1
|
Li M, Yuan J, Hou Q, Zhao Y, Zhong L, Dai X, Chen H, Fu X. Characterization of the Skin Bacteriome and Histology Changes in Diabetic Pigs. INT J LOW EXTR WOUND 2025; 24:426-443. [PMID: 35548944 DOI: 10.1177/15347346221100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic wound is one of the most common complications that are associated with diabetes. The cutaneous microbiome is known to play essential roles in the regulation of barrier function and protecting against potential assault. Thus, it is necessary to gain a better understanding of the relationship between microbial community and skin structures in unwounded diabetic skin to explore possible preventive strategies. To achieve the same, a pig diabetic model was built in the present study. Further,16S rDNA sequencing was used to characterize the skin bacteriome. It was observed that the pigs showed skin bacteriome similar to humans in the non-diabetes group, while it varied in the case of diabetes. Further, the β-diversity analysis showed that the bacterial community was significantly different under the diabetes group. More species differences were identified between the two groups at genus level. The predictive function analysis also showed the involvement of significantly different pathways of microbial gene function in diabetes. In agreement with this, skin histology analysis also showed signs of reduced epidermal thickness and rete ridges in diabetic skin. Less proliferation of keratinocytes and impaired TJ barrier was also detected. This evidence suggested that pigs might serve as the best surrogate for cutaneous microbiome studies. Altogether, the present study reported that the skin bacteriome and histology changed significantly in unwounded diabetic skin, which provided a theoretical basis for the regulation of disordered skin bacteriome. The findings of the study would assist in the improvement of the skin environment and prevention of skin infection and chronic wounds.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Jifang Yuan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
- Laboratory Animal Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, P. R. China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Xin Dai
- Laboratory Animal Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, P. R. China
| | - Hua Chen
- Laboratory Animal Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| |
Collapse
|
2
|
Mosca S, Ottaviani M, Briganti S, Di Nardo A, Flori E. The Sebaceous Gland: A Key Player in the Balance Between Homeostasis and Inflammatory Skin Diseases. Cells 2025; 14:747. [PMID: 40422250 DOI: 10.3390/cells14100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
The sebaceous gland (SG) is an integral part of the pilosebaceous unit and is a very active and dynamic organ that contributes significantly to the maintenance of skin homeostasis. In addition to its primary role in sebum production, the SG is involved in the maintenance of skin barrier function, local endocrine/neuroendocrine function, the innate immune response, and the regulation of skin bacterial colonization. Structural and functional alterations of SGs leading to the dysregulation of sebum production/composition and immune response may contribute to the pathogenesis of inflammatory dermatoses. This review summarises the current knowledge on the contribution of SGs to the pathogenesis of common inflammatory skin diseases. These findings are crucial for the development of more effective therapeutic strategies for the treatment of inflammatory dermatoses.
Collapse
Affiliation(s)
- Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Anna Di Nardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
3
|
Baker JS, Qu E, Mancuso CP, Tripp AD, Conwill A, Lieberman TD. Intraspecies dynamics underlie the apparent stability of two important skin microbiome species. Cell Host Microbe 2025; 33:643-656.e7. [PMID: 40315837 DOI: 10.1016/j.chom.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/29/2025] [Accepted: 04/11/2025] [Indexed: 05/04/2025]
Abstract
Adult human facial skin microbiomes are remarkably similar at the species level, dominated by Cutibacterium acnes and Staphylococcus epidermidis, yet each person harbors a unique community of strains. Understanding how person-specific communities assemble is critical for designing microbiome-based therapies. Here, using 4,055 isolate genomes and 356 metagenomes, we reconstruct on-person evolutionary history to reveal on- and between-person strain dynamics. We find that multiple cells are typically involved in transmission, indicating ample opportunity for migration. Despite this accessibility, family members share only some of their strains. S. epidermidis communities are dynamic, with each strain persisting for an average of only 2 years. C. acnes strains are more stable and have a higher colonization rate during the transition to an adult facial skin microbiome, suggesting this window could facilitate engraftment of therapeutic strains. These previously undetectable dynamics may influence the design of microbiome therapeutics and motivate the study of their effects on hosts.
Collapse
Affiliation(s)
- Jacob S Baker
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Evan Qu
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher P Mancuso
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A Delphine Tripp
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Arolyn Conwill
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tami D Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Qin M, Evron E, Tran PT, Deng M, Nelson AM, Kim J, Agak GW. Immune Activation and Glycolytic Responses to Cutibacterium acnes Cell Wall Polysaccharides. J Invest Dermatol 2025:S0022-202X(25)00457-9. [PMID: 40335017 DOI: 10.1016/j.jid.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 05/09/2025]
Abstract
Carbohydrates are key components of many microbial cell walls and play a versatile role in immune recognition. In this study, we analyzed the carbohydrate cell wall composition of Cutibacterium acnes strains associated with healthy skin (denoted as CH) and acne-prone skin (denoted as CA) to understand their influence on host immune responses in acne. We identified glucose, mannose, and galactose as the primary monosaccharides, with minor amounts of fucose, N-acetylgalactosamine, and N-acetylglucosamine. Linkage analysis revealed structural variations between CH and CA strains: CH strains showed a balanced and diverse polysaccharide structure, whereas CA strains displayed a more rigid structure with 1→4 and branched 1→6 linkages, potentially contributing to inflammatory properties. Immunostimulatory assays revealed that C acnes carbohydrates induced IL-6 and IL-17 but not IL-1β, highlighting the role of carbohydrate structures in influencing cytokine responses. Treatment with sodium meta-periodate impaired this immunostimulatory activity, indicating that carbohydrate integrity is crucial for immune activation. In addition, analysis of single-cell RNA-sequencing data from acne lesions revealed elevated glycolytic activity in acne lesions in comparison with that in nonlesional skin, suggesting a Warburg-like effect that promotes inflammation. Our findings highlight the role of C acnes polysaccharides in immune modulation and inflammation, suggesting their potential as therapeutic targets for acne treatment.
Collapse
Affiliation(s)
- Min Qin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Evyatar Evron
- Department of Dermatology, Larkin Community Hospital, South Miami, Florida, USA
| | - Patrick Thanh Tran
- Division of Dermatology, Department of Medicine, Harbor-UCLA Medical Center, West Carson, California, USA
| | - Min Deng
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Amanda M Nelson
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Jenny Kim
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - George W Agak
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
5
|
Zhang L, Cai Y, Li L, Hu J, Jia C, Kuang X, Zhou Y, Lan Z, Liu C, Jiang F, Sun N, Zeng N. Analysis of global trends and hotspots of skin microbiome in acne: a bibliometric perspective. BioData Min 2025; 18:19. [PMID: 40033326 DOI: 10.1186/s13040-025-00433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Acne is a chronic inflammatory condition affecting the hair follicles and sebaceous glands. Recent research has revealed significant advances in the study of the acne skin microbiome. Systematic analysis of research trends and hotspots in the acne skin microbiome is lacking. This study utilized bibliometric methods to conduct in-depth research on the recognition structure of the acne skin microbiome, identifying hot trends and emerging topics. METHODS We performed a topic search to retrieve articles about skin microbiome in acne from the Web of Science Core Collection. Bibliometric research was conducted using CiteSpace, VOSviewer, and R language. RESULTS This study analyzed 757 articles from 1362 institutions in 68 countries, the United States leading the research efforts. Notably, Brigitte Dréno from the University of Nantes emerged as the most prolific author in this field, with 19 papers and 334 co-citations. The research output on the skin microbiome of acne continues to increase, with Experimental Dermatology being the journal with the highest number of published articles. The primary focus is investigating the skin microbiome's mechanisms in acne development and exploring treatment strategies. These findings have important implications for developing microbiome-targeted therapies, which could provide new, personalized treatment options for patients with acne. Emerging research hotspots include skincare, gut microbiome, and treatment. CONCLUSION The study's findings indicate a thriving research interest in the skin microbiome and its relationship to acne, focusing on acne treatment through the regulation of the skin microbiome balance. Currently, the development of skincare products targeting the regulation of the skin microbiome represents a research hotspot, reflecting the transition from basic scientific research to clinical practice.
Collapse
Affiliation(s)
- Lanfang Zhang
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuan Cai
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Li
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Hu
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changsha Jia
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xu Kuang
- Department of Dermatology, Sinan Branch of Zunyi Medical University Affiliated Hospital, Tongren, China
| | - Yi Zhou
- Department of Dermatology, Dejiang Nation Hospital of TCM, Tongren, China
| | - Zhiai Lan
- Department of Dermatology, Dejiang Nation Hospital of TCM, Tongren, China
| | - Chunyan Liu
- Department of Dermatology, Dejiang Nation Hospital of TCM, Tongren, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| | - Nana Sun
- Department of Dermatology, Guizhou Province Cosmetic Plastic Surgery Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Ni Zeng
- Department of Dermatology, Guizhou Province Cosmetic Plastic Surgery Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
6
|
Huang Y, Liu C, Fu Z, Li C, Wu Y, Jia Q, Liu X, Kang Z, Li Y, Ni D, Wei Z, Ru Z, Peng Y, Liu X, Li Y, Xiao Z, Tang J, Wang Y, Yang X. The combination of RL-QN15 and OH-CATH30 promotes the repair of acne via the TLR2/NF-κB pathway. Eur J Pharmacol 2025; 989:177233. [PMID: 39740735 DOI: 10.1016/j.ejphar.2024.177233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/15/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Acne is a prevalent and chronic inflammatory skin disease, and its treatment remains a huge clinical challenge. In the present study, we evaluated the therapeutic potential of combining the peptides RL-QN15 and OH-CATH30 for the treatment of acne in mice. Results indicated that the topical application of RL-QN15 and OH-CATH30 significantly inhibited the proliferation of Propionibacterium acnes (P. acnes) and alleviated acne-induced edema. Furthermore, the combined treatment suppressed the overexpression of proinflammatory cytokines induced by P. acnes, including interleukin -1 beta (IL-1β), interleukin -6 (IL-6), interleukin -8 (IL-8), tumor necrosis factor-alpha (TNF-α) induced by P. acnes and facilitated collagen deposition, thereby effectively mitigating skin damage associated with acne. Mechanistically, the combination of RL-QN15 and OH-CATH30 inhibited the expression of toll-like receptor 2 (TLR2) and activation nuclear factor kappa-B (NF-κB) signaling pathway (phosphorylation of P65 and IκB) in both mice and RAW 264.7 cells. These results suggested that this combination may inhibit the excretion of inflammatory factors and facilitate the collagen deposition by TLR2/NF-κB signaling. Overall, our study demonstrates the potent therapeutic effects of the combined application of RL-QN15 and OH-CATH30, highlights the TLR2/NF-κB pathway as a key target in acne treatment, and provides a novel strategy for developing innovative acne therapeutics.
Collapse
Affiliation(s)
- Yubing Huang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Chengxing Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Chao Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Qiuye Jia
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xue Liu
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yuansheng Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Dan Ni
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ziqi Wei
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zeqiong Ru
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Peng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yun Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhaoxun Xiao
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan, 650500, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
7
|
Farfán-Esquivel JC, Gutiérrez MV, Ondo-Méndez A, González JM, Vives-Flórez MJ. Antibacterial activity and impact on keratinocyte cell growth of Cutibacterium acnes bacteriophages in a Cutibacterium acnes IA 1- colonized keratinocyte model. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100356. [PMID: 39995444 PMCID: PMC11849128 DOI: 10.1016/j.crmicr.2025.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
Acne is an inflammatory disease in which microbial disbalance is represented by an augmented population of phylotype IA1 of Cutibacterium acnes. Various treatments for acne can cause side effects, and it has been reported that C. acnes is resistant to prescribed antibiotics. Phage therapy has been proposed as an alternative treatment for acne, given its species-specificity to kill bacteria, its relative innocuity, and its potential to manage antibiotic-resistant pathogens. Moreover, bacteriophages (phages) may modulate the microbiota and immune responses. Some studies have shown the potential use of phages in the treatment of acne. Nevertheless, the capacity to specifically reduce phylotype IA1 and the effect of phage treatment on skin cells are poorly understood. We assessed the capacity of phages to clear C. acnes IA1 and their effects on cell cytotoxicity and growth in HEKa cells- C. acnes IA1 co-culture. Phylotypes IA1 and IB had similar effects on HEKa cells, causing cytotoxicity and diminishing cell growth. Nevertheless, IA1 caused a higher impact on cell doubling time by increasing it 1.8 times more than cell growth control group. Even though there are no phages IA1-specific, we found phages that have a diminished effect on other phylotypes not related to acne. Phage treatment in general reduced IA1-caused cytotoxicity, with differences in efficacy among phages. In addition, phage purification was necessary to restore metabolic activity and growth of HEKa. Overall, phage evaluation as a therapeutic alternative should include phage-bacteria interactions and their impact on skin cells because of the differences that each phage can exhibit.
