1
|
Xi S, Shan J, Wu X, Wang H, Zhang MR, Oyetunji S, Xu H, Xiao Z, Tolunay T, Carr SR, Hoang CD, Schrump DS. Repression of ZNFX1 by LncRNA ZFAS1 mediates tobacco-induced pulmonary carcinogenesis. Cell Mol Biol Lett 2025; 30:44. [PMID: 40211119 PMCID: PMC11983736 DOI: 10.1186/s11658-025-00705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/18/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Despite exhaustive research efforts, integrated genetic and epigenetic mechanisms contributing to tobacco-induced initiation and progression of lung cancers have yet to be fully elucidated. In particular, limited information is available regarding dysregulation of noncoding RNAs during pulmonary carcinogenesis. METHODS We examined correlations and interactions of long noncoding (lnc) RNAs and protein-coding genes in normal respiratory epithelial cells (NREC) and pulmonary tumor cells following exposure to cigarette smoke condensate (CSC) using gene expression arrays, qRT-PCR, western blot, growth assays, transwell assays, and murine xenograft models, as well as methylated DNA immunoprecipitation, RNA cross-link immunoprecipitation, and quantitative chromatin immunoprecipitation techniques with bioinformatics analyses. RESULTS Among diverse alterations of lncRNA and coding gene expression profiles in NREC exposed to CSC, we observed upregulation of lncRNA ZFAS1 and repression of an adjacent protein-coding gene, ZNFX1, and confirmed these findings in primary lung cancers. Phenotypic experiments indicated that ZFAS1 is an oncogene, whereas ZNFX1 functions as a tumor suppressor in lung cancer cells. Mechanistically, CSC induces ZFAS1 expression via SP1 and NFĸB-associated activation of an enhancer linked to ZFAS1. Subsequently, ZFAS1 interacts with DNA methyltransferases and polycomb group proteins to silence ZNFX1. Mithramycin and methysticin repress ZFAS1 and upregulate ZNFX1 in lung cancer cells in vitro and in vivo. CONCLUSION These studies reveal a novel feedforward lncRNA circuit contributing to pulmonary carcinogenesis and suggest that pharmacologic targeting of SP1 and/or NFĸB may be useful strategies for restoring ZNFX1 expression for lung tumor therapy.
Collapse
Affiliation(s)
- Sichuan Xi
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Jigui Shan
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Xinwei Wu
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Haitao Wang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Mary R Zhang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Shakirat Oyetunji
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Hong Xu
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, MD, 21702, USA
| | - Zuoxiang Xiao
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Tuana Tolunay
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Shamus R Carr
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Chuong D Hoang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Rodrigues P, Rizaev JA, Hjazi A, Altalbawy FMA, H M, Sharma K, Sharma SK, Mustafa YF, Jawad MA, Zwamel AH. Dual role of microRNA-31 in human cancers; focusing on cancer pathogenesis and signaling pathways. Exp Cell Res 2024; 442:114236. [PMID: 39245198 DOI: 10.1016/j.yexcr.2024.114236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Widespread changes in the expression of microRNAs in cancer result in abnormal gene expression for the miRNAs that control those genes, which in turn causes changes to entire molecular networks and pathways. The frequently altered miR-31, which is found in a wide range of cancers, is one cancer-related miRNA that is particularly intriguing. MiR-31 has a very complicated set of biological functions, and depending on the type of tumor, it may act both as a tumor suppressor and an oncogene. The endogenous expression levels of miR-31 appear to be a key determinant of the phenotype brought on by aberrant expression. Varied expression levels of miR-31 could affect cell growth, metastasis, drug resistance, and other process by several mechanisms like targeting BRCA1-associated protein-1 (BAP1), large tumor suppressor kinase 1 (LATS1) and protein phosphatase 2 (PP2A). This review highlights the current understanding of the genes that miR-31 targets while summarizing the complex expression patterns of miR-31 in human cancers and the diverse phenotypes brought on by altered miR-31 expression.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia.
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India.
| | - Kirti Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India.
| | - Satish Kumar Sharma
- Vice Chancellor of Department of Pharmacy (Pharmacology), The Glocal University, Saharanpur, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
3
|
Chen W, Wang F, Yu X, Qi J, Dong H, Cui B, Zhang Q, Wu Y, An J, Ni N, Liu C, Han Y, Zhang S, Schmitt CA, Deng J, Yu Y, Du J. LncRNA MIR31HG fosters stemness malignant features of non-small cell lung cancer via H3K4me1- and H3K27Ace-mediated GLI2 expression. Oncogene 2024; 43:1328-1340. [PMID: 37950038 PMCID: PMC11065682 DOI: 10.1038/s41388-023-02883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Non-coding RNAs are responsible for oncogenesis and the development of stemness features, including multidrug resistance and metastasis, in various cancers. Expression of lncRNA MIR31HG in lung cancer tissues and peripheral sera of lung cancer patients were remarkably higher than that of healthy individuals and indicated a poor prognosis. Functional analysis showed that MIR31HG fosters stemness-associated malignant features of non-small cell lung cancer cells. Further mechanistic investigation revealed that MIR31HG modulated GLI2 expression via WDR5/MLL3/P300 complex-mediated H3K4me and H3K27Ace modification. In vivo MIR31HG repression with an antisense oligonucleotide attenuated tumor growth and distal organ metastasis, whereas MIR31HG promotion remarkably encouraged cellular invasion in lung and liver tissues. Our data suggested that MIR31HG is a potential diagnostic indicator and druggable therapeutic target to facilitate multiple strategic treatments for lung cancer patients.
Collapse
Affiliation(s)
- Weiwei Chen
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Fei Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Xinyuan Yu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Jingjing Qi
- Department of Hematology and Internal Oncology, Johannes Kepler University Linz, Altenbergerstraße 69, 4040, Linz, Austria
| | - Hongliang Dong
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Bingjie Cui
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Yan Wu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Jiajia An
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Na Ni
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Yuchen Han
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Shuo Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Clemens A Schmitt
- Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
- Kepler University Hospital, Department of Hematology and Oncology, Krankenhausstraße 9, 4020, Linz, Austria
- Charité-Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, 13353, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site, Berlin, Germany
| | - Jiong Deng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
| | - Yong Yu
- Department of Hematology and Internal Oncology, Johannes Kepler University Linz, Altenbergerstraße 69, 4040, Linz, Austria.
| | - Jing Du
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
| |
Collapse
|
4
|
Zhang W, Zhang K, Ma Y, Song Y, Qi T, Xiong G, Zhang Y, Kan C, Zhang J, Han F, Sun X. Secreted frizzled-related proteins: A promising therapeutic target for cancer therapy through Wnt signaling inhibition. Biomed Pharmacother 2023; 166:115344. [PMID: 37634472 DOI: 10.1016/j.biopha.2023.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
The Wnt signaling system is a critical pathway that regulates embryonic development and adult homeostasis. Secreted frizzled-related proteins (SFRPs) are extracellular inhibitors of Wnt signaling that act by binding directly to Wnt ligands or Frizzled receptors. SFRPs can act as anti-Wnt agents and suppress cancer growth by blocking the action of Wnt ligands. However, SFRPs are often silenced by promoter methylation in cancer cells, resulting in hyperactivation of the Wnt pathway. Epigenetic modifiers can reverse this silencing and restore SFRPs expression. Despite the potential of SFRPs as a therapeutic target, the effects of SFRPs on tumor development remain unclear. Therefore, a review of the expression of various members of the SFRPs family in different cancers and their potential as therapeutic targets is warranted. This review aims to summarize the current knowledge of SFRPs in cancer, focusing on their expression patterns and their potential as novel therapeutic targets.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Guoji Xiong
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yuanzhu Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| |
Collapse
|
5
|
Tellez CS, Grimes MJ, Juri DE, Do K, Willink R, Dye WW, Wu G, Picchi MA, Belinsky SA. Flavored E-cigarette product aerosols induce transformation of human bronchial epithelial cells. Lung Cancer 2023; 179:107180. [PMID: 36989612 PMCID: PMC10159902 DOI: 10.1016/j.lungcan.2023.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVES E-cigarettes are the most commonly used nicotine containing products among youth. In vitro studies support the potential for e-cigarettes to cause cellular stress in vivo; however, there have been no studies to address whether exposure to e-liquid aerosols can induce cell transformation, a process strongly associated with pre-malignancy. We examined whether weekly exposure of human bronchial epithelial cell (HBEC) lines to e-cigarette aerosols would induce transformation and concomitant changes in gene expression and promoter hypermethylation. MATERIALS AND METHODS An aerosol delivery system exposed three HBEC lines to unflavored e-liquid with 1.2% nicotine, 3 flavored products with nicotine, or the Kentucky reference cigarette once a week for 12 weeks. Colony formation in soft agar, RNA-sequencing, and the EPIC Beadchip were used to evaluate transformation, genome-wide expression and methylation changes. RESULTS Jamestown e-liquid aerosol induced transformation of HBEC2 and HBEC26, while unflavored and Blue Pucker transformed HBEC26. Cigarette smoke aerosol transformed HBEC4 and HBEC26 at efficiencies up to 3-fold greater than e-liquids. Transformed clones exhibited extensive reprogramming of the transcriptome with common and distinct gene expression changes observed between the cigarette and e-liquids. Transformation by e-liquids induced alterations in canonical pathways implicated in lung cancer that included axonal guidance and NRF2. Gene methylation, while prominent in cigarette-induced transformed clones, also affected hundreds of genes in HBEC2 transformed by Jamestown. Many genes with altered expression or epigenetic-mediated silencing were also affected in lung tumors from smokers. CONCLUSIONS These studies show that exposure to e-liquid aerosols can induce a pre-malignant phenotype in lung epithelial cells. While the Food and Drug Administration banned the sale of flavored cartridge-based electric cigarettes, consumers switched to using flavored products through other devices. Our findings clearly support expanding studies to evaluate transformation potency for the major categories of e-liquid flavors to better inform risk from these complex mixtures.
Collapse
Affiliation(s)
- Carmen S. Tellez
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Marcie J. Grimes
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Daniel E. Juri
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Kieu Do
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Randy Willink
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Wendy W. Dye
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Guodong Wu
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Maria A. Picchi
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| | - Steven A. Belinsky
- Lung Cancer Program Lovelace Biomedical Research Institute Albuquerque, NM
| |
Collapse
|
6
|
Hudlikar RR, Chou PJ, Kuo HCD, Sargsyan D, Wu R, Kong AN. Long term exposure of cigarette smoke condensate (CSC) mediates transcriptomic changes in normal human lung epithelial Beas-2b cells and protection by garlic compounds. Food Chem Toxicol 2023; 174:113656. [PMID: 36758788 DOI: 10.1016/j.fct.2023.113656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Chronic cigarette smoke condensate (CSC) exposure is one of the preventable risk factors in the CS-induced lung cancer. However, understanding the mechanism of cellular transformation induced by CS in the lung remains limited. We investigated the effect of long term exposure of CSC in human normal lung epithelial Beas-2b cells, and chemopreventive mechanism of organosulphur garlic compounds, diallyl sulphide (DAS) and diallyl disulphide (DADS) using Next Generation Sequencing (NGS) transcriptomic analysis. CSC regulated 1077 genes and of these 36 genes are modulated by DAS while 101 genes by DADS. DAS modulated genes like IL1RL1 (interleukin-1 receptor like-1), HSPA-6 (heat shock protein family A, member 6) while DADS demonstrating ADTRP (Androgen-Dependent TFPI Regulating Protein), ANGPT4 (Angiopoietin 4), GFI1 (Growth Factor-Independent 1 Transcriptional Repressor), TBX2 (T-Box Transcription Factor 2), with some common genes like NEURL-1 (Neuralized E3-Ubiquitin Protein Ligase 1), suggesting differential effects between these two garlic compounds. They regulate genes by influencing pathways including HIF-1alpha, STAT-3 and matrix metalloproteases, contributing to the chemoprotective ability of organosulfur garlic compounds against CSC-induced cellular transformation. Taken together, we demonstrated CSC induced global gene expression changes pertaining to cellular transformation which potentially can be delayed with dietary chemopreventive phytochemicals like DS and DADS influencing alterations at the transcriptomic level.
