1
|
Ivantcova PM, Sungatullina AR, Pidgirnaya KV, Nikitin MP. Exploring the synergy between bioluminescence and nanomaterials: Innovations in analytical and therapeutic applications. Colloids Surf B Biointerfaces 2025; 251:114631. [PMID: 40127545 DOI: 10.1016/j.colsurfb.2025.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/26/2025]
Abstract
The application of bioluminescent luciferin-luciferase systems for visualizing and stimulating various processes in living systems is of great interest due to its specific nature and high signal-to-noise ratio. Nanomaterials can finely manipulate multiple parameters of the bioluminescent systems, including the enzyme stability, intensity, and duration of the irradiation. Also, bioluminescence can affect the properties of a nanomaterial, namely, to carry out BRET, to trigger cascades of various photochemical transformations. Here we summarize cases of the interplay between nanomaterials and various bioluminescent systems to improve various biosensors, biovisualization in cellulo, in vivo, and for therapy over the past twenty years. We reviewed interactions between a wide range of nanomaterials and bioluminescent systems, including bacterial and genetically encoded luciferases. This review aims to serve as a comprehensive guide for developing bioluminescent multimodal nanoplatforms for analytic applications and therapy.
Collapse
Affiliation(s)
- Polina M Ivantcova
- Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia.
| | - Adilya R Sungatullina
- Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia; Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russian Federation
| | - Kristina V Pidgirnaya
- Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia
| | - Maxim P Nikitin
- Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia; Moscow Center for Advanced Studies, Kulakova str. 20, Moscow 123592, Russian Federation
| |
Collapse
|
2
|
Narra M, Nakazato I, Polley B, Arimura SI, Woronuk GN, Bhowmik PK. Recent trends and advances in chloroplast engineering and transformation methods. FRONTIERS IN PLANT SCIENCE 2025; 16:1526578. [PMID: 40313723 PMCID: PMC12043724 DOI: 10.3389/fpls.2025.1526578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/17/2025] [Indexed: 05/03/2025]
Abstract
Chloroplast transformation technology has become a powerful platform for generating plants that express foreign proteins of pharmaceutical and agricultural importance at high levels. Chloroplasts are often chosen as attractive targets for the introduction of new agronomic traits because they have their own genome and protein synthesis machinery. Certain valuable traits have been genetically engineered into plastid genomes to improve crop yield, nutritional quality, resistance to abiotic and biotic stresses, and the production of industrial enzymes and therapeutic proteins. Synthetic biology approaches aim to play an important role in expressing multiple genes through plastid engineering, without the risk of pleiotropic effects in transplastomic plants. Despite many promising laboratory-level successes, no transplastomic crop has been commercialized to date. This technology is mostly confined to model species in academic laboratories and needs to be expanded to other agronomically important crop species to capitalize on its significant commercial potential. However, in recent years, some transplastomic lines are progressing in field trials, offering hope that they will pass regulatory approval and enter the marketplace. This review provides a comprehensive summary of new and emerging technologies employed for plastid transformation and discusses key synthetic biology elements that are necessary for the construction of modern transformation vectors. It also focuses on various novel insights and challenges to overcome in chloroplast transformation.
Collapse
Affiliation(s)
- Muralikrishna Narra
- Aquatic and Crop Resource Development, National Research Council of Canada (NRC), Saskatoon, SK, Canada
| | - Issei Nakazato
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Brittany Polley
- Aquatic and Crop Resource Development, National Research Council of Canada (NRC), Saskatoon, SK, Canada
| | - Shin-ichi Arimura
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Pankaj K. Bhowmik
- Aquatic and Crop Resource Development, National Research Council of Canada (NRC), Saskatoon, SK, Canada
| |
Collapse
|
3
|
Tachapermpon Y, Hematulin S, Treesubsuntorn C. The development of a low-toxic peroxyoxalate chemiluminescent system for light-emitting plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11674-11684. [PMID: 40234318 DOI: 10.1007/s11356-025-36401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
Light-emitting plants (LEPs) represent a promising technology for harnessing nature's processes for sustainable illumination. However, ensuring the long-term stability and efficiency of the emission without compromising plant health is critical. To address these issues, the experiment explored the creation of a chemiluminescent reaction using ethyl vanillin, a food flavoring compound, as an alternative to commercial chemiluminescent products, which are carcinogenic. Divanillyl oxalate (DVO) was used as a precursor in the chemiluminescence system, combined with an organic solvent, NaOH, H2O2, and fluorescein dye. Light emissions were measured after applying the mixtures onto Epipremmum aureum leaves. Additionally, other organic solvents (triacetin, dimethyl phthalate (DMP), ethylene glycol, glycerol, and DMSO) were assessed in the chemiluminescence system. Results showed that the DVO-fluorescence system emitted light up to 7.98 × 105 a.u. when formulated with 0.5 mL of 70 mg/mL DVO, 0.5 mL fluorescein, and 0.5 mL of 3% (v/v) H2O2, 0.1 mL of 0.01 M NaOH in DMP:EG (1:3 v/v) with fluorescein dye. After foliar application, the intensity of light emitted by E. aureum sprayed with the DVO-fluorescence system reached a level that was 0.56 times the intensity of commercial products. Moreover, the emitted light remained visible to the naked eye for up to 60 min. The DVO chemiluminescence system was also effective in emitting light.
Collapse
Affiliation(s)
- Yordkhuan Tachapermpon
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Supreeya Hematulin
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
4
|
Chonjoho N, Thiravetyan P, Boonapatcharoen N, Dolphen R. Role of calcium acetate in promoting Vibrio campbellii bioluminescence and alleviating salinity stress in Episcia cupreata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:12013-12026. [PMID: 40263191 DOI: 10.1007/s11356-025-36419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
This study examines the role of calcium in regulating the bioluminescence of Vibrio campbellii PSU5986 and its potential to alleviate salt stress in plants, which has implications for developing light-emitting plants (LEPs). The effects of organic calcium acetate (C₄H₆CaO₄) were compared to inorganic calcium chloride (CaCl₂) and skim milk regarding their impact on bacterial bioluminescence and plant physiology. While skim milk induced the highest initial luminescence, both C₄H₆CaO₄ and CaCl₂ prolonged light emission for over 16 h. Notably, C₄H₆CaO₄ prevented leaf shrinkage, a condition observed with inorganic salts after 24 h. Periodic supplementation of C₄H₆CaO₄ (every 6 h) improved bacterial immobilization and colonization, extending luminescence over 4 cycles (24 h). Bacterial enumeration revealed colonization densities of approximately 6.82 × 106 CFU cm⁻2 within leaf tissues and 5.22 × 1011 CFU cm⁻2 on the leaf surface. Quantitative PCR analysis indicated that luxG exhibited significantly higher copy numbers than luxA and luxC, highlighting its critical role in bioluminescence through flavin reductase activity. Additionally, C₄H₆CaO₄ reduced salt-induced oxidative stress by increasing chlorophyll levels while decreasing carotenoid (40.00%), anthocyanin (36.94%), proline (14.13%), and malondialdehyde (21.84%) accumulation compared to NaCl-treated plants. These findings emphasize the potential of C₄H₆CaO₄ to sustain bacterial luminescence and enhance plant resilience, contributing to the advancement of LEP technology as a sustainable bioenergy alternative.
Collapse
Affiliation(s)
- Nattida Chonjoho
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Nimaradee Boonapatcharoen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rujira Dolphen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
5
|
Kantiwiriyawanitch C, Leartsakulpanich U, Chaiyen P, Tinikul R. Mechanisms and applications of bacterial luciferase and its auxiliary enzymes. Arch Biochem Biophys 2025; 765:110307. [PMID: 39824239 DOI: 10.1016/j.abb.2025.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Bacterial luciferase (LuxAB) catalyzes the conversion of reduced flavin mononucleotide (FMNH⁻), oxygen, and a long-chain aldehyde to oxidized FMN, the corresponding acid and water with concomitant light emission. This bioluminescence reaction requires the reaction of a flavin reductase such as LuxG (in vivo partner of LuxAB) to supply FMNH⁻ for the LuxAB reaction. LuxAB is a well-known self-sufficient luciferase system because both aldehyde and FMNH⁻ substrates can be produced by the associated enzymes encoded by the genes in the lux operon, allowing the system to be auto-luminous. This makes it useful for in vivo applications. Structural and functional studies have long been performed in efforts to gain a better understanding of the LuxAB reaction. Recently, continued exploration of the LuxAB reaction have elucidated the mechanisms of C4a-hydroperoxyflavin formation and identified key catalytic residues such as His44 that facilitates the generation of flavin intermediates important for light generation. Advancements in protein engineering and synthetic biology have improved the bioluminescence properties of LuxAB. Various applications of LuxAB for bioimaging, bioreporters, biosensing in metabolic engineering and real-time monitoring of aldehyde metabolites in biofuel production pathways have been developed during the last decade. Challenging issues such as achieving red-shifted emissions, optimizing the signal intensity and identifying mechanisms related to the generation of light-emitting species remain to be explored. Nevertheless, LuxAB continues to be a promising tool for diverse biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Chadaporn Kantiwiriyawanitch
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand.
