoes aged. We also exposed Plasmodium chabaudi- and P. yoelii-infected An. stephensi females. Permethrin exposure did not consistently increase mosquito susceptibility to subsequent insecticide exposure, though older mosquitoes were more susceptible. A blood meal slightly improved survival after insecticide exposure; malaria infection did not detectably increase insecticide susceptibility. Exposure to low concentrations over successive feeding cycles substantially altered cohort age-structure. Our data suggest the possibility that, where high insecticide coverage can be achieved, low concentration formulations have the capacity to reduce disease transmission without the massive selection for resistance imposed by current practice.
Collapse
|
47
|
Blanford S, Shi W, Christian R, Marden JH, Koekemoer LL, Brooke BD, Coetzee M, Read AF, Thomas MB. Lethal and pre-lethal effects of a fungal biopesticide contribute to substantial and rapid control of malaria vectors. PLoS One 2011; 6:e23591. [PMID: 21897846 PMCID: PMC3163643 DOI: 10.1371/journal.pone.0023591] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022] Open
Abstract
Rapidly emerging insecticide resistance is creating an urgent need for new active ingredients to control the adult mosquitoes that vector malaria. Biopesticides based on the spores of entomopathogenic fungi have shown considerable promise by causing very substantial mortality within 7-14 days of exposure. This mortality will generate excellent malaria control if there is a high likelihood that mosquitoes contact fungi early in their adult lives. However, where contact rates are lower, as might result from poor pesticide coverage, some mosquitoes will contact fungi one or more feeding cycles after they acquire malaria, and so risk transmitting malaria before the fungus kills them. Critics have argued that 'slow acting' fungal biopesticides are, therefore, incapable of delivering malaria control in real-world contexts. Here, utilizing standard WHO laboratory protocols, we demonstrate effective action of a biopesticide much faster than previously reported. Specifically, we show that transient exposure to clay tiles sprayed with a candidate biopesticide comprising spores of a natural isolate of Beauveria bassiana, could reduce malaria transmission potential to zero within a feeding cycle. The effect resulted from a combination of high mortality and rapid fungal-induced reduction in feeding and flight capacity. Additionally, multiple insecticide-resistant lines from three key African malaria vector species were completely susceptible to fungus. Thus, fungal biopesticides can block transmission on a par with chemical insecticides, and can achieve this where chemical insecticides have little impact. These results support broadening the current vector control paradigm beyond fast-acting chemical toxins.
Collapse
Affiliation(s)
- Simon Blanford
- Center for Infectious Disease Dynamics, Mueller Laboratory, Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, Merkle Lab, Department of Entomology, Penn State University, University Park, Pennsylvania, United States of America
| | - Wangpeng Shi
- Center for Infectious Disease Dynamics, Merkle Lab, Department of Entomology, Penn State University, University Park, Pennsylvania, United States of America
- Key Laboratory for Biological Control, China Agricultural University, Ministry of Agriculture, Beijing, China
| | - Riann Christian
- Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - James H. Marden
- Department of Biology, Mueller Laboratory, Penn State University, University Park, Pennsylvania, United States of America
| | - Lizette L. Koekemoer
- Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Basil D. Brooke
- Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Maureen Coetzee
- Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Andrew F. Read
- Center for Infectious Disease Dynamics, Mueller Laboratory, Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, Merkle Lab, Department of Entomology, Penn State University, University Park, Pennsylvania, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Matthew B. Thomas
- Center for Infectious Disease Dynamics, Merkle Lab, Department of Entomology, Penn State University, University Park, Pennsylvania, United States of America
- Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
48
|
Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B, Brunet JL, Texier C, Biron DG, Blot N, El Alaoui H, Belzunces LP, Delbac F. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 2011; 6:e21550. [PMID: 21738706 PMCID: PMC3125288 DOI: 10.1371/journal.pone.0021550] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/01/2011] [Indexed: 11/18/2022] Open
Abstract
Background The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. Methodology/Finding Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. Conclusions/Significance After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing prevalence of N. ceranae with high pesticide content in beehives may contribute to colony depopulation.