Collapse
Affiliation(s)
- Rasika R Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
7
|
Huang HH, You GR, Tang SJ, Chang JT, Cheng AJ. Molecular Signature of Long Non-Coding RNA Associated with Areca Nut-Induced Head and Neck Cancer. Cells 2023; 12:cells12060873. [PMID: 36980216 PMCID: PMC10047708 DOI: 10.3390/cells12060873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The areca nut is a high-risk carcinogen for head and neck cancer (HNC) patients in Southeast Asia. The underlying molecular mechanism of areca nut-induced HNC remains unclear, especially regarding the role of long non-coding RNA (lncRNA). This study employed a systemic strategy to identify lncRNA signatures related to areca nut-induced HNC. In total, 84 cancer-related lncRNAs were identified. Using a PCR array method, 28 lncRNAs were identified as being dysregulated in HNC cells treated with areca nut (17 upregulated and 11 downregulated). Using bioinformatics analysis of The Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (TCGA-HNSC) dataset, 45 lncRNAs were differentially expressed in tumor tissues from HNC patients (39 over- and 6 under-expressions). The integrated evaluation showed 10 lncRNAs dysregulated by the areca nut and altered expression in patients, suggesting that these panel molecules participate in areca nut-induced HNC. Five oncogenic (LUCAT1, MIR31HG, UCA1, HIF1A-AS2, and SUMO1P3) and tumor-suppressive (LINC00312) lncRNAs were independently validated, and three key molecules were further examined. Pathway prediction revealed that LUCAT1, UCA1, and MIR31HG modulate multiple oncogenic mechanisms, including stress response and cellular motility. Clinical assessment showed that these lncRNAs exhibited biomarker potentials in diagnosis (area under the curve = 0.815 for LUCAT1) and a worse prognosis (both p < 0.05, survival analysis). Cellular studies further demonstrated that MIR31HG facilitates areca nut-induced cancer progression, as silencing this molecule attenuated arecoline-induced invasion ability in HNC cells. This study identified lncRNA signatures that play a role in areca nut-induced HNC. These molecules may be further applied in risk assessment, diagnosis, prognosis, and therapeutics for areca nut-associated malignancies.
Collapse
Affiliation(s)
- Hung-Han Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shang-Ju Tang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Joseph T. Chang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (J.T.C.); (A.-J.C.); Tel.: +886-3-328-1200 (J.T.C.); +886-3-2118-800 (A.-J.C.)
| | - Ann-Joy Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Correspondence: (J.T.C.); (A.-J.C.); Tel.: +886-3-328-1200 (J.T.C.); +886-3-2118-800 (A.-J.C.)
| |
Collapse
|
8
|
Zeng Y, Zhang J, Yue J, Han G, Liu W, Liu L, Lin X, Zha Y, Liu J, Tan Y. The Role of DACT Family Members in Tumorigenesis and Tumor Progression. Int J Biol Sci 2022; 18:4532-4544. [PMID: 35864965 PMCID: PMC9295065 DOI: 10.7150/ijbs.70784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Disheveled-associated antagonist of β-catenin (DACT), which ubiquitously expressed in human tissue, is critical for regulating cell proliferation and several developmental processes in different cellular contexts. In addition, DACT is essential for some other cellular processes, such as cell apoptosis, migration and differentiation. Given the importance of DACT in these cellular processes, many scientists are gradually interested in studying the role of DACT in tumorigenesis and cancer progression. This review article focuses on the latest research regarding the essential functions and potential DACT mechanisms in the occurrence and progression of tumors. Our study indicates that DACT may act as a tumor biomarker for cancer diagnosis and prognosis, as well as a promising therapeutic target in cancers.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jianhe Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Weijia Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lin Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xin Lin
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
9
|
Kim SJ, Kim S, Choi YJ, Kim UJ, Kang KW. CKD-581 Downregulates Wnt/β-Catenin Pathway by DACT3 Induction in Hematologic Malignancy. Biomol Ther (Seoul) 2022; 30:435-446. [PMID: 35794797 PMCID: PMC9424334 DOI: 10.4062/biomolther.2022.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 11/09/2022] Open
Abstract
The present study evaluated the anti-cancer activity of histone deacetylase (HDAC)-inhibiting CKD-581 in multiple myeloma (MM) and its pharmacological mechanisms. CKD-581 potently inhibited a broad spectrum of HDAC isozymes. It concentration-dependently inhibited proliferation of hematologic cancer cells including MM (MM.1S and RPMI8226) and T cell lymphoma (HH and MJ). It increased the expression of the dishevelled binding antagonist of β-catenin 3 (DACT3) in T cell lymphoma and MM cells, and decreased the expression of c-Myc and β-catenin in MM cells. Additionally, it enhanced phosphorylated p53, p21, cleaved caspase-3 and the subG1 population, and reversely, downregulated cyclin D1, CDK4 and the anti-apoptotic BCL-2 family. Finally, administration of CKD-581 exerted a significant anti-cancer activity in MM.1S-implanted xenografts. Overall, CKD-581 shows anti-cancer activity via inhibition of the Wnt/β-catenin signaling pathway in hematologic malignancies. This finding is evidence of the therapeutic potential and rationale of CKD-581 for treatment of MM.
Collapse
Affiliation(s)
- Soo Jin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, Yongin 16995, Republic of Korea
| | - Suntae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong June Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - U Ji Kim
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, Yongin 16995, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Heilmeier U, Hackl M, Schroeder F, Torabi S, Kapoor P, Vierlinger K, Eiriksdottir G, Gudmundsson EF, Harris TB, Gudnason V, Link TM, Grillari J, Schwartz AV. Circulating serum microRNAs including senescent miR-31-5p are associated with incident fragility fractures in older postmenopausal women with type 2 diabetes mellitus. Bone 2022; 158:116308. [PMID: 35066213 DOI: 10.1016/j.bone.2021.116308] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
Fragility fractures are an important hallmark of aging and an increasingly recognized complication of Type 2 diabetes (T2D). T2D individuals have been found to exhibit an increased fracture risk despite elevated bone mineral density (BMD) by dual x-ray absorptiometry (DXA). However, BMD and FRAX-scores tend to underestimate fracture risk in T2D. New, reliable biomarkers are therefore needed. MicroRNAs (miRNAs) are secreted into the circulation from cells of various tissues proportional to local disease severity. Serum miRNA-classifiers were recently found to discriminate T2D women with and without prevalent fragility fractures with high specificity and sensitivity (AUC > 0.90). However, the association of circulating miRNAs with incident fractures in T2D has not been examined yet. In 168 T2D postmenopausal women in the AGES-Reykjavik cohort, miRNAs were extracted from baseline serum and a panel of 10 circulating miRNAs known to be involved in diabetic bone disease and aging was quantified by qPCR and Ct-values extracted. Unadjusted and adjusted Cox proportional hazard models assessed the associations between serum miRNAs and incident fragility fracture. Additionally, Receiver operating curve (ROC) analyses were performed. Of the included 168 T2D postmenopausal women who were on average 77.2 ± 5.6 years old, 70 experienced at least one incident fragility fracture during the mean follow-up of 5.8 ± 2.7 years. We found that 3 serum miRNAs were significantly associated with incident diabetic fragility fracture: while low expression of miR-19b-1-5p was associated with significantly lower risk of incident fragility fracture (HR 0.84 (95% CI: 0.71-0.99, p = 0.0323)), low expression of miR-203a and miR-31-5p was each significantly associated with a higher risk of incident fragility fracture per unit increase in Ct-value (miR-203a: HR 1.29 (95% CI: 1.12-1.49), p = 0.0004, miR-31-5p HR 1.27 (95% CI: 1.06-1.52), p = 0.009). Hazard ratios of the latter two miRNAs remained significant after adjustments for age, body mass index (BMI), areal bone mineral density (aBMD), clinical FRAX or FRAXaBMD. Women with miR-203a and miR-31-5p serum levels in the lowest expression quartiles exhibited a 2.4-3.4-fold larger fracture risk than women with miR-31-5p and miR-203a serum expressions in the highest expression quartile (0.002 ≤ p ≤ 0.039). Women with both miR-203a and miR-31-5p serum levels below the median had a significantly increased fracture risk (Unadjusted HR 3.26 (95% CI: 1.57-6.78, p = 0.001) compared to those with both expression levels above the median, stable to adjustments. We next built a diabetic fragility signature consisting of the 3 miRNAs that showed the largest associations with incident fracture (miR-203a, miR-31-5p, miR-19b-1-5p). This 3-miRNA signature showed with an AUC of 0.722 comparable diagnostic accuracy in identifying incident fractures to any of the clinical parameters such as aBMD, Clinical FRAX or FRAXaBMD alone. When the 3 miRNAs were combined with aBMD, this combined 4-feature signature performed with an AUC of 0.756 (95% CI: 0.680, 0.823) significantly better than aBMD alone (AUC 0.666, 95% CI: 0.585, 0.741) (p = 0.009). Our data indicate that specific serum microRNAs including senescent miR-31-5p are associated with incident fragility fracture in older diabetic women and can significantly improve fracture risk prediction in diabetics when combined with aBMD measurements of the femoral neck.
Collapse
Affiliation(s)
- Ursula Heilmeier
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA; Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | | | - Fabian Schroeder
- Department of Molecular Diagnostics, Austrian Institute of Technology, AIT, Vienna, Austria
| | - Soheyla Torabi
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA
| | - Puneet Kapoor
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA
| | - Klemens Vierlinger
- Department of Molecular Diagnostics, Austrian Institute of Technology, AIT, Vienna, Austria
| | | | | | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, USA
| | - Vilmundur Gudnason
- The Icelandic Heart Association, Kopavogur, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Thomas M Link
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA
| | - Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Christian Doppler Laboratory of Biotechnology of Skin Aging, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Lenoir M, Martín R, Torres-Maravilla E, Chadi S, González-Dávila P, Sokol H, Langella P, Chain F, Bermúdez-Humarán LG. Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3. Gut Microbes 2020; 12:1-16. [PMID: 33054518 PMCID: PMC7567499 DOI: 10.1080/19490976.2020.1826748] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The commensal bacterium Faecalibacterium prausnitzii plays a key role in inflammatory bowel disease (IBD) pathogenesis and serves as a general health biomarker in humans. However, the host molecular mechanisms that underlie its anti-inflammatory effects remain unknown. In this study we performed a transcriptomic approach on human intestinal epithelial cells (HT-29) stimulated with TNF-α and exposed to F. prausnitzii culture supernatant (SN) in order to determine the impact of this commensal bacterium on intestinal epithelial cells. Moreover, modulation of the most upregulated gene after F. prausnitzii SN contact was validated both in vitro and in vivo. Our results showed that F. prausnitzii SN upregulates the expression of Dact3, a gene linked to the Wnt/JNK pathway. Interestingly, when we silenced Dact3 expression, the effect of F. prausnitzii SN was lost. Butyrate was identified as the F. prausnitzii effector responsible for Dact3 modulation. Dact3 upregulation was also validated in vivo in both healthy and inflamed mice treated with either F. prausnitzii SN or the live bacteria, respectively. Finally, we demonstrated by colon transcriptomics that gut microbiota directly influences Dact3 expression. This study provides new clues about the host molecular mechanisms involved in the anti-inflammatory effects of the beneficial commensal bacterium F. prausnitzii.
Collapse
Affiliation(s)
- Marion Lenoir
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Rebeca Martín
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Sead Chadi
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Harry Sokol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France,Sorbonne Universités, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, F-75012Paris, France
| | - Philippe Langella
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Florian Chain
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Luis G. Bermúdez-Humarán
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France,CONTACT Luis G. Bermúdez-Humarán Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350Jouy-en-Josas, France
| |
Collapse
|
12
|
Luo J, Li L, Hu D, Zhang X. LINC00612/miR-31-5p/Notch1 Axis Regulates Apoptosis, Inflammation, and Oxidative Stress in Human Pulmonary Microvascular Endothelial Cells Induced by Cigarette Smoke Extract. Int J Chron Obstruct Pulmon Dis 2020; 15:2049-2060. [PMID: 32921999 PMCID: PMC7457876 DOI: 10.2147/copd.s255696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been reported as key regulators in chronic obstructive pulmonary disease (COPD). However, the precise role of LINC00612 remains unclear. Methods The real-time quantitative polymerase chain reaction (RT-qPCR) was used to quantify the expression levels of LINC00612, miR-31-5p, and Notch homolog 1 (Notch1) in lung tissues and cells. Under a cigarette smoke extract (CSE) stimulation condition, the apoptosis was analyzed by flow cytometry assay. Caspase-3 activity was examined with a caspase-3 activity assay kit; besides, inflammation and oxidative stress were assessed by measuring interleukin-6, tumor necrosis factor-α, glutathione/oxidized glutathione, reactive oxygen species, malondialdehyde, and superoxide dismutase activity. The interaction relationship between miR-31-5p and LINC00612 or Notch1 was predicted by bioinformatics databases, while dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays were performed to confirm prediction. Eventually, the related protein expression was estimated with western blot assay. Results LINC00612 was downregulated in COPD tissues when compared with controls. Consistently, CSE inhibited LINC00612 expression in HPMECs with a dose/time-dependent method. Gain-of-function experiments indicated that the upregulation of LINC00612 could repress cell apoptosis, inflammation, and oxidative stress in HPMECs induced by CSE. In addition, miR-31-5p was negatively regulated by LINC00612 in HPMECs treated with CSE. The overexpression of miR-31-5p could abolish LINC00612-induced effects on HPMECs exposed to CSE. Importantly, LINC00612 could weaken CSE-induced cell apoptosis, inflammation, and oxidative stress in HPMECs by regulating the miR-31-5p/Notch1 signaling pathway. Conclusion Current findings suggest that CSE-mediated cell apoptosis, inflammation, and oxidative stress in HPMECs were abolished by upregulation of LINC00612. Furthermore, the LINC00612/miR-31-5p/Notch1 axis may represent a novel regulator of apoptosis, inflammation, and oxidative stress of HPMECs, which may be a potential therapeutic target for COPD in the future.