Collapse
Affiliation(s)
- Juan C Farfán-Esquivel
- Biological Sciences Department, Faculty of Science, Universidad de Los Andes, Bogotá D.C., Colombia
| | - María Victoria Gutiérrez
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejandro Ondo-Méndez
- Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C, Colombia
| | - John M González
- Laboratorio de Ciencias Básicas Medicas, School of Medicine, Universidad de Los Andes, Bogotá D.C, Colombia
| | - Martha J Vives-Flórez
- Biological Sciences Department, Faculty of Science, Universidad de Los Andes, Bogotá D.C., Colombia
| |
Collapse
|
8
|
Hamann T, Brüggemann H, Feidenhansl C, Rruci E, Gallinger J, Gallinat S, Hüpeden J. Distinct Intraspecies Variation of Cutibacterium acnes and Staphylococcus epidermidis in Acne Vulgaris and Healthy Skin. Microorganisms 2025; 13:299. [PMID: 40005665 PMCID: PMC11858094 DOI: 10.3390/microorganisms13020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Human skin hosts a diverse array of microorganisms that contribute to its health. Key players in the facial skin microbiome include Cutibacterium acnes and staphylococci, whose colonization patterns may influence dermatological conditions like acne vulgaris. This study examined the facial microbiome composition of 29 individuals, including 14 with moderate to severe acne and 15 with healthy skin, using single locus sequence typing (SLST) amplicon sequencing. The results showed a shift in the relative abundances of C. acnes phylotypes: SLST types A, C, and F were increased in acne, while types H, K, and L were reduced compared to healthy skin. Among staphylococci, the relative abundance of S. epidermidis, S. capitis, and S. saphrophyticus increased in acne, while S. saccharolyticus and S. hominis decreased. The amplicon sequencing approach could also identify a population shift of S. epidermidis: a specific S. epidermidis phylogenetic lineage (type 3) was reduced in acne, while two abundant lineages (types 1 and 2) were elevated. These findings suggest that distinct phylogenetic lineages of both C. acnes and S. epidermidis are linked to healthy versus diseased skin, highlighting a potential role for both microorganisms in disease prevention and aggravation, respectively.
Collapse
Affiliation(s)
- Tina Hamann
- Beiersdorf AG Research & Development, Discovery, 20245 Hamburg, Germany; (J.G.); (S.G.); (J.H.)
| | - Holger Brüggemann
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (H.B.); (C.F.); (E.R.)
| | - Cecilie Feidenhansl
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (H.B.); (C.F.); (E.R.)
| | - Erinda Rruci
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (H.B.); (C.F.); (E.R.)
| | - Julia Gallinger
- Beiersdorf AG Research & Development, Discovery, 20245 Hamburg, Germany; (J.G.); (S.G.); (J.H.)
| | - Stefan Gallinat
- Beiersdorf AG Research & Development, Discovery, 20245 Hamburg, Germany; (J.G.); (S.G.); (J.H.)
| | - Jennifer Hüpeden
- Beiersdorf AG Research & Development, Discovery, 20245 Hamburg, Germany; (J.G.); (S.G.); (J.H.)
| |
Collapse
|
9
|
Sun J, Hang G, Lv H, Li Y, Song Q, Zhong Z, Sun Z, Liu W. Genomic characteristics and phylogenetic relationships of Cutibacterium acnes breast milk isolates. BMC Microbiol 2025; 25:2. [PMID: 39762730 PMCID: PMC11702113 DOI: 10.1186/s12866-024-03717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cutibacterium acnes is one of the most commonly found microbes in breast milk. However, little is known about the genomic characteristics of C. acnes isolated from breast milk. In this study, the sequencing and assembly results of 10 C. acnes isolates from breast milk were compared with the genomic data of 454 strains downloaded from NCBI, and the characteristics of breast milk isolates from various perspectives, including phylogeny, genomic characteristics, virulence genes, drug resistance genes, and carbohydrate utilization, were elucidated. RESULTS The findings of this study revealed no differences between the breast milk isolates and other isolates in terms of genomic features, phylogenetic relationships, virulence, and resistance-related genes. However, breast milk-derived isolates exhibited significantly lower copies of the carbohydrate metabolic enzyme genes GT5 and GT51 (P < 0.05) and a higher copy number of the GH31 gene (P < 0.05) than others. C. acnes primarily consists of three genetic branches (A, B, and C), which correspond to the three subspecies of C. acnes (C. acnes subsp. elongatum, C. acnes subsp. defendens, C. acnes subsp. acnes). The genetic differences between branches B and C were smaller than that between branch A. Branches A and B carry a higher number of copies of carbohydrate enzymes, including CE1, CE10, GH3, and CBM32 than branch C. Branches B and C possess the carbohydrate enzymes PL8 and GH23, which are absent in branch A. Core genes, core intergenic regions, and concatenated sequences of core genes and core intergenic regions were compared to construct a phylogenetic tree, and it was found that core intergenic regions could be used to describe phylogenetic relationships. CONCLUSIONS It is therefore speculated that the C. acnes in breast milk originates from the nipple or breast surface. This study provides a novel genetic basis for genetic differentiation of C. acnes isolates from breast milk.
Collapse
Affiliation(s)
- Jiaqi Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Guoxuan Hang
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Huimin Lv
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Yu Li
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Qiujie Song
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, P.R. China.
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P. R. China.
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
10
|
Guleria P, Joshi S, Parmar S, Sharma T, Chaudhary A, Kumar P, Ashawat MS. Decoding Acne Vulgaris: Insights into Pathogenesis, Treatment Modalities, Diagnosis and Recent Advancements. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2025; 19:18-30. [PMID: 40195701 DOI: 10.2174/0127722708312980240718093537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 04/09/2025]
Abstract
BACKGROUND Acne vulgaris, an alternative term for acne, is a persistent inflammatory skin condition affecting the pilosebaceous unit. Its development involves a combination of factors, including increased sebum production, changes in keratinization leading to comedone formation, colonization of hair follicles by Propionibacterium acnes (P. acnes), and the release of inflammatory mediators in the vicinity of the pilosebaceous unit. OBJECTIVE This review provides a concise overview of acne, covering its pathogenesis, epidemiology, diagnosis, treatment options, and recent advancements involved in acne. DISCUSSION Various therapeutic approaches, encompassing topical, systemic, combination, and hormonal treatments, are employed to address acne. Prolonged use of synthetic medications is common in acne therapy, but their potential for severe side effects prompts a preference for herbal- based treatments. Herbal remedies utilizing extracts of natural origin are considered safer due to their lower toxicity and reduced likelihood of adverse drug reactions. Recent advancements, particularly in personalized medicine and microbiome research have enhanced our understanding and opened new avenues for more effective management. CONCLUSION Decoding acne vulgaris has provided insights into its pathogenesis, treatment modalities, diagnostics, and recent advancements. Integrating synthetic and herbal treatments, personalized medicine, microbiome research, and advanced modeling techniques offer promising acne management strategies.
Collapse
Affiliation(s)
- Priyanka Guleria
- Department of Pharmaceutics, Laureate Institute of Pharmacy, VPO- Kathog, Kangra, H.P, 176031, India
| | - Shiana Joshi
- Department of Pharmaceutics, Laureate Institute of Pharmacy, VPO- Kathog, Kangra, H.P, 176031, India
| | - Shivika Parmar
- Department of Pharmaceutics, Laureate Institute of Pharmacy, VPO- Kathog, Kangra, H.P, 176031, India
| | - Tarun Sharma
- Department of Pharmaceutics, Laureate Institute of Pharmacy, VPO- Kathog, Kangra, H.P, 176031, India
| | - Archana Chaudhary
- Department of Pharmaceutics, Laureate Institute of Pharmacy, VPO- Kathog, Kangra, H.P, 176031, India
| | - Pravin Kumar
- Department of Pharmaceutics, Laureate Institute of Pharmacy, VPO- Kathog, Kangra, H.P, 176031, India
| | - Mahendra Singh Ashawat
- Department of Pharmaceutics, Laureate Institute of Pharmacy, VPO- Kathog, Kangra, H.P, 176031, India
| |
Collapse
|
11
|
Sharma K, Angrup A, Ghosh A, Singh S, Sood A, Arora A, Sharma M, Sethi S, Rudramurthy SM, Kaur H, Ray P, Chakrabarti A. Evaluation of VITEK MS Version 3.0 MALDI-TOF for the identification of anaerobes, mycobacteria, Nocardia, and moulds. Diagn Microbiol Infect Dis 2024; 110:116477. [PMID: 39216192 DOI: 10.1016/j.diagmicrobio.2024.116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE The identification of anaerobes, Mycobacterium and Nocardia species, and moulds by MALDI-TOF-MS remains a challenge. This study aimed to evaluate the performance of MALDI-TOF in the identification of these organisms. METHODS A total of 382 strains, comprising 128 (33.5 %) anaerobes, 126(33.0 %) mycobacterial, 113(29.6 %), mycelial fungi, and 15(3.9 %) Nocardia species were evaluated by VITEK MS Version 3.0. The results were compared with the identification of the isolates by DNA sequence analysis. The DNA sequences used for analysis were the 16S rRNA for anaerobic bacteria, hsp65 gene for mycobacteria, whereas both 16S rRNA and hsp65 gene for Nocardia species, and internal transcribed spacer (ITS) and 28S rRNA gene's D1/D2 regions of fungi. RESULTS The VITEK-MS accurately identified 78.3 % (299/382) of the strains at the species, and 9.4 % (36/382) at the genus level. Misidentifications were observed in 3.9 % (15/382) isolates. Of isolates tested, 8.4 % (32/382) were not identified by the system, and 7.06 % (27/382) were not included in the IVD database. CONCLUSION An upgraded VITEK MS V3.0 database provides reasonably accurate and rapid identification of clinically relevant anaerobes, mycobacteria, Nocardia species, and moulds to the species level.
Collapse
MESH Headings
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Bacteria, Anaerobic/genetics
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/isolation & purification
- Nocardia/genetics
- Nocardia/classification
- Nocardia/isolation & purification
- Humans
- Mycobacterium/genetics
- Mycobacterium/classification
- Mycobacterium/isolation & purification
- RNA, Ribosomal, 16S/genetics
- Fungi/classification
- Fungi/isolation & purification
- Fungi/genetics
- Sequence Analysis, DNA/methods
- DNA, Bacterial/genetics
- RNA, Ribosomal, 28S/genetics
Collapse
Affiliation(s)
- Kusum Sharma
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Archana Angrup
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Anup Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India.
| | - Shreya Singh
- Dr B R Ambedkar Institute of Medical Sciences (AIMS Mohali), Chandigarh 160055, India
| | - Anshul Sood
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Amit Arora
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Megha Sharma
- Department of Medical Microbiology, All India Institute of Medical Science, Bilaspur, Himachal, Pradesh 174001, India
| | - Sunil Sethi
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Harsimran Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Pallab Ray
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Arunaloke Chakrabarti
- Doodhadhari Burfani Hospital and Research Centre, Haridwar, Uttarakhand 249411, India
| |
Collapse
|
12
|
Kim I, Jung DR, Kim RH, Lee D, Jung Y, Ha JH, Lee EK, Kim JM, Kim JY, Jang JH, Bae JT, Cho YS, Shin JH. Complete genome of single locus sequence typing D1 strain Cutibacterium acnes CN6 isolated from healthy facial skin. BMC Genom Data 2024; 25:94. [PMID: 39501144 PMCID: PMC11539642 DOI: 10.1186/s12863-024-01277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVES Cutibacterium acnes is a Gram-positive bacterium commonly found on human skin, particularly in sebaceous areas. While it is typically considered a commensal, specific strain types based on single locus sequence typing (SLST) have been associated with pathogenic conditions or healthy skin. Recently, SLST D1 strains, part of phylotype IA1, have received attention for their potential benefits related to skin health. However, their genetic characteristics remain underexplored. Therefore, the whole genome of C. acnes CN6, an SLST D1 strain isolated from the facial skin of a healthy individual, was sequenced to expand the understanding of SLST D1 strains and identify genomic features that may support skin health. DATA DESCRIPTION The whole genome sequencing of C. acnes CN6 was conducted using MinION reads based on de novo assembly, revealing a single circular complete chromosome. With the length of 2,550,458 bp and G + C content of 60.04%, the genome contains 2,492 genes, including 2,433 CDSs, 9 rRNAs, 46 tRNAs, 4 ncRNAs, and 134 pseudo genes. Previously predicted virulence proteins of C. ances were detected in the genome. Genome comparation with 200 C. acnes strains isolated from healthy facial skin revealed SLST D1 strain-specific genes and a unique variant of the znuC gene in D1 strains.
Collapse
Affiliation(s)
- Ikwhan Kim
- Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ryeong-Hui Kim
- NGS Core Facility, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dokyung Lee
- NGS Core Facility, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - YeonGyun Jung
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07247, Republic of Korea
| | - Ji Hoon Ha
- R&D Center, Kolmar Korea, Seoul, 06800, Republic of Korea
| | - Eun Kyung Lee
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07247, Republic of Korea
| | - Jin Mo Kim
- R&D Center, Kolmar Korea, Seoul, 06800, Republic of Korea
| | - Jin Young Kim
- R&D Center, Kolmar Korea, Seoul, 06800, Republic of Korea
| | | | | | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07247, Republic of Korea.
| | - Jae-Ho Shin
- Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea.