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Thar HM, Treesubsuntorn C, Thiravetyan P, Dolphen R. Development of light-emitting Episcia lilacina leaf by applying Vibrio campbellii RMT1 and extending the glowing by CaCl 2 and yeast extract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3423-3437. [PMID: 37421531 DOI: 10.1007/s11356-023-28657-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Glowing Episcia lilacina was generated through foliar application of the bioluminescent bacterium Vibrio campbellii RMT1. Firstly, different nutrient formulas were tested, incorporating yeast extract and various inorganic salts, such as CaCl2, MgCl2, MgSO4, KH2PO4, K2HPO4, and NaCl, in order to enhance bacterial growth and light emission. The combination of 0.15% of yeast extract and 0.3% of CaCl2 in a nutrient broth (NB) + 1% NaCl medium extended light emission to 24 h and resulted in higher light intensity compared to other combinations of yeast extract and inorganic salts. The peak intensity reached approximately 1.26 × 108 relative light units (RLU) at 7 h. The optimal presence of inorganic salt ions likely contributed to enhanced light emission, while the yeast extract acted as a nutrient source. Secondly, the effect of proline on salt-induced stress symptoms was investigated by applying 20 mM proline to the glowing plant. Additionally, a 0.5% agar nutrient was spread on the leaves prior to bacteria application to support bacterial growth and penetration. Exogenous proline application led to a significant accumulation of proline in plant cells, resulting in decreased malondialdehyde (MDA) levels. However, the proline accumulation also reduced the light intensity of the bioluminescent bacteria. This study demonstrates the potential for generating light on a living plant using bioluminescent bacteria. Further understanding of the interaction between plants and light-emitting bacteria could contribute to the development of sustainably light-emitting plants.
Collapse
Affiliation(s)
- Hsu Myat Thar
- Division of Biotechnology, Schools of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- Division of Biotechnology, Schools of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- Division of Biotechnology, Schools of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rujira Dolphen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
7
|
Kusuma SH, Kakizuka T, Hattori M, Nagai T. Autonomous multicolor bioluminescence imaging in bacteria, mammalian, and plant hosts. Proc Natl Acad Sci U S A 2024; 121:e2406358121. [PMID: 39356665 PMCID: PMC11474039 DOI: 10.1073/pnas.2406358121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Bioluminescence imaging has become a valuable tool in biological research, offering several advantages over fluorescence-based techniques, including the absence of phototoxicity and photobleaching, along with a higher signal-to-noise ratio. Common bioluminescence imaging methods often require the addition of an external chemical substrate (luciferin), which can result in a decrease in luminescence intensity over time and limit prolonged observations. Since the bacterial bioluminescence system is genetically encoded for luciferase-luciferin production, it enables autonomous bioluminescence (auto-bioluminescence) imaging. However, its application to multiple reporters is restricted due to a limited range of color variants. Here, we report five-color auto-bioluminescence system named Nano-lanternX (NLX), which can be expressed in bacterial, mammalian, and plant hosts, thereby enabling auto-bioluminescence in various living organisms. Utilizing spectral unmixing, we achieved the successful observation of multicolor auto-bioluminescence, enabling detailed single-cell imaging across both bacterial and mammalian cells. We have also expanded the applications of the NLX system, such as multiplexed auto-bioluminescence imaging for gene expression, protein localization, and dynamics of biomolecules within living mammalian cells.
Collapse
Affiliation(s)
- Subhan Hadi Kusuma
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka567-0047, Japan
| | - Taishi Kakizuka
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka567-0047, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
| | - Mitsuru Hattori
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka567-0047, Japan
| | - Takeharu Nagai
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Ibaraki, Osaka567-0047, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido001-0020, Japan
| |
Collapse
|
8
|
Hayakawa T, Suzuki H, Yamamoto H, Mitsuda N. Synthetic biology in plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:173-193. [PMID: 40115764 PMCID: PMC11921130 DOI: 10.5511/plantbiotechnology.24.0630b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/30/2024] [Indexed: 03/23/2025]
Abstract
Synthetic biology, an interdisciplinary field at the intersection of engineering and biology, has garnered considerable attention for its potential applications in plant science. By exploiting engineering principles, synthetic biology enables the redesign and construction of biological systems to manipulate plant traits, metabolic pathways, and responses to environmental stressors. This review explores the evolution and current state of synthetic biology in plants, highlighting key achievements and emerging trends. Synthetic biology offers innovative solutions to longstanding challenges in agriculture and biotechnology for improvement of nutrition and photosynthetic efficiency, useful secondary metabolite production, engineering biosensors, and conferring stress tolerance. Recent advances, such as genome editing technologies, have facilitated precise manipulation of plant genomes, creating new possibilities for crop improvement and sustainable agriculture. Despite its transformative potential, ethical and biosafety considerations underscore the need for responsible deployment of synthetic biology tools in plant research and development. This review provides insights into the burgeoning field of plant synthetic biology, offering a glimpse into its future implications for food security, environmental sustainability, and human health.
Collapse
Affiliation(s)
- Takahiko Hayakawa
- Mitsubishi Chemical Research Corporation, 16-1 Samon-cho, Sinjuku-ku, Tokyo 106-0017, Japan
| | - Hayato Suzuki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukisamu Higashi 2-17-2-1, Toyohira, Sapporo, Hokkaido 062-8517, Japan
| | - Hiroshi Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukisamu Higashi 2-17-2-1, Toyohira, Sapporo, Hokkaido 062-8517, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
9
|
Dolphen R, Treesubsuntorn C, Kanjanapokin C, Chonjoho N, Anusaraporn S, Julpanwattana P, Praditsmanont A. Exploring bioluminescence in Aglaonema: Investigating Vibrio campbellii translocation and plant responses under CaCl₂ stimulation. ENVIRONMENTAL RESEARCH 2024; 257:119414. [PMID: 38871271 DOI: 10.1016/j.envres.2024.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
The feasibility of creating light-emitting plants by immobilizing Vibrio campbellii RMT1 on the rhizospheric zone of Aglaonema sp. 'Banlangngoen' was investigated in depth, including bacteria translocation and plant response. Results from scanning electron microscope showed that an inorganic salt-containing medium affected the root. However, transmission electron microscope results displayed bacteria translocation through the root to the leaf and colonized in the cytosol of vascular tissues. Bacteria cell counts exhibited high colonization in the root zone, approximately 3.65 × 106 CFU/mL, resulting in a light-emitting intensity increase of 23.68-fold higher than the control after the first week. Nevertheless, light microscope revealed that inorganic salts in the culture medium led to enlarged air spaces, resulting in leaf and stalk withering. Notably, spraying plants with calcium chloride (CaCl2) solution effectively mitigated salt stress, activated luminescence, and facilitated bacterial movement from roots to leaves. Additionally, CaCl2 contributed to ongoing salinity reduction in the culture medium, as evidenced by reduced malondialdehyde levels, alongside increased indole-3-acetic acid and salicylic acid concentrations, indicating plant defense responses. The interaction between plants and luminescent bacteria demonstrated the potential for producing glowing plants following CaCl2 application, addressing salinity stress, enhancing luminescence, and maintaining plant growth.
Collapse
Affiliation(s)
- Rujira Dolphen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chutipa Kanjanapokin
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Nattida Chonjoho
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Siraphatsorn Anusaraporn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Panpisu Julpanwattana
- Research and Innovation for Sustainability Center (RISC), Magnolia Quality Development Corporation Limited (MQDC), Thailand
| | - Apichat Praditsmanont
- Research and Innovation for Sustainability Center (RISC), Magnolia Quality Development Corporation Limited (MQDC), Thailand
| |
Collapse
|
10
|
Yu Q, Tungsuchat-Huang T, Ioannou A, Barkan A, Maliga P. Posttranscriptional tuning of gene expression over a large dynamic range in synthetic tobacco chloroplast operons. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2437-2449. [PMID: 39031552 DOI: 10.1111/tpj.16930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/02/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
Achieving optimally balanced gene expression within synthetic operons requires regulatory elements capable of providing a spectrum of expression levels. In this study, we investigate the expression of gfp reporter gene in tobacco chloroplasts, guided by variants of the plastid atpH 5' UTR, which harbors a binding site for PPR10, a protein that activates atpH at the posttranscriptional level. Our findings reveal that endogenous tobacco PPR10 confers distinct levels of reporter activation when coupled with the tobacco and maize atpH 5' UTRs in different design contexts. Notably, high GFP expression was not coupled to the stabilization of monocistronic gfp transcripts in dicistronic reporter lines, adding to the evidence that PPR10 activates translation via a mechanism that is independent of its stabilization of monocistronic transcripts. Furthermore, the incorporation of a tRNA upstream of the UTR nearly abolishes gfp mRNA (and GFP protein), presumably by promoting such rapid RNA cleavage and 5' exonucleolytic degradation that PPR10 had insufficient time to bind and protect gfp RNA, resulting in a substantial reduction in GFP accumulation. When combined with a mutant atpH 5' UTR, the tRNA leads to an exceptionally low level of transgene expression. Collectively, this approach allows for tuning of reporter gene expression across a wide range, spanning from a mere 0.02-25% of the total soluble cellular protein. These findings highlight the potential of employing cis-elements from heterologous species and expand the toolbox available for plastid synthetic biology applications requiring multigene expression at varying levels.