Collapse
Affiliation(s)
- Jun Luo
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610000, Sichuan, People's Republic of China
| | - Li Li
- Department of Respiratory and Critical Care Medicine, Dujiangyan People's Hospital, Dujiangyan 611830, Sichuan, People's Republic of China
| | - Die Hu
- Department of Respiratory and Critical Care Medicine, Dujiangyan People's Hospital, Dujiangyan 611830, Sichuan, People's Republic of China
| | - Xian Zhang
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Chengdu 610000, Sichuan, People's Republic of China
| |
Collapse
|
13
|
Guo S, Wang Y, Li Y, Li Y, Feng C, Li Z. Daidzein-rich isoflavones aglycone inhibits lung cancer growth through inhibition of NF-κB signaling pathway. Immunol Lett 2020; 222:67-72. [DOI: 10.1016/j.imlet.2020.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/11/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
|
14
|
Balasubramanian S, Gunasekaran K, Sasidharan S, Jeyamanickavel Mathan V, Perumal E. MicroRNAs and Xenobiotic Toxicity: An Overview. Toxicol Rep 2020; 7:583-595. [PMID: 32426239 PMCID: PMC7225592 DOI: 10.1016/j.toxrep.2020.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/13/2020] [Accepted: 04/19/2020] [Indexed: 12/27/2022] Open
Abstract
The advent of new technologies has paved the rise of various chemicals that are being employed in industrial as well as consumer products. This leads to the accumulation of these xenobiotic compounds in the environment where they pose a serious threat to both target and non-target species. miRNAs are one of the key epigenetic mechanisms that have been associated with toxicity by modulating the gene expression post-transcriptionally. Here, we provide a comprehensive view on miRNA biogenesis, their mechanism of action and, their possible role in xenobiotic toxicity. Further, we review the recent in vitro and in vivo studies involved in xenobiotic exposure induced miRNA alterations and the mRNA-miRNA interactions. Finally, we address the challenges associated with the miRNAs in toxicological studies.
Collapse
Key Words
- ADAMTS9, A disintegrin and metalloproteinase with thrombospondin motifs 9
- AHR, Aryl Hydrocarbon Receptor
- AMPK, Adenosine Monophosphate-activated protein kinase
- ARRB1, Arrestin beta 1
- Ag, Silver
- Al2O3, Aluminium oxide
- Au, Gold
- Aβ, Amyloid Beta
- BCB, Blood-cerebrospinal fluid barrier
- BNIP3−3, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3
- BaP, Benzo[a]pyrene
- Biomarkers
- CCNB1, Cyclin B1
- CDC25A, M-phase inducer phosphatase 1
- CDC25C, M-phase inducer phosphatase 3
- CDK, Cyclin-dependent Kinase
- CDK1, Cyclin-dependent kinase 1
- CDK6, Cyclin-dependent kinase 6
- CDKN1b, Cyclin-dependent kinase Inhibitor 1B
- CEC, Contaminants of Emerging Concern
- COPD, Chronic obstructive pulmonary disease
- COX2, Cyclooxygenase-2
- CTGF, Connective Tissue Growth Factor
- DGCR8, DiGeorge syndrome chromosomal [or critical] region 8
- DNA, Deoxy ribonucleic acid
- DON, Deoxynivalenol
- ER, Endoplasmic Reticulum
- Environment
- Epigenetics
- Fadd, Fas-associated protein with death domain
- GTP, Guanosine triphosphate
- Gene regulation
- Grp78/BIP, Binding immunoglobulin protein
- HSPA1A, Heat shock 70 kDa protein 1
- Hpf, Hours post fertilization
- IL-6, Interleukin 6
- IL1R1, Interleukin 1 receptor, type 1
- LIN28B, Lin-28 homolog B
- LRP-1-, Low density lipoprotein receptor-related protein 1
- MAPK, Mitogen Activated Protein Kinase
- MC-LR, Microcystin-Leucine Arginine
- MC-RR, Microcystin-Arginine Arginine
- MRE, MicroRNA Response Elements
- Mn, Manganese
- NASH, Non-alcoholic steatohepatitis
- NET1, Neuroepithelial Cell Transforming 1
- NF- ҡB, Nuclear Factor kappa-light-chain-enhancer of activated B cells
- NFKBAP, NFKB Activating protein-1
- NMDAR, N-methyl-d-aspartate receptor
- NPs, Nanoparticles
- Non-coding RNAs
- Nrf2, Nuclear factor erythroid 2-related factor 2
- PDCD4, Programmed cell death protein 4
- PFAS, Poly-fluoroalkyl substances
- PM2.5, Particulate Matter2.5
- RISC, RNA-induced silencing complex
- RNA, Ribonucleic acid
- RNAi, RNA interference
- RNase III, Ribonuclease III
- SEMA6D, Semaphorin-6D
- SOLiD, Sequencing by Oligonucleotide Ligation and Detection
- SPIONs, Superparamagnetic Iron Oxide Nanoparticles
- SiO2, Silicon dioxide
- TCDD, 2,3,7,8-Tetrachlorodibenzodioxin
- TNF-α, Tumor necrosis factor – alpha
- TP53, Tumor protein 53
- TRBP, Transactivation Response RNA Binding Protein
- Toxicity
- UTR, Untranslated region
- WHO, World Health Organization
- Wnt, Wingless-related integration site
- ZEA, Zearalanone
- Zn, Zinc
- bcl2l11, B-cell lymphoma-2-like protein 11
- ceRNA, Competing endogenous RNA
- lncRNAs, Long non-coding RNA
- mRNA, Messenger RNA
- miRNA, MicroRNA
- qRT-PCR, quantitative Real Time-Polymerase Chain Reaction
- ripk 1, Receptor-interacting serine/threonine-protein kinase 1
Collapse
Affiliation(s)
| | - Kanmani Gunasekaran
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| | - Saranyadevi Sasidharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| |
Collapse
|
15
|
Wen J, Xiong K, Aili A, Wang H, Zhu Y, Yu Z, Yao X, Jiang P, Xue L, Wang J. PEX5, a novel target of microRNA-31-5p, increases radioresistance in hepatocellular carcinoma by activating Wnt/β-catenin signaling and homologous recombination. Am J Cancer Res 2020; 10:5322-5340. [PMID: 32373215 PMCID: PMC7196300 DOI: 10.7150/thno.42371] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/22/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide, with high recurrence and metastasis rates. Although radiation is an effective treatment for tumors, it is often limited by intrinsic radioresistance in HCC. The contributions of dysregulated microRNAs, including miR-31-5p, to HCC progression have been recently reported. However, the role of miR-31-5p in the radiation response of HCC is unknown. In this study, we aimed to investigate the impact of miR-31-5p on HCC radiosensitivity. Methods: miR-31-5p expression in HCC tissues, paired adjacent tissues, and HCC cell lines was measured using quantitative real-time polymerase chain reaction and in situ hybridization. Bioinformatic analyses, gain- and loss-of-function experiments, and luciferase reporter assays were performed to validate peroxisomal biogenesis factor 5 (PEX5) as a direct target of miR-31-5p. The biofunctions of PEX5 and miR-31-5p in HCC were determined by Transwell, wound-healing, and Cell Counting Kit-8 (CCK8) assays. A colony formation assay was used to evaluate the radiosensitivity of HCC cells. The interaction among PEX5, β-catenin, Rac1, and JNK-2 was confirmed by coimmunoprecipitation. A xenograft tumor model was established to validate the effects of miR-31-5p and PEX5 on HCC progression and radiosensitivity in vivo. Results: Low expression of miR-31-5p in HCC specimens, as observed in this study, predicted a poor clinical outcome. However, the expression pattern of PEX5, as a direct target of miR-31-5p, was opposite that of miR-31-5p, and high PEX5 expression indicated poor prognosis in HCC patients. Ectopic expression of PEX5 increased the proliferation, migration, and invasion abilities and enhanced the radioresistance of HCC cells in vitro and in vivo; however, these phenotypes were inhibited by miR-31-5p. Mechanistically, PEX5 stabilized cytoplasmic β-catenin and facilitated β-catenin nuclear translocation to activate Wnt/β-catenin signaling. Moreover, upon radiation exposure, PEX5 reduced excessive reactive oxygen species (ROS) accumulation and activated the homologous recombination (HR) pathway, which protected HCC cells from radiation-induced damage. Conclusions: Our findings demonstrated a novel role for PEX5 as a miR-31-5p target and a mediator of the Wnt/β-catenin signaling and HR pathways, providing new insights into studying HCC radiation responses and implicating PEX5 and miR-31-5p as potential therapeutic targets in HCC.
Collapse
|
16
|
Zhang Q, Fan H, Liu H, Jin J, Zhu S, Zhou L, Liu H, Zhang F, Zhan P, Lv T, Song Y. WNT5B exerts oncogenic effects and is negatively regulated by miR-5587-3p in lung adenocarcinoma progression. Oncogene 2019; 39:1484-1497. [PMID: 31666682 DOI: 10.1038/s41388-019-1071-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022]
Abstract
WNT5B glycoprotein belongs to the Wnt protein family. Limited investigations revealed a possible role of WNT5B in malignancies, such as triple-negative breast cancer and oral squamous cell carcinoma. However, whether WNT5B contributes to the progression of lung adenocarcinoma (LAD) remains unclear. Here, we initially determine that WNT5B is highly expressed in LAD and is positively correlated with lymph node metastasis and TNM stage. Consistently, clinical analysis reveals WNT5B as an independent prognostic biomarker in LAD. Silencing WNT5B suppresses the proliferation of LAD both in vitro and in vivo by interfering G1/S cell-cycle progression and modulating amino acid metabolism, revealing its remarkable oncogenic role in LAD. Of note, we also identified miR-5587-3p as a negative upstream regulator of WNT5B in LAD, which may help develop therapies targeting LAD patients with high WNT5B expression. Taken together, our results revealed an oncogenic role of WNT5B in LAD, which could be a prognostic biomarker and promising therapeutic target for LAD patients.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.,Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hang Fan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Hongda Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiajia Jin
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University, Nanjing, 210002, Jiangsu, China
| | - Suhua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Li Zhou
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Hongbin Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Fang Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
17
|
He J, Jin S, Zhang W, Wu D, Li J, Xu J, Gao W. Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through upregulating miR-31 expression. J Cancer 2019; 10:6003-6013. [PMID: 31762810 PMCID: PMC6856583 DOI: 10.7150/jca.35097] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation inevitably have a relapse due to the occurrence of acquired resistance, resulting in treatment failure. However, little is known about the mechanisms of acquired resistance of NSCLC patients. Here, we elucidated the expression pattern of LOC554202 and miR-31, and their biological functions and mechanisms in NSCLC with acquired EGFR TKI resistance to gefitinib. In the present study, we observed that LOC554202 and miR-31 promoted proliferation and clonogenic growth of gefitinib-resistant NSCLC cells in vitro. LOC554202 upregulated miR-31 expression and they both reduced sensitivity of NSCLC cells to gefitinib. In a xenograft mice model, we found that knockdown of miR-31 significantly repressed gefitinib-resistant NSCLC cells growth in vivo. Furthermore, both LOC554202 and miR-31 levels were significantly increased in NSCLC patients acquiring resistance to gefitinib, and the expression of LOC554202 was positively correlated with the expression of miR-31. By luciferase reporter assays, we identified RAS P21 Protein Activator 1 (RASA1) and Hypoxia Inducible Factor 1 Subunit Alpha Inhibitor (FIH-1) as direct targets of miR-31 in NSCLC cells. Mechanistically, miR-31 directly repressed RASA1 and FIH-1 expression, and thus, at least partially activated the RAF-MEK-ERK and PI3K-AKT signaling pathways in NSCLC with acquired resistance to gefitinib. In conclusion, these data will help us develop potential therapeutic targets for the diagnosis and treatment of acquired EGFR TKI resistance in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Jing He
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Shidai Jin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Wei Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Deqin Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| |
Collapse
|
18
|
Sheervalilou R, Lotfi H, Shirvaliloo M, Sharifi A, Nazemiyeh M, Zarghami N. Circulating MiR-10b, MiR-1 and MiR-30a Expression Profiles in Lung Cancer: Possible Correlation with Clinico-pathologic Characteristics and Lung Cancer Detection. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:118-129. [PMID: 32215263 DOI: 10.22088/ijmcm.bums.8.2.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/13/2019] [Indexed: 12/29/2022]
Abstract
Circulating microRNAs have been recognized as promising biomarkers for the detection of lung cancer. The objective of this study was to evaluate miR-10b, miR-1 and, miR-30a in the plasma samples of lung cancer patients to confirm any possible relevance in the early detection of lung cancer. Plasma samples from 47 non-small-cell lung cancer patients and 41 cancer-free subjects were evaluated for selected microRNAs using the real-time PCR method. To evaluate the tobacco smoking effects on microRNAs expression, the studied groups were categorized into two subgroups: never-smokers and smokers. MiR-1/miR-30a expression levels were significantly reduced in lung cancer, while the miR-10b level was significantly elevated. We found that smoking had significant effects on the levels of circulating microRNAs in the smokers of the cancer-free group (a significant up-regulation of miR-10b and significant down-regulation of miR-1/miR-30a), and lung cancer patients (a significant elevation of miR-10b). Receiver operating characteristic curve analysis showed that miR-10b with an area under the curve of 0.861, and miR-1/miR-30a with values of0.905 and 0.889 for the same parameter, could distinguish non-small-cell lung cancer patients from cancer-free subjects. Our findings demonstrated significant differences in the expression of microRNAs in lung cancer and the considerable effects of smoking on microRNAs levels. Area under curve analysis showed that miR-10b with 78% sensitivity/78% specificity, miR-1 with 95% sensitivity/80% specificity and miR-30a with 87% sensitivity/83% specificity,might be good (miR-10b/miR-30a) and excellent (miR-1) markers for lung cancer detection.