- NGS Core Facility, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
13
|
Locker J, Serrage HJ, Ledder RG, Deshmukh S, O'Neill CA, McBain AJ. Microbiological insights and dermatological applications of live biotherapeutic products. J Appl Microbiol 2024; 135:lxae181. [PMID: 39090975 DOI: 10.1093/jambio/lxae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/26/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
As our understanding of dermatological conditions advances, it becomes increasingly evident that traditional pharmaceutical interventions are not universally effective. The intricate balance of the skin microbiota plays a pivotal role in the development of various skin conditions, prompting a growing interest in probiotics, or live biotherapeutic products (LBPs), as potential remedies. Specifically, the topical application of LBPs to modulate bacterial populations on the skin has emerged as a promising approach to alleviate symptoms associated with common skin conditions. This review considers LBPs and their application in addressing a wide spectrum of dermatological conditions with particular emphasis on three key areas: acne, atopic dermatitis, and wound healing. Within this context, the critical role of strain selection is presented as a pivotal factor in effectively managing these dermatological concerns. Additionally, the review considers formulation challenges associated with probiotic viability and proposes a personalised approach to facilitate compatibility with the skin's unique microenvironment. This analysis offers valuable insights into the potential of LBPs in dermatological applications, underlining their promise in reshaping the landscape of dermatological treatments while acknowledging the hurdles that must be overcome to unlock their full potential.
Collapse
Affiliation(s)
- Jessica Locker
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Hannah J Serrage
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, M13 9PT, UK
| | - Ruth G Ledder
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | | | - Catherine A O'Neill
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, M13 9PT, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
14
|
Norton P, Trus P, Wang F, Thornton MJ, Chang C. Understanding and treating diabetic foot ulcers: Insights into the role of cutaneous microbiota and innovative therapies. SKIN HEALTH AND DISEASE 2024; 4:e399. [PMID: 39104636 PMCID: PMC11297444 DOI: 10.1002/ski2.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 08/07/2024]
Abstract
Background Notoriously known as the silent pandemic, chronic, non-healing diabetic foot ulcers (DFUs), pose a significant rate of incidence for amputation and are a major cause of morbidity. Alarmingly, the treatment and management strategies of chronic wounds represent a significant economic and health burden as well as a momentous drain on resources with billions per annum being spent in the US and UK alone. Defective wound healing is a major pathophysiological condition which propagates an acute wound to a chronic wound, further propelled by underlying conditions such as diabetes and vascular complications which are more prevalent amongst the elderly. Chronic wounds are prone to infection, which can exacerbate the condition, occasionally resulting in amputation for the patient, despite the intervention of modern therapies. However, amputation can only yield a 5-year survival rate for 50% of patients, highlighting the need for new treatments for chronic wounds. Findings The dynamic cutaneous microbiota is comprised of diverse microorganisms that often aid wound healing. Conversely, the chronic wound microbiome consists of a combination of common skin commensals such as Staphylococcus aureus and Staphylococcus epidermidis, as well as the opportunistic pathogen Pseudomonas aeruginosa. These bacteria have been identified as the most prevalent bacterial pathogens isolated from chronic wounds and contribute to prolific biofilm formation decreasing the efficiency of antimicrobials and further perpetuating a hyper-inflammatory state. Discussion and Conclusion Here, we review recent advances and provide a new perspective on alternative treatments including phage and microbiome transplant therapies and how the definitive role of the cutaneous microbiota impacts the aetiology of DFUs.
Collapse
Affiliation(s)
- Paul Norton
- School of Dental SciencesFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Biosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Centre for Skin SciencesFaculty of Life SciencesUniversity of BradfordBradfordUK
| | - Pavlos Trus
- School of Dental SciencesFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Biosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Fengyi Wang
- School of Dental SciencesFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Biosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - M. Julie Thornton
- Centre for Skin SciencesFaculty of Life SciencesUniversity of BradfordBradfordUK
| | - Chien‐Yi Chang
- School of Dental SciencesFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Biosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| |
Collapse
|
15
|
Cheung CT, Lancien U, Corvec S, Mengeaud V, Mias C, Véziers J, Khammari A, Dréno B. Pro-inflammatory activity of Cutibacterium acnes phylotype IA 1 and extracellular vesicles: An in vitro study. Exp Dermatol 2024; 33:e15150. [PMID: 39113601 PMCID: PMC11605500 DOI: 10.1111/exd.15150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 12/01/2024]
Abstract
Acne is a chronic inflammatory skin condition that involves Cutibacterium acnes (C. acnes), which is classified into six main phylotypes (IA1, IA2, IB, IC, II and III). Acne development is associated with loss of C. acnes phylotype diversity, characterised by overgrowth of phylotype IA1 relative to other phylotypes. It was also shown that purified extracellular vesicles (EVs) secreted by C. acnes can induce an acne-like inflammatory response in skin models. We aimed to determine if the inflammatory profile of EVs secreted by C. acnes phylotype IA1 from an inflammatory acne lesion was different from C. acnes phylotype IA1 from normal skin, thus playing a direct role in the severity of inflammation. EVs were produced in vitro after culture of two clinical strains of C. acnes phylotype IA1, T5 from normal human skin and A47 from an inflammatory acne lesion, and then incubated with either human immortalised keratinocytes, HaCaT cells, or skin explants obtained from abdominoplasty. Subsequently, quantitative PCR (qPCR) was performed for human β-defensin 2 (hBD2), cathelicidin (LL-37), interleukin (IL)-1β, IL-6, IL-8, IL-17α and IL-36γ, and ELISA for IL-6, IL-8 and IL-17α. We found that EVs produced in vitro by C. acnes derived from inflammatory acne lesions significantly increased the pro-inflammatory cytokines and anti-microbial peptides at both transcriptional and protein levels compared with EVs derived from normal human skin. We show for the first time that C. acnes EVs from inflammatory acne play a crucial role in acne-associated inflammation in vitro and that C. acnes phylotype IA1 collected from inflammatory acne lesion and normal skin produce different EVs and inflammatory profiles in vitro.
Collapse
Affiliation(s)
- Caroline T. Cheung
- Nantes University, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy (INCIT)NantesFrance
| | - Ugo Lancien
- Nantes University, CHU Nantes Chirurgie Plastique, Reconstructrice et Esthétique et Centre de traitement des Brûlés, Hôtel‐DieuNantesFrance
| | - Stéphane Corvec
- Nantes University, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy (INCIT)NantesFrance
- CHU Nantes Bacteriology DepartmentNantes UniversityNantesFrance
| | - Valérie Mengeaud
- Medical Direction, Laboratoires Dermatologiques Ducray, Les CauquillousLavaurFrance
| | - Céline Mias
- Pierre Fabre Dermo‐Cosmétique et Personal CareToulouseFrance
| | - Joëlle Véziers
- Nantes University, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeSNantesFrance
| | - Amir Khammari
- Nantes University, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy (INCIT)NantesFrance
- Department of DermatologyNantes University, CHU Nantes, INSERMNantesFrance
| | - Brigitte Dréno
- Nantes University, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy (INCIT)NantesFrance
| |
Collapse
|
16
|
Chudzik A, Bromke MA, Gamian A, Paściak M. Comprehensive lipidomic analysis of the genus Cutibacterium. mSphere 2024; 9:e0005424. [PMID: 38712970 PMCID: PMC11237483 DOI: 10.1128/msphere.00054-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
Cutibacterium are part of the human skin microbiota and are opportunistic microorganisms that become pathogenic in immunodeficient states. These lipophilic bacteria willingly inhabit areas of the skin where sebaceous glands are abundant; hence, there is a need to thoroughly understand their metabolism. Lipids are no longer considered only structural elements but also serve as signaling molecules and may have antigenic properties. Lipidomics remains a major research challenge, mainly due to the diverse physicochemical properties of lipids. Therefore, this study aimed to perform a large comparative lipidomic analysis of eight representatives of the Cutibacterium genus, including four phylotypes of C. acnes and two strains of C. granulosum, C. avidum, and C. namnetense. Lipidomic analysis was performed by liquid chromatography‒mass spectrometry (LC-MS) in both positive and negative ion modes, allowing the detection of the widest range of metabolites. Fatty acid analysis by gas chromatography‒mass spectrometry (GC-MS) corroborated the lipidomic data. As a result, 128 lipids were identified, among which it was possible to select marker compounds, some of which were characteristic even of individual C. acnes phylotypes. These include phosphatidylcholine PC 30:0, sphingomyelins (SM 33:1, SM 35:1), and phosphatidylglycerol with an alkyl ether substituent PG O-32:0. Moreover, cardiolipins and fatty acid amides were identified in Cutibacterium spp. for the first time. This comparative characterization of the cutibacterial lipidome with the search for specific molecular markers reveals its diagnostic potential for clinical microbiology. IMPORTANCE Cutibacterium (previously Propionibacterium) represents an important part of the human skin microbiota, and its role in clinical microbiology is growing due to opportunistic infections. Lipidomics, apart from protein profiling, has the potential to prove to be a useful tool for defining the cellular fingerprint, allowing for precise differentiation of microorganisms. In this work, we presented a comparative analysis of lipids found in eight strains of the genus Cutibacterium, including a few C. acnes phylotypes. Our results are one of the first large-scale comprehensive studies regarding the bacterial lipidome, which also enabled the selection of C. acnes phylotype-specific lipid markers. The increased role of lipids not only as structural components but also as diagnostic markers or potential antigens has led to new lipid markers that can be used as diagnostic tools for clinical microbiology. We believe that the findings in our paper will appeal to a wide range of researchers.
Collapse
Affiliation(s)
- Anna Chudzik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Mariusz A Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Mariola Paściak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
17
|
Armillei MK, Lomakin IB, Del Rosso JQ, Grada A, Bunick CG. Scientific Rationale and Clinical Basis for Clindamycin Use in the Treatment of Dermatologic Disease. Antibiotics (Basel) 2024; 13:270. [PMID: 38534705 PMCID: PMC10967556 DOI: 10.3390/antibiotics13030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Clindamycin is a highly effective antibiotic of the lincosamide class. It has been widely used for decades to treat a range of skin and soft tissue infections in dermatology and medicine. Clindamycin is commonly prescribed for acne vulgaris, with current practice standards utilizing fixed-combination topicals containing clindamycin that prevent Cutibacterium acnes growth and reduce inflammation associated with acne lesion formation. Certain clinical presentations of folliculitis, rosacea, staphylococcal infections, and hidradenitis suppurativa are also responsive to clindamycin, demonstrating its suitability and versatility as a treatment option. This review describes the use of clindamycin in dermatological practice, the mechanism of protein synthesis inhibition by clindamycin at the level of the bacterial ribosome, and clindamycin's anti-inflammatory properties with a focus on its ability to ameliorate inflammation in acne. A comparison of the dermatologic indications for similarly utilized antibiotics, like the tetracycline class antibiotics, is also presented. Finally, this review addresses both the trends and mechanisms for clindamycin and antibiotic resistance, as well as the current clinical evidence in support of the continued, targeted use of clindamycin in dermatology.
Collapse
Affiliation(s)
- Maria K. Armillei
- Program in Translational Biomedicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA;
| | - Ivan B. Lomakin
- Department of Dermatology, Yale University, New Haven, CT 06520, USA;
| | - James Q. Del Rosso
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA;
- JDR Dermatology Research, Las Vegas, NV 89148, USA
- Clinical Research and Strategic Development, Advanced Dermatology and Cosmetic Surgery, Maitland, FL 32751, USA
| | - Ayman Grada
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Christopher G. Bunick
- Program in Translational Biomedicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA;
- Department of Dermatology, Yale University, New Haven, CT 06520, USA;
| |
Collapse
|
18
|
Flores T, Kerschbaumer C, Jaklin FJ, Rohrbacher A, Weber M, Luft M, Aspöck C, Ströbele B, Kitzwögerer M, Lumenta DB, Bergmeister KD, Schrögendorfer KF. Gram-Positive Bacteria Increase Breast Implant-Related Complications: Prospective Analysis of 100 Revised Implants. Plast Reconstr Surg 2024; 153:76-89. [PMID: 37036325 PMCID: PMC10729897 DOI: 10.1097/prs.0000000000010499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/08/2022] [Indexed: 04/11/2023]
Abstract
BACKGROUND Breast implant-related complications can be reduced by strict antiseptic precautions during insertion, but bacteria can often be found on implant surfaces on the occasion of revision surgery. The authors prospectively analyzed the association of bacteria found on breast implant surfaces with implant-related complications in breast implant revision cases. METHODS The authors analyzed a total of 100 breast implant revisions in 66 patients between August of 2018 and January of 2021. Capsular swabs and capsular samples were taken intraoperatively. Analyses on the occurrence of bacteria and the occurrence of implant-related complications were performed. In addition, correlations between bacteria-contaminated breast implant surfaces and implant-related complications were performed. RESULTS Implant-related complications (perforation, rupture, capsular contraction) were observed in 42 implant sites: eight unilateral and 34 bilateral cases. In total, 16 swabs showed positive bacterial growth, 10 of which were associated with a breast implant-related complication (χ 2 = x, y, and z; P = 0.006). The most common implant-based complication at contaminated prosthetics was implant rupture. The association of contaminated breast implants and implant rupture was statistically significant. CONCLUSIONS The authors identified a correlation between implant complications and Gram-positive bacteria found on breast implant surfaces. The most common implant-based complication seen at simultaneously positive samples was implant rupture in 50% of the authors' cases. No capsular contraction or other complications were seen. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, III.