Collapse
Affiliation(s)
- Qiguo Yu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | | | - Alexander Ioannou
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403, USA
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey, 08854, USA
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, 08901, USA
| |
Collapse
|
11
|
Barbinta-Patrascu ME, Bita B, Negut I. From Nature to Technology: Exploring the Potential of Plant-Based Materials and Modified Plants in Biomimetics, Bionics, and Green Innovations. Biomimetics (Basel) 2024; 9:390. [PMID: 39056831 PMCID: PMC11274542 DOI: 10.3390/biomimetics9070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the extensive applications of plants in areas of biomimetics and bioinspiration, highlighting their role in developing sustainable solutions across various fields such as medicine, materials science, and environmental technology. Plants not only serve essential ecological functions but also provide a rich source of inspiration for innovations in green nanotechnology, biomedicine, and architecture. In the past decade, the focus has shifted towards utilizing plant-based and vegetal waste materials in creating eco-friendly and cost-effective materials with remarkable properties. These materials are employed in making advancements in drug delivery, environmental remediation, and the production of renewable energy. Specifically, the review discusses the use of (nano)bionic plants capable of detecting explosives and environmental contaminants, underscoring their potential in improving quality of life and even in lifesaving applications. The work also refers to the architectural inspirations drawn from the plant world to develop novel design concepts that are both functional and aesthetic. It elaborates on how engineered plants and vegetal waste have been transformed into value-added materials through innovative applications, especially highlighting their roles in wastewater treatment and as electronic components. Moreover, the integration of plants in the synthesis of biocompatible materials for medical applications such as tissue engineering scaffolds and artificial muscles demonstrates their versatility and capacity to replace more traditional synthetic materials, aligning with global sustainability goals. This paper provides a comprehensive overview of the current and potential uses of living plants in technological advancements, advocating for a deeper exploration of vegetal materials to address pressing environmental and technological challenges.
Collapse
Affiliation(s)
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
12
|
Schramm S, Weiß D. Bioluminescence - The Vibrant Glow of Nature and its Chemical Mechanisms. Chembiochem 2024; 25:e202400106. [PMID: 38469601 DOI: 10.1002/cbic.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Bioluminescence, the mesmerizing natural phenomenon where living organisms produce light through chemical reactions, has long captivated scientists and laypersons alike, offering a rich tapestry of insights into biological function, ecology, evolution as well as the underlying chemistry. This comprehensive introductory review systematically explores the phenomenon of bioluminescence, addressing its historical context, geographic dispersion, and ecological significance with a focus on their chemical mechanisms. Our examination begins with terrestrial bioluminescence, discussing organisms from different habitats. We analyze thefireflies of Central Europe's meadows and the fungi in the Atlantic rainforest of Brazil. Additionally, we inspect bioluminescent species in New Zealand, specifically river-dwelling snails and mosquito larvae found in Waitomo Caves. Our exploration concludes in the Siberian Steppes, highlighting the area's luminescent insects and annelids. Transitioning to the marine realm, the second part of this review examines marine bioluminescent organisms. We explore this phenomenon in deep-sea jellyfish and their role in the ecosystem. We then move to Toyama Bay, Japan, where seasonal bioluminescence of dinoflagellates and ostracods present a unique case study. We also delve into the bacterial world, discussing how bioluminescent bacteria contribute to symbiotic relationships. For each organism, we contextualize its bioluminescence, providing details about its discovery, ecological function, and geographical distribution. A special focus lies on the examination of the underlying chemical mechanisms that enables these biological light displays. Concluding this review, we present a series of practical bioluminescence and chemiluminescence experiments, providing a resource for educational demonstrations and student research projects. Our goal with this review is to provide a summary of bioluminescence across the diverse ecological contexts, contributing to the broader understanding of this unique biological phenomenon and its chemical mechanisms serving researchers new to the field, educators and students alike.
Collapse
Affiliation(s)
- Stefan Schramm
- University of Applied Sciences Dresden (HTW Dresden), Friedrich-List-Platz 1, 01069, Dresden, Germany
| | - Dieter Weiß
- Institut für Organische und Makromolekulare Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 10, 07743, Jena, Germany
| |
Collapse
|
13
|
Tanwar N, Arya SS, Rookes JE, Cahill DM, Lenka SK, Bansal KC. Prospects of chloroplast metabolic engineering for developing nutrient-dense food crops. Crit Rev Biotechnol 2023; 43:1001-1018. [PMID: 35815847 DOI: 10.1080/07388551.2022.2092717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
Addressing nutritional deficiencies in food crops through biofortification is a sustainable approach to tackling malnutrition. Biofortification is continuously being attempted through conventional breeding as well as through various plant biotechnological interventions, ranging from molecular breeding to genetic engineering and genome editing for enriching crops with various health-promoting metabolites. Genetic engineering is used for the rational incorporation of desired nutritional traits in food crops and predominantly operates through nuclear and chloroplast genome engineering. In the recent past, chloroplast engineering has been deployed as a strategic tool to develop model plants with enhanced nutritional traits due to the various advantages it offers over nuclear genome engineering. However, this approach needs to be extended for the nutritional enhancement of major food crops. Further, this platform could be combined with strategies, such as synthetic biology, chloroplast editing, nanoparticle-mediated rapid chloroplast transformation, and horizontal gene transfer through grafting for targeting endogenous metabolic pathways for overproducing native nutraceuticals, production of biopharmaceuticals, and biosynthesis of designer nutritional compounds. This review focuses on exploring various features of chloroplast genome engineering for nutritional enhancement of food crops by enhancing the levels of existing metabolites, restoring the metabolites lost during crop domestication, and introducing novel metabolites and phytonutrients needed for a healthy daily diet.
Collapse
Affiliation(s)
- Neha Tanwar
- TERI-Deakin Nano-Biotechnology Centre, The Energy Resources Institute (TERI), New Delhi, India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - Sagar S Arya
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - James E Rookes
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - Sangram K Lenka
- TERI-Deakin Nano-Biotechnology Centre, The Energy Resources Institute (TERI), New Delhi, India
- Gujarat Biotechnology University, Gujarat, India
| | | |
Collapse
|
14
|
Wang Q, Hu Z, Li Z, Liu T, Bian G. Exploring the Application and Prospects of Synthetic Biology in Engineered Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305828. [PMID: 37677048 DOI: 10.1002/adma.202305828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Indexed: 09/09/2023]
Abstract
At the intersection of synthetic biology and materials science, engineered living materials (ELMs) exhibit unprecedented potential. Possessing unique "living" attributes, ELMs represent a significant paradigm shift in material design, showcasing self-organization, self-repair, adaptability, and evolvability, surpassing conventional synthetic materials. This review focuses on reviewing the applications of ELMs derived from bacteria, fungi, and plants in environmental remediation, eco-friendly architecture, and sustainable energy. The review provides a comprehensive overview of the latest research progress and emerging design strategies for ELMs in various application fields from the perspectives of synthetic biology and materials science. In addition, the review provides valuable references for the design of novel ELMs, extending the potential applications of future ELMs. The investigation into the synergistic application possibilities amongst different species of ELMs offers beneficial reference information for researchers and practitioners in this field. Finally, future trends and development challenges of synthetic biology for ELMs in the coming years are discussed in detail.
Collapse
Affiliation(s)
- Qiwen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhehui Hu
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430071, China
| | - Zhixuan Li
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tiangang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guangkai Bian
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
15
|
Kanjanapokin C, Thiravetyan P, Krobthong S, Aonbangkhen C, Yingchutrakul Y, Kittipornkul P, Treesubsuntorn C. Possibility to Apply Strontium Aluminate to Produce Light-Emitting Plants: Efficiency and Safety. Chem Biodivers 2023; 20:e202300552. [PMID: 37345919 DOI: 10.1002/cbdv.202300552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
Light-emitting plants (LEPs) provides light in areas without electricity. The phosphorescent compound was used as a lighting material for LEP development. However, using the phosphorescent compound for LEPs development required optimization and phytotoxicity evaluation. Strontium aluminate (SrAl2 O4 ) is a phosphorescent compound that can glow for a long time and is easily recharged by visible light. In this study, using SrAl2 O4 to develop LEPs was evaluated. Additionally, plant stress under SrAl2 O4 was investigated. Metabolomic analysis can explain the possible mechanism of plants' stress under SrAl2 O4 . After, injecting 3 mL of 5 % (w/v) SrAl2 O4 products 1, 2, and 3 into the stem of Ipomoea aquatica, the result showed that SrAl2 O4 products 2 and 3 caused oxidative stress. The metabolomic analysis also indicated that I. aquatica responded to SrAl2 O4 product 1 by increasing pipecolic acid and salicylic acid, while I. aquatica injected with SrAl2 O4 products 2 and 3 showed a decrease in salicylic acid around 0.005 and 0.061-fold, respectively, compared to control plants. and an excess accumulation of MDA around 10.00-12.00 μmol g-1 FW. A 15 % concentration of SrAl2 O4 can be used for LEPs development, enabling photoemission 18-fold for 50 min. SrAl2 O4 product 1 has the potential to be a material for LEPs.
Collapse
Affiliation(s)
- Chutipa Kanjanapokin
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Piyatida Kittipornkul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| |
Collapse
|
16
|
Liu X, Wang M, Liu Y. Chemistry in Fungal Bioluminescence: Theoretical Studies on Biosynthesis of Luciferin from Caffeic Acid and Regeneration of Caffeic Acid from Oxidized Luciferin. J Fungi (Basel) 2023; 9:369. [PMID: 36983537 PMCID: PMC10053366 DOI: 10.3390/jof9030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Fungal bioluminescence is widely distributed in the terrestrial environment. At a specific stage of growth, luminescent fungi shine green light at the fruiting body or mycelium. From the viewpoint of chemistry, fungal bioluminescence involves an in vivo cycle of caffeic acid. The complete cycle is composed of three stages: biosynthesis of luciferin from caffeic acid, luminescence process from luciferin to oxidized luciferin, and regeneration of caffeic acid from oxidized luciferin. Experimental studies roughly proposed this cycle but not the detailed reaction process and mechanism. Our previous theoretical study clearly described the mechanism of the middle stage. The present article attempts to describe the reaction processes and mechanisms of the other two stages by theoretical calculations. A complete theoretical study on the chemistry in the entire process of fungal bioluminescence is helpful to deeply understand fungal bioluminescence.