Collapse
Affiliation(s)
- Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Sharifi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Nazemiyeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Patil S, Arakeri G, Alamir AWH, Awan KH, Baeshen H, Ferrari M, Patil S, Fonseca FP, Brennan PA. Role of salivary transcriptomics as potential biomarkers in oral cancer: A systematic review. J Oral Pathol Med 2019; 48:871-879. [DOI: 10.1111/jop.12895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry Jazan University Jazan Saudi Arabia
- Department of Medical Biotechnologies, School of Dental Medicine University of Siena Siena Italy
| | - Gururaj Arakeri
- Department of Oral and Maxillofacial Surgery Navodaya Dental College and Hospital Raichur India
| | - Abdul Wahab H. Alamir
- Division of Oral Medicine, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry Jazan University Jazan Saudi Arabia
| | - Kamran Habib Awan
- College of Dental Medicine Roseman University of Health Sciences South Jordan Utah USA
| | - Hosam Baeshen
- Department of Orthodontics, Faculty of Dentistry King Abdulaziz University Jeddah Kingdom of Saudi Arabia
| | - Marco Ferrari
- Department of Medical Biotechnologies, School of Dental Medicine University of Siena Siena Italy
- Department of Restorative Dentistry, School of Dentistry University of Leeds Leeds UK
| | - Shekar Patil
- Department of Medical Oncology HCG Cancer Hospital Bangalore India
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Peter A. Brennan
- Department of Oral and Maxillofacial Surgery Queen Alexandra Hospital Portsmouth UK
| |
Collapse
|
20
|
Li M, Huo X, Davuljigari CB, Dai Q, Xu X. MicroRNAs and their role in environmental chemical carcinogenesis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:225-247. [PMID: 30171477 DOI: 10.1007/s10653-018-0179-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 08/23/2018] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNA species that play crucial roles across many biological processes and in the pathogenesis of major diseases, including cancer. Recent studies suggest that the expression of miRNA is altered by certain environmental chemicals, including metals, organic pollutants, cigarette smoke, pesticides and carcinogenic drugs. In addition, extensive studies have indicated the existence and importance of miRNA in different cancers, suggesting that cancer-related miRNAs could serve as potential markers for chemically induced cancers. The altered expression of miRNA was considered to be a vital pathogenic role in xenobiotic-induced cancer development. However, the significance of miRNA in the etiology of cancer and the exact mechanisms by which environmental factors alter miRNA expression remain relatively unexplored. Hence, understanding the interaction of miRNAs with environmental chemicals will provide important information on mechanisms underlying the pathogenesis of chemically induced cancers, and effectively diagnose and treat human cancers resulting from chronic or acute carcinogen exposure. This study presents the current evidence that the miRNA deregulation induced by various chemical carcinogens, different cancers caused by environmental carcinogens and the potentially related genes in the onset or progression of cancer. For each carcinogen, the specifically expressed miRNA may be considered as the early biomarkers of the cancer process. In this review, we also summarize various target genes of the altered miRNA, oncogenes or anti-oncogenes, and the existing evidence regarding the gene regulation mechanisms of cancer caused by environmentally induced miRNA alteration. The future perspective of miRNA may become attractive targets for the diagnosis and treatment of carcinogen-induced cancer.
Collapse
Affiliation(s)
- Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Chand Basha Davuljigari
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qingyuan Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
21
|
He J, Tu C, Liu Y. Role of lncRNAs in aging and age-related diseases. Aging Med (Milton) 2018; 1:158-175. [PMID: 31942494 PMCID: PMC6880696 DOI: 10.1002/agm2.12030] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 01/10/2023] Open
Abstract
Aging is progressive physiological degeneration and consequently declined function, which is linked to senescence on both cellular and organ levels. Accumulating studies indicate that long noncoding RNAs (lncRNAs) play important roles in cellular senescence at all levels-transcriptional, post-transcriptional, translational, and post-translational. Understanding the molecular mechanism of lncRNAs underlying senescence could facilitate interpretation and intervention of aging and age-related diseases. In this review, we describe categories of known and novel lncRNAs that have been involved in the progression of senescence. We also identify the lncRNAs implicated in diseases arising from age-driven degeneration or dysfunction in some representative organs and systems (brains, liver, muscle, cardiovascular system, bone pancreatic islets, and immune system). Improved comprehension of lncRNAs in the aging process on all levels, from cell to organismal, may provide new insights into the amelioration of age-related pathologies and prolonged healthspan.
Collapse
Affiliation(s)
- Jieyu He
- Department of GeriatricsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Chao Tu
- Department of OrthopedicsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Youshuo Liu
- Department of GeriatricsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
22
|
Qin J, Ning H, Zhou Y, Hu Y, Yang L, Huang R. LncRNA MIR31HG overexpression serves as poor prognostic biomarker and promotes cells proliferation in lung adenocarcinoma. Biomed Pharmacother 2018; 99:363-368. [PMID: 29367106 DOI: 10.1016/j.biopha.2018.01.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/24/2017] [Accepted: 01/03/2018] [Indexed: 02/05/2023] Open
Abstract
MIR31HG, as the host gene of miR-31, has been suggested to involve in various cancer developments. However, little is known about the clinical significance and biological function of MIR31HG in lung adenocarcinoma. In our study, we found MIR31HG was highly expressed in lung adenocarcinoma tissues and cell lines, and associated with clinical staging, N classification, M classification and differentiated degree. Survival analysis showed MIR31HG high-expression was an independent unfavorable prognostic factor for lung adenocarcinoma patients. Loss-of-function studies suggested down-regulation of MIR31HG inhibited lung adenocarcinoma cells proliferation and blocked cell-cycle, but has no effect on cell apoptosis. There was no correlation between MIR31HG and miR-31 expression in lung adenocarcinoma tissues, down-regulation of MIR31HG had no effect on the expression of miR-31 in lung adenocarcinoma cells. In conclusion, MIR31HG high-expression is an independent unfavorable prognostic factor for lung adenocarcinoma patients, and serves an oncogenic role to modulate lung adenocarcinoma cells proliferation and cell-cycle.
Collapse
Affiliation(s)
- Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, 410078, Changsha, China
| | - Huacheng Ning
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, China
| | - Yao Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, China
| | - Yue Hu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, China
| | - Lina Yang
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, 410078, Changsha, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, 410078, Changsha, China.
| |
Collapse
|
23
|
Yang S, Wang J, Ge W, Jiang Y. Long non-coding RNA LOC554202 promotes laryngeal squamous cell carcinoma progression through regulating miR-31. J Cell Biochem 2018; 119:6953-6960. [PMID: 29737563 DOI: 10.1002/jcb.26902] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/28/2018] [Indexed: 12/25/2022]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is one aggressive malignancy and accounts for 20% of all head and neck cancer. However, the role of LOC554202 in human LSCC remains unknown. The expression level of LOC554202 and miR-31 was detected in the LSCC tiussues by using qRT-PCR. Cell growth was measured by CCK-8 assay. Flow cytometry and matrigel-coated membrane was used to detect for cell cycle and invasion respectively. We indicated that lncRNA LOC554202 expression was overexpressed in LSCC tissues compared with the paired adjacent samples and higher LOC554202 expression was associated with the advanced stage. In addition, we demonstrated that the expression level of miR-31 was downregulated in LSCC tissues compared to the paired adjacent samples and lower miR-31 expression was correlated with the advanced stage. Moreover, the expression of miR-31 was negatively correlated with the expression of LOC554202 in LSCC tissues. Ectopic expression of LOC554202 promoted LSCC cell growth, cell cyle and cell invasion and overexpression of miR-31 inhibited LSCC cell growth, cell cyle and cell invasion. Elevated expression of LOC554202 suppressed miR-31 expression and promoted RhoA expression in LSCC cell, which was a direct target gene of miR-31. Furthermore, LOC554202 increased LSCC cell growth, cell cyle and cell invasion through suppressing miR-31 expression. These results suggested that LOC554202 acted as an oncogene in the development of LSCC.