Collapse
Affiliation(s)
- Tonatiuh Flores
- From the Karl Landsteiner University of Health Sciences
- Clinical Department of Plastic, Aesthetic and Reconstructive Surgery
| | - Celina Kerschbaumer
- From the Karl Landsteiner University of Health Sciences
- Clinical Department of Plastic, Aesthetic and Reconstructive Surgery
| | - Florian J. Jaklin
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive, and Aesthetic Surgery, Medical University of Vienna
| | | | - Michael Weber
- From the Karl Landsteiner University of Health Sciences
| | - Matthias Luft
- From the Karl Landsteiner University of Health Sciences
- Clinical Department of Plastic, Aesthetic and Reconstructive Surgery
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive, and Aesthetic Surgery, Medical University of Vienna
| | - Christoph Aspöck
- From the Karl Landsteiner University of Health Sciences
- Clinical Institute of Hygiene and Microbiology
| | - Barbara Ströbele
- From the Karl Landsteiner University of Health Sciences
- Clinical Institute of Hygiene and Microbiology
| | - Melitta Kitzwögerer
- From the Karl Landsteiner University of Health Sciences
- Clinical Institute for Pathology, University Clinic of St. Poelten
| | - David B. Lumenta
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz
| | - Konstantin D. Bergmeister
- From the Karl Landsteiner University of Health Sciences
- Clinical Department of Plastic, Aesthetic and Reconstructive Surgery
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic, Reconstructive, and Aesthetic Surgery, Medical University of Vienna
| | - Klaus F. Schrögendorfer
- From the Karl Landsteiner University of Health Sciences
- Clinical Department of Plastic, Aesthetic and Reconstructive Surgery
| |
Collapse
|
19
|
McDowell A, Brüggemann H, Layton AM. Treatment of acne patients with isotretinoin increases β-diversity of a putative health-associated strain of Cutibacterium acnes within the follicular microbiome of responders. Exp Dermatol 2024; 33:e14967. [PMID: 37891715 DOI: 10.1111/exd.14967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Affiliation(s)
- Andrew McDowell
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Alison M Layton
- Department of Dermatology, Harrogate and District NHS Foundation Trust, Harrogate, UK
| |
Collapse
|
20
|
Erbežnik A, Celar Šturm A, Strašek Smrdel K, Triglav T, Maver Vodičar P. Comparative Genomic Analysis of Cutibacterium spp. Isolates in Implant-Associated Infections. Microorganisms 2023; 11:2971. [PMID: 38138116 PMCID: PMC10745319 DOI: 10.3390/microorganisms11122971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Bacteria of the genus Cutibacterium are Gram-positive commensals and opportunistic pathogens that represent a major challenge in the diagnosis and treatment of implant-associated infections (IAIs). This study provides insight into the distribution of different sequence types (STs) of C. acnes, and the presence of virulence factors (VFs) in 64 Cutibacterium spp. isolates from suspected or confirmed IAIs obtained during routine microbiological diagnostics. Fifty-three C. acnes, six C. avidum, four C. granulosum, and one C. namnetense isolate, collected from different anatomical sites, were included in our study. Using whole-genome sequencing and a single-locus sequencing typing scheme, we successfully characterized all C. acnes strains and revealed the substantial diversity of STs, with the discovery of six previously unidentified STs. Phylotype IA1, previously associated with both healthy skin microbiome and infections, was the most prevalent, with ST A1 being the most common. Some minor differences in STs' distribution were observed in correlation with anatomical location and association with infection. A genomic analysis of 40 investigated VFs among 64 selected strains showed no significant differences between different STs, anatomical sites, or infection-related and infection undetermined/unlikely groups of strains. Most differences in VF distribution were found between strains of different Cutibacterium spp., subspecies, and phylotypes, with CAMP factors, biofilm-related VFs, lipases, and heat shock proteins identified in all analyzed Cutibacterium spp.
Collapse
Affiliation(s)
| | | | | | | | - Polona Maver Vodičar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.E.); (A.C.Š.); (K.S.S.); (T.T.)
| |
Collapse
|
21
|
Hajam IA, Katiki M, McNally R, Lázaro-Díez M, Kolar S, Chatterjee A, Gonzalez C, Paulchakrabarti M, Choudhury B, Caldera JR, Desmond T, Tsai CM, Du X, Li H, Murali R, Liu GY. Functional divergence of a bacterial enzyme promotes healthy or acneic skin. Nat Commun 2023; 14:8061. [PMID: 38052825 PMCID: PMC10697930 DOI: 10.1038/s41467-023-43833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Acne is a dermatologic disease with a strong pathologic association with human commensal Cutibacterium acnes. Conspicuously, certain C. acnes phylotypes are associated with acne, whereas others are associated with healthy skin. Here we investigate if the evolution of a C. acnes enzyme contributes to health or acne. Two hyaluronidase variants exclusively expressed by C. acnes strains, HylA and HylB, demonstrate remarkable clinical correlation with acne or health. We show that HylA is strongly pro-inflammatory, and HylB is modestly anti-inflammatory in a murine (female) acne model. Structural and phylogenic studies suggest that the enzymes evolved from a common hyaluronidase that acquired distinct enzymatic activity. Health-associated HylB degrades hyaluronic acid (HA) exclusively to HA disaccharides leading to reduced inflammation, whereas HylA generates large-sized HA fragments that drive robust TLR2-dependent pathology. Replacing an amino acid, Serine to Glycine near the HylA catalytic site enhances the enzymatic activity of HylA and produces an HA degradation pattern intermediate to HylA and HylB. Selective targeting of HylA using peptide vaccine or inhibitors alleviates acne pathology. We suggest that the functional divergence of HylA and HylB is a major driving force behind C. acnes health- and acne- phenotype and propose targeting of HylA as an approach for acne therapy.
Collapse
Affiliation(s)
- Irshad A Hajam
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Madhusudhanarao Katiki
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Randall McNally
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Vault Pharma Inc., 570 Westwood Plaza, Los Angeles, CA, 90025, USA
| | - María Lázaro-Díez
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
- AIDS Research Institute (IrsiCaixa). VIRus Immune Escape and VACcine Design (VIRIEVAC) Universitary Hospital German Trias i Pujol Crta Canyet s/n 08916, Badalona, Barcelona, Spain
| | - Stacey Kolar
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Pharmacology at Armata Pharmaceuticals, Inc., Marina del Rey, CA, 90292, USA
| | - Avradip Chatterjee
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Cesia Gonzalez
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | | | - Biswa Choudhury
- GlycoAnalytics Core, University of California San Diego, San Diego, CA, 92093, USA
| | - J R Caldera
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Pathology & Laboratory Medicine, UCLA Health & David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Trieu Desmond
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
- School of Pharmacy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Xin Du
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA
| | - Huiying Li
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - George Y Liu
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA.
- Division of Infectious Diseases, Rady Children's Hospital, San Diego, CA, 92123, USA.
| |
Collapse
|
22
|
Jensen MG, Svraka L, Baez E, Lund M, Poehlein A, Brüggemann H. Species- and strain-level diversity of Corynebacteria isolated from human facial skin. BMC Microbiol 2023; 23:366. [PMID: 38017392 PMCID: PMC10683109 DOI: 10.1186/s12866-023-03129-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Sequencing of the human skin microbiome revealed that Corynebacterium is an ubiquitous and abundant bacterial genus on human skin. Shotgun sequencing further highlighted the microbial "dark matter" of the skin microbiome, consisting of microorganisms, including corynebacterial species that were not cultivated and genome-sequenced so far. In this pilot project, facial human skin swabs of 13 persons were cultivated to selectively obtain corynebacteria. 54 isolates were collected and 15 of these were genome-sequenced and the pan-genome was determined. The strains were biochemically characterized and antibiotic susceptibility testing (AST) was performed. RESULTS Among the 15 sequenced strains, nine different corynebacterial species were found, including two so far undescribed species, tentatively named "Corynebacterium vikingii" and "Corynebacterium borealis", for which closed genome sequences were obtained. Strain variability beyond the species level was determined in biochemical tests, such as the variable presence of urease activity and the capacity to ferment different sugars. The ability to grow under anaerobic conditions on solid agar was found to be species-specific. AST revealed resistances to clindamycin in seven strains. A Corynebacterium pseudokroppenstedtii strain showed additional resistance towards beta-lactam and fluoroquinolone antibiotics; a chromosomally located 17 kb gene cluster with five antibiotic resistance genes was found in the closed genome of this strain. CONCLUSIONS Taken together, this pilot study identified an astonishing diversity of cutaneous corynebacterial species in a relatively small cohort and determined species- and strain-specific individualities regarding biochemical and resistance profiles. This further emphasizes the need for cultivation-based studies to be able to study these microorganisms in more detail, in particular regarding their host-interacting and, potentially, -beneficial and/or -detrimental properties.
Collapse
Affiliation(s)
| | - Lejla Svraka
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Elena Baez
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Michael Lund
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Holger Brüggemann
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
23
|
Kurihara MNL, Santos INM, Eisen AKA, Caleiro GS, de Araújo J, de Sales RO, Pignatari AC, Salles MJ. Phenotypic and Genotypic Characterization of Cutibacterium acnes Isolated from Shoulder Surgery Reveals Insights into Genetic Diversity. Microorganisms 2023; 11:2594. [PMID: 37894252 PMCID: PMC10609031 DOI: 10.3390/microorganisms11102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Specific virulence factors that likely influence C. acnes invasion into deep tissues remain to be elucidated. Herein, we describe the frequency of C. acnes identification in deep tissue specimens of patients undergoing clean shoulder surgery and assess its phenotypic and genetic traits associated with virulence and antibiotic resistance patterns, compared with isolates from the skin of healthy volunteers. Multiple deep tissue specimens from the bone fragments, tendons, and bursa of 84 otherwise healthy patients undergoing primary clean-open and arthroscopic shoulder surgeries were aseptically collected. The overall yield of tissue sample cultures was 21.5% (55/255), with 11.8% (30/255) identified as C. acnes in 27.3% (23/84) of patients. Antibiotic resistance rates were low, with most strains expressing susceptibility to first-line antibiotics, while a few were resistant to penicillin and rifampicin. Phylotypes IB (73.3%) and II (23.3%) were predominant in deep tissue samples. Genomic analysis demonstrated differences in the pangenome of the isolates from the same clade. Even though strains displayed a range of pathogenic markers, such as biofilm formation, patients did not evolve to infection during the 1-year follow-up. This suggests that the presence of polyclonal C. acnes in multiple deep tissue samples does not necessarily indicate infection.