Collapse
Affiliation(s)
- Xiayu Liu
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry Beijing Normal University, Beijing 100875, China
| | - Mingyu Wang
- School of Science, Hainan University, Haikou 570228, China
| | - Yajun Liu
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
17
|
Tian Q, Wu J, Xu H, Hu Z, Huo Y, Wang L. Cryo-EM structure of the fatty acid reductase LuxC-LuxE complex provides insights into bacterial bioluminescence. J Biol Chem 2022; 298:102006. [PMID: 35504354 PMCID: PMC9157457 DOI: 10.1016/j.jbc.2022.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
The discovery of reduced flavin mononucleotide and fatty aldehydes as essential factors of light emission facilitated study of bacterial luminescence. Although the molecular mechanisms underlying bacterial luminescence have been studied for more than 60 years, the structure of the bacterial fatty acid reductase complex remains unclear. Here, we report the cryo-EM structure of the Photobacterium phosphoreum fatty acid reductase complex LuxC–LuxE to a resolution of 2.79 Å. We show that the active site Lys238/Arg355 pair of LuxE is >30 Å from the active site Cys296 of LuxC, implying that catalysis relies on a large conformational change. Furthermore, mutagenesis and biochemical experiments support that the L-shaped cleft inside LuxC plays an important role in substrate binding and reaction. We obtained a series of mutants with significantly improved activity as measured by in vitro bioluminescence assays and demonstrated that the double mutant W111A/F483K displayed the highest activity (370% of the WT). Our results indicated that the activity of LuxC significantly affects the bacterial bioluminescence reaction. Finally, we expressed this mutated lux operon in Escherichia coli but observed that the in vivo concentrations of ATP and NADPH limited the enzyme activity; thus, we conclude that the luminous intensity mainly depends on the level of metabolic energy.
Collapse
Affiliation(s)
- Qingwei Tian
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jingting Wu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Haifeng Xu
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yangao Huo
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Liyan Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| |
Collapse
|
18
|
Chloroplast Engineering: Fundamental Insights and Its Application in Amelioration of Environmental Stress. Appl Biochem Biotechnol 2022; 195:2463-2482. [PMID: 35484466 DOI: 10.1007/s12010-022-03930-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 12/21/2022]
Abstract
Chloroplasts are specialized organelle that are responsible for converting light energy to chemical energy, thereby driving the carbon dioxide fixation. Apart from photosynthesis, chloroplast is the site for essential cellular processes that determine the plant adaptation to changing environment. Owing to the presence of their own expression system, it provides an optimum platform for engineering valued traits as well as site for synthesis of bio-compounds. Advancements in technology have further enhanced the scope of using chloroplast as a multifaceted tool for the biotechnologist to develop stress-tolerant plants and ameliorate environmental stress. Focusing on chloroplast biotechnology, this review discusses the advances in chloroplast engineering and its application in enhancing plant adaptation and resistance to environmental stress and the development of new bioproducts and processes. This is accomplished through analysis of its biogenesis and physiological processes, highlighting the chloroplast engineering and recent developments in chloroplast biotechnology. In the first part of the review, the evolution and principles of structural organization and physiology of chloroplast are discussed. In the second part, the chief methods and mechanisms involved in chloroplast transformation are analyzed. The last part represents an updated analysis of the application of chloroplast engineering in crop improvement and bioproduction of industrial and health compounds.
Collapse
|
19
|
Dufil G, Bernacka-Wojcik I, Armada-Moreira A, Stavrinidou E. Plant Bioelectronics and Biohybrids: The Growing Contribution of Organic Electronic and Carbon-Based Materials. Chem Rev 2022; 122:4847-4883. [PMID: 34928592 PMCID: PMC8874897 DOI: 10.1021/acs.chemrev.1c00525] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 12/26/2022]
Abstract
Life in our planet is highly dependent on plants as they are the primary source of food, regulators of the atmosphere, and providers of a variety of materials. In this work, we review the progress on bioelectronic devices for plants and biohybrid systems based on plants, therefore discussing advancements that view plants either from a biological or a technological perspective, respectively. We give an overview on wearable and implantable bioelectronic devices for monitoring and modulating plant physiology that can be used as tools in basic plant science or find application in agriculture. Furthermore, we discuss plant-wearable devices for monitoring a plant's microenvironment that will enable optimization of growth conditions. The review then covers plant biohybrid systems where plants are an integral part of devices or are converted to devices upon functionalization with smart materials, including self-organized electronics, plant nanobionics, and energy applications. The review focuses on advancements based on organic electronic and carbon-based materials and discusses opportunities, challenges, as well as future steps.
Collapse
Affiliation(s)
- Gwennaël Dufil
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Iwona Bernacka-Wojcik
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Adam Armada-Moreira
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg
Wood Science Center, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Umeå
Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Campus Umeå, SE-901 83 Umeå, Sweden
| |
Collapse
|
20
|
Occhialini A, Pfotenhauer AC, Li L, Harbison SA, Lail AJ, Burris JN, Piasecki C, Piatek AA, Daniell H, Stewart CN, Lenaghan SC. Mini-synplastomes for plastid genetic engineering. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:360-373. [PMID: 34585834 PMCID: PMC8753362 DOI: 10.1111/pbi.13717] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/08/2021] [Accepted: 09/25/2021] [Indexed: 05/19/2023]
Abstract
In the age of synthetic biology, plastid engineering requires a nimble platform to introduce novel synthetic circuits in plants. While effective for integrating relatively small constructs into the plastome, plastid engineering via homologous recombination of transgenes is over 30 years old. Here we show the design-build-test of a novel synthetic genome structure that does not disturb the native plastome: the 'mini-synplastome'. The mini-synplastome was inspired by dinoflagellate plastome organization, which is comprised of numerous minicircles residing in the plastid instead of a single organellar genome molecule. The first mini-synplastome in plants was developed in vitro to meet the following criteria: (i) episomal replication in plastids; (ii) facile cloning; (iii) predictable transgene expression in plastids; (iv) non-integration of vector sequences into the endogenous plastome; and (v) autonomous persistence in the plant over generations in the absence of exogenous selection pressure. Mini-synplastomes are anticipated to revolutionize chloroplast biotechnology, enable facile marker-free plastid engineering, and provide an unparalleled platform for one-step metabolic engineering in plants.
Collapse
Affiliation(s)
- Alessandro Occhialini
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | - Alexander C. Pfotenhauer
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | - Li Li
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | - Stacee A. Harbison
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Andrew J. Lail
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Jason N. Burris
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | | | | | - Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - C. Neal Stewart
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Scott C. Lenaghan
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| |
Collapse
|
21
|
Yu Y, Ouyang Z, Guo J, Zeng W, Zhao Y, Huang L. Complete Chloroplast Genome Sequence of Erigeron breviscapus and Characterization of Chloroplast Regulatory Elements. FRONTIERS IN PLANT SCIENCE 2021; 12:758290. [PMID: 34899783 PMCID: PMC8657942 DOI: 10.3389/fpls.2021.758290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
Erigeron breviscapus is a famous medicinal plant. However, the limited chloroplast genome information of E. breviscapus, especially for the chloroplast DNA sequence resources, has hindered the study of E. breviscapus chloroplast genome transformation. Here, the complete chloroplast (cp) genome of E. breviscapus was reported. This genome was 152,164bp in length, included 37.2% GC content and was structurally arranged into two 24,699bp inverted repeats (IRs) and two single-copy areas. The sizes of the large single-copy region and the small single-copy region were 84,657 and 18,109bp, respectively. The E. breviscapus cp genome consisted of 127 coding genes, including 83 protein coding genes, 36 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. For those genes, 95 genes were single copy genes and 16 genes were duplicated in two inverted regions with seven tRNAs, four rRNAs, and five protein coding genes. Then, genomic DNA of E. breviscapus was used as a template, and the endogenous 5' and 3' flanking sequences of the trnI gene and trnA gene were selected as homologous recombinant fragments in vector construction and cloned through PCR. The endogenous 5' flanking sequences of the psbA gene and rrn16S gene, the endogenous 3' flanking sequences of the psbA gene, rbcL gene, and rps16 gene and one sequence element from the psbN-psbH chloroplast operon were cloned, and certain chloroplast regulatory elements were identified. Two homologous recombination fragments and all of these elements were constructed into the cloning vector pBluescript SK (+) to yield a series of chloroplast expression vectors, which harbored the reporter gene EGFP and the selectable marker aadA gene. After identification, the chloroplast expression vectors were transformed into Escherichia coli and the function of predicted regulatory elements was confirmed by a spectinomycin resistance test and fluorescence intensity measurement. The results indicated that aadA gene and EGFP gene were efficiently expressed under the regulation of predicted regulatory elements and the chloroplast expression vector had been successfully constructed, thereby providing a solid foundation for establishing subsequent E. breviscapus chloroplast transformation system and genetic improvement of E. breviscapus.
Collapse
Affiliation(s)
- Yifan Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen Zeng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujun Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Gordiichuk P, Coleman S, Zhang G, Kuehne M, Lew TTS, Park M, Cui J, Brooks AM, Hudson K, Graziano AM, Marshall DJM, Karsan Z, Kennedy S, Strano MS. Augmenting the living plant mesophyll into a photonic capacitor. SCIENCE ADVANCES 2021; 7:eabe9733. [PMID: 34516870 PMCID: PMC8442876 DOI: 10.1126/sciadv.abe9733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Living plants provide an opportunity to rethink the design and fabrication of devices ordinarily produced from plastic and circuit boards and ultimately disposed of as waste. The spongy mesophyll is a high -surface area composition of parenchyma cells that supports gas and liquid exchange through stomata pores within the surface of most leaves. Here, we investigate the mesophyll of living plants as biocompatible substrates for the photonic display of thin nanophosphorescent films for photonic applications. Size-sorted, silica-coated 650 ± 290 -nm strontium aluminate nanoparticles are infused into five diverse plant species with conformal display of 2-μm films on the mesophyll enabling photoemission of up to 4.8 × 1013 photons/second. Chlorophyll measurements over 9 days and functional testing over 2 weeks at 2016 excitation/emission cycles confirm biocompatibility. This work establishes methods to transform living plants into photonic substrates for applications in plant-based reflectance devices, signaling, and the augmentation of plant-based lighting.