Collapse
Affiliation(s)
- Shujuan Yang
- Department of Otolaryngology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Jing Wang
- Department of Otolaryngology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Wensheng Ge
- Department of Otolaryngology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Mäkitie RE, Hackl M, Niinimäki R, Kakko S, Grillari J, Mäkitie O. Altered MicroRNA Profile in Osteoporosis Caused by Impaired WNT Signaling. J Clin Endocrinol Metab 2018; 103:1985-1996. [PMID: 29506076 DOI: 10.1210/jc.2017-02585] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/26/2018] [Indexed: 12/16/2022]
Abstract
CONTEXT WNT signaling is fundamental to bone health, and its aberrant activation leads to skeletal pathologies. The heterozygous missense mutation p.C218G in WNT1, a key WNT pathway ligand, leads to severe early-onset and progressive osteoporosis with multiple peripheral and spinal fractures. Despite the severe skeletal manifestations, conventional bone turnover markers are normal in mutation-positive patients. OBJECTIVE This study sought to explore the circulating microRNA (miRNA) pattern in patients with impaired WNT signaling. DESIGN AND SETTING A cross-sectional cohort study at a university hospital. PARTICIPANTS Altogether, 12 mutation-positive (MP) subjects (median age, 39 years; range, 11 to 76 years) and 12 mutation-negative (MN) subjects (35 years; range, 9 to 59 years) from two Finnish families with WNT1 osteoporosis due to the heterozygous p.C218G WNT1 mutation. METHODS AND MAIN OUTCOME MEASURE Serum samples were screened for 192 miRNAs using quantitative polymerase chain reaction. Findings were compared between WNT1 MP and MN subjects. RESULTS The pattern of circulating miRNAs was significantly different in the MP subjects compared with the MN subjects, with two upregulated (miR-18a-3p and miR-223-3p) and six downregulated miRNAs (miR-22-3p, miR-31-5p, miR-34a-5p, miR-143-5p, miR-423-5p, and miR-423-3p). Three of these (miR-22-3p, miR-34a-5p, and miR-31-5p) are known inhibitors of WNT signaling: miR-22-3p and miR-34a-5p target WNT1 messenger RNA, and miR-31-5p is predicted to bind to WNT1 3'UTR. CONCLUSIONS The circulating miRNA pattern reflects WNT1 mutation status. The findings suggest that the WNT1 mutation disrupts feedback regulation between these miRNAs and WNT1, providing insights into the pathogenesis of WNT-related bone disorders. These miRNAs may have potential in the diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Riikka E Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
| | | | - Riitta Niinimäki
- Department of Children and Adolescents, Oulu University Hospital, and PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - Sakari Kakko
- Internal Medicine and Clinical Research Center, University of Oulu, Oulu, Finland
| | - Johannes Grillari
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Center for Molecular Medicine, Karolinska Institutet and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Li Y, Xiao X, Han Y, Gorlova O, Qian D, Leighl N, Johansen JS, Barnett M, Chen C, Goodman G, Cox A, Taylor F, Woll P, Wichmann HE, Manz J, Muley T, Risch A, Rosenberger A, Arnold SM, Haura EB, Bolca C, Holcatova I, Janout V, Kontic M, Lissowska J, Mukeria A, Ognjanovic S, Orlowski TM, Scelo G, Swiatkowska B, Zaridze D, Bakke P, Skaug V, Zienolddiny S, Duell EJ, Butler LM, Houlston R, Soler Artigas M, Grankvist K, Johansson M, Shepherd FA, Marcus MW, Brunnström H, Manjer J, Melander O, Muller DC, Overvad K, Trichopoulou A, Tumino R, Liu G, Bojesen SE, Wu X, Marchand LL, Albanes D, Bickeböller H, Aldrich MC, Bush WS, Tardon A, Rennert G, Teare MD, Field JK, Kiemeney LA, Lazarus P, Haugen A, Lam S, Schabath MB, Andrew AS, Bertazzi PA, Pesatori AC, Christiani DC, Caporaso N, Johansson M, McKay JD, Brennan P, Hung RJ, Amos CI. Genome-wide interaction study of smoking behavior and non-small cell lung cancer risk in Caucasian population. Carcinogenesis 2018; 39:336-346. [PMID: 29059373 PMCID: PMC6248554 DOI: 10.1093/carcin/bgx113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/12/2017] [Indexed: 01/02/2023] Open
Abstract
Non-small cell lung cancer is the most common type of lung cancer. Both environmental and genetic risk factors contribute to lung carcinogenesis. We conducted a genome-wide interaction analysis between single nucleotide polymorphisms (SNPs) and smoking status (never- versus ever-smokers) in a European-descent population. We adopted a two-step analysis strategy in the discovery stage: we first conducted a case-only interaction analysis to assess the relationship between SNPs and smoking behavior using 13336 non-small cell lung cancer cases. Candidate SNPs with P-value <0.001 were further analyzed using a standard case-control interaction analysis including 13970 controls. The significant SNPs with P-value <3.5 × 10-5 (correcting for multiple tests) from the case-control analysis in the discovery stage were further validated using an independent replication dataset comprising 5377 controls and 3054 non-small cell lung cancer cases. We further stratified the analysis by histological subtypes. Two novel SNPs, rs6441286 and rs17723637, were identified for overall lung cancer risk. The interaction odds ratio and meta-analysis P-value for these two SNPs were 1.24 with 6.96 × 10-7 and 1.37 with 3.49 × 10-7, respectively. In addition, interaction of smoking with rs4751674 was identified in squamous cell lung carcinoma with an odds ratio of 0.58 and P-value of 8.12 × 10-7. This study is by far the largest genome-wide SNP-smoking interaction analysis reported for lung cancer. The three identified novel SNPs provide potential candidate biomarkers for lung cancer risk screening and intervention. The results from our study reinforce that gene-smoking interactions play important roles in the etiology of lung cancer and account for part of the missing heritability of this disease.
Collapse
Affiliation(s)
- Yafang Li
- Biomedical Data Science Department, Dartmouth College, Hanover, NH, USA
| | - Xiangjun Xiao
- Biomedical Data Science Department, Dartmouth College, Hanover, NH, USA
| | - Younghun Han
- Biomedical Data Science Department, Dartmouth College, Hanover, NH, USA
| | - Olga Gorlova
- Biomedical Data Science Department, Dartmouth College, Hanover, NH, USA
| | - David Qian
- Biomedical Data Science Department, Dartmouth College, Hanover, NH, USA
| | - Natasha Leighl
- Department of Medicine, The Princess Margaret Cancer Center, University
Health Network, Toronto, ON, Canada
| | - Jakob S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University
Hospital, Copenhagen University, Herlev, Denmark
| | - Matt Barnett
- Public Health Sciences Division, Program in Epidemiology, Fred Hutchinson
Cancer Research Center, Seattle, WA, USA
| | - Chu Chen
- Public Health Sciences Division, Program in Epidemiology, Fred Hutchinson
Cancer Research Center, Seattle, WA, USA
| | - Gary Goodman
- Public Health Sciences Division, Cancer Prevention Program, Swedish Medical
Center, Seattle, WA, USA
| | - Angela Cox
- Department of Oncology, University of Sheffield, Sheffield UK
| | - Fiona Taylor
- Department of Oncology, University of Sheffield, Sheffield UK
| | - Penella Woll
- Department of Oncology, University of Sheffield, Sheffield UK
| | - H -Erich Wichmann
- Institute of Epidemiology, Helmholtz Centre Munich, Neuherberg, Germany
| | - Judith Manz
- Institute of Epidemiology, Helmholtz Centre Munich, Neuherberg, Germany
| | - Thomas Muley
- Biobank and Tumor Documentation, Thoraxklinik at University Hospital
Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German
Center for Lung Research (DZL), Heidelberg, Germany
| | - Angela Risch
- Biobank and Tumor Documentation, Thoraxklinik at University Hospital
Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Member of the German
Center for Lung Research (DZL), Heidelberg, Germany
- Cancer Center Cluster Salzburg at PLUS, Department of Molecular Biology,
University of Salzburg, Salzburg, Austria
| | - Albert Rosenberger
- Department of Genetic Epidemiology, Medical School, Georg-August University
of Göttingen, Göttingen, Germany
| | - Susanne M Arnold
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL,
USA
| | - Ciprian Bolca
- Thoracic Surgery Division, “Marius Nasta” National Institute of Pneumology,
București, Romania
| | - Ivana Holcatova
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Vladimir Janout
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Milica Kontic
- Internal Medicine, School of Medicine, Clinical Center of Serbia, University
of Belgrade, Belgrade, Serbia
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Cancer
Center, Institute of Oncology, Warsaw, Pol
| | - Anush Mukeria
- Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer
Research Centre, Moscow, Russia
| | - Simona Ognjanovic
- International Organization for Cancer Prevention and Research, Belgrade,
Serbia
| | - Tadeusz M Orlowski
- Department of Thoracic Surgery, National Institute of Tuberculosis and Lung
Diseases, Warsaw, Pol
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Genetic Epidemiology
Group, Lyon, France
| | - Beata Swiatkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational
Medicine, Łódź, Pol
| | - David Zaridze
- Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer
Research Centre, Moscow, Russia
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Vidar Skaug
- Department of Toxicology, National Institute of Occupational Health, Oslo,
Norway
| | - Shanbeh Zienolddiny
- Department of Toxicology, National Institute of Occupational Health, Oslo,
Norway
| | - Eric J Duell
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research
Programme, Catalan Institute of Oncology (ICO-IDIBELL), Hospitalet de Llobregat, Barcelona,
Spain
| | - Lesley M Butler
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | | - María Soler Artigas
- Department of Health Sciences, Genetic Epidemiology Group, University of
Leicester, Leicester, UK
- Genetic Epidemiology Group, Department of Health Sciences, Leicester
Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | - Frances A Shepherd
- Medical Oncology Toronto, Princess Margaret Hospital, Toronto, ON,
Canada
| | - Michael W Marcus
- Department of Molecular and Clinical Cancer Medicine, University of
Liverpool, Liverpool, UK
| | - Hans Brunnström
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jonas Manjer
- Department of Internal Medicine, Skåne University Hospital, Malmö,
Sweden
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö,
Sweden
| | - David C Muller
- Department of Epidemiology and Biostatistics, Imperial College London, St
Mary’s Campus, London, UK
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University,
Aarhus C, Denmark
| | - Antonia Trichopoulou
- Department of Hygiene and Epidemiology, Medical School, University of Athens,
Athens, Greece
| | - Rosario Tumino
- Molecular and Nutritional Epidemiology Unit, CSPO (Cancer Research and
Prevention Centre), Scientific Institute of Tuscany, Florence, Italy
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, ON M5G, Canada
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen
University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen,
Denmark
- Copenhagen General Population Study, Herlev and Gentofte Hospital,
Copenhagen, Denmark
| | - Xifeng Wu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center,
Houston, TX, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI,
USA
| | - Demetrios Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US
National Institutes of Health, Bethesda, MD, USA
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August
University Göttingen, Göttingen, Germany
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt
University Medical Center, Nashville, TN, USA
| | - William S Bush
- Department of Epidemiology and Biostatistics, School of Medicine, Case
Western Reserve University, Cleveland, OH, USA
| | | | - Gad Rennert
- Technion Faculty of Medicine, Clalit National Cancer Control Center, Carmel
Medical Center, Haifa, Israel
| | - M Dawn Teare
- Genetic Epidemiology, School of Health and Related Research, University of
Sheffield, Sheffield, UK
| | - John K Field
- Institute of Translational Medicine, University of Liverpool, Liverpool,
UK
| | - Lambertus A Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen
EZ, Netherlands
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State
University, Spokane, WA, USA
| | - Aage Haugen
- Department of Toxicology, National Institute of Occupational Health, Oslo,
Norway
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre,
Vancouver, BC, Canada
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research
Institute, Tampa, FL, USA
| | - Angeline S Andrew
- Department of Epidemiology, Norris Cotton Cancer Center, Dartmouth College,
Hanover, NH, USA
| | - Pier Alberto Bertazzi
- Department of Preventive Medicine, IRCCS Foundation Cà Granda Ospedale,
Maggiore Policlinico, University of Milan, Milan, Italy
- Department of Clinical Sciences and Community Health–DISCCO, University of
Milan, Milan, Italy
| | - Angela C Pesatori
- Department of Clinical Sciences and Community Health–DISCCO, University of
Milan, Milan, Italy
| | - David C Christiani
- Department of Epidemiology, Harvard School of Public Health, Boston, MA,
USA
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US
National Institutes of Health, Bethesda, MD, USA
| | - Mattias Johansson
- International Agency for Research on Cancer, World Health Organization, Lyon,
France
| | - James D McKay
- International Agency for Research on Cancer (IARC), Genetic Epidemiology
Group, Lyon, France
| | - Paul Brennan
- International Agency for Research on Cancer, World Health Organization, Lyon,
France
| | - Rayjean J Hung
- Division of Epidemiology, Dalla Lana School of Public Health, University of
Toronto, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
26
|
Abstract
Lung cancer is the leading cause of cancer deaths worldwide and over 80% of lung cancer patients are classified as having non-small cell lung cancer. Although there have been technological advancements in the early detection and standard treatment of lung cancer, it is often diagnosed at an advanced stage and is chemoresistant to most available drugs. A number of studies have demonstrated that microRNA is able to modulate various tumorigenic processes, including progression and metastasis, in various mechanisms. In this review we examine the most recent achievements in microRNA and lung cancer treatment and summarize the research progress on the reciprocal regulation between microRNA and epigenetic modifications, as both have been intensively studied in lung cancer. Epigenetic modifications on the human genome regulate gene and microRNA expression at the transcriptional level; inversely, microRNA can also transcriptionally cleave and/or translationally repress the expression of several key enzymes involved in epigenetic processes such as DNA methylation and histone modification. Better understanding of reciprocal regulation between microRNA and epigenetic modifications will underlie the development of novel microRNA orientated diagnostic and therapeutic strategies relating to lung cancer in the near future.
Collapse
Affiliation(s)
- Rajeev Kumar
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Yaguang Xi
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
27
|
Clark RJ, Craig MP, Agrawal S, Kadakia M. microRNA involvement in the onset and progression of Barrett's esophagus: a systematic review. Oncotarget 2018; 9:8179-8196. [PMID: 29487725 PMCID: PMC5814292 DOI: 10.18632/oncotarget.24145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/22/2017] [Indexed: 12/13/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy that develops from Barrett's esophagus (BE), an intestinal metaplasia of the distal esophagus. microRNAs (miRNAs), short non-coding regulatory RNAs, are frequently dysregulated in BE and are thought to play key roles in the onset of BE and its progression to EAC. miRNAs thus have potential diagnostic and prognostic value and are increasingly being used as cancer biomarkers. This review summarizes the current literature related to miRNAs that are dysregulated in BE within the context of Hedgehog, Notch, MAPK, NF kappa-B, Wnt and epithelial-mesenchymal transition (EMT) signaling which are thought to drive BE onset and progression. This comprehensive analysis of miRNAs and their associated signaling in the regulation of BE provides an overview of vital discoveries in this field and highlights gaps in our understanding of BE pathophysiology that warrant further investigation.