Collapse
Affiliation(s)
- Mariana Neri Lucas Kurihara
- Laboratório Especial de Microbiologia Clínica (LEMC), Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo 04025-010, Brazil; (M.N.L.K.); (I.N.M.S.); (A.C.P.)
| | - Ingrid Nayara Marcelino Santos
- Laboratório Especial de Microbiologia Clínica (LEMC), Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo 04025-010, Brazil; (M.N.L.K.); (I.N.M.S.); (A.C.P.)
| | - Ana Karolina Antunes Eisen
- Emerging Viruses Research Laboratory, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (A.K.A.E.); (G.S.C.); (J.d.A.)
| | - Giovana Santos Caleiro
- Emerging Viruses Research Laboratory, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (A.K.A.E.); (G.S.C.); (J.d.A.)
| | - Jansen de Araújo
- Emerging Viruses Research Laboratory, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (A.K.A.E.); (G.S.C.); (J.d.A.)
| | - Romário Oliveira de Sales
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil;
| | - Antônio Carlos Pignatari
- Laboratório Especial de Microbiologia Clínica (LEMC), Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo 04025-010, Brazil; (M.N.L.K.); (I.N.M.S.); (A.C.P.)
| | - Mauro José Salles
- Laboratório Especial de Microbiologia Clínica (LEMC), Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo 04025-010, Brazil; (M.N.L.K.); (I.N.M.S.); (A.C.P.)
| |
Collapse
|
24
|
Rajasekaran S, Vasudevan G, Easwaran M, Devi Ps N, Anand K S SV, Muthurajan R, Tangavel C, Murugan C, B T P, Shetty AP, Kanna RM. "Are we barking up the wrong tree? Too much emphasis on Cutibacterium acnes and ignoring other pathogens"- a study based on next-generation sequencing of normal and diseased discs. Spine J 2023; 23:1414-1426. [PMID: 37369253 DOI: 10.1016/j.spinee.2023.06.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The majority of literature on bacterial flora in the disc stands disadvantaged in utilizing traditional culture methods and targeting a single bacterium, Cutibacterium acnes. PURPOSE Our objective was to document the diversity in the bacterial flora between normal and degenerated discs for shortlisting potential pathogens using next-generation genomic tools. STUDY DESIGN Experimental case-control study. METHODS Researchers employed 16S metagenome sequencing to profile bacterial diversity in magnetic resonance imaging normal healthy discs from brain-dead organ voluntary donors (n=20) and 40 degenerated disc samples harvested during surgery (Modic [MC]=20 and non-Modic [NMC]=20). The V3-V4 region was amplified using universal bacterial primers 341F and 806R, and the libraries were sequenced using Illumina NovoSeq 6000 platform. Statistical significance was set at bacteria with a minimum of 100 operational taxonomic unit (OTU) and present in at least 70% of the samples. The quality check-filtered reads were processed using the QIIME-2 pipeline. The OTU clustering and taxonomic classification were carried out for the merged reads using the Greengenes/SILVA reference database. Validation was done by identification of bacterial metabolites in samples using the liquid chromatography-mass spectrometry approach. RESULTS Abundant bacteria differing widely in diversity, as evidenced by Alfa and Beta diversity analysis, were present in all control and degenerative samples. The number of bacterial genera was 27 (14-gram-positive: 13-gram-negative) in the control group, 23 (10-gram-positive: 11-gram-negative) in the Modic group, and 16 (11-gram-positive: 5-gram-negative) in the non-Modic group. In the Modic group, gram-negative bacteria OTUs were found to be predominant (more than 50% of the total bacteria identified), whereas in control and non-Modic groups the OTUs of gram-positive bacteria were predominant. Species-level analysis revealed an abundance of opportunistic gram-negative pathogens like Pseudomonas aeruginosa, Sphingomonos paucibacillus, and Ochrobactrum quorumnocens in the discs with Modic changes, more than in non-Modic discs. The presence of bacterial metabolites and quorum-sensing molecules like N-decanoyl-L-homoserine lactone, 6-hydroxynicotinic acid, 2-aminoacetophenone, 4-hydroxy-3-polyprenylbenzoate, PE (16:1(9Z)/18:0) and phthalic acid validated the colonization and cell-cell communication of bacteria in disc ruling out contamination theory. Cutibacterium acnes was not the predominant bacteria in any of the three groups of discs and in fact was in the 16th position in the order of abundance in the control discs (0.72%), seventh position in the Modic discs (1.41%), and 12th position (0.53%) in the non-Modic discs. CONCLUSION This study identified a predominance of gram-negative bacteria in degenerated discs and highlights that Cutibacterium acnes may not be the only degeneration-causing bacteria. This may be attributed to the environment, diet, and lifestyle habits of the sample population. Though the study does not reveal the exact pathogen, it may pave the way for future studies on the subject. CLINICAL SIGNIFICANCE These findings invite further investigation into causal relationships of bacterial profile with disc degeneration phenotypes as well as phenotype-driven clinical treatment protocols.
Collapse
Affiliation(s)
- Shanmuganathan Rajasekaran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, Tamil Nadu, 641043, India.
| | - Gowdaman Vasudevan
- Ganga Research Centre, SF No.442, Vattamalaipalayam, Rd, NGGO Colony Post, Coimbatore, Tamil Nadu, 641022, India
| | - Murugesh Easwaran
- Ganga Research Centre, SF No.442, Vattamalaipalayam, Rd, NGGO Colony Post, Coimbatore, Tamil Nadu, 641022, India
| | - Narmatha Devi Ps
- Ganga Research Centre, SF No.442, Vattamalaipalayam, Rd, NGGO Colony Post, Coimbatore, Tamil Nadu, 641022, India
| | - Sri Vijay Anand K S
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, Tamil Nadu, 641043, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Lawley Rd, Coimbatore, Tamil Nadu, 641003, India
| | - Chitraa Tangavel
- Ganga Research Centre, SF No.442, Vattamalaipalayam, Rd, NGGO Colony Post, Coimbatore, Tamil Nadu, 641022, India
| | - Chandhan Murugan
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, Tamil Nadu, 641043, India
| | - Pushpa B T
- Department of Radiodiagnosis, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, Tamil Nadu, 641043, India
| | - Ajoy Prasad Shetty
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, Tamil Nadu, 641043, India
| | - Rishi Mugesh Kanna
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, Tamil Nadu, 641043, India
| |
Collapse
|
25
|
Cros MP, Mir-Pedrol J, Toloza L, Knödlseder N, Maruotti J, Zouboulis CC, Güell M, Fábrega MJ. New insights into the role of Cutibacterium acnes-derived extracellular vesicles in inflammatory skin disorders. Sci Rep 2023; 13:16058. [PMID: 37749255 PMCID: PMC10520063 DOI: 10.1038/s41598-023-43354-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
Cutibacterium acnes (C. acnes) is one of the most prevalent bacteria that forms the human skin microbiota. Specific phylotypes of C. acnes have been associated with the development of acne vulgaris, while other phylotypes have been linked to healthy skin. In this scenario, bacterial extracellular vesicles (EVs) play a role in the interkingdom communication role with the human host. The purpose of this study was to examine the impact of EVs generated by various phylotypes of C. acnes on inflammation and sebum production using different in vitro skin cell types. The main findings of this study reveal that the proteomic profile of the cargo embodied in the EVs reflects distinct characteristics of the different C. acnes phylotypes in terms of life cycle, survival, and virulence. The in vitro skin cell types showed an extended pro-inflammatory modulation of SLST A1 EVs consistently triggering the activation of the inflammation-related factors IL-8, IL-6, TNFα and GM-CSF, in comparison to SLST H1 and SLST H2. Additionally, an acne-prone skin model utilizing PCi-SEB and arachidonic acid as a sebum inducer, was employed to investigate the impact of C. acnes EVs on sebum regulation. Our findings indicated that all three types of EVs significantly inhibited sebum production after a 24-h treatment period, with SLST H1 EVs exhibiting the most pronounced inhibitory effect when compared to the positive control. The results of this study highlight the protective nature of C. acnes SLST H1 EVs and their potential use as a natural treatment option for alleviating symptoms associated with inflammation and oily skin.
Collapse
Affiliation(s)
- Maria Pol Cros
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Júlia Mir-Pedrol
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Quantitative Biology Center, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| | - Lorena Toloza
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nastassia Knödlseder
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Christos C Zouboulis
- Hochschulklinik für Dermatologie, Venerologie und Allergologie, Immunologisches Zentrum, Städtisches Klinikum Dessau, Medizinische Hochschule Brandenburg Theodor Fontane und Fakaltät für Gesundheitswissenschaften Brandenburg, Auenweg, Germany
| | - Marc Güell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Maria-José Fábrega
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
26
|
Deng T, Zheng H, Zhu Y, Liu M, He G, Li Y, Liu Y, Wu J, Cheng H. Emerging Trends and Focus in Human Skin Microbiome Over the Last Decade: A Bibliometric Analysis and Literature Review. Clin Cosmet Investig Dermatol 2023; 16:2153-2173. [PMID: 37583484 PMCID: PMC10424697 DOI: 10.2147/ccid.s420386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/29/2023] [Indexed: 08/17/2023]
Abstract
Background Human skin microbiome is the first barrier against exogenous attack and is associated with various skin disease pathogenesis and progression. Advancements in high-throughput sequencing technologies have paved the way for a deeper understanding of this field. Based on the bibliometric analysis, this investigation aimed to identify the hotspots and future research trends associated with human skin microbiomes studied over the past decade. Methods The published research on skin microbiome from January 2013 to January 2023 was retrieved from the Web of Science Core Collection. Data cleaning processes to ensure robust data and the bibliometrix packages R, CiteSpace, VOSviewer, Origin, and Scimago Graphica for bibliometric and visual analyses were utilized. Results A total of 1629 published documents were analyzed. The overall publication trend steadily increased, with relatively fast growth in 2017 and 2020. The United States of America has the highest number of publications and citations and shows close collaborations with China and Germany. The University of California, San Diego, indicated a higher number of publications than other institutions and the fastest growth rate. The top three most publishing journals on this topic are Microorganisms, Frontiers in Microbiology, and Experimental dermatology. Gallo RL is the most influential author with the highest h- and g-index and most publications in skin microecology, followed by Grice EA and Kong HH. The top 10 most frequently used keywords in recent years included skin microbiome, microbiome, staphylococcus aureus, diversity, atopic dermatitis, skin, bacteria, infections, gut microbiota, and disease. Conclusion The skin microbiome is an area of research that requires continuous analysis, and even with much-achieved progress, future research will further be aided as technology develops.
Collapse
Affiliation(s)
- Tinghan Deng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Huilan Zheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Ying Zhu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Ming Liu
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Guanjin He
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Ya Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Yichen Liu
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Jingping Wu
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Hongbin Cheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| |
Collapse
|
27
|
Nolan ZT, Banerjee K, Cong Z, Gettle SL, Longenecker AL, Kawasawa YI, Zaenglein AL, Thiboutot DM, Agak GW, Zhan X, Nelson AM. Treatment response to isotretinoin correlates with specific shifts in Cutibacterium acnes strain composition within the follicular microbiome. Exp Dermatol 2023; 32:955-964. [PMID: 36999947 PMCID: PMC11107415 DOI: 10.1111/exd.14798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/17/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
There are no drugs as effective as isotretinoin for acne. Deciphering the changes in the microbiome induced by isotretinoin in the pilosebaceous follicle of successfully treated patients can pave the way to identify novel therapeutic alternatives. We determined how the follicular microbiome changes with isotretinoin and identified which alterations correlate with a successful treatment response. Whole genome sequencing was done on casts from facial follicles of acne patients sampled before, during and after isotretinoin treatment. Alterations in the microbiome were assessed and correlated with treatment response at 20 weeks as defined as a 2-grade improvement in global assessment score. We investigated the α-diversity, β-diversity, relative abundance of individual taxa, Cutibacterium acnes strain composition and bacterial metabolic profiles with a computational approach. We found that increased β-diversity of the microbiome coincides with a successful treatment response to isotretinoin at 20 weeks. Isotretinoin selectively altered C. acnes strain diversity in SLST A and D clusters, with increased diversity in D1 strains correlating with a successful clinical response. Isotretinoin significantly decreased the prevalence of KEGG Ontology (KO) terms associated with four distinct metabolic pathways inferring that follicular microbes may have limited capacity for growth or survival following treatment. Importantly, these alterations in microbial composition or metabolic profiles were not observed in patients that failed to achieve a successful response at 20 weeks. Alternative approaches to recapitulate this shift in the balance of C. acnes strains and microbiome metabolic function within the follicle may be beneficial in the future treatment of acne.
Collapse
Affiliation(s)
- Zachary T. Nolan
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kalins Banerjee
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Zhaoyuan Cong
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Samantha L. Gettle
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Amy L. Longenecker
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Yuka I. Kawasawa
- Departments of Biochemistry and Molecular Biology; Pharmacology; The Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Andrea L. Zaenglein
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Diane M. Thiboutot
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - George W. Agak
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xiang Zhan
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Amanda M. Nelson
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
28
|
Huang C, Zhuo F, Han B, Li W, Jiang B, Zhang K, Jian X, Chen Z, Li H, Huang H, Dou X, Yu B. The updates and implications of cutaneous microbiota in acne. Cell Biosci 2023; 13:113. [PMID: 37344849 DOI: 10.1186/s13578-023-01072-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Acne is a chronic inflammatory skin disorder that profoundly impacts the quality of life of patients worldwide. While it is predominantly observed in adolescents, it can affect individuals across all age groups. Acne pathogenesis is believed to be a result of various endogenous and exogenous factors, but the precise mechanisms remain elusive. Recent studies suggest that dysbiosis of the skin microbiota significantly contributes to acne development. Specifically, Cutibacterium acnes, the dominant resident bacterial species implicated in acne, plays a critical role in disease progression. Various treatments, including topical benzoyl peroxide, systemic antibiotics, and photodynamic therapy, have demonstrated beneficial effects on the skin microbiota composition in acne patients. Of particular interest is the therapeutic potential of probiotics in acne, given its direct influence on the skin microbiota. This review summarizes the alterations in skin microbiota associated with acne, provides insight into its pathogenic role in acne, and emphasizes the potential of therapeutic interventions aimed at restoring microbial homeostasis for acne management.