Collapse
Affiliation(s)
- Pavlo Gordiichuk
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02141, USA
| | - Sarah Coleman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02141, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Ge Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02141, USA
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02141, USA
| | - Tedrick T. S. Lew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02141, USA
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Minkyung Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02141, USA
| | - Jianqiao Cui
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02141, USA
| | - Allan M. Brooks
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02141, USA
| | - Karaghen Hudson
- Department of Architecture, Massachusetts Institute of Technology, Cambridge, MA 02141, USA
| | - Anne M. Graziano
- Department of Architecture, Massachusetts Institute of Technology, Cambridge, MA 02141, USA
| | - Daniel J. M. Marshall
- Department of Architecture, Massachusetts Institute of Technology, Cambridge, MA 02141, USA
| | - Zain Karsan
- Department of Architecture, Massachusetts Institute of Technology, Cambridge, MA 02141, USA
| | - Sheila Kennedy
- Department of Architecture, Massachusetts Institute of Technology, Cambridge, MA 02141, USA
| | - Michael S. Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02141, USA
| |
Collapse
|
23
|
Kaku T, Sugiura K, Entani T, Osabe K, Nagai T. Enhanced brightness of bacterial luciferase by bioluminescence resonance energy transfer. Sci Rep 2021; 11:14994. [PMID: 34294849 PMCID: PMC8298465 DOI: 10.1038/s41598-021-94551-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/06/2021] [Indexed: 02/01/2023] Open
Abstract
Using the lux operon (luxCDABE) of bacterial bioluminescence system as an autonomous luminous reporter has been demonstrated in bacteria, plant and mammalian cells. However, applications of bacterial bioluminescence-based imaging have been limited because of its low brightness. Here, we engineered the bacterial luciferase (heterodimer of luxA and luxB) by fusion with Venus, a bright variant of yellow fluorescent protein, to induce bioluminescence resonance energy transfer (BRET). By using decanal as an externally added substrate, color change and ten-times enhancement of brightness was achieved in Escherichia coli when circularly permuted Venus was fused to the C-terminus of luxB. Expression of the Venus-fused luciferase in human embryonic kidney cell lines (HEK293T) or in Nicotiana benthamiana leaves together with the substrate biosynthesis-related genes (luxC, luxD and luxE) enhanced the autonomous bioluminescence. We believe the improved luciferase will forge the way towards the potential development of autobioluminescent reporter system allowing spatiotemporal imaging in live cells.
Collapse
Affiliation(s)
- Tomomi Kaku
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Kazunori Sugiura
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Tetsuyuki Entani
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Kenji Osabe
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
24
|
Li B, Chen R, Zhu C, Kong F. Glowing plants can light up the night sky? A review. Biotechnol Bioeng 2021; 118:3706-3715. [PMID: 34251679 DOI: 10.1002/bit.27884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 11/10/2022]
Abstract
Luminescence, a physical phenomenon that producing cool light in vivo, has been found in bacteria, fungi, and animals but not yet in terrestrial higher plants. Through genetic engineering, it is feasible to introduce luminescence systems into living plant cells as biomarkers. Recently, some plants transformed with luminescent systems can glimmer in darkness, which can be observed by our naked eyes and provides a novel lighting resource. In this review, we summarized the bioassay development of luminescence in plant cells, followed by exampling the successful cases of glowing plants transformed with diverse luminescent systems. The potential key factors to design or optimize a glowing plant were also discussed. Our review is useful for the creation of the optimized glowing plants, which can be used not only in scientific research, but also as promising substitutes of artificial light sources in the future.
Collapse
Affiliation(s)
- Bolong Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ru Chen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Chenba Zhu
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
25
|
Daniell H, Jin S, Zhu X, Gitzendanner MA, Soltis DE, Soltis PS. Green giant-a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:430-447. [PMID: 33484606 PMCID: PMC7955891 DOI: 10.1111/pbi.13556] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 05/04/2023]
Abstract
Free-living cyanobacteria were entrapped by eukaryotic cells ~2 billion years ago, ultimately giving rise to chloroplasts. After a century of debate, the presence of chloroplast DNA was demonstrated in the 1960s. The first chloroplast genomes were sequenced in the 1980s, followed by ~100 vegetable, fruit, cereal, beverage, oil and starch/sugar crop chloroplast genomes in the past three decades. Foreign genes were expressed in isolated chloroplasts or intact plant cells in the late 1980s and stably integrated into chloroplast genomes, with typically maternal inheritance shown in the 1990s. Since then, chloroplast genomes conferred the highest reported levels of tolerance or resistance to biotic or abiotic stress. Although launching products with agronomic traits in important crops using this concept has been elusive, commercial products developed include enzymes used in everyday life from processing fruit juice, to enhancing water absorption of cotton fibre or removal of stains as laundry detergents and in dye removal in the textile industry. Plastid genome sequences have revealed the framework of green plant phylogeny as well as the intricate history of plastid genome transfer events to other eukaryotes. Discordant historical signals among plastid genes suggest possible variable constraints across the plastome and further understanding and mitigation of these constraints may yield new opportunities for bioengineering. In this review, we trace the evolutionary history of chloroplasts, status of autonomy and recent advances in products developed for everyday use or those advanced to the clinic, including treatment of COVID-19 patients and SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xin‐Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | | | - Douglas E. Soltis
- Florida Museum of Natural History and Department of BiologyUniversity of FloridaGainesvilleFLUSA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
26
|
Syed AJ, Anderson JC. Applications of bioluminescence in biotechnology and beyond. Chem Soc Rev 2021; 50:5668-5705. [DOI: 10.1039/d0cs01492c] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioluminescent probes have hugely benefited from the input of synthetic chemistry and protein engineering. Here we review the latest applications of these probes in biotechnology and beyond, with an eye on current limitations and future directions.
Collapse
Affiliation(s)
- Aisha J. Syed
- Department of Chemistry
- University College London
- London
- UK
| | | |
Collapse
|
27
|
Reuter DN, Stewart CN, Lenaghan SC. Lighting the Way: Advances in Engineering Autoluminescent Plants. TRENDS IN PLANT SCIENCE 2020; 25:1176-1179. [PMID: 32891561 DOI: 10.1016/j.tplants.2020.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Until recently, robust autoluminescence in plants has proven elusive. Two recent pioneering manuscripts (Khakhar et al. and Mitiouchkina et al.) expand our understanding of fungal bioluminescence to provide a new blueprint for engineering autoluminescence in plants. Here we discuss translating a fungal bioluminescence pathway into plants, along with potential future applications.
Collapse
Affiliation(s)
- D Nikki Reuter
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA
| | - C Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Scott C Lenaghan
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
28
|
Chatragadda R. Terrestrial and marine bioluminescent organisms from the Indian subcontinent: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:747. [PMID: 33150454 DOI: 10.1007/s10661-020-08685-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The inception of bioluminescence by Harvey (1952) has led to a Nobel Prize to Osamu Shimomura (Chemistry, 2008) in biological research. Consequently, in recent years, bioluminescence-based assays to monitor toxic pollutants as a real-time marker, to study various diseases and their propagation in plants and animals, are developed in many countries. The emission ability of bioluminescence is improved by gene modification, and also, search for novel bioluminescent systems is underway. Over 100 species of organisms belonging to different taxa are known to be luminous in India. However, the diversity and distribution of luminous organisms and their applications are studied scarcely in the Indian scenario. In this context, the present review provides an overview of the current understanding of various bioluminescent organisms, functions, and applications. A detailed checklist of known bioluminescent organisms from India's marine, terrestrial, and freshwater ecosystems is detailed. This review infers that Indian scientists are needed to extend their research on various aspects of luminescent organisms such as biodiversity, genomics, and chemical mechanisms for conservation, ecological, and biomedical applications.
Collapse
Affiliation(s)
- Ramesh Chatragadda
- Biological Oceanography Division (BOD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula, Goa, 403004, India.
| |
Collapse
|
29
|
Yu Q, Tungsuchat-Huang T, Verma K, Radler MR, Maliga P. Independent translation of ORFs in dicistronic operons, synthetic building blocks for polycistronic chloroplast gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2318-2329. [PMID: 32497322 DOI: 10.1111/tpj.14864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
We designed a dicistronic plastid marker system that relies on the plastid's ability to translate polycistronic mRNAs. The identification of transplastomic clones is based on selection for antibiotic resistance encoded in the first open reading frame (ORF) and accumulation of the reporter gene product in tobacco chloroplasts encoded in the second ORF. The antibiotic resistance gene may encode spectinomycin or kanamycin resistance based on the expression of aadA or neo genes, respectively. The reporter gene used in the study is the green fluorescent protein (GFP). The mRNA level depends on the 5'-untranslated region of the first ORF. The protein output depends on the strengths of the ribosome binding, and is proportional with the level of translatable mRNA. Because the dicistronic mRNA is not processed, we could show that protein output from the second ORF is independent from the first ORF. High-level GFP accumulation from the second ORF facilitates identification of transplastomic events under ultraviolet light. Expression of multiple proteins from an unprocessed mRNA is an experimental design that enables predictable protein output from polycistronic mRNAs, expanding the toolkit of plant synthetic biology.