Collapse
Affiliation(s)
- Reilly J Clark
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Michael P Craig
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | | | - Madhavi Kadakia
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
28
|
Lai YH, Liu H, Chiang WF, Chen TW, Chu LJ, Yu JS, Chen SJ, Chen HC, Tan BCM. MiR-31-5p-ACOX1 Axis Enhances Tumorigenic Fitness in Oral Squamous Cell Carcinoma Via the Promigratory Prostaglandin E2. Am J Cancer Res 2018; 8:486-504. [PMID: 29290822 PMCID: PMC5743562 DOI: 10.7150/thno.22059] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
During neoplastic development, a multitude of changes in genome-encoded information are progressively selected to confer growth and survival advantages to tumor cells. microRNAs-mRNAs regulatory networks, given their role as a critical layer of robust gene expression control, are frequently altered in neoplasm. However, whether and how these gene perturbations impact metabolic homeostasis remains largely unresolved. Methods: Through targeted miRNA expression screening, we uncovered an oral squamous cell carcinoma (OSCC)-associated miRNAome, among which miR-31-5p was identified based on extent of up-regulation, functional impact on OSCC cell migration and invasion, and direct regulation of the rate-limiting enzyme in peroxisomal β-oxidation, ACOX1. Results: We further found that both miR-31-5p and ACOX1 underpin, in an antagonistic manner, the overall cellular lipidome profiles as well as the migratory and invasive abilities of OSCC cells. Interestingly, the extracellular levels of prostaglandin E2 (PGE2), a key substrate of ACOX1, were controlled by the miR-31-5p-ACOX1 axis, and were shown to positively influence the extent of cell motility in correlation with metastatic status. The promigratory effect of this metabolite was mediated by an elevation in EP1-ERK-MMP9 signaling. Of note, functional significance of this regulatory pathway was further corroborated by its clinicopathologically-correlated expression in OSCC patient specimens. Conclusions: Collectively, our findings outlined a model whereby misregulated miR-31-5p-ACOX1 axis in tumor alters lipid metabolomes, consequently eliciting an intracellular signaling change to enhance cell motility. Our clinical analysis also unveiled PGE2 as a viable salivary biomarker for prognosticating oral cancer progression, further underscoring the importance of lipid metabolism in tumorigenesis.
Collapse
|
29
|
Mari-Alexandre J, Diaz-Lagares A, Villalba M, Juan O, Crujeiras AB, Calvo A, Sandoval J. Translating cancer epigenomics into the clinic: focus on lung cancer. Transl Res 2017. [PMID: 28644958 DOI: 10.1016/j.trsl.2017.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic deregulation is increasingly being recognized as a hallmark of cancer. Recent studies have identified many new epigenetic biomarkers, some of which are being introduced into clinical practice for diagnosis, molecular classification, prognosis or prediction of response to therapies. O-6-methylguanine-DNA methyltransferase gene is the most clinically advanced epigenetic biomarker as it predicts the response to temozolomide and carmustine in gliomas. Therefore, epigenomics may represent a novel and promising tool for precision medicine, and in particular, the detection of epigenomic biomarkers in liquid biopsies will be of great interest for monitoring diseases in patients. Of particular relevance is the identification of epigenetic biomarkers in lung cancer, one of the most prevalent and deadly types of cancer. DNA methylation of SHOX2 and RASSF1A could be used as diagnostic markers to differentiate between normal and tumor samples. MicroRNA and long noncoding RNA signatures associated with lung cancer development or tobacco smoke have also been identified. In addition to the field of biomarkers, therapeutic approaches using DNA methylation and histone deacetylation inhibitors are being tested in clinical trials for several cancer types. Moreover, new DNA editing techniques based on zinc finger and CRISPR/Cas9 technologies allow specific modification of aberrant methylation found in oncogenes or tumor suppressor genes. We envision that epigenomics will translate into the clinical field and will have an impact on lung cancer diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Josep Mari-Alexandre
- Unit of Inherited Cardiovascular Diseases, Sudden Death and Mechanisms of Disease, Health Research Institute La Fe, Valencia, Spain
| | - Angel Diaz-Lagares
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS), CIBERONC, Santiago de Compostela, Spain
| | - Maria Villalba
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain; CIBERONC, IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Oscar Juan
- Biomarkers and Precision Medicine Unit. Health Research Institute La Fe, Valencia, Spain
| | - Ana B Crujeiras
- Laboratory of Molecular and Cellular Endocrinology, Health Research Institute of Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Madrid, Spain.
| | - Alfonso Calvo
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain; CIBERONC, IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain.
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit. Health Research Institute La Fe, Valencia, Spain.
| |
Collapse
|
30
|
Ma X, Qi S, Duan Z, Liao H, Yang B, Wang W, Tan J, Li Q, Xia X. Long non-coding RNA LOC554202 modulates chordoma cell proliferation and invasion by recruiting EZH2 and regulating miR-31 expression. Cell Prolif 2017; 50. [PMID: 28963737 DOI: 10.1111/cpr.12388] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Chordoma is a rare malignant bone tumour arising from notochordal remnants. Long non-coding RNA LOC554202, as the host gene of miR-31, contributes to various cancer developments. However, little is known about the biological function of LOC554202 in chordoma. Here, the relationship between LncRNA LOC554202, miR-31 and EZH2 was elucidated in chordoma. MATERIALS AND METHODS The levels of LOC554402, miR-31, EZH2, RNF144B, and epithelial-mesenchymal transition (EMT) markers were measured in chordoma tissues and the chordoma cell lines via quantitative real-time PCR (qRT-PCR) or Western blot. FISH assay demonstrated the LOC554402 expression in chordoma tissues. The chordoma cell lines, U-CH1 and JHC7, were transfected with siRNA or miRNA mimics and analysed for cell proliferation ability, apoptosis, cell migration, and invasion. RNA pull down, RIP assay, and Luciferase Reporter Assay were used to analyze the interaction between LOC554202 and EZH2. Animal tumour xenografts were generated, and qRT-PCR was performed to investigate EZH2, miR-31, and RNB144B expression on tumour growth in vivo. RESULTS We found elevated expression of LOC554202 was associated with a decreased level of miR-31 in cancer tissues. Knockdown of LOC554202 or overexpression of miR-31 suppressed the proliferation, migration, and invasion of chordoma cells. Unexpectedly, EZH2 as a binding protein of LOC554202, and it was positively regulated by LOC554202, leading to the reduced expression of miR-31. Furthermore, the impaired function of miR-31 restored expression of the oncogene RNF144B and maintained the metastasis-promoting activity in vitro. The results in vivo confirmed the anti-tumour effects of knockdown of LOC554202, which inhibited EZH2/miR-31 to activate the oncogene RNF144B. CONCLUSION Our results suggest that LOC554202 may play an important role in the progression of chordoma by the direct upregulation of EZH2 and indirect promotion of RNF144B via miR-31.
Collapse
Affiliation(s)
- Xianli Ma
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Shengjin Qi
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zhenying Duan
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Hongzhan Liao
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Baohua Yang
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Wenbo Wang
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, China
| | - Qinghua Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, China
| | - Xuewei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
31
|
Shukla V, Rao M, Zhang H, Beers J, Wangsa D, Wangsa D, Buishand FO, Wang Y, Yu Z, Stevenson HS, Reardon ES, McLoughlin KC, Kaufman AS, Payabyab EC, Hong JA, Zhang M, Davis S, Edelman D, Chen G, Miettinen MM, Restifo NP, Ried T, Meltzer PA, Schrump DS. ASXL3 Is a Novel Pluripotency Factor in Human Respiratory Epithelial Cells and a Potential Therapeutic Target in Small Cell Lung Cancer. Cancer Res 2017; 77:6267-6281. [PMID: 28935813 DOI: 10.1158/0008-5472.can-17-0570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/28/2017] [Accepted: 09/07/2017] [Indexed: 01/16/2023]
Abstract
In this study, we generated induced pluripotent stem cells (iPSC) from normal human small airway epithelial cells (SAEC) to investigate epigenetic mechanisms of stemness and pluripotency in lung cancers. We documented key hallmarks of reprogramming in lung iPSCs (Lu-iPSC) that coincided with modulation of more than 15,000 genes relative to parental SAECs. Of particular novelty, we identified the PRC2-associated protein, ASXL3, which was markedly upregulated in Lu-iPSCs and small cell lung cancer (SCLC) lines and clinical specimens. ASXL3 overexpression correlated with increased genomic copy number in SCLC lines. ASXL3 silencing inhibited proliferation, clonogenicity, and teratoma formation by Lu-iPSCs, and diminished clonogenicity and malignant growth of SCLC cells in vivo Collectively, our studies validate the utility of the Lu-iPSC model for elucidating epigenetic mechanisms contributing to pulmonary carcinogenesis and highlight ASXL3 as a novel candidate target for SCLC therapy. Cancer Res; 77(22); 6267-81. ©2017 AACR.
Collapse
Affiliation(s)
- Vivek Shukla
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Mahadev Rao
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Hongen Zhang
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | | | - Darawalee Wangsa
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Danny Wangsa
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | | | - Yonghong Wang
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Zhiya Yu
- Laboratory of Pathology, Center for Cancer Research, NCI, Rockville, Maryland
| | - Holly S Stevenson
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Emily S Reardon
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Kaitlin C McLoughlin
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Andrew S Kaufman
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Eden C Payabyab
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Julie A Hong
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Mary Zhang
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Sean Davis
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Daniel Edelman
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | | | - Markku M Miettinen
- Laboratory of Pathology, Center for Cancer Research, NCI, Rockville, Maryland
| | | | - Thomas Ried
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - Paul A Meltzer
- Genetics Branch, Center for Cancer Research, NCI, Rockville, Maryland
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Rockville, Maryland.
| |
Collapse
|
32
|
Rapp J, Jaromi L, Kvell K, Miskei G, Pongracz JE. WNT signaling - lung cancer is no exception. Respir Res 2017; 18:167. [PMID: 28870231 PMCID: PMC5584342 DOI: 10.1186/s12931-017-0650-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/27/2017] [Indexed: 02/07/2023] Open
Abstract
Since the initial discovery of the oncogenic activity of WNT ligands our understanding of the complex roles for WNT signaling pathways in lung cancers has increased substantially. In the current review, the various effects of activation and inhibition of the WNT signaling pathways are summarized in the context of lung carcinogenesis. Recent evidence regarding WNT ligand transport mechanisms, the role of WNT signaling in lung cancer angiogenesis and drug transporter regulation and the importance of microRNA and posttranscriptional regulation of WNT signaling are also reviewed.
Collapse
Affiliation(s)
- Judit Rapp
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Luca Jaromi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Gyorgy Miskei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| |
Collapse
|
33
|
Yang Y, Zhao L, Lei L, Lau WB, Lau B, Yang Q, Le X, Yang H, Wang C, Luo Z, Xuan Y, Chen Y, Deng X, Xu L, Feng M, Yi T, Zhao X, Wei Y, Zhou S. LncRNAs: the bridge linking RNA and colorectal cancer. Oncotarget 2017; 8:12517-12532. [PMID: 27888635 PMCID: PMC5355361 DOI: 10.18632/oncotarget.13573] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/12/2016] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcribed by genomic regions (exceeding 200 nucleotides in length) that do not encode proteins. While the exquisite regulation of lncRNA transcription can provide signals of malignant transformation, lncRNAs control pleiotropic cancer phenotypes through interactions with other cellular molecules including DNA, protein, and RNA. Recent studies have demonstrated that dysregulation of lncRNAs is influential in proliferation, angiogenesis, metastasis, invasion, apoptosis, stemness, and genome instability in colorectal cancer (CRC), with consequent clinical implications. In this review, we explicate the roles of different lncRNAs in CRC, and the potential implications for their clinical application.
Collapse
Affiliation(s)
- Yanfei Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Lingzi Lei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, U.S.A
| | - Bonnie Lau
- Department of Emergency Medicine, Kaiser Permanente Santa Clara Medical Center, Affiliate of Stanford University, U.S.A
| | - Qilian Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xiaobing Le
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Huiliang Yang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chenlu Wang
- College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Zhongyue Luo
- College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Yu Xuan
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiangbing Deng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Lian Xu
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, P. R. China
| | - Min Feng
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, P. R. China
| | - Tao Yi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xia Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yuquan Wei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
34
|
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in hypoxia/HIF-1-associated cancer progression through largely unknown mechanisms. Here we identify MIR31HG as a hypoxia-inducible lncRNA and therefore we name it LncHIFCAR (long noncoding HIF-1α co-activating RNA); we describe its oncogenic role as a HIF-1α co-activator that regulates the HIF-1 transcriptional network, crucial for cancer development. Extensive analyses of clinical data indicate LncHIFCAR level is substantially upregulated in oral carcinoma, significantly associated with poor clinical outcomes and representing an independent prognostic predictor. Overexpression of LncHIFCAR induces pseudo-hypoxic gene signature, whereas knockdown of LncHIFCAR impairs the hypoxia-induced HIF-1α transactivation, sphere-forming ability, metabolic shift and metastatic potential in vitro and in vivo. Mechanistically, LncHIFCAR forms a complex with HIF-1α via direct binding and facilitates the recruitment of HIF-1α and p300 cofactor to the target promoters. Our results uncover an lncRNA-mediated mechanism for HIF-1 activation and establish the clinical values of LncHIFCAR in prognosis and potential therapeutic strategy for oral carcinoma. Cancer cells adapt to the changing microenvironment by activating different pathways through multiple mechanisms. Here the authors identify long noncoding RNA MIR31HG as a HIF-1α co-activator required for the induction of the hypoxic response and show its oncogenic role in oral carcinogenesis.