Collapse
Affiliation(s)
- Cong Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Fan Zhuo
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Baoquan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Wenting Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Bin Jiang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Kaoyuan Zhang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xingling Jian
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Zhenzhen Chen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Hui Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Haiyan Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xia Dou
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Bo Yu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
| |
Collapse
|
29
|
Zhu Y, Yu X, Cheng G. Human skin bacterial microbiota homeostasis: A delicate balance between health and disease. MLIFE 2023; 2:107-120. [PMID: 38817619 PMCID: PMC10989898 DOI: 10.1002/mlf2.12064] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 06/01/2024]
Abstract
As the largest organ of the body, the skin acts as a barrier to prevent diseases and harbors a variety of beneficial bacteria. Furthermore, the skin bacterial microbiota plays a vital role in health and disease. Disruption of the barrier or an imbalance between symbionts and pathogens can lead to skin disorders or even systemic diseases. In this review, we first provide an overview of research on skin bacterial microbiota and human health, including the composition of skin bacteria in a healthy state, as well as skin bacterial microbiota educating the immune system and preventing the invasion of pathogens. We then discuss the diseases that result from skin microbial dysbiosis, including atopic dermatitis, common acne, chronic wounds, psoriasis, viral transmission, cutaneous lupus, cutaneous lymphoma, and hidradenitis suppurativa. Finally, we highlight the progress that utilizes skin microorganisms for disease therapeutics, such as bacteriotherapy and skin microbiome transplantation. A deeper knowledge of the interaction between human health and disease and the homeostasis of the skin bacterial microbiota will lead to new insights and strategies for exploiting skin bacteria as a novel therapeutic target.
Collapse
Affiliation(s)
- Yibin Zhu
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| | - Xi Yu
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| | - Gong Cheng
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| |
Collapse
|
30
|
Topical phage therapy in a mouse model of Cutibacterium acnes-induced acne-like lesions. Nat Commun 2023; 14:1005. [PMID: 36813793 PMCID: PMC9947178 DOI: 10.1038/s41467-023-36694-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Acne vulgaris is a common neutrophil-driven inflammatory skin disorder in which Cutibacterium acnes (C. acnes) is known to play a key role. For decades, antibiotics have been widely employed to treat acne vulgaris, inevitably resulting in increased bacterial antibiotic resistance. Phage therapy is a promising strategy to combat the growing challenge of antibiotic-resistant bacteria, utilizing viruses that specifically lyse bacteria. Herein, we explore the feasibility of phage therapy against C. acnes. Eight novel phages, isolated in our laboratory, and commonly used antibiotics eradicate 100% of clinically isolated C. acnes strains. Topical phage therapy in a C. acnes-induced acne-like lesions mouse model affords significantly superior clinical and histological scores. Moreover, the decrease in inflammatory response was reflected by the reduced expression of chemokine CXCL2, neutrophil infiltration, and other inflammatory cytokines when compared with the infected-untreated group. Overall, these findings indicate the potential of phage therapy for acne vulgaris as an additional tool to conventional antibiotics.
Collapse
|
31
|
McLaughlin J, Nagy I, Miliotis G, McDowell A. CUTIS-SEQ, a flexible bilocus sequence typing scheme that provides high resolution of Cutibacterium acnes strains across all subspecies. Anaerobe 2023; 79:102671. [PMID: 36455756 DOI: 10.1016/j.anaerobe.2022.102671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES A 'high resolution' Single Locus Sequence Typing (SLST) scheme has been described for the anaerobic skin bacterium Cutibacterium acnes that seemingly discriminates sequence types (STs) to a level commensurate with previously described Multilocus Sequence Typing (MLST) methods (MLST4; MLST8; MLST9). However, no quantifiable evaluation of SLST versus MLST for differentiation of C. acnes strains, especially in relation to the subspecies of the bacterium, known as C. acnes subsp. acnes (type I), C. acnes subsp. defendens (type II) and C. acnes subsp. elongatum (type III), has been performed which is vital given its increasing use. To address this, we examined the discriminatory power of SLST versus MLST with a large group of isolates representative of all subspecies. METHODS Simpson's index of diversity (D) was used for quantitative comparison of the resolving power of the SLST and MLST schemes for 186 isolates of C. acnes covering all three subspecies. RESULTS When strains were considered collectively, SLST and all three MLST approaches had similar D values > 90%. However, at the subspecies level there were significant differences between the methods, most strikingly a reduced discrimination of type II and type III strains (D <80%) by SLST versus MLST8, and to a lesser extent MLST4. The MLST9 method also performed poorly for type II strains (D <70%), but did display the best results for type I (D = 90%). By combining the SLST locus with the camp2 gene sequence to create a novel and flexible high-resolution Bilocus Sequence Typing (BLST) scheme, known as CUTIS-SEQ typing (CUTIbacterium acneS BilocuS sEQuence Typing), we achieved improved resolution at both species and, critically, subspp. levels. CONCLUSIONS CUTIS-SEQ provides an opportunity to improve differentiation of C. acnes isolates by SLST without significantly impacting laboratory workload, or compromising application to complex biological communities. A CUTIS-SEQ isolate database is now available as part of the C. acnes PubMLST database at https://pubmlst.org.
Collapse
Affiliation(s)
- Joseph McLaughlin
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, UK
| | - István Nagy
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary; Seqomics Biotechnology Ltd., Mórahalom, Hungary
| | | | - Andrew McDowell
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry, UK; Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, UK.
| |
Collapse
|
32
|
Schneider AM, Nolan ZT, Banerjee K, Paine AR, Cong Z, Gettle SL, Longenecker AL, Zhan X, Agak GW, Nelson AM. Evolution of the facial skin microbiome during puberty in normal and acne skin. J Eur Acad Dermatol Venereol 2023; 37:166-175. [PMID: 36165604 PMCID: PMC11134479 DOI: 10.1111/jdv.18616] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The composition of the skin microbiome varies from infancy to adulthood and becomes most stable in adulthood. Adult acne patients harbour an 'acne microbiome' dominated by specific strains of Cutibacterium acnes. However, the precise timing of skin microbiome evolution, the development of the acne microbiome, and the shift to virulent C. acnes strain composition during puberty is unknown. OBJECTIVES We performed a cross-sectional pilot study in a paediatric population to understand how and when the skin microbiome composition transitions during puberty and whether a distinct 'acne microbiome' emerges in paediatric subjects. METHODS Forty-eight volunteers including males and females, ages 7-17 years, with and without acne were enrolled and evaluated for pubertal development using the Tanner staging criteria. Sebum levels were measured, and skin microbiota were collected by sterile swab on the subject's forehead. DNA was sequenced by whole genome shotgun sequencing. RESULTS A significant shift in microbial diversity emerged between early (T1-T2) and late (T3-T5) stages of puberty, coinciding with increased sebum production on the face. The overall relative abundance of C. acnes in both normal and acne skin increased during puberty and individual C. acnes strains were uniquely affected by pubertal stage and the presence of acne. Further, an acne microbiome signature associated with unique C. acnes strain composition and metabolic activity emerges in late puberty in those with acne. This unique C. acnes strain composition is predicted to have increased porphyrin production, which may contribute to skin inflammation. CONCLUSIONS Our data suggest that the stage of pubertal development influences skin microbiome composition. As children mature, a distinct acne microbiome composition emerges in those with acne. Understanding how both puberty and acne influence the microbiome may support novel therapeutic strategies to combat acne in the paediatric population.
Collapse
Affiliation(s)
- Andrea M. Schneider
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Zachary T. Nolan
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Kalins Banerjee
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Allison R. Paine
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Zhaoyuan Cong
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Samantha L. Gettle
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Amy L. Longenecker
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Xiang Zhan
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - George W. Agak
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Amanda M. Nelson
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
33
|
Coenye T, Spittaels KJ, Achermann Y. The role of biofilm formation in the pathogenesis and antimicrobial susceptibility of Cutibacterium acnes. Biofilm 2022; 4:100063. [PMID: 34950868 PMCID: PMC8671523 DOI: 10.1016/j.bioflm.2021.100063] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
Cutibacterium acnes (previously known as Propionibacterium acnes) is frequently found on lipid-rich parts of the human skin. While C. acnes is most known for its role in the development and progression of the skin disease acne, it is also involved in many other types of infections, often involving implanted medical devices. C. acnes readily forms biofilms in vitro and there is growing evidence that biofilm formation by this Gram-positive, facultative anaerobic micro-organism plays an important role in vivo and is also involved in treatment failure. In this brief review we present an overview on what is known about C. acnes biofilms (including their role in pathogenesis and reduced susceptibility to antibiotics), discuss model systems that can be used to study these biofilms in vitro and in vivo and give an overview of interspecies interactions occurring in polymicrobial communities containing C. acnes.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Gent, Belgium
| | - Karl-Jan Spittaels
- Laboratory of Pharmaceutical Microbiology, Ghent University, Gent, Belgium
| | - Yvonne Achermann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Salar-Vidal L, Aguilera-Correa JJ, Brüggemann H, Achermann Y, Esteban J. Microbiological Characterization of Cutibacterium acnes Strains Isolated from Prosthetic Joint Infections. Antibiotics (Basel) 2022; 11:antibiotics11091260. [PMID: 36140039 PMCID: PMC9495218 DOI: 10.3390/antibiotics11091260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Aims: This study aimed to characterize 79 Cutibacterium acnes strains isolated from prosthetic joint infections (PJIs) originated from eight European hospitals. Methods: Isolates were phylotyped according to the single-locus sequence typing (SLST) scheme. We evaluated the ability of the biofilm formation of C. acnes strains isolated from PJIs and 84 isolates recovered from healthy skin. Antibiotic susceptibility testing of planktonic and biofilm cells of PJI isolates and skin isolates was performed. Results: Most of the isolates from PJIs belonged to the SLST class H/phylotype IB (34.2%), followed by class D/phylotype IA1 (21.5%), class A/phylotype IA1 (18.9%), and class K/phylotype II (13.9%). All tested isolates were biofilm producers; no difference in biofilm formation was observed between the healthy skin group and the PJI group of strains. Planktonic and sessile cells of C. acnes remained highly susceptible to a broad spectrum of antibiotics, including beta-lactams, clindamycin, fluoroquinolones, linezolid, rifampin, and vancomycin. The minimal inhibitory concentrations (MICs) for planktonic and biofilm states coincided in most cases. However, the minimal biofilm eradication concentration (MBEC) was high for all antimicrobial drugs tested (>32 mg/L), except for rifampin (2 mg/L). Conclusions: C. acnes strains isolated from healthy skin were able to produce biofilm to the same extent as isolates recovered from PJIs. All C. acnes strains in planktonic and sessile states were susceptible to most antibiotics commonly used for PJI treatment, although rifampin was the only antimicrobial agent able to eradicate C. acnes embedded in biofilm.
Collapse
Affiliation(s)
- Llanos Salar-Vidal
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, 28020 Madrid, Spain
- CIBER de EnfermedadesInfecciosas (CIBERINFEC), 28020 Madrid, Spain
- Correspondence: ; Tel.: +34-915504900
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, 28020 Madrid, Spain
- CIBER de EnfermedadesInfecciosas (CIBERINFEC), 28020 Madrid, Spain
| | | | - Yvonne Achermann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich (USZ), 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich (UZH), 8091 Zurich, Switzerland
- Internal Medicine, Hospital Zollikerberg, 8091 Zurich, Switzerland
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, 28020 Madrid, Spain
- CIBER de EnfermedadesInfecciosas (CIBERINFEC), 28020 Madrid, Spain
| |
Collapse
|
35
|
Ahle CM, Stødkilde K, Poehlein A, Bömeke M, Streit WR, Wenck H, Reuter JH, Hüpeden J, Brüggemann H. Interference and co-existence of staphylococci and Cutibacterium acnes within the healthy human skin microbiome. Commun Biol 2022; 5:923. [PMID: 36071129 PMCID: PMC9452508 DOI: 10.1038/s42003-022-03897-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022] Open
Abstract
Human skin is populated by trillions of microbes collectively called the skin microbiome. Staphylococcus epidermidis and Cutibacterium acnes are among the most abundant members of this ecosystem, with described roles in skin health and disease. However, knowledge regarding the health beneficial effects of these ubiquitous skin residents is still limited. Here, we profiled the staphylococcal and C. acnes landscape across four different skin sites of 30 individuals (120 skin samples) using amplicon-based next-generation sequencing. Relative abundance profiles obtained indicated the existence of phylotype-specific co-existence and exclusion scenarios. Co-culture experiments with 557 staphylococcal strains identified 30 strains exhibiting anti-C. acnes activities. Notably, staphylococcal strains were found to selectively exclude acne-associated C. acnes and co-exist with healthy skin-associated phylotypes, through regulation of the antimicrobial activity. Overall, these findings highlight the importance of skin-resident staphylococci and suggest that selective microbial interference is a contributor to healthy skin homeostasis. The dynamic interaction between the common resident skin microbes Staphylococcus epidermidis and Cutibacterium acnes is uncovered, showing that S. epidermidis can selectively exclude acne-associated C. acnes strains from the human skin.