Collapse
Affiliation(s)
- Qiguo Yu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | | | - Kanak Verma
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Megan R Radler
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
30
|
Mitiouchkina T, Mishin AS, Somermeyer LG, Markina NM, Chepurnyh TV, Guglya EB, Karataeva TA, Palkina KA, Shakhova ES, Fakhranurova LI, Chekova SV, Tsarkova AS, Golubev YV, Negrebetsky VV, Dolgushin SA, Shalaev PV, Shlykov D, Melnik OA, Shipunova VO, Deyev SM, Bubyrev AI, Pushin AS, Choob VV, Dolgov SV, Kondrashov FA, Yampolsky IV, Sarkisyan KS. Plants with genetically encoded autoluminescence. Nat Biotechnol 2020; 38:944-946. [PMID: 32341562 PMCID: PMC7610436 DOI: 10.1038/s41587-020-0500-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/26/2020] [Indexed: 12/01/2022]
Abstract
Autoluminescent plants engineered to express a bacterial bioluminescence gene cluster in plastids have not been widely adopted because of low light output. We engineered tobacco plants with a fungal bioluminescence system that converts caffeic acid (present in all plants) into luciferin and report self-sustained luminescence that is visible to the naked eye. Our findings could underpin development of a suite of imaging tools for plants.
Collapse
Affiliation(s)
- Tatiana Mitiouchkina
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Mishin
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Nadezhda M Markina
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Chepurnyh
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Elena B Guglya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Tatiana A Karataeva
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kseniia A Palkina
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina S Shakhova
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Liliia I Fakhranurova
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Aleksandra S Tsarkova
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Institute of Biophysics, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | | | | | | | | | - Dmitry Shlykov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Olesya A Melnik
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victoria O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey I Bubyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Pushin
- Planta LLC, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir V Choob
- Botanical Garden of Lomonosov Moscow State University, Moscow, Russia
| | - Sergey V Dolgov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Ilia V Yampolsky
- Planta LLC, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Pirogov Russian National Research Medical University, Moscow, Russia.
| | - Karen S Sarkisyan
- Planta LLC, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
31
|
Khakhar A, Starker CG, Chamness JC, Lee N, Stokke S, Wang C, Swanson R, Rizvi F, Imaizumi T, Voytas DF. Building customizable auto-luminescent luciferase-based reporters in plants. eLife 2020; 9:52786. [PMID: 32209230 PMCID: PMC7164954 DOI: 10.7554/elife.52786] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
Bioluminescence is a powerful biological signal that scientists have repurposed as a reporter for gene expression in plants and animals. However, there are downsides associated with the need to provide a substrate to these reporters, including its high cost and non-uniform tissue penetration. In this work we reconstitute a fungal bioluminescence pathway (FBP) in planta using a composable toolbox of parts. We demonstrate that the FBP can create luminescence across various tissues in a broad range of plants without external substrate addition. We also show how our toolbox can be used to deploy the FBP in planta to build auto-luminescent reporters for the study of gene-expression and hormone fluxes. A low-cost imaging platform for gene expression profiling is also described. These experiments lay the groundwork for future construction of programmable auto-luminescent plant traits, such as light driven plant-pollinator interactions or light emitting plant-based sensors.
Collapse
Affiliation(s)
- Arjun Khakhar
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Colby G Starker
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - James C Chamness
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, United States
| | - Sydney Stokke
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Cecily Wang
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Ryan Swanson
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Furva Rizvi
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, United States
| | - Daniel F Voytas
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| |
Collapse
|
32
|
Osipova Z, Shcheglov A, Yampolsky I. Autonomous bioluminescent systems: prospects for use in the imaging of living organisms. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bioluminescent systems are increasingly being used for the development of highly sensitive optical imaging techniques in vivo. However, it is necessary to inject expensive and unstable synthetic substrates (luciferins) before each analysis for most of the systems applied. Autonomous bacterial and fungal bioluminescent systems, that recently have become available for implementation in eukaryotic cells, in our opinion, may be developed into an effective tool in new technologies of bioluminescent imaging.
Collapse
Affiliation(s)
- Z.M. Osipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - A.S. Shcheglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - I.V. Yampolsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
33
|
Queiroz LN, Maldaner FR, Mendes ÉA, Sousa AR, D'Allastta RC, Mendonça G, Mendonça DBS, Aragão FJL. Evaluation of lettuce chloroplast and soybean cotyledon as platforms for production of functional bone morphogenetic protein 2. Transgenic Res 2019; 28:213-224. [PMID: 30888592 DOI: 10.1007/s11248-019-00116-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
Abstract
The bone morphogenetic protein BMP2 plays a crucial role in the formation and regeneration of bone and cartilage, which is critical for maintaining skeletal integrity and bone fracture repair. Because of its important role in osteogenic properties it has been commercially produced for clinical use. Here we report attempts to express human BMP2 using two plant systems (lettuce chloroplast and soybean seeds). The rhBMP2 gene (coding for the 13 kDa active polypeptide) was introduced in two regions of the lettuce chloroplast genome. Two homoplasmic events were achieved and RT-PCR demonstrated that the BMP2 gene was transcribed. However, it was not possible to detect accumulation of rhBMP2 in leaves. Two soybean events were achieved to express a full-length hBMP2 gene (coding for the 45 kDa pro-BMP2) fused with the α-coixin signal peptide, under control of the β-conglycinin promoter. Pro-BMP2 was expressed in the transgenic seeds at levels of up to 9.28% of the total soluble seed protein as determined by ELISA. It was demonstrated that this recombinant form was biologically active upon administration to C2C12 cell cultures, because it was able to induce an osteogenic cascade, as observed by the enhanced expression of SP7 (osterix) and ALPI (alkaline phosphatase) genes. Collectively, these results corroborated our previous observation that soybean seeds provide an effective strategy for achieving stable accumulation of functional therapeutic proteins, such as BMP2.
Collapse
Affiliation(s)
- Lídia N Queiroz
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário, Brasília, DF, 70910-900, Brazil
- Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 North University, Ann Arbor, MI, 49109-1078, USA
| | - Franciele R Maldaner
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
| | - Érica A Mendes
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
| | - Aline R Sousa
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
| | - Rebeca C D'Allastta
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
| | - Gustavo Mendonça
- Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 North University, Ann Arbor, MI, 49109-1078, USA
| | - Daniela B S Mendonça
- Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 North University, Ann Arbor, MI, 49109-1078, USA
| | - Francisco J L Aragão
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil.
| |
Collapse
|
34
|
Fleiss A, Sarkisyan KS. A brief review of bioluminescent systems (2019). Curr Genet 2019; 65:877-882. [PMID: 30850867 PMCID: PMC6620254 DOI: 10.1007/s00294-019-00951-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
Despite being widely used in reporter technologies, bioluminescent systems are largely understudied. Of at least forty different bioluminescent systems thought to exist in nature, molecular components of only seven light-emitting reactions are known, and the full biochemical pathway leading to light emission is only understood for two of them. Here, we provide a succinct overview of currently known bioluminescent systems highlighting available tools for research and discussing future applications.
Collapse
Affiliation(s)
- Aubin Fleiss
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Karen S Sarkisyan
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London, UK. .,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK. .,Planta LLC, Bolshoi Boulevard, 42 Str 1, Office 335, Moscow, 121205, Russia. .,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow, 117997, Russia.
| |
Collapse
|
35
|
Boehm CR, Bock R. Recent Advances and Current Challenges in Synthetic Biology of the Plastid Genetic System and Metabolism. PLANT PHYSIOLOGY 2019; 179:794-802. [PMID: 30181342 PMCID: PMC6393795 DOI: 10.1104/pp.18.00767] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/27/2018] [Indexed: 05/05/2023]
Abstract
Building on recombinant DNA technology, leaps in synthesis, assembly, and analysis of DNA have revolutionized genetics and molecular biology over the past two decades (Kosuri and Church, 2014). These technological advances have accelerated the emergence of synthetic biology as a new discipline (Cameron et al., 2014). Synthetic biology is characterized by efforts targeted at the modification of existing and the design of novel biological systems based on principles adopted from information technology and engineering (Andrianantoandro et al., 2006; Khalil and Collins, 2010). As in more traditional engineering disciplines such as mechanical, electrical and civil engineering, synthetic biologists utilize abstraction, decoupling and standardization to make the design of biological systems more efficient and scalable. To facilitate the management of complexity, synthetic biology relies on an abstraction hierarchy composed of multiple levels (Endy, 2005): DNA as genetic material, "parts" as elements of DNA encoding basic biological functions (e.g. promoter, ribosome-binding site, terminator sequence), "devices" as any combination of parts implementing a human-defined function, and "systems" as any combination of devices fulfilling a predefined purpose. Parts are designated to perform predictable and modular functions in the context of higher-level devices or systems, which are successively refined through a cycle of designing, building, and testing.