Collapse
|
35
|
Shen Z, Tang W, Guo J, Sun S. miR-483-5p plays a protective role in chronic obstructive pulmonary disease. Int J Mol Med 2017; 40:193-200. [PMID: 28534971 DOI: 10.3892/ijmm.2017.2996] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 05/08/2017] [Indexed: 11/06/2022] Open
Abstract
Altered microRNA (miRNA or miR) expression has been reported in chronic obstructive pulmonary disease (COPD). The present study aimed to identify the involvement of miRNAs in the pathophysiology of COPD and to explore the effects of various miRNAs with significant alteration on COPD in vitro. We conducted high‑throughput analysis of miRNAs (miRNA microarray) in lung samples from 10 COPD patients and 10 healthy persons with a validation experiment using quantitative (real‑time) polymerase chain reaction (real‑time PCR) panels. By analyzing 3,000 miRNAs in lung samples using a microarray, we identified 341 differentially expressed miRNAs (138 with high expression and 203 with low expression) in patients with COPD in comparison with the healthy controls. Then 15 high-expression candidates and 15 low-expression candidates with at least 2‑fold difference and P<0.05 were selected randomly to validate the changes in three independent experiments in vitro using real‑time PCR. The validation test showed a positive correlation with the microarray results. Then we chose miR‑483‑5p as our target. The effect of miR‑483‑5p on cell proliferation and expression of COPD-related proteins were detected using Cell Counting Kit 8 and western blot analysis, respectively. The results showed that miR‑483‑5p, which was significantly downregulated in COPD samples, abrogated the transforming growth factor‑β (TGF‑β)‑mediated decrease in cell proliferation, and increase in α‑smooth muscle actin (α‑SMA) and fibronectin expression in pulmonary epithelial and lung fibroblast cell lines, BEAS‑2B and HFL1. These findings suggest that miR‑483‑5p may play an important and protective role in patients with COPD and may serve as a useful biomarker and for early detection of COPD as well as a potential therapeutic tool.
Collapse
Affiliation(s)
- Zhenyu Shen
- Department of Respiratory Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Wenxiang Tang
- Deparment of Respiratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jiang Guo
- Cardio-Thoracic Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Shenghua Sun
- Deparment of Respiratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
36
|
Sheervalilou R, Khamaneh AM, Sharifi A, Nazemiyeh M, Taghizadieh A, Ansarin K, Zarghami N. Using miR-10b, miR-1 and miR-30a expression profiles of bronchoalveolar lavage and sputum for early detection of non-small cell lung cancer. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
37
|
Ni S, Zhao X, Ouyang L. Long non-coding RNA expression profile in vulvar squamous cell carcinoma and its clinical significance. Oncol Rep 2016; 36:2571-2578. [PMID: 27633334 DOI: 10.3892/or.2016.5075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/21/2016] [Indexed: 11/06/2022] Open
Abstract
Researchers have recently demonstrated the key role of long non-coding RNAs (lncRNAs) in regulating embryogenesis and gene expression. However, the exact mechanism used by lncRNAs in carcinogenesis is still unclear. In particular, studies regarding the role of lncRNAs in vulvar squamous cell carcinomas (VSCCs) are limited. Using microarray analysis, the genome-wide expression profile of lncRNAs was investigated in four paired VSCCs and adjacent normal vulvar tissues. Accordingly, several novel lncRNA candidates (HOAIR, MALAT1, MEG3, NEAT1, MIR31HG and LINC00478) were chosen for further study and real-time reverse transcription PCR (RT-PCR) was used to confirm the expression levels among 35 tissue samples. A panel of dysregulated lncRNAs (MEG3 and MALAT1) were also identified as potential biomarkers as they also correlated with VSCC carcinogenesis. In summary, the results revealed that aberrantly expressed lncRNAs may be a factor in VSCC pathogenesis, potentially providing new biomarkers and therapeutic targets for VSCC.
Collapse
Affiliation(s)
- Sha Ni
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping, Shenyang, Liaoning 110004, P.R. China
| | - Xiaoyu Zhao
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping, Shenyang, Liaoning 110004, P.R. China
| | - Ling Ouyang
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Heping, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
38
|
Expression deregulation of mir31 and CXCL12 in two types of oral precancers and cancer: importance in progression of precancer and cancer. Sci Rep 2016; 6:32735. [PMID: 27597234 PMCID: PMC5011738 DOI: 10.1038/srep32735] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/15/2016] [Indexed: 12/27/2022] Open
Abstract
Oral cancer generally progresses from precancerous lesions such as leukoplakia (LK), lichen planus (LP) and oral submucous fibrosis (OSMF). Since few of these precancers progress to cancers; it is worth to identify biological molecules that may play important roles in progression. Here, expression deregulation of 7 miRNAs (mir204, mir31, mir31*, mir133a, mir7, mir206 and mir1293) and their possible target genes in 23 cancers, 18 LK, 12 LP, 23 OSMF tissues compared to 20 healthy tissues was determined by qPCR method. Expression of mir7, mir31, mir31* and mir1293 was upregulated and that of mir133a, mir204 and mir206 was downregulated in cancer. Expression of most of these miRNAs was also upregulated in LK and LP tissues but not in OSMF. Expression deregulation of some of the target genes was also determined in cancer, LK and LP tissues. Significant upregulation of mir31 and downregulation of its target gene, CXCL12, in cancer, LK and LP tissues suggest their importance in progression of precancer to cancer. Expression upregulation of mir31 was also validated using GEO data sets. Although sample size is low, novelty of this work lies in studying expression deregulation of miRNAs and target genes in oral cancer and three types of precancerous lesions.
Collapse
|
39
|
McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, Libra M, Nicoletti F, Scalisi A, Torino F, Fenga C, Neri LM, Marmiroli S, Cocco L, Martelli AM. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2942-2976. [PMID: 27612668 DOI: 10.1016/j.bbamcr.2016.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Francesco Torino
- Department of Systems Medicine, Chair of Medical Oncology, Tor Vergata University of Rome, Rome, Italy
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section - Policlinico "G. Martino" - University of Messina, Messina 98125, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
40
|
STEPICHEVA NADEZDAA, SONG JIAL. Function and regulation of microRNA-31 in development and disease. Mol Reprod Dev 2016; 83:654-74. [PMID: 27405090 PMCID: PMC6040227 DOI: 10.1002/mrd.22678] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that orchestrate numerous cellular processes both under normal physiological conditions as well as in diseases. This review summarizes the functional roles and transcriptional regulation of the highly evolutionarily conserved miRNA, microRNA-31 (miR-31). miR-31 is an important regulator of embryonic implantation, development, bone and muscle homeostasis, and immune system function. Its own regulation is disrupted during the onset and progression of cancer and autoimmune disorders such as psoriasis and systemic lupus erythematosus. Limited studies suggest that miR-31 is transcriptionally regulated by epigenetics, such as methylation and acetylation, as well as by a number of transcription factors. Overall, miR-31 regulates diverse cellular and developmental processes by targeting genes involved in cell proliferation, apoptosis, cell differentiation, and cell motility. Mol. Reprod. Dev. 83: 654-674, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - JIA L. SONG
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
41
|
Jin C, Jia L, Huang Y, Zheng Y, Du N, Liu Y, Zhou Y. Inhibition of lncRNA MIR31HG Promotes Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Stem Cells 2016; 34:2707-2720. [PMID: 27334046 DOI: 10.1002/stem.2439] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/30/2016] [Indexed: 01/04/2023]
Abstract
Osteogenic differentiation and bone formation is suppressed under condition of inflammation induced by proinflammation cytokines. A number of studies indicate miRNAs play a significant role in tumor necrosis factor-α-induced inhibition of bone formation, but whether long non-coding RNAs are also involved in this process remains unknown. In this study, we evaluated the role of MIR31HG in osteogenesis of human adipose-derived stem cells (hASCs) in vitro and in vivo. The results suggested that knockdown of MIR31HG not only significantly promoted osteogenic differentiation, but also dramatically overcame the inflammation-induced inhibition of osteogenesis in hASCs. Mechanistically, we found MIR31HG regulated bone formation and inflammation via interacting with NF-κB. The p65 subunit bound to the MIR31HG promoter and promoted MIR31HG expression. In turn, MIR31HG directly interacted with IκBα and participated in NF-κB activation, which builds a regulatory circuitry with NF-κB. Targeting this MIR31HG-NF-κB regulatory loop may be helpful to improve the osteogenic capacity of hASCs under inflammatory microenvironment in bone tissue engineering. Stem Cells 2016;34:2707-2720.
Collapse
Affiliation(s)
- Chanyuan Jin
- Department of Prosthodontics.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery.,Central Laboratory
| | | | | | | | | | - Yongsheng Zhou
- Department of Prosthodontics.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
42
|
Tennis MA, New ML, McArthur DG, Merrick DT, Dwyer-Nield LD, Keith RL. Prostacyclin reverses the cigarette smoke-induced decrease in pulmonary Frizzled 9 expression through miR-31. Sci Rep 2016; 6:28519. [PMID: 27339092 PMCID: PMC4919780 DOI: 10.1038/srep28519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/02/2016] [Indexed: 01/14/2023] Open
Abstract
Half of lung cancers are diagnosed in former smokers, leading to a significant treatment burden in this population. Chemoprevention in former smokers using the prostacyclin analogue iloprost reduces endobronchial dysplasia, a premalignant lung lesion. Iloprost requires the presence of the WNT receptor Frizzled 9 (Fzd9) for inhibition of transformed growth in vitro. To investigate the relationship between iloprost, cigarette smoke, and Fzd9 expression, we used human samples, mouse models, and in vitro studies. Fzd9 expression was low in human lung tumors and in progressive dysplasias. In mouse models and in vitro studies, tobacco smoke carcinogens reduced expression of Fzd9 while prostacyclin maintained or increased expression. Expression of miR-31 repressed Fzd9 expression, which was abrogated by prostacyclin. We propose a model where cigarette smoke exposure increases miR-31 expression, which leads to decreased Fzd9 expression and prevents response to iloprost. When smoke is removed miR-31 is reduced, prostacyclin can increase Fzd9 expression, and progression of dysplasia is inhibited. Fzd9 and miR-31 are candidate biomarkers for precision application of iloprost and monitoring of treatment progress. As we continue to investigate the mechanisms of prostacyclin chemoprevention and identify biomarkers for its use, we will facilitate clinical trials and speed implementation of this valuable prevention approach.
Collapse
Affiliation(s)
- M. A. Tennis
- University of Colorado Denver, Aurora, Colorado, USA
| | - M. L. New
- University of Colorado Denver, Aurora, Colorado, USA
| | - D. G. McArthur
- Denver Veterans Administration Medical Center, Denver, Colorado, USA
| | - D. T. Merrick
- University of Colorado Denver, Aurora, Colorado, USA
| | | | - R. L. Keith
- University of Colorado Denver, Aurora, Colorado, USA
- Denver Veterans Administration Medical Center, Denver, Colorado, USA
| |
Collapse
|
43
|
The Impact of External Factors on the Epigenome: In Utero and over Lifetime. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2568635. [PMID: 27294112 PMCID: PMC4887632 DOI: 10.1155/2016/2568635] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/12/2016] [Accepted: 04/26/2016] [Indexed: 01/07/2023]
Abstract
Epigenetic marks change during fetal development, adult life, and aging. Some changes play an important role in the establishment and regulation of gene programs, but others seem to occur without any apparent physiological role. An important future challenge in the field of epigenetics will be to describe how the environment affects both of these types of epigenetic change and to learn if interaction between them can determine healthy and disease phenotypes during lifetime. Here we discuss how chemical and physical environmental stressors, diet, life habits, and pharmacological treatments can affect the epigenome during lifetime and the possible impact of these epigenetic changes on pathophysiological processes.
Collapse
|
44
|
Chen X. miREFRWR: a novel disease-related microRNA-environmental factor interactions prediction method. MOLECULAR BIOSYSTEMS 2016; 12:624-33. [DOI: 10.1039/c5mb00697j] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
miREFRWR was developed to uncover the hidden disease-related miRNA–EF interactions by implementing random walks on an miRNA similarity network and EF similarity network, respectively.