Collapse
Affiliation(s)
- Charlotte Marie Ahle
- Beiersdorf AG, Research & Development, Front End Innovation, 20245, Hamburg, Germany. .,Department of Microbiology and Biotechnology, University of Hamburg, 22609, Hamburg, Germany.
| | | | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, 37073, Göttingen, Germany
| | - Mechthild Bömeke
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, 37073, Göttingen, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, 22609, Hamburg, Germany
| | - Horst Wenck
- Beiersdorf AG, Research & Development, Front End Innovation, 20245, Hamburg, Germany
| | - Jörn Hendrik Reuter
- Beiersdorf AG, Research & Development, Front End Innovation, 20245, Hamburg, Germany
| | - Jennifer Hüpeden
- Beiersdorf AG, Research & Development, Front End Innovation, 20245, Hamburg, Germany
| | - Holger Brüggemann
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
36
|
Classification of clinical Cutibacterium acnes isolates at phylotype level by capillary electrophoretic methods in roughened fused silica capillary. Talanta 2022; 247:123565. [DOI: 10.1016/j.talanta.2022.123565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
|
37
|
Beirne C, McCann E, McDowell A, Miliotis G. Genetic determinants of antimicrobial resistance in three multi-drug resistant strains of Cutibacterium acnes isolated from patients with acne: a predictive in silico study. Access Microbiol 2022; 4:acmi000404. [PMID: 36133174 PMCID: PMC9484663 DOI: 10.1099/acmi.0.000404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
Objectives. Using available whole genome data, the objective of this in silico study was to identify genetic mechanisms that could explain the antimicrobial resistance profile of three multi-drug resistant (MDR) strains (CA17, CA51, CA39) of the skin bacterium
Cutibacterium acnes
previously recovered from patients with acne. In particular, we were interested in detecting novel genetic determinants associated with resistance to fluoroquinolone and macrolide antibiotics that could then be confirmed experimentally.
Methods. A range of open source bioinformatics tools were used to ‘mine’ genetic determinants of antimicrobial resistance and plasmid borne contigs, and to characterise the phylogenetic diversity of the MDR strains.
Results. As probable mechanisms of resistance to fluoroquinolones, we identified a previously described resistance associated allelic variant of the gyrA gene with a ‘deleterious' S101L mutation in type IA1 strains CA51 (ST1) and CA39 (ST1), as well as a novel E761R ‘deleterious’ mutation in the type II strain CA17 (ST153). A distinct genomic sequence of the efflux protein YfmO which is potentially associated with resistance to MLSB antibiotics was also present in CA17; homologues in CA51, CA39, and other strains of
Cutibacterium acnes
, were also found but differed in amino acid content. Strikingly, in CA17 we also identified a circular 2.7 kb non-conjugative plasmid (designated pCA17) that closely resembled a 4.8 kb plasmid (pYU39) from the MDR
Salmonella enterica
strain YU39.
Conclusions. This study has provided a detailed explanation of potential genetic determinants for MDR in the
Cutibacterium acnes
strains CA17, CA39 and CA51. Further laboratory investigations will be required to validate these in silico results, especially in relation to pCA17.
Collapse
Affiliation(s)
- Catriona Beirne
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Emily McCann
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Andrew McDowell
- Nutrition Innovation Centre for Food and Health, (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Ireland
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| |
Collapse
|
38
|
Action of Mangifera indica Leaf Extract on Acne-Prone Skin through Sebum Harmonization and Targeting C. acnes. Molecules 2022; 27:molecules27154769. [PMID: 35897945 PMCID: PMC9331558 DOI: 10.3390/molecules27154769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Preclinical studies report that the ethanolic fraction from Mangifera indica leaves is a potential anti-acne agent. Nevertheless, the biological activity of Mangifera indica leaves has scarcely been investigated, and additional data are needed, especially in a clinical setting, for establishing the actual effectiveness of Mangifera indica extract as an active component of anti-acne therapy. (2) Methods: The evaluation of the biological activity of Mangifera indica extract was carried out through different experimental phases, which comprised in silico, in vitro, ex vivo and clinical evaluations. (3) Results: In silico and in vitro studies allowed us to identify the phytomarkers carrying the activity of seboregulation and acne management. Results showed that Mangifera indica extract reduced lipid production by 40% in sebocytes, and an improvement of the sebum quality was reported after the treatment in analyses performed on sebaceous glands from skin explants. The evaluation of the sebum quantity and quality using triglyceride/free fatty acid analysis conducted on Caucasian volunteers evidenced a strong improvement and a reduction of porphyrins expression. The C. acnes lipase activity from a severe acne phylotype was evaluated in the presence of Mangifera indica, and a reduction by 29% was reported. In addition, the analysis of the skin microbiota documented that Mangifera indica protected the microbiota equilibrium while the placebo induced dysbiosis. (4) Conclusions: Our results showed that Mangifera indica is microbiota friendly and efficient against lipase activity of C. acnes and supports a role for Mangifera indica in the therapeutic strategy for prevention and treatment of acne.
Collapse
|
39
|
Acne, Microbiome, and Probiotics: The Gut–Skin Axis. Microorganisms 2022; 10:microorganisms10071303. [PMID: 35889022 PMCID: PMC9318165 DOI: 10.3390/microorganisms10071303] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this narrative review was to check the influence of the human microbiota in the pathogenesis of acne and how the treatment with probiotics as adjuvant or alternative therapy affects the evolution of acne vulgaris. Acne is a chronic inflammatory skin disease involving the pilosebaceous units. The pathogenesis of acne is complex and multifactorial involving genetic, metabolic, and hormonal factors in which both skin and gut microbiota are implicated. Numerous studies have shown the bidirectionality between the intestinal microbiota and skin homeostasis, a communication mainly established by modifying the immune system. Increased data on the mechanisms of action regarding the relevance of Cutibacterium acnes, as well as the importance of the gut–skin axis, are becoming known. Diverse and varied in vitro studies have shown the potential beneficial effects of probiotics in this context. Clinical trials with both topical and oral probiotics are scarce, although they have shown positive results, especially with oral probiotics through the modulation of the intestinal microbiota, generating an anti-inflammatory response and restoring intestinal integrity, or through metabolic pathways involving insulin-like growth factor I (IGF-1). Given the aggressiveness of some standard acne treatments, probiotics should continue to be investigated as an alternative or adjuvant therapy.
Collapse
|
40
|
Ouyang K, Oparaugo N, Nelson AM, Agak GW. T Cell Extracellular Traps: Tipping the Balance Between Skin Health and Disease. Front Immunol 2022; 13:900634. [PMID: 35795664 PMCID: PMC9250990 DOI: 10.3389/fimmu.2022.900634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
The role of extracellular traps (ETs) in the innate immune response against pathogens is well established. ETs were first identified in neutrophils and have since been identified in several other immune cells. Although the mechanistic details are not yet fully understood, recent reports have described antigen-specific T cells producing T cell extracellular traps (TETs). Depending on their location within the cutaneous environment, TETs may be beneficial to the host by their ability to limit the spread of pathogens and provide protection against damage to body tissues, and promote early wound healing and degradation of inflammatory mediators, leading to the resolution of inflammatory responses within the skin. However, ETs have also been associated with worse disease outcomes. Here, we consider host-microbe ET interactions by highlighting how cutaneous T cell-derived ETs aid in orchestrating host immune responses against Cutibacterium acnes (C. acnes), a commensal skin bacterium that contributes to skin health, but is also associated with acne vulgaris and surgical infections following joint-replacement procedures. Insights on the role of the skin microbes in regulating T cell ET formation have broad implications not only in novel probiotic design for acne treatment, but also in the treatment for other chronic inflammatory skin disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Kelsey Ouyang
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
- Division of Dermatology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Nicole Oparaugo
- David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA, United States
| | - George W. Agak
- Division of Dermatology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- *Correspondence: George W. Agak,
| |
Collapse
|
41
|
The increasing importance of the gut microbiome in acne vulgaris. Folia Microbiol (Praha) 2022; 67:825-835. [PMID: 35711021 DOI: 10.1007/s12223-022-00982-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/26/2022] [Indexed: 11/04/2022]
Abstract
Acne is a frequently presented dermatological condition brought about by an interplay among inflammation, increased sebum production, hyperkeratinisation, and predominantly Propionibacterium acnes (renamed as Cutibacterium acnes) proliferation, leading to debilitating psychological scars. However, it has been shown that it is the loss of microbial diversity in the skin and the imbalance among C. acnes phylotypes that brings about acne rather than the C. acnes species as a whole. Interestingly, recent evidence suggests that other microorganisms may be implicated, such as the fungi Malassezia and the bacteria Cutibacterium granulosum. A plethora of scientific evidence suggests that the gut microbiome is implicated in the overall health and physiology of the host; studies show that the gut microbiome of acne patients is distinct and depicts less microbial diversity compared to individuals without acne. Herein, using the key terms: acne, C. acnes, IGF-1, sebum, and gut microbiome, we carried out a review of the literature, using Google Scholar and PubMed, and discussed the role of the gut and skin microbiome in relation to acne, as a narrative review. The role of hormones, diet, sebum, and stress in relation to the gut microbiome was also investigated. Therapeutic implications and the use of pre-/postbiotics are also deliberated upon. In this light, future research should investigate the relationship between the gut microbiome and the agreed upon factors of acne pathology, potentially leading to the discovery of novel acne treatments with milder side effects.
Collapse
|
42
|
A New Topical Candidate in Acne Treatment: Characterization of the Meclozine Hydrochloride as an Anti-Inflammatory Compound from In Vitro to a Preliminary Clinical Study. Biomedicines 2022; 10:biomedicines10050931. [PMID: 35625668 PMCID: PMC9138413 DOI: 10.3390/biomedicines10050931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Acne is a chronic inflammatory multifactorial disease involving the anaerobic bacterium Cutibacterium acnes (C. acnes). Current acne treatments are associated with adverse effects, limiting treatment compliance and use. We showed that meclozine, an anti-histaminic H1 compound, has anti-inflammatory properties. In Vitro, meclozine reduced the production of CXCL8/IL-8 and IL-1β mRNA and protein by C. acnes-stimulated human keratinocytes and monocytes. No cell toxicity was observed at the IC50. Meclozine prevented the phosphorylation of ERK and JNK. In Vivo, 1% meclozine gel significantly decreased C. acnes-mouse ear induced inflammation by 26.7% (p = 0.021). Ex vivo experiments on human skin explants showed that meclozine decreased the production of GM-CSF, IL-1β and TNF-α at transcriptional and translational levels. In a randomized, double-blind, placebo-controlled proof-of-concept clinical trial on 60 volunteers, 2% meclozine pharmaceutical gel decreased by 20.1% (p < 0.001) the ASI score in the treated group after 12 weeks of treatment. No adverse event was reported. Together, these results indicate that meclozine is a potent topical anti-inflammatory compound of potential value for acne treatment.
Collapse
|
43
|
Knödlseder N, Nevot G, Fábrega MJ, Mir-Pedrol J, Sanvicente-García M, Campamà-Sanz N, Paetzold B, Lood R, Güell M. Engineering selectivity of Cutibacterium acnes phages by epigenetic imprinting. PLoS Pathog 2022; 18:e1010420. [PMID: 35344565 PMCID: PMC8989293 DOI: 10.1371/journal.ppat.1010420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/07/2022] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Cutibacterium acnes (C. acnes) is a gram-positive bacterium and a member of the human skin microbiome. Despite being the most abundant skin commensal, certain members have been associated with common inflammatory disorders such as acne vulgaris. The availability of the complete genome sequences from various C. acnes clades have enabled the identification of putative methyltransferases, some of them potentially belonging to restriction-modification (R-M) systems which protect the host of invading DNA. However, little is known on whether these systems are functional in the different C. acnes strains. To investigate the activity of these putative R-M and their relevance in host protective mechanisms, we analyzed the methylome of six representative C. acnes strains by Oxford Nanopore Technologies (ONT) sequencing. We detected the presence of a 6-methyladenine modification at a defined DNA consensus sequence in strain KPA171202 and recombinant expression of this R-M system confirmed its methylation activity. Additionally, a R-M knockout mutant verified the loss of methylation properties of the strain. We studied the potential of one C. acnes bacteriophage (PAD20) in killing various C. acnes strains and linked an increase in its specificity to phage DNA methylation acquired upon infection of a methylation competent strain. We demonstrate a therapeutic application of this mechanism where phages propagated in R-M deficient strains selectively kill R-M deficient acne-prone clades while probiotic ones remain resistant to phage infection.
Collapse
Affiliation(s)
- Nastassia Knödlseder
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Guillermo Nevot
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria-José Fábrega
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Julia Mir-Pedrol
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Nil Campamà-Sanz
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Marc Güell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
44
|
Walker AM, Chong BF. SnapshotDx Quiz: February 2022. J Invest Dermatol 2022. [DOI: 10.1016/j.jid.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Bay L, Ring HC. Human skin microbiota in health and disease: The cutaneous communities' interplay in equilibrium and dysbiosis: The cutaneous communities' interplay in equilibrium and dysbiosis. APMIS 2021; 130:706-718. [PMID: 34919288 DOI: 10.1111/apm.13201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/14/2021] [Indexed: 01/20/2023]
Abstract
Cutaneous microbial composition is driven by the microenvironment of the skin, as well as by internal and external factors. Local changes in the microenvironment can affect the configuration of the community, which may lead toward an imbalance of microbiota. Alterations in the microbial profile are common in both inflammatory skin diseases and chronic infections. A shift in balance within the microbiota, toward limited variation and a greater abundance of specific pathogens, may further worsen the pathogenicity of the diseases. These alterations may be prevented by topical treatment of probiotic solutions stimulating a balanced multispecies community. Compositional variations may further constitute potential biomarkers to predict flares or monitor efficacy during therapy. New approaches such as machine learning may contribute to this prediction of microbial alterations prior to the development of chronic infections and flares. This review provides insight into the composition and distribution of a healthy community of microorganisms in the skin and draws parallels with the community in chronic infections and chronic inflammatory skin diseases such acne vulgaris and Hidradenitis Suppurativa. We discuss the potential role of specific species in the pathogenesis and the possible prevention of disease exacerbation.