Collapse
Affiliation(s)
- Cyril Vidau
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Marie Diogon
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Julie Aufauvre
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Régis Fontbonne
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Bernard Viguès
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Jean-Luc Brunet
- INRA, UMR 406 Abeilles & Environnement, Laboratoire de Toxicologie Environnementale, Site Agroparc, Avignon, France
| | | | - David G. Biron
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Nicolas Blot
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Hicham El Alaoui
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Luc P. Belzunces
- INRA, UMR 406 Abeilles & Environnement, Laboratoire de Toxicologie Environnementale, Site Agroparc, Avignon, France
| | - Frédéric Delbac
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, BP 10448, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
- * E-mail:
| |
Collapse
|
49
|
Farenhorst M, Hilhorst A, Thomas MB, Knols BGJ. Development of fungal applications on netting substrates for malaria vector control. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:305-313. [PMID: 21485366 DOI: 10.1603/me10134] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mosquito resistance to chemical insecticides is considered a serious threat for the sustainable use of contemporary malaria vector control methods. Fungal entomopathogens show potential as alternative biological control agents against (insecticide-resistant) anophelines. This study was designed to test whether the fungus, Beauveria bassiana, could be delivered to mosquitoes on netting materials that might be used in house screens, such as eave curtains. Tests were conducted to determine effects of formulation, application method, netting material, and nature of mosquito contact. Beauveria had a twice as high impact on Anopheles gambiae s.s. longevity when suspended in Shellsol solvent compared with Ondina oil (HR = 2.12, 95% confidence interval = 1.83-2.60, P < 0.001), and was significantly more infective when applied through spraying than dipping. Polyester and cotton bednets were the most effective substrates for mosquito infections, with highest spore viability on cotton nets. Whereas fungal impact was highest in mosquitoes that had passed through large-meshed impregnated nets, overall efficacy was equal between small- and large-meshed nets, with < or = 30-min spore contact killing >90% of mosquitoes within 10 d. Results indicate that the use of fungal spores dissolved in Shellsol and sprayed on small-meshed cotton eave curtain nets would be the most promising option for field implementation. Biological control with fungus-impregnated eave curtains could provide a means to target host-seeking mosquitoes upon house entry, and has potential for use in integrated vector management strategies, in combination with chemical vector control measures, to supplement malaria control in areas with high levels of insecticide resistance.
Collapse
Affiliation(s)
- Marit Farenhorst
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
50
|
Fang W, Vega-Rodríguez J, Ghosh AK, Jacobs-Lorena M, Kang A, St. Leger RJ. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 2011; 331:1074-7. [PMID: 21350178 PMCID: PMC4153607 DOI: 10.1126/science.1199115] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Metarhizium anisopliae infects mosquitoes through the cuticle and proliferates in the hemolymph. To allow M. anisopliae to combat malaria in mosquitoes with advanced malaria infections, we produced recombinant strains expressing molecules that target sporozoites as they travel through the hemolymph to the salivary glands. Eleven days after a Plasmodium-infected blood meal, mosquitoes were treated with M. anisopliae expressing salivary gland and midgut peptide 1 (SM1), which blocks attachment of sporozoites to salivary glands; a single-chain antibody that agglutinates sporozoites; or scorpine, which is an antimicrobial toxin. These reduced sporozoite counts by 71%, 85%, and 90%, respectively. M. anisopliae expressing scorpine and an [SM1](8):scorpine fusion protein reduced sporozoite counts by 98%, suggesting that Metarhizium-mediated inhibition of Plasmodium development could be a powerful weapon for combating malaria.
Collapse
Affiliation(s)
- Weiguo Fang
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA
| | - Joel Vega-Rodríguez
- Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, E5132, Baltimore, MD 21205, USA
| | - Anil K. Ghosh
- Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, E5132, Baltimore, MD 21205, USA
| | - Marcelo Jacobs-Lorena
- Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, E5132, Baltimore, MD 21205, USA
| | - Angray Kang
- Antibody Technology Group, Department of Molecular and Applied Biosciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Raymond J. St. Leger
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA
| |
Collapse
|