Collapse
Affiliation(s)
- Christian R Boehm
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
36
|
Abstract
We present identification of the luciferase and enzymes of the biosynthesis of a eukaryotic luciferin from fungi. Fungi possess a simple bioluminescent system, with luciferin being only two enzymatic steps from well-known metabolic pathways. The expression of genes from the fungal bioluminescent pathway is not toxic to eukaryotic cells, and the luciferase can be easily co-opted to bioimaging applications. With the fungal system being a genetically encodable bioluminescent system from eukaryotes, it is now possible to create artificially bioluminescent eukaryotes by expression of three genes. The fungal bioluminescent system represents an example of molecular evolution of a complex ecological trait and with molecular details reported in the paper, will allow additional research into ecological significance of fungal bioluminescence. Bioluminescence is found across the entire tree of life, conferring a spectacular set of visually oriented functions from attracting mates to scaring off predators. Half a dozen different luciferins, molecules that emit light when enzymatically oxidized, are known. However, just one biochemical pathway for luciferin biosynthesis has been described in full, which is found only in bacteria. Here, we report identification of the fungal luciferase and three other key enzymes that together form the biosynthetic cycle of the fungal luciferin from caffeic acid, a simple and widespread metabolite. Introduction of the identified genes into the genome of the yeast Pichia pastoris along with caffeic acid biosynthesis genes resulted in a strain that is autoluminescent in standard media. We analyzed evolution of the enzymes of the luciferin biosynthesis cycle and found that fungal bioluminescence emerged through a series of events that included two independent gene duplications. The retention of the duplicated enzymes of the luciferin pathway in nonluminescent fungi shows that the gene duplication was followed by functional sequence divergence of enzymes of at least one gene in the biosynthetic pathway and suggests that the evolution of fungal bioluminescence proceeded through several closely related stepping stone nonluminescent biochemical reactions with adaptive roles. The availability of a complete eukaryotic luciferin biosynthesis pathway provides several applications in biomedicine and bioengineering.
Collapse
|
37
|
Piatek AA, Lenaghan SC, Neal Stewart C. Advanced editing of the nuclear and plastid genomes in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:42-49. [PMID: 29907308 DOI: 10.1016/j.plantsci.2018.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 05/28/2023]
Abstract
Genome editing is a powerful suite of technologies utilized in basic and applied plant research. Both nuclear and plastid genomes have been genetically engineered to alter traits in plants. While the most frequent molecular outcome of gene editing has been knockouts resulting in a simple deletion of an endogenous protein of interest from the host's proteome, new genes have been added to plant genomes and, in several instances, the sequence of endogenous genes have been targeted for a few coding changes. Targeted plant characteristics for genome editing range from single gene targets for agronomic input traits to metabolic pathways to endow novel plant function. In this paper, we review the fundamental approaches to editing nuclear and plastid genomes in plants with an emphasis on those utilizing synthetic biology. The differences between the eukaryotic-type nuclear genome and the prokaryotic-type plastid genome (plastome) in plants has profound consequences in the approaches employed to transform, edit, select transformants, and indeed, nearly all aspects of genetic engineering procedures. Thus, we will discuss the two genomes targeted for editing in plants, the toolbox used to make edits, along with strategies for future editing approaches to transform crop production and sustainability. While CRISPR/Cas9 is the current method of choice in editing nuclear genomes, the plastome is typically edited using homologous recombination approaches. A particularly promising synthetic biology approach is to replace the endogenous plastome with a 'synplastome' that is computationally designed, and synthesized and assembled in the lab, then installed into chloroplasts. The editing strategies, transformation methods, characteristics of the novel plant also affect how the genetically engineered plant may be governed and regulated. Each of these components and final products of gene editing affect the future of biotechnology and farming.
Collapse
Affiliation(s)
- Agnieszka A Piatek
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Scott C Lenaghan
- Department of Food Science, University of Tennessee, Knoxville, TN, 37996, USA; Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
38
|
Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev 2018; 45:6048-6077. [PMID: 27711774 DOI: 10.1039/c6cs00296j] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of d-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.
Collapse
Affiliation(s)
- Zinaida M Kaskova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Aleksandra S Tsarkova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Ilia V Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| |
Collapse
|
39
|
Kwak SY, Giraldo JP, Wong MH, Koman VB, Lew TTS, Ell J, Weidman MC, Sinclair RM, Landry MP, Tisdale WA, Strano MS. A Nanobionic Light-Emitting Plant. NANO LETTERS 2017; 17:7951-7961. [PMID: 29148804 DOI: 10.1021/acs.nanolett.7b04369] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The engineering of living plants for visible light emission and sustainable illumination is compelling because plants possess independent energy generation and storage mechanisms and autonomous self-repair. Herein, we demonstrate a plant nanobionic approach that enables exceptional luminosity and lifetime utilizing four chemically interacting nanoparticles, including firefly luciferase conjugated silica (SNP-Luc), d-luciferin releasing poly(lactic-co-glycolic acid) (PLGA-LH2), coenzyme A functionalized chitosan (CS-CoA) and semiconductor nanocrystal phosphors for longer wavelength modulation. An in vitro kinetic model incorporating the release rates of the nanoparticles is developed to maximize the chemiluminescent lifetimes to exceed 21.5 h. In watercress (Nasturtium officinale) and other species, the nanoparticles circumvent limitations such as luciferin toxicity above 400 μM and colocalization of enzymatic reactions near high adenosine triphosphate (ATP) production. Pressurized bath infusion of nanoparticles (PBIN) is introduced to deliver a mixture of nanoparticles to the entire living plant, well described using a nanofluidic mathematical model. We rationally design nanoparticle size and charge to control localization within distinct tissues compartments with 10 nm nanoparticles localizing within the leaf mesophyll and stomata guard cells, and those larger than 100 nm segregated in the leaf mesophyll. The results are mature watercress plants that emit greater than 1.44 × 1012 photons/sec or 50% of 1 μW commercial luminescent diodes and modulate "off" and "on" states by chemical addition of dehydroluciferin and coenzyme A, respectively. We show that CdSe nanocrystals can shift the chemiluminescent emission to 760 nm enabling near-infrared (nIR) signaling. These results advance the viability of nanobionic plants as self-powered photonics, direct and indirect light sources.
Collapse
Affiliation(s)
- Seon-Yeong Kwak
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Aveue, Cambridge, Massachusetts United States
| | - Juan Pablo Giraldo
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Aveue, Cambridge, Massachusetts United States
- Department of Botany and Plant Sciences, University of California , 3401 Watkins Drive, Riverside, California United States
| | - Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Aveue, Cambridge, Massachusetts United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Aveue, Cambridge, Massachusetts United States
| | - Tedrick Thomas Salim Lew
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Aveue, Cambridge, Massachusetts United States
| | - Jon Ell
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Aveue, Cambridge, Massachusetts United States
| | - Mark C Weidman
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Aveue, Cambridge, Massachusetts United States
| | - Rosalie M Sinclair
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Aveue, Cambridge, Massachusetts United States
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California , 201 Gilman Hall, Berkeley, California United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Aveue, Cambridge, Massachusetts United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Aveue, Cambridge, Massachusetts United States
| |
Collapse
|
40
|
Daniell H, Chan HT, Pasoreck EK. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases. Annu Rev Genet 2016; 50:595-618. [PMID: 27893966 PMCID: PMC5496655 DOI: 10.1146/annurev-genet-120215-035349] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plastid-made biopharmaceuticals treat major metabolic or genetic disorders, including Alzheimer's, diabetes, hypertension, hemophilia, and retinopathy. Booster vaccines made in chloroplasts prevent global infectious diseases, such as tuberculosis, malaria, cholera, and polio, and biological threats, such as anthrax and plague. Recent advances in this field include commercial-scale production of human therapeutic proteins in FDA-approved cGMP facilities, development of tags to deliver protein drugs to targeted human cells or tissues, methods to deliver precise doses, and long-term stability of protein drugs at ambient temperature, maintaining their efficacy. Codon optimization utilizing valuable information from sequenced chloroplast genomes enhanced expression of eukaryotic human or viral genes in chloroplasts and offered unique insights into translation in chloroplasts. Support from major biopharmaceutical companies, development of hydroponic production systems, and evaluation by regulatory agencies, including the CDC, FDA, and USDA, augur well for advancing this novel concept to the clinic and revolutionizing affordable healthcare.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Hui-Ting Chan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Elise K Pasoreck
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
41
|
Ahmad N, Michoux F, Lössl AG, Nixon PJ. Challenges and perspectives in commercializing plastid transformation technology. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5945-5960. [PMID: 27697788 DOI: 10.1093/jxb/erw360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plastid transformation has emerged as an alternative platform to generate transgenic plants. Attractive features of this technology include specific integration of transgenes-either individually or as operons-into the plastid genome through homologous recombination, the potential for high-level protein expression, and transgene containment because of the maternal inheritance of plastids. Several issues associated with nuclear transformation such as gene silencing, variable gene expression due to the Mendelian laws of inheritance, and epigenetic regulation have not been observed in the plastid genome. Plastid transformation has been successfully used for the production of therapeutics, vaccines, antigens, and commercial enzymes, and for engineering various agronomic traits including resistance to biotic and abiotic stresses. However, these demonstrations have usually focused on model systems such as tobacco, and the technology per se has not yet reached the market. Technical factors limiting this technology include the lack of efficient protocols for the transformation of cereals, poor transgene expression in non-green plastids, a limited number of selection markers, and the lengthy procedures required to recover fully segregated plants. This article discusses the technology of transforming the plastid genome, the positive and negative features compared with nuclear transformation, and the current challenges that need to be addressed for successful commercialization.