Collapse
Affiliation(s)
- Lene Bay
- Bacterial Infection Biology, Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Hans Christian Ring
- Department of Dermato-Venereology and Wound Healing Centre, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Cobian N, Garlet A, Hidalgo-Cantabrana C, Barrangou R. Comparative Genomic Analyses and CRISPR-Cas Characterization of Cutibacterium acnes Provide Insights Into Genetic Diversity and Typing Applications. Front Microbiol 2021; 12:758749. [PMID: 34803983 PMCID: PMC8595920 DOI: 10.3389/fmicb.2021.758749] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
Cutibacterium acnes is an important member of the human skin microbiome and plays a critical role in skin health and disease. C. acnes encompasses different phylotypes that have been found to be associated with different skin phenotypes, suggesting a genetic basis for their impact on skin health. Here, we present a comprehensive comparative analysis of 255 C. acnes genomes to provide insights into the species genetic diversity and identify unique features that define various phylotypes. Results revealed a relatively small and open pan genome (6,240 genes) with a large core genome (1,194 genes), and three distinct phylogenetic clades, with multiple robust sub-clades. Furthermore, we identified several unique gene families driving differences between distinct C. acnes clades. Carbohydrate transporters, stress response mechanisms and potential virulence factors, potentially involved in competitive growth and host colonization, were detected in type I strains, which are presumably responsible for acne. Diverse type I-E CRISPR-Cas systems and prophage sequences were detected in select clades, providing insights into strain divergence and adaptive differentiation. Collectively, these results enable to elucidate the fundamental differences among C. acnes phylotypes, characterize genetic elements that potentially contribute to type I-associated dominance and disease, and other key factors that drive the differentiation among clades and sub-clades. These results enable the use of comparative genomics analyses as a robust method to differentiate among the C. acnes genotypes present in the skin microbiome, opening new avenues for the development of biotherapeutics to manipulate the skin microbiota.
Collapse
Affiliation(s)
- Natalia Cobian
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | | | - Claudio Hidalgo-Cantabrana
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
47
|
Tsuru A, Hamazaki Y, Tomida S, Ali MS, Komura T, Nishikawa Y, Kage-Nakadai E. Nonpathogenic Cutibacterium acnes Confers Host Resistance against Staphylococcus aureus. Microbiol Spectr 2021; 9:e0056221. [PMID: 34704806 PMCID: PMC8549750 DOI: 10.1128/spectrum.00562-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022] Open
Abstract
Cutibacterium acnes is a human skin-resident bacterium. Although C. acnes maintains skin health by inhibiting invasion from pathogens like Staphylococcus aureus, it also contributes to several diseases, including acne. Studies suggest that differences in genetic background may explain the diverse phenotypes of C. acnes strains. In this study, we investigated the effects of C. acnes strains on the Caenorhabditis elegans life span and observed that some strains shortened the life span, whereas other strains, such as strain HL110PA4, did not alter it. Next, we assessed the effects of C. acnes HL110PA4 on host resistance against S. aureus. The survival time of C. acnes HL110PA4-fed wild-type animals was significantly longer than that of Escherichia coli OP50 control bacterium-fed worms upon infection with S. aureus. Although the survival times of worms harboring mutations at the daf-16/FoxO and skn-1/Nrf2 loci were similar to those of wild-type worms after S. aureus infection, administration of C. acnes failed to improve survival times of tir-1/SARM1, nsy-1/mitogen-activated protein kinase kinase kinase (MAPKKK), sek-1/mitogen-activated protein kinase kinase (MAPKK), and pmk-1/p38 mitogen-activated protein kinase (MAPK) mutants. These results suggest that the TIR-1 and p38 MAPK pathways are involved in conferring host resistance against S. aureus in a C. acnes-mediated manner. IMPORTANCE Cutibacterium acnes is one of the most common bacterial species residing on the human skin. Although the pathogenic properties of C. acnes, such as its association with acne vulgaris, have been widely described, its beneficial aspects have not been well characterized. Our study classifies C. acnes strains based on its pathogenic potential toward the model host C. elegans and reveals that the life span of C. elegans worms fed on C. acnes was consistent with the clinical association of C. acnes ribotypes with acne or nonacne. Furthermore, nonpathogenic C. acnes confers host resistance against the opportunistic pathogen Staphylococcus aureus. Our study provides insights into the impact of C. acnes on the host immune system and its potential roles in the ecosystem of skin microbiota.
Collapse
Affiliation(s)
- Ayano Tsuru
- Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Yumi Hamazaki
- Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | | | - Tomomi Komura
- Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Yoshikazu Nishikawa
- Graduate School of Human Life Science, Osaka City University, Osaka, Japan
- Faculty of Human Sciences, Tezukayamagakuin University, Osaka, Japan
| | - Eriko Kage-Nakadai
- Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| |
Collapse
|
48
|
El Sayed F, Jeverica S, Roux AL, Bauer T, Nkam L, Sivadon-Tardy V, Noussair L, Herrmann JL, Gaillard JL, Rak M, Papst L, Rottman M. Cutibacterium acnes clonal complexes display various growth rates in blood culture vials used for diagnosing orthopedic device-related infections. Anaerobe 2021; 72:102469. [PMID: 34699978 DOI: 10.1016/j.anaerobe.2021.102469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/17/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Blood culture bottles (BCBs) are commonly used for the diagnosis of infections associated with orthopedic devices. Although Cutibacterium acnes is an important pathogen in orthopedics, relatively little is known about its growth characteristics in BCBs. This prompted us to analyze the influence of bacterial genotype and clinical significance on time-to-detection (TTD) in BCBs. METHODS We reviewed 59 cases of orthopedic device-related infections in which at least one intraoperative specimen yielded a pure C. acnes culture from anaerobic BCBs (BD Bactec Lytic/10 Anaerobic/F; Lytic-Ana) and/or solid media. A strain was considered infectant if the same genotype was present in two or more intraoperative samples. From these cases, we isolated a total of 72 unique C. acnes strains belonging to four multilocus sequence type clonal complexes (CCs): CC18, CC28, CC36 and CC53. Growth rate and TTD in Lytic-Ana BCB were studied under experimental conditions (inoculation of standard inoculum) and in clinical samples (inoculation of periprosthetic tissue samples). RESULTS Median TTD values were shorter for CC53 compared to other CCs under experimental conditions (69 vs. 103 h; p < 0.001) and from clinical specimens (70 vs. 200 h; p = 0.02). Infectant strains had a shorter median TTD compared to contaminant strains in a clinical situation, while the difference was not observed under experimental conditions. CONCLUSIONS The detection dynamics of C. acnes in Lytic-Ana BCBs were associated with genotype. Thus, TTD not only reflects the bacterial load in clinical samples, but may also reflect the intrinsic properties of the clonal complex of C. acnes.
Collapse
Affiliation(s)
- Faten El Sayed
- APHP, GHU Paris Saclay, Hôpital Ambroise Paré, Microbiology Department, Boulogne-Billancourt, France; Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-Le-Bretonneux, France.
| | - Samo Jeverica
- National Laboratory of Health, Environment and Food, Maribor, Slovenia
| | - Anne-Laure Roux
- APHP, GHU Paris Saclay, Hôpital Ambroise Paré, Microbiology Department, Boulogne-Billancourt, France; Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Thomas Bauer
- APHP, GHU Paris Saclay, Hôpital Ambroise Paré, Orthopedic Surgery Department, Boulogne-Billancourt, France
| | - Lionelle Nkam
- Clinical Research Unit, APHP Paris Saclay Ouest, Ambroise Paré Hospital, Boulogne-Billancourt, France
| | - Valérie Sivadon-Tardy
- APHP, GHU Paris Saclay, Hôpital Ambroise Paré, Microbiology Department, Boulogne-Billancourt, France
| | - Latifa Noussair
- APHP, GHU Paris Saclay, Hôpital Raymond Poincaré, Microbiology Department, Garches, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-Le-Bretonneux, France; APHP, GHU Paris Saclay, Hôpital Raymond Poincaré, Microbiology Department, Garches, France
| | - Jean-Louis Gaillard
- APHP, GHU Paris Saclay, Hôpital Ambroise Paré, Microbiology Department, Boulogne-Billancourt, France; Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Mitja Rak
- National Laboratory of Health, Environment and Food, Maribor, Slovenia
| | - Lea Papst
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Martin Rottman
- Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-Le-Bretonneux, France; APHP, GHU Paris Saclay, Hôpital Raymond Poincaré, Microbiology Department, Garches, France
| |
Collapse
|
49
|
Nakase K, Koizumi J, Midorikawa R, Yamasaki K, Tsutsui M, Aoki S, Nasu Y, Hirai Y, Nakaminami H, Noguchi N. Cutibacterium acnes phylogenetic type IC and II isolated from patients with non-acne diseases exhibit high-level biofilm formation. Int J Med Microbiol 2021; 311:151538. [PMID: 34649133 DOI: 10.1016/j.ijmm.2021.151538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Cutibacterium (formerly Propionibacterium) acnes is an important for not only exacerbating factor of acne vulgaris but also pathogen of surgical site infections (SSIs) in orthopedics and plastic surgery. Although biofilm-forming (BF) C. acnes are associated with intractable SSI, characteristics of these strains were still unknown. Here, we explored detailed molecular epidemiological features of BF C. acnes isolated as causative pathogen of infectious diseases. Phylogenetic types of 205 C. acnes strains isolated between 2013 and 2018 from 18 clinical departments of a university hospital in Japan were determined by single-locus sequence type (SLST). Clade H (traditional type IC) and K (type II) which are less relevant with healthy skin and acne vulgaris, were detected in 26.8% (55/205) and 16.1% (33/205) of the strains, respectively. The incidence of them was significantly higher than that of acne patients (H and K, each 2.9%, P < 0.05). In addition, SLST distribution of C. acnes strains differed by each department and isolation site. When biofilm formation was quantified, 51 strains (24.9%) were defined as high-BF strains. Notably, most high-BF strains were classified into the strains of clade H (56.4%, 31/55) and clade K (54.4%, 18/33), and these strains were frequently found in the strains isolated from patients of medical emergency center and plastic surgery. Similarly, high-BF strains were frequently found among the isolates from blood (35.7%) and catheters (30.0%), with a high proportion belonging to clades H and K. Compared to C. acnes strains isolated from acne patients, antimicrobial-resistant strains were less identified in non-acne patients. Our findings showed that pathogenicity of C. acnes strains differs by their phylogenetic types. Furthermore, we showed clade H and K have the ability of high biofilm formation and suggest that these strains have potential to become a risk factor for SSI.
Collapse
Affiliation(s)
- Keisuke Nakase
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Juri Koizumi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ren Midorikawa
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kento Yamasaki
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Miho Tsutsui
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Sae Aoki
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yutaka Nasu
- Department of Infectious Diseases, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo 193-0944, Japan
| | - Yuji Hirai
- Department of Infectious Diseases, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo 193-0944, Japan
| | - Hidemasa Nakaminami
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Norihisa Noguchi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
50
|
Mintoff D, Borg I, Pace NP. The Clinical Relevance of the Microbiome in Hidradenitis Suppurativa: A Systematic Review. Vaccines (Basel) 2021; 9:1076. [PMID: 34696185 PMCID: PMC8537933 DOI: 10.3390/vaccines9101076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Hidradenitis suppurativa is a chronic disease of the pilosebaceous unit. The name of the condition is a testament to the presumed relationship between the disease and the microbiome. The pathophysiology of hidradenitis suppurativa is, however, complex and believed to be the product of a multifactorial interplay between the interfollicular epithelium, pilosebaceous unit, microbiome, as well as genetic and environmental factors. In this review we assimilate the existing literature regarding the role played by the human microbiome in HS in various contexts of the disease, including the pathophysiologic, therapeutic, and potentially, diagnostic as well prognostic. In conclusion, the role played by the microbiome in HS is extensive and relevant and can have bench-to-bedside applications.
Collapse
Affiliation(s)
- Dillon Mintoff
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Department of Dermatology, Mater Dei Hospital, Triq Id-Donaturi tad-Demm, MSD 2090 Msida, Malta
| | - Isabella Borg
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Medical Genetics Unit, Department of Pathology, Mater Dei Hospital, MSD 2090 Msida, Malta
| | - Nikolai Paul Pace
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| |
Collapse
|