Collapse
Affiliation(s)
- Xing Chen
- National Center for Mathematics and Interdisciplinary Sciences
- Chinese Academy of Sciences
- Beijing 100190
- China
- Academy of Mathematics and Systems Science
| |
Collapse
|
45
|
Abstract
Metastasis is the primary cause of cancer-related death all over the world. Metastasis is a process by which cancer spreads from the place at which it first arose to distant locations in the body. It is well known that several steps are necessary for this process, including cancer cell epithelial-mesenchymal transition (EMT), cell migration, resistance to anoikis, and angiogenesis. Therefore, investigating the molecular mechanism of regulating cancer metastasis progress may provide helpful insights in the development of efficient diagnosis and therapeutic strategy. Recent studies have indicated that long noncoding RNAs (lncRNAs) play important roles in cancer metastasis. lncRNAs are the nonprotein coding RNAs that have a size longer than 200 nucleotides. More and more studies have indicated that lncRNAs are involved in a broad range of biological processes and are associated with many diseases, such as cancer. The role of lncRNAs in cancer metastasis has been widely studied; however, lncRNAs are mainly involved in the EMT process on the current literature. This review focuses on the mechanisms underlying the role of lncRNAs in cancer metastasis.
Collapse
Affiliation(s)
- Juan Li
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hui Meng
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Kai Wang
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| |
Collapse
|
46
|
Hung KF, Liu CJ, Chiu PC, Lin JS, Chang KW, Shih WY, Kao SY, Tu HF. MicroRNA-31 upregulation predicts increased risk of progression of oral potentially malignant disorder. Oral Oncol 2015; 53:42-7. [PMID: 26675284 DOI: 10.1016/j.oraloncology.2015.11.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs, miRs) have shown diagnostic and prognostic potential for oral cancer but their role in oral potentially malignant disorder (OPMD) has been less investigated. We aimed to assess whether miR-21 and miR-31, two of the most relevant miRNAs in oral cancer, are useful as prognostic factors for OPMD progression. MATERIALS AND METHODS miR-21 and miR-31 in 20 saliva samples and 46 tissue samples from patients with OPMD (mean follow-up of 820days) were analyzed by quantitative reverse transcription PCR and in situ hybridization, respectively. The log-rank test, receiver operating characteristic curve, and Kaplan-Meier disease free survival analysis were used to assess the correlation between miRNA levels and OPMD progression. RESULTS Significantly increased salivary miR-21 and miR-31 expression (P=0.003 and P<0.001, respectively) was observed in patients with OPMD compared to control individuals. Patients with recurrent OPMD and/or malignant transformation exhibited a further augmented expression of miR-31, but not miR-21, in the epithelium. Furthermore, increased miR-31 expression as well as epithelial dysplasia is an independent risk factor for OPMD progression as demonstrated in Cox-proportional hazard model (HR: 8.43, P<0.05, 95%CI: 1.04 to 68.03). CONCLUSIONS Salivary miR-21 and miR-31 are applicable as useful OPMD screening tools. Epithelial dysplasia and miR-31 up-regulation synergistically predict the increased incidence of recurrence and/or malignant transformation in patients with OPMD. Detection of miR-31 expression is an adjuvant method for screening of high-risk OPMD.
Collapse
Affiliation(s)
- Kai-Feng Hung
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, Taipei MacKay Memorial Hospital, Taipei, Taiwan
| | - Peng-Chih Chiu
- Department of Dentistry, National Yang-Ming University Hospital, I-Lan, Taiwan
| | - Jiun-Sheng Lin
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, Taipei MacKay Memorial Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Yu Shih
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Hsi-Feng Tu
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, National Yang-Ming University Hospital, I-Lan, Taiwan.
| |
Collapse
|
47
|
Long noncoding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR-193b. Oncogene 2015; 35:3647-57. [PMID: 26549028 PMCID: PMC4947634 DOI: 10.1038/onc.2015.430] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/10/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) play important regulatory roles in a variety of diseases, including many tumors. However, the functional roles of these transcripts and mechanisms responsible for their deregulation in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly understood. In this study, we discovered that lncRNA MIR31HG is markedly upregulated in PDAC. Knockdown of MIR31HG significantly suppressed PDAC cell growth, induced apoptosis and G1/S arrest, and inhibited invasion, whereas enhanced expression of MIR31HG had the opposite effects. Online database analysis tools showed that miR-193b could target MIR31HG and we found an inverse correlation between MIR31HG and miR-193b in PDAC specimens. Inhibition of miR-193b expression significantly upregulated the MIR31HG level, while overexpression of miR-193b suppressed MIR31HG's expression and function, suggesting that MIR31HG is negatively regulated by miR-193b. Moreover, using luciferase reporter and RIP assays, we provide evidence that miR-193b directly targeted MIR31HG by binding to two microRNA binding sites in the MIR31HG sequence. On the other hand, MIR31HG may act as an endogenous 'sponge' by competing for miR-193b binding to regulate the miRNA targets. Collectively, these results demonstrate that MIR31HG functions as an oncogenic lncRNA that promotes tumor progression, and miR-193b targets not only protein-coding genes but also the lncRNA, MIR31HG.
Collapse
|
48
|
Xi S, Inchauste S, Guo H, Shan J, Xiao Z, Xu H, Miettenen M, Zhang MR, Hong JA, Raiji MT, Altorki NK, Casson AG, Beer DG, Robles AI, Bowman ED, Harris CC, Steinberg SM, Schrump DS. Cigarette smoke mediates epigenetic repression of miR-217 during esophageal adenocarcinogenesis. Oncogene 2015; 34:5548-59. [PMID: 25703328 PMCID: PMC6301032 DOI: 10.1038/onc.2015.10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 02/08/2023]
Abstract
Although microRNAs (miRs) have been implicated in the pathogenesis of various human malignancies, limited information is available regarding mechanisms by which these noncoding RNAs contribute to initiation and progression of tobacco-induced esophageal cancers. In this study, array and quantitative reverse transcriptase-PCR techniques were used to examine miR expression in immortalized esophageal epithelia (IEE) and esophageal adenocarcinoma (EAC) cells cultured in normal media with or without cigarette smoke condensate (CSC). Under relevant exposure conditions, CSC significantly decreased miR-217 expression in these cells. Endogenous levels of miR-217 expression in cultured EAC cells (EACC)/primary EACs were significantly lower than those observed in IEE/ paired normal esophageal tissues. RNA crosslink immunoprecipitation, quantitative reverse transcriptase-PCR (qRT-PCR) and immunoblot experiments demonstrated direct interaction of miR-217 with kallikrein 7 (KLK7), encoding a putative oncogene not previously implicated in EAC. Repression of miR-217 correlated with increased levels of KLK7 in primary EACs, particularly those from smokers. Chromatin and methylated DNA immunoprecipitation experiments demonstrated that CSC-mediated repression of miR-217 coincided with DNMT3b-dependent hypermethylation and decreased occupancy of nuclear factor 1 within the miR-217 genomic locus. Deoxyazacytidine induced miR-217 expression and downregulated KLK7 in EACC; deoxyazacytidine also attenuated CSC-mediated miR-217 repression and upregulation of KLK7 in IEE and EACC. Overexpression of miR-217 significantly decreased, whereas overexpression of KLK7 increased proliferation, invasion and tumorigenicity of EACC. Collectively, these data demonstrate that epigenetic repression of miR-217 contributes to the pathogenesis of EAC via upregulation of KLK7 and suggest that restoration of miR-217 expression may be a novel treatment strategy for these malignancies.
Collapse
Affiliation(s)
- Sichuan Xi
- Thoracic Surgery Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Suzanne Inchauste
- Thoracic Surgery Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Hongliang Guo
- Gastrointestinal Surgery, Shandong Tumor Hospital and Institute, Jinan, Shandong Province, P.R. of China
| | - Jigui Shan
- Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, MD
| | - Zuoxiang Xiao
- Cancer and Inflammation Lab, National Cancer Institute, Frederick, MD
| | - Hong Xu
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, MD
| | - Markku Miettenen
- Pathology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Mary R. Zhang
- Thoracic Surgery Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Julie A. Hong
- Thoracic Surgery Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Manish T. Raiji
- Thoracic Surgery Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Nasser K. Altorki
- Department of Thoracic Surgery, Weill-Cornell University Medical Center, New York, NY
| | - Alan G Casson
- Department of Surgery, University of Saskatchewan, Saskatoon SK, Canada
| | - David G. Beer
- Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI
| | - Ana I. Robles
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Elise D. Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - David S. Schrump
- Thoracic Surgery Section, Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
49
|
Ding J, Lu B, Wang J, Wang J, Shi Y, Lian Y, Zhu Y, Wang J, Fan Y, Wang Z, De W, Wang K. Long non-coding RNA Loc554202 induces apoptosis in colorectal cancer cells via the caspase cleavage cascades. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:100. [PMID: 26362196 PMCID: PMC4567799 DOI: 10.1186/s13046-015-0217-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/02/2015] [Indexed: 01/17/2023]
Abstract
Background Aberrant expression of long noncoding RNAs (lncRNAs) has frequently been reported in cancer studies, including those of colorectal cancer (CRC). Increasing evidence suggests that lncRNAs are significantly correlated with the pathogenesis, development and metastasis of cancer. Loc554202 is a 2166-bp transcript on human chromosome 9p21.3, the expression of which is dysregulated in breast and lung cancer cells. However, its role in CRC remains under investigation. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to assess the relative expression of Loc554202 in CRC cell lines and tissues. Gain and/or loss of function approaches were used to investigate the potential functional roles in cell proliferation and apoptosis in vitro and in vivo. qRT-PCR, western-blotting and immunohistochemistry were used to evaluate the mRNA and protein expression of apoptosis-related factors. Results Loc554202 was significantly downregulated in cancerous tissues and CRC cell lines compared with adjacent normal tissue and a normal human intestinal epithelial cell line. Low Loc554202 expression was closely associated with advanced pathologic stage and a larger tumor size. The overexpression of Loc554202 decreased the cell proliferation and induced apoptosis in vitro and hindered tumorigenesis in vivo. Loc554202 regulated cell apoptosis partly through the activation of specific caspase cleavage cascades. Conclusion Our results suggest that Loc554202 may play an important role in the progression of CRC and could be a candidate prognostic biomarker or a target for new cancer therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0217-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Ding
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Binbin Lu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jianping Wang
- Department of clinical laboratory, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Juan Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yongguo Shi
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yifan Lian
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Ya Zhu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jirong Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yingrui Fan
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Zhaoxia Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
50
|
Narayanan KB, Ali M, Barclay BJ, Cheng QS, D'Abronzo L, Dornetshuber-Fleiss R, Ghosh PM, Gonzalez Guzman MJ, Lee TJ, Leung PS, Li L, Luanpitpong S, Ratovitski E, Rojanasakul Y, Romano MF, Romano S, Sinha RK, Yedjou C, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Ryan EP, Colacci A, Hamid RA, Mondello C, Raju J, Salem HK, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Kim SY, Bisson WH, Lowe L, Park HH. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death. Carcinogenesis 2015; 36 Suppl 1:S89-110. [PMID: 26106145 DOI: 10.1093/carcin/bgv032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- Department of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 712-749, South Korea, Sultan Zainal Abidin University, Malaysia, Plant Biotechnologies Inc, St. Albert AB, Canada, Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA, Department of Urology, University of California Davis, Sacramento, CA 95817, USA, Department of Pharmacology and Toxicology, University of Vienna, Austria, University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA, Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea, School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA, Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA, Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy, Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA, Department of Biology, Jackson State University, Jackson, MS 39217, USA, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy, Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Se
| | - Manaf Ali
- Sultan Zainal Abidin University, Malaysia
| | | | - Qiang Shawn Cheng
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
| | - Leandro D'Abronzo
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | | | - Paramita M Ghosh
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Michael J Gonzalez Guzman
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea
| | - Po Sing Leung
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Lin Li
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Suidjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Edward Ratovitski
- Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Ranjeet K Sinha
- Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, K1A0K9, Canada
| | - Hosni K Salem
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Neetu Singh
- Advenced Molecular Science Research Centre, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Seo Yun Kim
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, South Korea
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA and
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Hyun Ho Park
- Department of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 712-749, South Korea, Sultan Zainal Abidin University, Malaysia, Plant Biotechnologies Inc, St. Albert AB, Canada, Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA, Department of Urology, University of California Davis, Sacramento, CA 95817, USA, Department of Pharmacology and Toxicology, University of Vienna, Austria, University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA, Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea, School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA, Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA, Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy, Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA, Department of Biology, Jackson State University, Jackson, MS 39217, USA, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy, Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Se
| |
Collapse
|