Collapse
Affiliation(s)
- Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Franck Michoux
- Alkion Biopharma SAS, 4 rue Pierre Fontaine, 91058 Evry, France
| | - Andreas G Lössl
- Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
42
|
Vongsangnak W, Chumnanpuen P, Sriboonlert A. Transcriptome analysis reveals candidate genes involved in luciferin metabolism in Luciola aquatilis (Coleoptera: Lampyridae). PeerJ 2016; 4:e2534. [PMID: 27761329 PMCID: PMC5068357 DOI: 10.7717/peerj.2534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022] Open
Abstract
Bioluminescence, which living organisms such as fireflies emit light, has been studied extensively for over half a century. This intriguing reaction, having its origins in nature where glowing insects can signal things such as attraction or defense, is now widely used in biotechnology with applications of bioluminescence and chemiluminescence. Luciferase, a key enzyme in this reaction, has been well characterized; however, the enzymes involved in the biosynthetic pathway of its substrate, luciferin, remains unsolved at present. To elucidate the luciferin metabolism, we performed a de novo transcriptome analysis using larvae of the firefly species, Luciola aquatilis. Here, a comparative analysis is performed with the model coleopteran insect Tribolium casteneum to elucidate the metabolic pathways in L. aquatilis. Based on a template luciferin biosynthetic pathway, combined with a range of protein and pathway databases, and various prediction tools for functional annotation, the candidate genes, enzymes, and biochemical reactions involved in luciferin metabolism are proposed for L. aquatilis. The candidate gene expression is validated in the adult L. aquatilis using reverse transcription PCR (RT-PCR). This study provides useful information on the bio-production of luciferin in the firefly and will benefit to future applications of the valuable firefly bioluminescence system.
Collapse
Affiliation(s)
- Wanwipa Vongsangnak
- Department of Zoology, Kasetsart University, Bangkok, Thailand; Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Kasetsart University, Bangkok, Thailand; Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Ajaraporn Sriboonlert
- Department of Genetics, Kasetsart University, Bangkok, Thailand; Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
43
|
Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 2016; 17:134. [PMID: 27339192 PMCID: PMC4918201 DOI: 10.1186/s13059-016-1004-2] [Citation(s) in RCA: 849] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA.
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming Yu
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
44
|
Strategies and Methodologies for the Co-expression of Multiple Proteins in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:263-85. [DOI: 10.1007/978-3-319-27216-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Jin S, Daniell H. The Engineered Chloroplast Genome Just Got Smarter. TRENDS IN PLANT SCIENCE 2015; 20:622-640. [PMID: 26440432 PMCID: PMC4606472 DOI: 10.1016/j.tplants.2015.07.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/18/2015] [Accepted: 07/20/2015] [Indexed: 05/18/2023]
Abstract
Chloroplasts are known to sustain life on earth by providing food, fuel, and oxygen through the process of photosynthesis. However, the chloroplast genome has also been smartly engineered to confer valuable agronomic traits and/or serve as bioreactors for the production of industrial enzymes, biopharmaceuticals, bioproducts, or vaccines. The recent breakthrough in hyperexpression of biopharmaceuticals in edible leaves has facilitated progression to clinical studies by major pharmaceutical companies. This review critically evaluates progress in developing new tools to enhance or simplify expression of targeted genes in chloroplasts. These tools hold the promise to further the development of novel fuels and products, enhance the photosynthetic process, and increase our understanding of retrograde signaling and cellular processes.
Collapse
Affiliation(s)
- Shuangxia Jin
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Francis WR, Shaner NC, Christianson LM, Powers ML, Haddock SHD. Occurrence of Isopenicillin-N-Synthase Homologs in Bioluminescent Ctenophores and Implications for Coelenterazine Biosynthesis. PLoS One 2015; 10:e0128742. [PMID: 26125183 PMCID: PMC4488382 DOI: 10.1371/journal.pone.0128742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 05/01/2015] [Indexed: 11/19/2022] Open
Abstract
The biosynthesis of the luciferin coelenterazine has remained a mystery for decades. While not all organisms that use coelenterazine appear to make it themselves, it is thought that ctenophores are a likely producer. Here we analyze the transcriptome data of 24 species of ctenophores, two of which have published genomes. The natural precursors of coelenterazine have been shown to be the amino acids L-tyrosine and L-phenylalanine, with the most likely biosynthetic pathway involving cyclization and further modification of the tripeptide Phe-Tyr-Tyr ("FYY"). Therefore, we searched the ctenophore transcriptome data for genes with the short peptide "FYY" as part of their coding sequence. We recovered a group of candidate genes for coelenterazine biosynthesis in the luminous species which encode a set of highly conserved non-heme iron oxidases similar to isopenicillin-N-synthase. These genes were absent in the transcriptomes and genome of the two non-luminous species. Pairwise identities and substitution rates reveal an unusually high degree of identity even between the most unrelated species. Additionally, two related groups of non-heme iron oxidases were found across all ctenophores, including those which are non-luminous, arguing against the involvement of these two gene groups in luminescence. Important residues for iron-binding are conserved across all proteins in the three groups, suggesting this function is still present. Given the known functions of other members of this protein superfamily are involved in heterocycle formation, we consider these genes to be top candidates for laboratory characterization or gene knockouts in the investigation of coelenterazine biosynthesis.
Collapse
Affiliation(s)
- Warren R. Francis
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA 95039, United States of America
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Nathan C. Shaner
- The Scintillon Institute, 6404 Nancy Ridge Dr., San Diego, CA 92121, United States of America
| | - Lynne M. Christianson
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA 95039, United States of America
| | - Meghan L. Powers
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA 95039, United States of America
| | - Steven H. D. Haddock
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA 95039, United States of America
- * E-mail:
| |
Collapse
|
47
|
Scharff LB, Bock R. Synthetic biology in plastids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:783-98. [PMID: 24147738 DOI: 10.1111/tpj.12356] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 05/21/2023]
Abstract
Plastids (chloroplasts) harbor a small gene-dense genome that is amenable to genetic manipulation by transformation. During 1 billion years of evolution from the cyanobacterial endosymbiont to present-day chloroplasts, the plastid genome has undergone a dramatic size reduction, mainly as a result of gene losses and the large-scale transfer of genes to the nuclear genome. Thus the plastid genome can be regarded as a naturally evolved miniature genome, the gradual size reduction and compaction of which has provided a blueprint for the design of minimum genomes. Furthermore, because of the largely prokaryotic genome structure and gene expression machinery, the high transgene expression levels attainable in transgenic chloroplasts and the very low production costs in plant systems, the chloroplast lends itself to synthetic biology applications that are directed towards the efficient synthesis of green chemicals, biopharmaceuticals and other metabolites of commercial interest. This review describes recent progress with the engineering of plastid genomes with large constructs of foreign or synthetic DNA, and highlights the potential of the chloroplast as a model system in bottom-up and top-down synthetic biology approaches.
Collapse
Affiliation(s)
- Lars B Scharff
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | | |
Collapse
|
48
|
Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:135. [PMID: 25356086 PMCID: PMC4212100 DOI: 10.1186/s13068-014-0135-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/03/2014] [Indexed: 05/03/2023]
Abstract
Second generation biofuel development is increasingly reliant on the recombinant expression of cellulases. Designing or identifying successful expression systems is thus of preeminent importance to industrial progress in the field. Recombinant production of cellulases has been performed using a wide range of expression systems in bacteria, yeasts and plants. In a number of these systems, particularly when using bacteria and plants, significant challenges have been experienced in expressing full-length proteins or proteins at high yield. Further difficulties have been encountered in designing recombinant systems for surface-display of cellulases and for use in consolidated bioprocessing in bacteria and yeast. For establishing cellulase expression in plants, various strategies are utilized to overcome problems, such as the auto-hydrolysis of developing plant cell walls. In this review, we investigate the major challenges, as well as the major advances made to date in the recombinant expression of cellulases across the commonly used bacterial, plant and yeast systems. We review some of the critical aspects to be considered for industrial-scale cellulase production.
Collapse
Affiliation(s)
- Camilla Lambertz
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Megan Garvey
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Present address: School of Medicine, Deakin University, CSIRO Australian Animal Health Laboratory, 5 Portarlington Rd, Newcomb, VIC 3219 Australia
| | - Johannes Klinger
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Dirk Heesel
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Holger Klose
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Present address: Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Rainer Fischer
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- />Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Ulrich Commandeur
- />Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
49
|
Bock R. Strategies for metabolic pathway engineering with multiple transgenes. PLANT MOLECULAR BIOLOGY 2013; 83:21-31. [PMID: 23504453 DOI: 10.1007/s11103-013-0045-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/11/2013] [Indexed: 05/21/2023]
Abstract
The engineering of metabolic pathways in plants often requires the concerted expression of more than one gene. While with traditional transgenic approaches, the expression of multiple transgenes has been challenging, recent progress has greatly expanded our repertoire of powerful techniques making this possible. New technological options include large-scale co-transformation of the nuclear genome, also referred to as combinatorial transformation, and transformation of the chloroplast genome with synthetic operon constructs. This review describes the state of the art in multigene genetic engineering of plants. It focuses on the methods currently available for the introduction of multiple transgenes into plants and the molecular mechanisms underlying successful transgene expression. Selected examples of metabolic pathway engineering are used to illustrate the attractions and limitations of each method and to highlight key factors that influence the experimenter's choice of the best strategy for multigene engineering.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
50
|
Bock R. Genetic engineering of the chloroplast: novel tools and new applications. Curr Opin Biotechnol 2013; 26:7-13. [PMID: 24679252 DOI: 10.1016/j.copbio.2013.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
The plastid genome represents an attractive target of genetic engineering in crop plants. Plastid transgenes often give high expression levels, can be stacked in operons and are largely excluded from pollen transmission. Recent research has greatly expanded our toolbox for plastid genome engineering and many new proof-of-principle applications have highlighted the enormous potential of the transplastomic technology in both crop improvement and the development of plants as bioreactors for the sustainable and cost-effective production of biopharmaceuticals, enzymes and raw materials for the chemical industry. This review describes recent technological advances with plastid transformation in seed plants. It focuses on novel tools for plastid genome engineering and transgene expression and summarizes progress with harnessing the potential of plastid transformation in biotechnology.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|